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Introduction

1.1 Fluids, Structures, and Acoustics

Sound and structural vibrations are an inevitable product of unsteady flow and
of its interactions with structures immersed in the flow. These interactions, and
the manner in which they affect the production and dissipation of sound, are
the subject of this book. This first chapter is a review of several fundamental
topics in fluid mechanics, acoustics, and the theory of elasticity.

1.1.1 Notation

The mathematical notation is developed in this chapter. For future reference,
however, it is convenient to note here the following conventions.

Latin suffixes i, j, and so forth denote vector or tensor components in the
direction of the i—, j—, ... axis; i; is a unit vector in the j-direction.

Green'’s Functions

The frequency-domain Green’s function G(X,y; ) and the time-domain
Green’s function G (X, y, t — t) are defined such that

Gy, t—1)= ___/ G(x,y; w)e_'w<t_r)dw.
27 J_ o
However, the Fourier time transform f(x, w) of a function f(x, t) of position

x and time ¢ are related by

fxn= / ” f(x, w)e " dw.
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2 1 Introduction

For problems in the frequency domain, the notation f (X, @) implies a time

dependence e ~/¢*,

1.2 Equations of Motion of a Fluid

The analysis of fluid—structure interactions involves a consideration of equations
governing the motion of fluids and solids and the boundary conditions that relate
the solutions of these equations at the fluid—structure interface. A complete
description of the state of a moving fluid is given at each time ¢ and position
X = {x1, x2, x3) when the velocity v and any two thermodynamic variables are
specified. These quantities generally vary with x and ¢, and five scalar equations
are required to determine the motion in terms of the boundary conditions and
a prescribed initial state. The equations are statements of the conservation of
mass, momentum, and energy.

1.2.1 Equation of Continuity

Conservation of mass requires the rate of increase of the fluid mass within a
fixed region of space V to be equal to the net influx due to convection across
the boundaries of V. This is expressed in terms of v and the fluid density p by
the equation of continuity

3p/dt + div(pv) = 0, (1.2.1)

which may also be written

l@4-divv=0, (1.2.2)
p Dt

where D/ Dt = 9/dt+v-V = 3/3t+v;3/9x; is the material derivative, which
measures rate of change following the motion of a fluid particle, and a repeated
suffix j implies summation over j = 1, 2, 3. By writing Equation (1.2.2) in the
form divv = pD(1/p)/Dt, we see that div v is just the rate of change of fluid
volume per unit volume following the motion of the fluid. This vanishes when
a fluid is incompressible, when the equation of continuity becomes

divv = 0. (1.2.3)

1.2.2 Momentum Equation

The momentum equation for a viscous fluid is called the Navier—Stokes equation
and expresses the rate of change of momentum of a fluid particle in terms of
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1.2 Equations of motion of a fluid 3

the pressure p, the viscous stress tensor o;;, and body forces (such as gravity)
F per unit volume:

pDv;/Dt = —0dp/dx; + 30;;/3x; + F;
= —Bpl-j/axj + Fi, (124)

where
pij = pdij — 0ij (1.2.5)

is the compressive stress tensor. Viscous stresses are caused by frictional forces
between neighboring fluid elements moving at different velocities. For an
isotropic, Newtonian fluid (such as dry air and water)

’ 2 ’
oij = 2n;; + <77 - 5’7) 8ijexks (1.2.6)
where
1
€j = 5(31)1'/3)6;' + dv;/dx;) (1.2.7)

is the rate of strain tensor and 7 and 7’ are, respectively, the shear and bulk
coefficients of viscosity. These coefficients are functions of the pressure and
temperature, 7, and in general vary throughout the flow, although in many cases
the variations are sufficiently small that they can be neglected. Equation (1.2.6)
is a phenomenological relation that is applicable provided the time scales of
unsteady fluid motions are much larger than the relaxation times of the internal
degrees of freedom of the fluid molecules [1].

The bulk coefficient of viscosity 7 vanishes for monatomic gases, and in this
case (and for most liquids, such as water), the fluid is said to be Stokesian, with

0y =27 (eij - %Qk&‘j) . (1.2.8)
When the variation of 7 is neglected, the momentum equation for a Stokesian
fluid is
Dv/Dt =(=1/p)Vp+v {V2v+ %V(divv)} + F/p, (1.2.9)
where

v=mn/p (1.2.10)

is the kinematic viscosity.
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4 1 Introduction

Table 1.2.1. Air and water values

Element pkg/m®  nkg/ms v m%/s
Air 1.23 1.764 1075 1.433 1073
Water 1,000 1.284 1073 1.284 107¢

Values of p, n, and v for air and water at 10°C and one-atmosphere pressure
are given in the Table 1.2.1.

When viscous stresses are ignored, equations (1.2.1) and (1.2.4) describe
the motion of an ideal fluid and are called Euler’s equations. These are of
lower order in the spatial derivatives of velocity than the full Navier-Stokes
equations, and this implies that it will not normally be possible to satisfy all
of the conditions that a real fluid must satisfy at the physical boundaries of the
flow (see Section 1.5).

1.2.3 Thermodynamic Relations

Apart from the pressure, density, and temperature, we shall also need to intro-
duce the specific internal energy e, specific enthalpy w = e+ p/p, and specific
entropy s, where a specific quantity denotes the value per unit mass of the fluid.
For a single-component system in a state of equilibrium, any thermodynamic
variable can be expressed in terms of any two given variables by making use of
the equation of state and certain thermodynamic identities.

When a quantity of heat d Q is supplied to unit mass of fluid, as a result
of which its volume changes by d(1/p), the internal energy e increases by
de = dQ — pd(1/p), the second term on the right being the work done on the
fluid element by the pressure because of the volume change. If the change occurs
sufficiently slowly, the fluid element is always in thermodynamic equilibrium,
and the heat input and the change in specific entropy are related by d Q = T ds,
which leads to the fundamental identity

de =Tds — pd(1/p). (1.2.11)

This “quasi-static” relation does not necessarily imply that the motion is ther-
modynamically reversible because the fluid element, although internally in
equilibrium, need not be in equilibrium with its surroundings. When it is writ-
ten in terms of the enthalpy w, we have

dw =T ds +dp/p. (1.2.12)
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1.2 Equations of motion of a fluid 5

The specific heats at constant volume ¢, and constant pressure c,, are equal to
the amounts of heat absorbed per unit mass of fluid per unit rise in temperature
when the heating occurs at constant volume and constant pressure, respectively.
Equations (1.2.11) and (1.2.12) supply

¢y =T(0s/0T), = (0¢/3T),, cp =T(09s/0T), = (Bw/3T),.
(1.2.13)

The specific heats are related by
¢, — ¢y = TB*/0Kr, (1.2.14)

where 8 and K7 are, respectively, the coefficients of expansion and isothermal
compressibility of the fluid, defined by

B =(=1/p)@p/3T)p, Kr=(1/p)(0p/dp)r. (1.2.15)
The equation of state of an ideal gas is usually expressed in the form
p = pRT, (1.2.16)

where the gas constant R = 8,314/(mean molecular weight) in SI units (R ~
287 Joules/kg °K for dry air at normal temperatures and pressures). For a
nonreacting mixture of gases in equilibrium at temperature 7', Dalton’s law of
partial pressures states that the total pressure p = i P> where p; = p;R;Tis
the pressure of the jth constituent gas of density p; and gas constant R ;.

The specific heats of an ideal gas composed of rigid molecules each with N
rotational degrees of freedom, satisfy ¢, — ¢, = R,and y = ¢, /c, = (N +5)/
(N + 3). When ¢, c, are constant, we also have

e=c,T=p/ly —Dp, w=c,T=yp/(y —Dp,
s = ¢y In(p/pY).

(1.2.17)

Equation (1.2.11) implies that the excess thermal energy required to raise the
temperature of a fluid particle at constant pressure, as opposed to constant
volume, is expended as work [ pd(1/p) performed on its environment during
expansion and that the relevant thermodynamic function for describing such
processes is the enthalpy w.

1.2.4 Thermodynamic Variables

When velocity gradients are present the fluid cannot be in strict thermodynamic
equilibrium, and thermodynamic variables require special interpretation. For a
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6 1 Introduction

fluid in nonuniform motion it is customary to define the density o and internal
energy e in the usual way, that is, such that p and pe are the mass and internal
energy per unit volume. The pressure and all other thermodynamic variables
are then defined by means of the same functions of p and e as would be the case
in thermal equilibrium. The “thermodynamic pressure” p = p(p, €) so defined
is no longer the sole source of normal stress on a surface drawn in the fluid.
The mean normal stress is obtained by averaging p;;n;n; (see (1.2.5)) over all
possible directions of the unit vector n defining the normal to a surface element.
The average is obtained by evaluating (1/47)$n;n; dS over the surface of a
sphere of unit radius. The integral is equal to %n&- j» and the mean normal stress
is therefore equal to % pii = p—n’ divv, which differs from the thermodynamic
pressure p if the bulk coefficient of viscosity n’ is nonzero. This is the case fora
fluid whose molecules possess rotational degrees of freedom, whose relaxation
time (during which thermal equilibrium is reestablished after, say, an expan-
sion of the fluid) is large relative to the equilibration time of the translational
degrees of freedom. For example, in an expanding diatomic gas (divv > 0)
the temperature must decrease, but the reduction in the rotational energy lags
slightly behind that of the translational energy; the thermodynamic pressure
p = (y — 1)pe accordingly exceeds the actual pressure %p,-,- by an amount
equal to n’ div v. The rate of adjustment of the rotational degrees of freedom is
such that in practice 7’ is of the same order as 7 (for dry air n” ~ 0.6n).

It may be shown [2] that whereas the thermodynamic pressure differs from
the mean normal stress by a term that is linear in the velocity gradient, the
corresponding departure of the thermodynamic specific entropy s from the true
entropy is proportional at Icast to the square of such gradients, and the difference
is usually small in practice.

1.2.5 Crocco’s Equation and Bernoulli’s Equation
The momentum equation (1.2.4) can also be expressed in Crocco’s form
0v; /0t + 0B/0x; = —~(w AV); +T3s/dx; + (1/p)do;;/dx; + F;/p,
(1.2.18)
where B is the total enthalpy,

1
B=w+§v2, (1.2.19)
and w = curl vis the vorticity. It is derived from (1.2.4) by making use of (1.2.12)

and the identity Dv/Dt =9v/dt + (v - V)v=203v/dt + V(%vz) +wAv.
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1.2 Equations of motion of a fluid 7

In an ideal fluid viscosity and thermal conduction are negligible. If, in addi-
tion, the motion is homentropic (s = constant throughout the flow), irrotational
(w = 0), and the body force F is conservative, that is, there is a scalar function
of position @ such that F = pV®, Crocco’s equation implies the existence of
a velocity potential ¢, such that

v=Vg. (1.2.20)

A first integral of the momentum equation then yields Bernoulli’s equation,
which may be expressed in either of the forms:

3¢9t + B — & = f(1), 8p/0t+w+ %vZ —d=fr). (1221

The velocity potential ¢ is undefined to within an arbitrary function of time
so that the function f(¢) may be set equal to a constant or zero. For steady
flow 8¢/3t = 0, f(t) = constant, and Bernoulli’s equation reduces to w +
%v2 — & = constant. It is clear from (1.2.21), and from Crocco’s equa-
tion (1.2.18), that the potential ® of the body force may be absorbed into the total
enthalpy B.

A flow is said to be isentropic when the specific entropy of each fluid particle
is constant, that is, when Ds/Dt = 0. For steady flow of an ideal fluid subject
to conservative body forces, Crocco’s equation, VB = —w AV + T Vs, implies
that DB/Dt = (v-V)B = —v-w AV + (v.V)s = 0 so that B is constant
along a streamline. If the flow is homentropic, B is constant over the fixed
fluid surfaces spanned by intersecting streamlines and vortex lines (because
v-wAav=0).

1.2.6 Reynolds Number

An equation for the rate of change of the momentum density ov is obtained
by adding the continuity equation (1.2.1) multiplied by v to the momentum
equation (1.2.4) and writing the result in the form

a(pv;) d
— :—a;(psij—kpvivj—mj)—i-l’;- (1.2.22)

The quantity pv;v; is called the Reynolds stress and accounts for changes in
the momentum pv; by convection at velocity v;. The order of magnitude of the
Reynolds stress relative to the viscous stress g;; at any given point in the flow
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8 1 Introduction

is determined by the value of the Reynolds number
Re = ul/v, (1.2.23)

in which u and £ are the respective characteristic values of the velocity and length
scale of variation of the flow in the neighborhood of the point in question.

Inregions where Re >> 1 viscosity plays a minor role in the local development
of the flow. This is the case, for example, in high-speed jets, where £ ~ jet
diameter and # ~ mean jet velocity. In turbuient flow over a wall, the motion
in a thin layer of fluid adjacent to the wall (the “viscous sublayer,” where
u and £ are small and Re — 0) is dominated by the viscous diffusion of
momentum across the layer. Further away from the wall, in the region of
fully developed turbulence, £ & boundary layer thickness and u =~ velocity
of the main stream, and Re typically exceeds 10° or more. The viscous (i.e.,
molecular) transport of momentum is then negligible compared with that due
to turbulence convection.

1.2.7 Vorticity

The motion of a spherical particle of fluid may be decomposed into a uniform
translation at the velocity v, say, of its center, a straining motion determined
by the rate of strain tensor ¢;; and a rotation at angular velocity %w = % curl v
[3]. The vorticity is therefore a measure of the angular momentum of a fluid
particle. Conservation of angular momentum suggests that vorticity may be
regarded as a quantity characterizing the intrinsic kinetic energy of a flow,
inasmuch as it determines the motion that would persist in an incompressible
fluid at rest at infinity if all the boundaries were brought to rest. A vortex line
in the fluid is tangential to the vorticity vector at all points along its length.
Because divw = div(curl v) = 0, a vortex line cannot begin or end within the
fluid. The “no-slip” condition requires the fluid velocity at the boundary to be
the same as that of the boundary. A vortex line must therefore form a closed
loop or end on a rotating surface bounding the flow [3].

Vorticity is transported by convection and molecular diffusion, and for this
reason it is often permissible to assume that an initially confined region of
vorticity remains localized. The vorticity equation is obtained from the curl
of Crocco’s equation (1.2.18) and by using the vector identity curl(w A v) =
(v- VYw + wdivv — (w - V)v and the continuity equation (1.2.1):

pD(w/p)/Dt = (w-V)v4+ VT A Vs
+ curl((1/p)0p;; /0x;) + curl(F/ p). (1.2.24)
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1.2 Equations of motion of a fluid 9

The terms on the right-hand side account for changes in w/p following the
motion of a fluid particle. They are interpreted as follows:

1. (w - V)v: rotation and stretching of vortex lines by the velocity field. The
magnitude of w/p increases in direct proportion to the stretching of vortex
lines by the flow. When the remaining terms on the right of (1.2.24) are
absent, the motion satisfies Kelvin’s circulation theorem [2—4]. This asserts
that, in an inviscid, homentropic fluid subject only to conservative body
forces, the circulation C, equal to the line integral § v - dx taken around a
closed material contour in the fluid, does not change with time (DC/ Dt =0).
It follows that vortex lines move with the fluid, and in particular that the
vorticity of a material element of the fluid remains zero if it is initially zero.
In other words, vorticity cannot be created in a body of fluid if it is initially
irrotational and the motion is inviscid and homentropic.

2. VT AVs: production of vorticity when temperature and entropy gradients are
not parallel, or equivalently (because, from (1.2.12), VT AVs = —V(1/p)A
V p), when density and pressure gradients are not parallel.

3. curl((1/p)d0;;/dx;): molecular diffusion of vorticity. This term is impor-
tant only in regions of high shear. When variations in the kinematic viscosity
v are negligible, we recover the more familiar expression

curl((1/p)do;;/0x;) = vViw. (1.2.25)

If local effects of compressibility are unimportant the vorticity equation
(1.2.24) reduces to

Dw/Dt = (w - V)V + vV*w + curl(F/p). (1.2.26)
4. curl(F/p): production of vorticity by nonconservative body forces.

Vorticity is generated at solid boundaries, and viscosity is responsible for its
diffusion into the body of the fluid, where it can subsequently be convected by
the flow. When body forces and density variations are neglected, integration
of (1.2.26) over a fluid region V contained within a control surface ¥ moving
with the fluid, and bounded internally by a moving solid surface S, yields

)
— /wd3x = —7{ (- w)v+vn A V2v) dS, (1.2.27)
ot S+E

where in the surface integrals over S and X, n is a unit normal directed into
V. Vorticity changes in V are therefore caused by the rotation and stretching of
vortex tubes at the boundaries and diffusion across the boundaries by viscosity.
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10 1 Introduction

The momentum equation (1.2.9) and the no-slip condition imply that (n-w)v =
22 -mUand vn AVEiv=(1/o)nAVp+DmAU)/Dt — (2 An)AUon
S, where U and €2 are, respectively, the velocity and angular velocity of the
surface element dS. Equation (1.2.27) is therefore equivalent to

%/wcﬁx: —f(z(n.n)U— QA AU+ (1/p)nAVp
S

+ Dm AU)/Dt)dS — %((n -w)V+un A Vzv) ds.
=
(1.2.28)

This shows that the mechanism of vorticity production on S is independent of
the value of the viscosity v. Viscosity merely serves to diffuse the vorticity
into the fluid from the surface {3, 5, 6]. The terms in the first integral on the
right-hand side may be regarded as sources of vorticity on S. For arigid solid in
translational motion, vorticity production requires that either the tangential sur-
face acceleration, D(n A U)/ Dt, or surface pressure gradient, n A V p, should
be nonzero.

1.2.8 The Energy Equation

In homentropic flow, the equation s = constant provides a relation between the
thermodynamic variables that permits the motion to be determined from the
equations of continuity and momentum together with the equation of state. In
more general situations, where s is variable, it is necessary to introduce an
energy equation to account for coupling between macroscopic motions and the
internal energy of the fluid. This equation governs the conservation of the total
energy of the system (i.e., the dissipation of mechanical energy) and is derived
by analyzing the energy balance for a moving particle of fluid.

Consider a small element of fluid of volume V, bounded by a surface S. The
kinetic and internal energies per unit volume are equal respectively to 1/2pv?
and pe, and the energy of the fluidin Vis E = pV(%v2 + ¢). Changes in E are
produced by the work done by the compressive stress p;; on the boundary S,
by the flux of heat energy through S by molecular conduction, and by the work
performed by the body force F within V. If thermal conduction is expressed in
terms of the heat flux vector Q, energy conservation requires

DE
or_ f(pijvi + Q) dS; + VusF;, (1.2.29)
S

where the surface element S is directed into V. According to the divergence
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