
Preface

Computational chemistry and molecular modeling is a fast emerging area which is
used for the modeling and simulation of small chemical and biological systems in
order to understand and predict their behavior at the molecular level. It has a wide
range of applications in various disciplines of engineering sciences, such as materi-
als science, chemical engineering, biomedical engineering, etc. Knowledge of com-
putational chemistry is essential to understand the behavior of nanosystems; it is
probably the easiest route or gateway to the fast-growing discipline of nanosciences
and nanotechnology, which covers many areas of research dealing with objects that
are measured in nanometers and which is expected to revolutionize the industrial
sector in the coming decades.

Considering the importance of this discipline, computational chemistry is being
taught presently as a course at the postgraduate and research level in many universi-
ties. This book is the result of the need for a comprehensive textbook on the subject,
which was felt by the authors while teaching the course. It covers all the aspects of
computational chemistry required for a course, with sufficient illustrations, numeri-
cal examples, applications, and exercises. For a computational chemist, scientist, or
researcher, this book will be highly useful in understanding and mastering the art of
chemical computation. Familiarization with common and commercial software in
molecular modeling is also incorporated. Moreover, the application of the concepts
in related fields such as biomedical engineering, computational drug designing, etc.
has been added.

The book begins with an introductory chapter on computational chemistry and
molecular modeling. In this chapter (Chap. 1), we emphasize the four computa-
tional criteria for modeling any system, namely stability, symmetry, quantization,
and homogeneity. In Chap. 2, “Symmetry and Point Groups”, elements of molec-
ular symmetry and point group are explained. A number of illustrative examples
and diagrams are given. The transformation matrix for each symmetry operation
is included to provide a computational know-how. In Chap. 3, the basic princi-
ples of quantum mechanics are presented to enhance the reader’s ability to under-
stand the quantum mechanical modeling techniques. In Chaps. 4–10, computational
techniques with different levels of accuracy have been arranged. The chapters also
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cover Huckel’s molecular orbital theory, Hartree-Fock (HF) approximation, semi-
empirical methods, ab initio techniques, density functional theory, reduced density
matrix, and molecular mechanics methods.

Topics such as the overlap integral, the Coulomb integral and the resonance inte-
gral, the secular matrix, and the solution to the secular matrix have been included in
Chap. 4 with specific applications such as aromaticity, charge density calculation,
the stability and delocalization energy spectrum, the highest occupied molecular or-
bital (HOMO), the lowest unoccupied molecular orbital (LUMO), bond order, the
free valence index, the electrophilic and nucleophilic substitution, etc. In the chap-
ter on HF theory (Chap. 5), the formulation of the Fock matrix has been included.
Chapter 6 concerns different types of basis sets. This chapter covers in detail all
important minimal basis sets and extended basis sets such as GTOs, STOs, double-
zeta, triple-zeta, quadruple-zeta, split-valence, polarized, and diffuse. In Chap. 7,
semi-empirical methods are introduced; besides giving an overview of the theory
and equations, a performance of the methods based on the neglect of differential
overlap, with an emphasis on AM1, MNDO, and PM3 is explained. Chapter 8 is
on ab initio methods, covering areas such as the correlation technique, the Möller-
Plesset perturbation theory, the generalized valence bond (GVB) method, the multi-
configurations self consistent field (MCSCF) theory, configuration interaction (CI)
and coupled cluster theory (CC).

Density functional theory (DFT) seems to be an extremely successful approach
for the description of the ground state properties of metals, semiconductors, and in-
sulators. The success of DFT not only encompasses standard bulk materials but also
complex materials such as proteins and carbon nanotubes. The chapter on density
functional theory (Chap. 9) covers the entire applications of the theory.

Chapter 10 explains reduced density matrix and its applications in molecular
modeling. While traditional methods for computing the orbitals are scaling cubically
with respect to the number of electrons, the computation of the density matrix offers
the opportunity to achieve linear complexity. We describe several iteration schemes
for the computation of the density matrix. We also briefly present the concept of the
best n-term approximation.

Chapter 11 is on molecular mechanics and modeling, in which various force
fields required to express the total energy term are introduced. Computations using
common molecular mechanics force fields are explained.

Computations of molecular properties using the common computational tech-
niques are explained in Chap. 12. In this chapter, we have included a section on
a comparison of various modeling techniques. This helps the reader to choose the
method for a particular computation.

The need and the possibility for high performance computing (HPC) in molecular
modeling is explained in Chap. 13. This chapter explains HPC as a technique for
providing the foundation to meet the data and computing demands of Research and
Development (R&D) grids. HPC helps in harnessing data and computer resources
in a multi-site, multi-organizational context effective cluster management, making
use of maximum computing investment for molecular modeling.
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Some typical projects/research topics on molecular modeling are included in
Chap. 14. This chapter helps the reader to familiarize himself with the modern trends
in research connected with computational chemistry and molecular modeling.

Chapter 15 is on basic mathematics and contains an introduction to compu-
tational tools such as Microsoft Excel, MATLAB, etc. This helps even a non-
mathematics person to understand the mathematics used in the text to appreciate
the real art of computing. Sufficient additions have been included as an appendix
to cover areas such as operators, HuckelMO hetero atom parameters, Microsoft Ex-
cel in the balancing of chemical equations, simultaneous spectroscopic analysis, the
computation of bond enthalpy of hydrocarbons, graphing chemical analysis data,
titration data plotting, the application of curve fitting in chemistry, the determina-
tion of solvation energy, and the determination of partial molar volume.

An exclusive URL (http://www.amrita.edu/cen/ccmm) for this book with the re-
quired support materials has been provided for readers which contains a chapterwise
PowerPoint presentation, numerical solutions to exercises, the input/output files of
computations done with software such as Gaussian, Spartan etc., HTML-based pro-
gramming environments for the determination of eigenvalues/eigenvectors of sym-
metrical matrices and interconversion of units, and the step-by-step implementation
of cluster computing. A comprehensive survey covering the possible journals, pub-
lications, software, and Internet support concerned with this discipline have been
included.

The uniqueness of this book can be summarized as follows:

1. It provides a comprehensive background theory for molecular modeling.
2. It includes applications from all related areas.
3. It includes sufficient numerical examples and exercises.
4. Numerous explanatory illustrations/figures are included.
5. A separate chapter on basic mathematics and application tools such as MAT-

LAB is included.
6. A chapter on high performance computing is included with examples from

molecular modeling.
7. A chapter on chemical computation using the reduced density matrix method is

included.
8. Sample projects and research topics from the area are included.
9. It includes an exclusive web site with required support materials.

With the vast teaching expertise of the authors, the arrangement and designing
of the topics in the book has been made according to the requirements/interests
of the teaching/learning community. We hope that the reader community appre-
ciates this. Computational chemistry principles extended to molecular simulation
are not included in this book; we hope that a sister publication of this book cov-
ering that aspect will be released in the near future. We have tried to make the
explanations clear and complete to the satisfaction of the reader. However, re-
garding any queries, suggestions, corrections, modifications and advice, the read-
ers are always welcome to contact the authors at the following email address:
n_krishnan@ettimadai.amrita.edu.
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Chapter 3
Quantum Mechanics: A Brief Introduction

I think it is safe to say that no one understands quantum
mechanics. Do not keep saying to yourself, if you can possibly
avoid it, “But how can it be like that?” because you will get
“down the drain” into a blind alley from which nobody has yet
escaped. Nobody knows how it can be like that.

– Richard Feynman (1918–1988)

3.1 Introduction

The development of quantum mechanics was initially provoked by two main ob-
servations that established the inadequacy of classical physics. They are called the
ultraviolet catastrophe and the photoelectric effect.

3.1.1 The Ultraviolet Catastrophe

A blackbody is a unique object which absorbs and emits all frequencies of electro-
magnetic radiations incident on it. Classical physics can be used to derive an equa-
tion which describes the intensity of blackbody radiation as a function of frequency
for different temperatures. This generalization is known as the Rayleigh-Jeans law.
Let us look at the spectrum in detail. When an iron block is heated, the color of the
metal is gray at a low temperature, bright red at about 1270 K and dazzling white
at 1770 K. This feature is described in Fig. 3.1. Although the Rayleigh-Jeans law
works for low frequencies, it diverges at higher ones. This divergence at higher fre-
quencies is called the ultraviolet catastrophe.

Max Planck [1] gave an explanation to the blackbody spectrum in the year 1900
by assuming that the energies of the oscillations of electrons which gave rise to the
radiation must be proportional to integral multiples of the frequencies. Using statis-
tical mechanics, Planck derived an equation similar to the Rayleigh-Jeans equation,
but with the adjustable parameter h. Planck found that for h = 6.626×10−34 Js
(Planck’s constant), the experimental data could be reproduced to its finest detail.
This famous revolutionary relation is given by Eq. 3.1.

E = nhϑ (3.1)
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Fig. 3.1 Intensity of radia-
tion of heated iron against
frequency. The values cor-
responding to the Rayleigh-
Jeans relationship are rep-
resented by a dashed curve.
It fits well to experimental
data at low frequencies, but
becomes departing at higher
frequencies

Where n is a positive integer, ϑ is the frequency of the oscillator, and E is the
energy. But Planck could not offer a good justification for his assumption of energy
quantization. Scientists did not take this energy quantization idea seriously until
Einstein invoked a similar assumption to explain the photoelectric effect.

3.1.2 The Photoelectric Effect

Heinrich Hertz in 1887 discovered that irradiation by ultraviolet light would cause
electrons to be ejected from a metal surface. According to the classical wave the-
ory of light, the intensity of the light determines the amplitude of the wave, and so
a greater intensity of light should cause the electrons on the metal to oscillate more
violently and to be ejected with a greater kinetic energy. In contrast, the experiment
showed that the kinetic energy of the ejected electrons depended only on the fre-
quency of the light. On the other hand, the intensity of light affects only the number
of ejected electrons and not their kinetic energies.

Einstein explained the problem of the photoelectric effect in 1905. Instead of
assuming that the electronic oscillators had energies given by Planck’s equation
(Eq. 3.1), Einstein assumed that the radiation itself consisted of packets of energy E ,
which are now called photons. Einstein successfully explained the photoelectric ef-
fect by using this assumption, and he calculated a value of h close to that obtained
by Planck.

Two years later, Einstein showed that, like light, atomic vibrations were also
quantized. Classical physics predicts that the molar heat capacity at a constant vol-
ume (Cv) of a crystal is 3R, where R is the molar gas constant. This works well for
high temperatures, but for low temperatures Cv actually falls to zero. Einstein was
able to explain this result by assuming that the oscillations of atoms about their equi-
librium positions are quantized according to Eq. 3.1 – Planck’s quantization condi-
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tion for electronic oscillators. This confirmed that the energy quantization concept
was important even for a system of atoms in a crystal, which could be well-modeled
by a system of masses and springs (i.e., by classical mechanics).

3.1.3 The Quantization of the Electronic Angular Momentum

Rutherford proposed a classical atomic structure in which the electrons are consid-
ered as revolving round the nucleus of atom. One problem with this model is that
orbiting electrons experience a centripetal acceleration. Such accelerating charges
should lose energy by radiation making stable electronic orbits classically forbid-
den. Bohr proposed stable electronic orbits with the electronic angular momentum
quantized as:

l = mvr = nh̄ (3.2)

where m is the mass of the electron, v its velocity, and r the radius of the orbit, h̄ =
h/2π , n = 1,2,3 . . . The quantization of angular momentum leads to discretization
of radius as well as the energy of the orbit. Bohr’s atom model could explain the
atomic spectrum of the hydrogen atom. Bohr assumed that the discrete lines seen
in the spectrum of the hydrogen atom were due to transitions of electrons from
one allowed orbit/energy level to another. He further assumed that the energy of
a transition is acquired or released in the form of a photon as proposed by Einstein,
such that:

∆E = hϑ (3.3)

This is known as the Bohr frequency condition. This condition, along with Bohr’s
expression for the allowed energy levels, gives a good match to the observed hydro-
gen atom spectrum. However, it works only for atoms with one electron. It could
not explain the fine spectrum even for the hydrogen atom.

3.1.4 Wave-Particle Duality

Einstein had shown that the momentum of a photon is:

p =
h
λ

(3.4)

This can be easily shown as follows. Assuming E = hv for a photon and λv = c
for an electromagnetic wave, we obtain:

E =
hc
λ

(3.5)
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Now we use the result of Einstein’s special theory of relativity, E = mc2 to get:

λ =
h

mc
(3.6)

This is equivalent to Eq. 3.4. Here, m refers to the relativistic mass, not the rest
mass. Note that the rest mass of a photon is zero. Light can behave both as a wave
(it exhibits properties such as diffraction, interference, and polarization, and it has
a wavelength), and as a particle (it contains packets of energy hv). De Broglie es-
tablished a similar relationship in 1924 for material particles by proposing a dual
nature for matter, and particles as well as waves [2]. He proposed an equation for
finding the wave length (λ – the de Broglie wave length) included in Eq. 3.7, which
is similar to Eq. 3.6. Here, m is mass, and v is the velocity of the particle.

λ =
h

mv
(3.7)

In 1927, Davisson and Germer observed diffraction patterns by bombarding met-
als with electrons, confirming de Broglie’s proposition.

De Broglie’s equation offers a justification for Bohr’s assumption (Eq. 3.2). Ac-
cording to Bohr’s atom model, only those circular orbits in which the angular mo-
mentum of the electron, an integral multiple of h̄ = h

2π is permitted.

mvr = nh̄ = n
h

2π
(3.8)

According to de Broglie, the electrons have a wave character also. For the waves
to be completely in phase, the circumference of the orbit should be an integral mul-
tiple of wavelength. Therefore:

2πr = nλ (3.9)

Where, r is the radius of the orbit. Substituting λ from Eq. 3.7:

mvr = nh̄ = n
h

2π
(3.10)

This is identical with Bohr’s equation (Eq. 3.3).
Heisenberg showed that the wave-particle duality leads to the famous uncertainty

principle:

∆x×∆ p ≥ h
4π

(3.11)

where ∆x is the uncertainty in position and ∆ p is the uncertainty in momentum. One
result of the uncertainty principle is that if the orbital radius of an electron in an atom
r is known exactly, then the angular momentum must be uncertain. The problem
with Bohr’s model is that it specifies r exactly and it also ensures that the orbital
angular momentum must be an integral multiple of h̄ = h

2π . Thus, the stage was
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set for a new quantum theory, which was consistent with the uncertainty principle.
The first principle in quantum theory stands for Schrödinger equation. Modeling
molecules from the first principle is generally referred to as ab initio modeling [3].

3.2 The Schrödinger Equation

In 1925, Erwin Schrödinger and Werner Heisenberg independently developed the
new quantum theory. Schrödinger method involves partial differential equations,
whereas Heisenberg’s method employs matrices; however, a year later the two meth-
ods were shown to be mathematically equivalent. Schrödinger equation seems to
have a better physical interpretation via the classical wave equation. Indeed, the
Schrödinger equation can be viewed as a form of the wave equation applied to mat-
ter waves.

3.2.1 The Time-Independent Schrödinger Equation

We start with the one-dimensional classical wave equation:

∂ 2u
∂x2 =

1
v2

∂ 2u
∂ t2 (3.12)

where v is velocity.
By introducing the separation of variables:

u(x,t) = ψ(x) f (t) (3.13)

we obtain:

f (t)
d2ψ(x)

dx2 =
1
v2 ψ(x)

d2 f (t)
dt2 (3.14)

If we introduce one of the standard wave equation solutions for f (t) such as eiωt

(the constant can be taken care of later in the normalization), we obtain:

d2ψ (x)
dx2 =

−ω2

v2 ψ (x) (3.15)

Now we have an ordinary differential equation describing the spatial amplitude
of the matter wave as a function of position. The energy of a particle is the sum of



42 3 Quantum Mechanics: A Brief Introduction

kinetic and potential parts:

E =
p2

2m
+V (x) (3.16)

which can be solved for the momentum, p, to obtain:

p = {2m [E −V (x)]}1/2 (3.17)

Now we can use the de Broglie formula (Eq. 3.4) to get an expression for the
wavelength:

λ =
h
p

=
h

{2m [E −V (x)]}1/2
(3.18)

The term ω2/ν2 in Eq. 3.15 can be rewritten in terms of λ if we recall that
ω = 2πϑ and ϑλ = v, where ω is the angular momentum, λ is the wavelength
and ϑ is the frequency:

ω2

v2 =
4π2ϑ 2

v2 =
4π2

λ 2 =
2m [E −V(x)]

h̄2 (3.19)

(where h̄ = h/2π). When this result is substituted into Eq. 3.15 we obtain the famous
time-independent Schrödinger equation [4]:

d2ψ(x)
dx2 +

2m

h̄2 [E −V (x)]ψ(x) = 0 (3.20)

which is almost always written in the form:

− h̄2

2m
d2ψ(x)

dx2 +V(x)ψ(x) = Eψ(x) (3.21)

This single-particle one-dimensional equation can easily be extended to the case
of three dimensions, where it becomes:

− h̄2

2m
∇2ψ(r)+V(r)ψ(r) = Eψ(r) (3.22)

A two-body problem can also be treated by this equation if the mass m is replaced
with a reduced mass.

It is important to point out that this analogy with the classical wave equation
only goes so far. We cannot, for instance, derive the time-dependent Schrödinger
equation in an analogous fashion (for instance, that equation involves the partial
first derivative with respect to time instead of the partial second derivative). In fact,
Schrödinger (see Fig. 3.2) presented his time-independent equation first, and then
went back and postulated the more general time-dependent equation.
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Fig. 3.2 Erwin Schrödinger
(1887–1961)

A careful analysis of the process of observation in atomic physics has shown that the sub-
atomic particles have no meaning as isolated entities, but can only be understood as inter-
connections between the preparation of an experiment and the subsequent measurement.

– Erwin Schrödinger

3.2.2 The Time-Dependent Schrödinger Equation

We are now ready to consider the time-dependent Schrödinger equation. Although
we were able to derive the single-particle time-independent Schrödinger equation
starting from the classical wave equation and the de Broglie relation, the time-
dependent Schrödinger equation cannot be derived using elementary methods and
is generally given as a postulate of quantum mechanics. The single-particle three-
dimensional time-dependent Schrödinger equation is:

ih̄
∂ψ(r,t)

∂ t
= − h̄2

2m
∇2ψ(r,t)+V(r)ψ(r,t) (3.23)

where V is assumed to be a real function and represents the potential energy of
the system. Wave mechanics is the branch of quantum mechanics with Eq. 3.23 as
its dynamical law. Note that Eq. 3.23 does not yet account for spin or relativistic
effects.

Of course the time-dependent equation can be used to derive the time-independent
equation. If we write the wavefunction as a product of spatial and temporal terms,
ψ(r,t) = ψ(r) f (t), then Eq. 3.23 becomes

ψ(r)ih̄
d f (t)

dt
= f (t)

[
− h̄2

2m
∇2 +V(r)

]
ψ(r) (3.24)

Or :
ih̄

f (t)
d f
dt

=
1

ψ(r)

[
− h̄2

2m
∇2 +V(r)

]
ψ(r) (3.25)

Since the left-hand side is a function of t only and the right hand side is a func-
tion of r only, the two sides must equal a constant. If we tentatively designate this
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constant E (since the right-hand side clearly must have the dimensions of energy),
then we extract two ordinary differential equations, namely:

1
f (t)

d f (t)
dt

= − iE
h̄

(3.26)

and
[
− h̄2

2m
∇2ψ(r)+V(r)ψ(r)

]
= Eψ(r) (3.27)

[
− h̄2

2m
∇2 +V(r)

]
ψ(r) = Eψ(r) (3.28)

where the term in square bracket on the LHS is called the Hamiltonian operator.
The latter equation is once again the time-independent Schrödinger equation. The

former equation is easily solved to yield:

f (t) = e−iEt/h̄ (3.29)

The Hamiltonian in Eq. 3.27 is a Hermitian operator, and the eigenvalues of
a Hermitian operator must be real, so E is real. This means that the solutions f (t)
are purely oscillatory, since f (t) never changes in magnitude (recall Euler’s formula
e±iθ = cosθ ± isinθ )

Thus, if:

ψ(r,t) = ψ(r)e−iEt/h̄ (3.30)

then the total wavefunction ψ(r,t) differs from ψ(r) only by a phase factor of a con-
stant magnitude. There are some interesting consequences of this. Firstly, the quan-
tity ψ(r,t)2 is time independent, as we can easily show:

∣∣ψ(r,t)2
∣∣= ψ∗(r,t)ψ(r,t) = eiEt/h̄ψ∗(r)e−iEt/h̄ψ(r) = ψ∗(r)ψ(r) (3.31)

Secondly, the expectation value for any time-independent operator is also time-
independent, if ψ(r,t) satisfies Eq. 3.30. By the same reasoning applied above,

〈A〉 =
∫

ψ∗(r,t)Âψ(r,t) =
∫

ψ∗(r)Âψ(r) (3.32)

For these reasons, wavefunctions of the type in Eq. 3.30 are called stationary
states. The state ψ(r,t) is qutstationary, but the particle it describes is not!

Of course, Eq. 3.30 represents a particular solution to Eq. 3.23. The general so-
lution to Eq. 3.23 will be a linear combination of these particular solutions, i.e.:

ψ(r,t) = ∑
i

cie
−iEit/h̄ψi(r) (3.33)
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3.3 The Solution to the Schrödinger Equation

Solutions to Schrödinger equation are called wavefunctions. Out of various solu-
tions to the Schrödinger equation, those satisfying the following conditions are listed
here: [5]

1. ψ must be continuous. The wavefunction and its derivative must be continuous.
2. ψ must be finite everywhere.
3. It must approach zero at infinite distance.
4. ψ must be single-valued.

Solutions that do not satisfy these properties do not generally correspond to phys-
ically realizable circumstances. These permitted solutions to the equation are called
eigenfunctions. Each permitted solution corresponds to a definite energy state and
is known as orbital. The electron orbitals in atoms are called atomic orbitals, while
those in a molecule are called molecular orbitals.

A typical quantum mechanical problem consists of the following steps:

1. Writing the Schrödinger equation for the system under study.
2. Solving the equation and finding the eigenvalues corresponding to the equation.
3. Characterizing the system based on the solutions.

Please refer to the Appendix to learn more about operators.

3.4 Exercises

3.4.1 Question 1

What should be the range values of the work function of a metal in order to be useful
in a photo cell for detecting visible light?

3.4.2 Answer 1

A wave length (λ ) of visible light is 4000–7000Å. Here:

h = 6.626×10−34J S

c = 3×108m s−1

and 1 Joule =
1

1.602×10−19 eV
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Energy corresponding to 4000 Å:

=
hc
λ

=
6.626×10−34×3×108

4000×10−10×1.602×10−19 = 3.102 eV

Similarly energy corresponding to 7000 Å

=
6.626×10−34×3×108

7000×10−10×1.602×10−19 = 1.77 eV

Therefore, any metal with work function between 1.77 eV and 3.10 eV are the prob-
able candidates for detecting visible light.

3.4.3 Question 2

Calculate the potential difference that must be applied to stop the fastest photo elec-
trons emitted by a surface when irradiated by an electromagnetic radiation of fre-
quency 1.5×1015 Hz. (The work function is 4 eV.)

3.4.4 Answer 2

Energy of photon = hν = (6.626×10−34)× (1.5×1015)J

=
(6.626×10−34)× (1.5×1015)

(1.602×10−19)
eV = 6.204 eV

Therefore, the energy for the fastest photo electron is 6.204−4 = 2.204 eV. Or, the
potential difference to be applied is 2.204 volts.

3.4.5 Question 3

An electron is accelerated through a potential difference of 400 V. Determine its
de Broglie wave length.

3.4.6 Answer 3

Kinetic energy gained by the electron (non-relativistic), T =
p2

2m
= 400 eV

∴P =
√

2mT

Mass of the electron = 9.11×10−31 kg

Charge of the electron = 1.602×10−19 Coulombs
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Hence, the linear momentum,

p =
[(

400×1.602×10−19 J
)× (2×9.11×10−31 kg.

)]1/2

= 10.798×10−24 kg.ms−1

de Broglie wave length λ =
h
p

=
6.626×10−34

10.798×10−24 = 0.6132×10−10 m

= 0.6132Å

3.4.7 Question 4

The energy of certain X-rays is found to be equal to that of a 1 KeV electron. Com-
pare their wave lengths.

3.4.8 Answer 4

The Kinetic energy is:

T =
p2

2m
= 1000 eV = 1.602×10−19×103 J = 1.602×10−16 J

According to de Broglie, the wave length of an electron is:

λ =
h
p

=
h√

2mT
=

6.626×10−34 J.s

[2(9.11×10−31 kg)× (1.602×10−16 J)]1/2

= 0.39×10−10 m = 0.39Å

Energy of X-rays: E = hν =
hc
λ

Or : λ =
hc
E

=
(6.626×10−34 J.s)(3×108 m.s−1)

1.602×10−16 J
= 12.408Å

Hence,
wave length of X-rays

de Broglie wave length of electron
=

12.408
0.39

= 31.85

The wave length of the X-rays is 31.85 times the de Broglie wavelength of the
electron.
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3.4.9 Question 5

The speed of an electron is found to be 1 km.s−1 within an accuracy of 0.02%.
Calculate the uncertainty in its position.

3.4.10 Answer 5

The momentum of the electron: p = mv = (9.11×10−31 kg)(1000 ms−1)

% accuracy =
∆P×100

P
= 0.02%

∆P =
0.02×9.11×10−31×1000

100
= 1.822×10−31 kg.ms−1

∆x ;
h

4π∆P
=

6.626×10−34 J.s
4π ×1.822×10−31 kg.ms−1 = 2.894×10−4 m

3.4.11 Question 6

In a hydrogen atom, the electron in the n = 2 excited state remains there for 10−8

seconds on an average before making a transition to the ground state (n = 1). (a)
Calculate the uncertainty in energy of the excited state. (b) What is the fraction of
the transition energy? (c) Compute the width of wave length corresponding to this.

3.4.12 Answer 6

a)

∆E ×∆ t ≥ h

∆E ≥ h
∆ t

=
6.626×10−34 J.s

10−8 s
= 6.626×10−26 J

Or
6.626×10−26

1.602×10−19 eV = 4.14×10−7 eV

b)

Energy of n = 2 → n = 1 transition is −13.6 eV

(
1
22 −

1
12

)
= 10.2 eV

Fraction of energy =
∆E
E

=
4.14×10−7

10.2
= 4.06×10−8
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c)

λ =
hc
E

=

(
6.626×10−34 J.s

)(
3×108 m.s−1

)
10.2×1.602×10−19 J

= 1218Å

The spectral line width of this line =
∆λ
λ

=
∆v
v

=
∆E
E

∆λ =
∆E ×λ

E
= 4.06×10−8×1.218×10−7 = 4.95×10−7 Å

3.4.13 Question 7

Write down the normalized wavefunction if ψ(x) = Aexp
(−kx2

)
, where k and A are

real constants over the entire domain.

3.4.14 Answer 7

ψ(x) = Aexp(−kx2)

For the normalized wavefunction:

+∞∫

−∞

(Aψ∗)(Aψ) dx = 1

A2

+∞∫

−∞

exp
(−2kx2)dx = 1

But we know that

+∞∫

−∞

exp
(−2kx2)dx =

√
π
2k

Or A =
(

2k
π

)1/4

ψ(x) =
(

2k
π

)1/4

exp(−kx2)
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3.4.15 Question 8

Given ψ(x) = Asin(kx). Find the eigenvalues of the operator Ô =
∂ 2

∂x2 . Find out

whether Ô =
∂
∂x

is an eigenoperator.

3.4.16 Answer 8

∂ψ(x)
∂x

=
∂ [Asin(kx)]

∂x
= Ak cos(kx). This is not of the form k̂ψ(x) = kψ(x)

∴ ∂
∂x

is not an eigenoperator for the function.

∂ 2ψ(x)
∂x2 =

∂ 2 [Asin(kx)]
∂x2 = −k2Asin(kx)

∴ ∂ 2

∂x2 is an eigenoperator with an eigenvalue of
(−k2

)
for the function.

3.4.17 Question 9

Find the voltage with which electrons in an electron microscope have to be acceler-
ated to get a wavelength of 1 Å.

3.4.18 Answer 9

Let V be the voltage to be applied on electrons. Then the kinetic energy gained
= eV Joules.

(
e = 1.602×10−19 Coulombs

)
. The de Broglie wavelength can be cal-

culated from the relation:

λ =
h
p

. (3.34)

Now the kinetic energy
p2

2m
= eV. Or:

p =
√

2 meV (3.35)
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From Eqs. (3.34) and (3.35), the de Broglie wavelength is:

λ =
h√

2 meV
= 1Å

Hence:

V =
h2

2meλ 2 =

(
6.626×10−34 J.s

)2

(1.602×10−19)×2× (9.11×10−31 kg.)× (1×10−10 m)2

= 150 V

3.4.19 Question 10

Calculate the minimum energy of an electron inside a hydrogen atom whose radius
is 0.53Å using the uncertainty principle.

3.4.20 Answer 10

∆x = 5.3×10−11 m

∴∆ p =
η

2∆x
≥ 9.9×10−25 kg ·ms−1

Kinetic energy of electron =
(∆ p)2

2×2πm
=

(
9.9×10−25 kg ·ms−1

)2

2×9.11×10−31 kg.

= 5.4×10−19 J

= 3.37 eV

3.5 Exercises

1. Calculate the wavelength of an electron that has been accelerated through a po-
tential of 100 million volts.

2. An electron has a speed of 500 ms−1 with an uncertainty of 0.02%. What is the
uncertainty in locating its position?

3. The ionization energy of a hydrogen atom in the ground state is 1312 kJmol−1.
Calculate the wavelength of radiation emitted when the electron in the hydrogen
atom makes a transition from principal quantum level, n = 2 to n = 1.
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4. Calculate the de Broglie wavelength for an electron traveling at 1 percent of the
speed of light.

5. Find the eigenfunctions of the momentum operator assuming that P′φ = pφ ,
where p is the momentum.

6. Assume that the Hamiltonian operator is invariant under time reversal. Prove
that the wavefunction for a spin less non-degenerate system at any given instant
of time can always be real.

7. The Hamiltonian operator for a spin 1 system is given by H = αS2
z +β

(
S2

x −S2
y

)
.

Solve this equation to find the normalized energy states and eigenvalues. Is this
Hamiltonian invariant under time reversal? How do the normalized eigenstates
transform under time reversal?

8. Using uncertainty principle show that an electron can not be confined to the
nucleus of the atom. (The typical radius of a nucleus = 10−15 m).
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