PREFACE

The theory and practice of time series analysis have devel oped rapidly since the appear-
ance in 1970 of the seminal work of George E. P. Box and Gwilym M. Jenkins, Time
Series Analysis: Forecasting and Control, now available in its third edition (1994) with
co-author Gregory C. Reinsel. Many books on time series have appeared since then, but
some of them give too little practical application, while others give too little theoretical
background. This book attempts to present both application, and theory at alevel acces-
sible to awide variety of students and practitioners. Our approach isto mix application
and theory throughout the book as they are naturally needed.

The book was developed for a one-semester course usually attended by studentsin
statistics, economics, business, engineering, and quantitative social sciences. Basic
applied statistics through multiple linear regression is assumed. Calculus is assumed
only to the extent of minimizing sums of squares, but a calculus-based introduction to
statistics is necessary for a thorough understanding of some of the theory. However,
required facts concerning expectation, variance, covariance, and correlation are
reviewed in appendices. Also, conditional expectation properties and minimum mean
square error prediction are developed in appendices. Actual time series data drawn from
various disciplines are used throughout the book to illustrate the methodol ogy. The book
contains additional topics of amore advanced nature that can be selected for inclusion in
acourseif the instructor so chooses.

All of the plots and numerical output displayed in the book have been produced
with the R software, which is available from the R Project for Statistical Computing at
www.r-project.org. Some of the numerical output has been edited for additional clarity
or for simplicity. R is available as free software under the terms of the Free Software
Foundation's GNU General Public License in source code form. It runs on a wide vari-
ety of UNIX platforms and similar systems, Windows, and MacOS.

R is alanguage and environment for statistical computing and graphics, provides a
wide variety of statistical (e.g., time-seriesanalysis, linear and nonlinear modeling, clas-
sical statistical tests) and graphical techniques, and is highly extensible. The extensive
appendix An Introduction to R, provides an introduction to the R software specially
designed to go with this book. One of the authors (KSC) has produced alarge number of
new or enhanced R functions specifically tailored to the methods described in this book.
They are listed on page 468 and are available in the package named TSA on the R
Project’s Website at www.r-project.org. We have also constructed R command script
files for each chapter. These are available for download at www.stat.uiowa.edu/
~kchan/TSA .htm. We also show the required R code beneath nearly every table and
graphical display in the book. The datasets required for the exercises are named in each
exercise by an appropriate filename; for example, larain for the Los Angeles rainfall
data. However, if you are using the TSA package, the datasets are part of the package
and may be accessed through the R command data(larain), for example.

All of the datasets are also available at the textbook website as ACSCI| files with
variable names in the first row. We believe that many of the plots and cal culations
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described in the book could also be obtained with other software, such as SAS®, Splus®,
Statgraphics®, SCA®, EViews®, RATS®, Ox®, and others.

This book is a second edition of the book Time Series Analysis by Jonathan Cryer,
published in 1986 by PWS-Kent Publishing (Duxbury Press). This new edition contains
nearly al of the well-received original in addition to considerable new material, numer-
ous new datasets, and new exercises. Some of the new topicsthat are integrated with the
original include unit root tests, extended autocorrelation functions, subset ARIMA mod-
els, and bootstrapping. Completely new chapters cover the topics of time series regres-
sion models, time series models of heteroscedasticity, spectral analysis, and threshold
models. Although the level of difficulty in these new chapters is somewhat higher than
in the more basic material, we believe that the discussion is presented in away that will
make the material accessible and quite useful to a broad audience of users. Chapter 15,
Threshold Models, is placed last since it is the only chapter that deals with nonlinear
time series models. It could be covered earlier, say after Chapter 12. Also, Chapters 13
and 14 on spectral analysis could be covered after Chapter 10.

We would like to thank John Kimmel, Executive Editor, Statistics, at Springer, for
his continuing interest and guidance during the long preparation of the manuscript. Pro-
fessor Howell Tong of the London School of Economics, Professor Henghsiu Tsai of
Academica Sinica, Taipei, Professor Noelle Samia of Northwestern University, Profes-
sor W. K. Li and Professor Kai W. Ng, both of the University of Hong Kong, and Profes-
sor Nils Christian Stenseth of the University of Oslo kindly read parts of the manuscript,
and Professor Jun Yan used a preliminary version of the text for aclass at the University
of lowa. Their constructive comments are greatly appreciated. We would like to thank
Samuel Hao who hel ped with the exercise solutions and read the appendix: An Introduc-
tionto R. We would aso like to thank several anonymous reviewers who read the manu-
script at various stages. Their reviews led to a much improved book. Finaly, one of the
authors (JDC) would like to thank Dan, Marian, and Gene for providing such a great
place, Casa de Artes, Club Santiago, Mexico, for working on the first draft of much of
this new edition.

lowa City, lowa Jonathan D. Cryer
January 2008 Kung-Sik Chan



CHAPTER 2

FUNDAMENTAL CONCEPTS

This chapter describes the fundamental concepts in the theory of time series models. In
particular, we introduce the concepts of stochastic processes, mean and covariance func-
tions, stationary processes, and autocorrel ation functions.

2.1 Time Series and Stochastic Processes

The sequence of random variables { Y;: t = 0, +1, +2, +3,...} is called a stochastic
process and serves as amodel for an observed time series. It is known that the complete
probabilistic structure of such a process is determined by the set of distributions of all
finite collections of the Y's. Fortunately, we will not have to deal explicitly with these
multivariate distributions. Much of the information in these joint distributions can be
described in terms of means, variances, and covariances. Conseguently, we concentrate
our efforts on these first and second moments. (If the joint distributions of the Y's are
multivariate normal distributions, then the first and second moments completely deter-
mine all the joint distributions.)

2.2 Means, Variances, and Covariances

For astochastic process{Y;: t =0, £1, £2, £3,...}, the mean function is defined by
ue = EC(Yp fort=0, +1,+2, ... (2.2.1)
That is, 1 isjust the expected value of the process at timet. In general, p, can be differ-

ent at each time point t.
The autocovariance function, y; s, is defined as

Yi s = Cov(Y;,Yy) fort,s=0,+1,+2, ... (2.2.2)
where Cov(Yy, Yg) = E[(Yy — n)(Ys — ne] = E(ViYe) — pe s
The autocorrelation function, p; g, is given by
P s = Corr(Y,,Yy) fort,s=0, +1, +2, ... (2.2.3)
where

cow(Y,, Y
Corr(Y,.Y) = MY - s (2.2.4)

JVar(Ypvar(Yy) B Jyt’ s s

11



12 Fundamental Concepts

We review the basic properties of expectation, variance, covariance, and correlation
in Appendix A on page 24.

Recadll that both covariance and correlation are measures of the (linear) dependence
between random variables but that the unitless correlation is somewhat easier to inter-
pret. The following important properties follow from known results and our definitions:

Yot = Var(Y,) pry =1
yt,S = yS,t pt,s = ps’t (225)

Vo < WMitlss P d <1

Values of p; s near +1 indicate strong (linear) dependence, whereas values near zero
indicate weak (linear) dependence. If p; =0, we say that Y; and Yg are uncorrelated.

To investigate the covariance properties of various time series models, the follow-
ing result will be used repeatedly: If ¢4, Cy,..., Cyand dy, d,, ..., dy, are constants and t;,
t,...,tpand sy, Sy,..., S, aretime points, then

m n m n
Cov| > cthi, > dJ-YSj = > > cdiCov(Y,, Ys) (2.2.6)
i=1 J =1 i=1 J =1 ! )

The proof of Equation (2.2.6), though tedious, is a straightforward application of
the linear properties of expectation. As a specia case, we obtain the well-known result

n n n i-1
var| » cthi =y c2var(Y,) +2 > Y g Cov(Y, Yy ) (2.2.7)
i=1 i=1 ! i=2 j=1 I J

The Random Walk

Let e, e,,... be a sequence of independent, identically distributed random variables
each with zero mean and variance cg. The observed time series, {Y;:t=1, 2,...}, is
constructed as follows:

Y1=€
Y2 " 17 % (2.2.8)
Yi - G et g
Alternatively, we can write
Y= Y 1 te (2.2.9)

with “initial condition” Y, = ey. If the € sareinterpreted as the sizes of the “ steps” taken
(forward or backward) along a number line, then Y; is the position of the “random
walker” at timet. From Equation (2.2.8), we obtain the mean function
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[T E(Yt) = E(e1+ez+---+et) = E(el)+E(e2)+...+E(et)
=0+0+--+0

so that
w=0 foralt (2.2.10)

We a'so have
Var(Y,) = Var(e; +e,+--- +¢) = Var(e)) +Var(e,) +--- +Var(e)

2 24 ... 2
cgtogt +og

so that
Var(Y,) = tol (2.2.11)

Notice that the process variance increases linearly with time.
To investigate the covariance function, suppose that 1 <t < s. Then we have

s = Cov(Y,,Yy) = Cov(e,+e,+---+eg,e te,+--+e+e, 1+ +e)

From Equation (2.2.6), we have
S

Vs = Z ZCov(el, J)

i=1 j=1

However, these covariances are zero unlessi = j, in which case they equal Var(g) = csg .
There are exactly t of these so that y; s = to g

Sincey; s = ys 1, this specifies the autocovariance function for all time pointst and s
and we can write

Ty s = 03 for1<t<s (22.12)

The autocorrelation function for the random walk is now easily obtained as

Pt s for1<t<s (2.2.13)

«/Vt tys, s A[

The following numerical values help us understand the behavior of the random
walk.
_ 1 _ _ 8 _
P2 = J; = 0.707 Pg.9 = Jé = 0.943

_ P4 _ [T
Pog 25 = J2:5 = 0980  py 5= J% = 0.200

The values of Y at neighboring time points are more and more strongly and posi-
tively correlated as time goes by. On the other hand, the values of Y at distant time
points are less and less correlated.

A simulated random walk is shown in Exhibit 2.1 where the €'s were selected from
a standard normal distribution. Note that even though the theoretical mean function is
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zero for al time points, the fact that the variance increases over time and that the corre-
lation between process values nearby in time is nearly 1 indicate that we should expect
long excursions of the process away from the mean level of zero.

The simple random walk process provides a good model (at least to afirst approxi-
mation) for phenomena as diverse as the movement of common stock price, and the
position of small particles suspended in a fluid— so-called Brownian motion.

Exhibit 2.1 Time Series Plot of a Random Walk

Random Walk

0 10 20 30 40 50 60

Time

> wi n. graph(w dt h=4. 875, hei ght=2.5, poi ntsize=8)
> data(rwal k) # rwal k contains a sinulated random wal k
> plot(rwal k,type="0',yl ab=" Random Wl k')

A Moving Average
As asecond example, suppose that { Y} is constructed as
& te_;
Y, = ———=
t 2

where (as always throughout this book) the €'s are assumed to be independent and iden-
tically distributed with zero mean and variance cg. Here

et+et_1} _ E(e) +E(§_y)

(2.2.14)

Mt 2 2

E(Y,) = E{
=0

and
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Var(Y,)

Var{et + et_l} _ Var(e,) + Var(e,_,)
2 4

0.5(5623

Also

e + +e
Cov(Y, Y,_y) = Cov{ : zet‘l,et‘lz t‘z}

Cov(e, &_4) + Cov(e, &_p) + Cov(e_1.&_y)

4
. Cov(et _1&_2)
4
Cov , .

= ——ml%at:—l) (as all the other covariances are zero)

= 0.25¢2
or

Yot = 02503  forallt (2.2.15)

Furthermore,

Cov(Y,, Yi_»)

&te_1 & 2% 3
Cov{ > >
=0 since the €'s are independent.

Similarly, Cov(Y;, Y;_y) = 0for k> 1, so we may write

0562 forlt—5 =0
"ts T ) 02562 for|t—-s =1
0 for|t—g >1

For the autocorrel ation function, we have

1 forlt—9g =0
Pts =31 05 forjt—g=1 (2.2.16)
0 forjt—9g>1

since 0.2562/0.562=0.5.

Noticethat py 1 = p3 2 = pa,3=pg g = 0.5. Values of Y precisely one time unit apart
have exactly the same correlation no matter where they occur in time. Furthermore, p3 4
=Py 2 = Pyt 2and, more generally, p; ; _ kisthe same for all values of t. Thisleads usto
the important concept of stationarity.
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2.3 Stationarity

To make statistical inferences about the structure of a stochastic process on the basis of
an observed record of that process, we must usually make some simplifying (and pre-
sumably reasonable) assumptions about that structure. The most important such
assumption is that of stationarity. The basic idea of stationarity is that the probability
lawsthat govern the behavior of the process do not change over time. In asense, the pro-
cessisin statistical equilibrium. Specifically, a process {Y;} is said to be strictly sta-
tionary if the joint distribution of Ytl’ Ytz,..., Ytn isthe same as the joint distribution of
Ytl_k Ytz_k,..., Ytn_k for all choicesof time pointsty, t,,..., t, and all choices of time
lag k.

Thus, when n = 1 the (univariate) distribution of Y, is the same as that of Y; _ | for
al t and k; in other words, the Y's are (marginally) identically distributed. It then follows
that E(Y;) = E(Y; _ ) for all t and k so that the mean function is constant for all time.
Additionally, Var(Y;) = Var(Y; _ ) for al t and k so that the variance is also constant over
time.

Setting n = 2 in the stationarity definition we see that the bivariate distribution of Y;
and Y must be the same asthat of Y; _ and Yg_ | from which it follows that Cov(Y;, Yg)
= Cov(Y; _ 1 Ys_ o for al t, s, and k. Putting k = s and then k = t, we obtain

Vi = Cov(Y;_s Yp)
Cov(Yy, Ys_y)

Cov(Yq, Y|t_q)

= Yo, |t-+

That is, the covariance between Y; and Y depends on time only through the time differ-
ence |t — s| and not otherwise on the actual timest and s. Thus, for a stationary process,
we can simplify our notation and write

Y = Cov(Y,, Yi_y) and Pk = Corr (Y, Yi_p) (2.3.1)

Note also that

Tk
pk = —
Yo

The general properties given in Equation (2.2.5) now become
Yo = Var(Yy pg=1
Yk T T Pk = P (232
[ <o P =1

If aprocessis strictly stationary and has finite variance, then the covariance func-
tion must depend only on the time lag.
A definition that is similar to that of strict stationarity but is mathematically weaker
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is the following: A stochastic process {Y;} is said to be weakly (or second-order)
stationary if
1 The mean function is constant over time, and

2. Yet—k = Yo,k for al timet and lag k

In thisbook the term stationary when used alone will always refer to thisweaker form of
stationarity. However, if the joint distributions for the process are all multivariate normal
distributions, it can be shown that the two definitions coincide. For stationary processes,
we usually only consider k > 0.

White Noise

A very important example of a stationary process is the so-called white noise process,
which is defined as a sequence of independent, identically distributed random variables
{e}. Itsimportance stems not from the fact that it is an interesting model itself but from
the fact that many useful processes can be constructed from white noise. The fact that
{e]} isstrictly stationary is easy to see since

Pr(etl <Xy, etzg Xoy vee etn <Xp)

Pr(et1 < xl)Pr(et2 <Xp): e Pr(etn <X,) (by independence)

Pr(etl—kg Xl)Pr(etz_kS XZ)... Pr(etn_ks Xn)
(identical distributions)
Pr(etl_ks X1 €, kS Xp -0 € S Xp) (by independence)

asrequired. Also, p; = E(g) is constant and

_ Var(e,) fork =0
’ 0 for k=0

Alternatively, we can write

1 fork =0
- 233
Pk {o for k=0 (233)

The term white noise arises from the fact that a frequency analysis of the model shows
that, in analogy with white light, all frequencies enter equally. We usually assume that
the white noise process has mean zero and denote Var () by cg .

The moving average example, on page 14, where Y; = (e + € _ 1)/2, is another
example of a stationary process constructed from white noise. In our new notation, we
have for the moving average process that

1 fork =0
Pk = 105 for |k = 1
0 for |kl > 2
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Random Cosine Wave

As asomewhat different exampl e,T consider the process defined as follows:

Y, = cos[Zn(liZHDﬂ fort = 0,+1,+2, ...

where @ is selected (once) from a uniform distribution on the interval from 0 to 1. A
sample from such a process will appear highly deterministic since Y; will repeat itself
identically every 12 time units and look like a perfect (discrete time) cosine curve. How-
ever, its maximum will not occur at t = 0 but will be determined by the random phase .
The phase ®@ can be interpreted as the fraction of a complete cycle completed by timet =
0. Still, the statistical properties of this process can be computed as follows:

E{ cos{Zn(llz + Cbﬂ}
}cos[Zn(Ité+ Hdd)
0
1
= %rsin[Zn(Ité + )]
$=0
= ZlTE[sm(Zn— + 27:) sm(anzﬂ
But thisis zero since the sines must agree. So p, = 0 for all t.
Also
E{ cos[Zrc(It5 + CD)] cos[Zn(l—Sz + CDH}
I(l) cos[Zn(Ité + ﬂ cos[Zn(fE + deb
= %j;{ cos[Zn(t—]g—SH + cos[Zn(T—-z—S + 2¢H}d¢
= %{ cos[Zn(tl_——fﬂ + Zlgsin[Zn(tIZS+ 2¢HE _ o}

= oos|2n( 1)

T This example contains optional material that is not needed in order to understand most of
the remainder of thisbook. It will be used in Chapter 13, Introduction to Spectral Analysis.

E(Y)

Tt, s
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So the processis stationary with autocorrelation function
Py = cos(2n1—k2) fork = 0,1, £2, ... (2.3.9)

This example suggeststhat it will be difficult to assess whether or not stationarity is
areasonable assumption for a given time series on the basis of the time sequence plot of
the observed data.

The random walk of page 12, where Y, = e, +e, + -~ + ¢, is also constructed
from white noise but is not stationary. For example, the variance function, Var(Y;) =
tcg, is not constant; furthermore, the covariance function y, ¢ = tcg for 0<t<sdoes
not depend only on time lag. However, suppose that instead of analyzing {Yg directly,
we consider the differences of successive Y-values, denoted VY;. Then VY, = Y; — Yy =
&, S0 the differenced series, {VYy}, is stationary. This represents a simple example of a
technique found to be extremely useful in many applications. Clearly, many rea time
series cannot be reasonably modeled by stationary processes since they are not in statis-
tical equilibrium but are evolving over time. However, we can frequently transform non-
stationary series into stationary series by simple techniques such as differencing. Such
techniques will be vigorously pursued in the remaining chapters.

2.4 Summary

In this chapter we have introduced the basic concepts of stochastic processes that serve
as models for time series. In particular, you should now be familiar with the important
concepts of mean functions, autocovariance functions, and autocorrelation functions.
We illustrated these concepts with the basic processes: the random walk, white noise, a
simple moving average, and arandom cosine wave. Finaly, the fundamental concept of
stationarity introduced here will be used throughout the book.

EXERCISES

2.1  Suppose E(X) = 2, Var(X) =9, E(Y) =0, Var(Y) = 4, and Corr(X,Y) = 0.25. Find:
(@) Var(X+Y).
(b) Cov(X, X +Y).
(c) Corr(X+Y, X-Y).

2.2 If Xand Y are dependent but Var(X) = Var(Y), find Cov(X +Y, X -Y).

2.3 Let X have adistribution with mean p and variance 62, and let Y, = X for all .
(a) Show that { Yy} isstrictly and weakly stationary.
(b) Find the autocovariance function for { Y} .
(c) Sketch a“typical” time plot of Y;.
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Let {g} be azero mean white noise process. Suppose that the observed processis

Y; =+ 0g _ 1, where0 iseither 3 or 1/3.

(a) Find the autocorrelation function for { Yy} both when 6 = 3 and when 6 = 1/3.

(b) You should have discovered that the time series is stationary regardless of the
value of 6 and that the autocorrelation functions are the samefor 6 =3 and 6 =
1/3. For simplicity, suppose that the process mean is known to be zero and the
variance of Y; is known to be 1. You observe the series{Y;} fort=1, 2,...,n
and suppose that you can produce good estimates of the autocorrelations py.
Do you think that you could determine which value of 6 is correct (3 or 1/3)
based on the estimate of p,? Why or why not?

Suppose Y; =5+ 2t + X;, where { X;} isazero-mean stationary series with autoco-

variance function yy.

(&) Find the mean function for { Y} .

(b) Find the autocovariance function for {Y;}.

(c) Is{Yy stationary? Why or why not? { X, for t odd

Let {X;} beastationary time series, and define 'Y, X, +3 for £ ever.

(@) Show that Cov(Y,, Y,_,) isfreeof tfor al lagsk.

(b) Is{Y} stationary?

Suppose that { Y} is stationary with autocovariance function yy.

(&) Show that W; = VY; =Y, - Y; _ 1 is stationary by finding the mean and autoco-
variance function for { W} .

(b) Show that U; = V2Y; = V[Y; - Y;_1] = Y; — 2Y,_1 + Y,_pis stationary. (You need
not find the mean and autocovariance function for {Uy}.)

Suppose that {Y;} is stationary with autocovariance function y,. Show that for any

fixed positive integer n and any constants ¢4, Cy, ..., Cy, the process { W} defined

by W, = ¢ Y +CY, 1+ +C.Y, is stationary. (Note that Exercise

2.7 isaspecia case of thisresult.)

Suppose Y; = Bg + Bt + X, where { X} is azero-mean stationary series with auto-

covariance function y, and g and B, are constants.

(&) Show that {Y;} isnot stationary but that W; = VY; = Y; - Y; _ 1 is stationary.

(b) In general, show that if Y; = p + X;, where { X} is a zero-mean stationary
series and y; is a polynomial in t of degree d, then V™Y, = V(V™1Y)) is sta-
tionary for m> d and nonstationary for O< m<d.

Let {X{} be a zero-mean, unit-variance stationary process with autocorrelation

function py. Suppose that ; is a nonconstant function and that oy is a positive-val-

ued nonconstant function. The observed seriesisformed as Y; = p; + o¢X;.

(a) Find the mean and covariance function for the { Y;} process.

(b) Show that the autocorrelation function for the {Y;} process depends only on
thetimelag. Isthe{Y;} process stationary?

(c) Is it possible to have a time series with a constant mean and with
Corr(Y;, Yy _ ) free of t but with {Y;} not stationary?

-n+1
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Suppose Cov(X;, X; _ 1) = vk isfreeof t but that E(X;) = 3t.

(@) Is{X;} stationary?

(b) Let Y; =7 -3t + X;. Is{Y;} stationary?

Suppose that Y; = g — e_1o. Show that {Y;} is stationary and that, for k > 0, its
autocorrelation function is nonzero only for lag k = 12.

Let Y, = e — (e, _ 1)2 For this exercise, assume that the white noise seriesis nor-
mally distributed.

(a) Find the autocorrelation function for { Y} .

(b) Is{Y stationary?

Evaluate the mean and covariance function for each of the following processes. In
each case, determine whether or not the processiis stationary.

@ Y;=06g +te.

(b) W, = VY;, where Y; isas given in part (a).

(©) Yy =ee_ 4. (Youmay assume that { &} isnormal white noise.)

Suppose that X is a random variable with zero mean. Define a time series by
Y, = (-1)'X.

(&) Find the mean function for { Y} .

(b) Find the covariance function for { Y} .

(c) Is{Yy stationary?

Suppose Y; = A+ X;, where { X} is stationary and A is random but independent of
{ X} . Find the mean and covariance function for {Y;} in terms of the mean and
autocovariance function for { X} and the mean and variance of A. 1
Let {YJ} be stationary with autocovariance function vy,. Let Y = —z?: lYt .
Show that :

o _ Yo, 2"l K
var(Y) = FO+H > (1—- T
k=1

1 n-1 ( |k|)
== 1-4 yk
M= —Zr:1 PR
Let {Y{} be stationary with autocovariance function y,. Define the sample vari-

anceas S? = ﬁ%i Zn: (Y, =Y)2.
=1

n n — —
(@ Firstshowthat 3" (V-2 = > (Y,=)2+n(Y-p)?2
t=1 t=1

(b) Use part (a) to show that .
- _n_ __n V) =4 2 N1 K
© B = i T3Var = 10755 3 (1P
(Usethe results of Exercise 2.17 for the last expression.)
(d) If { Yy} isawhite noise process with variance yq, show that E(Sz) = Yo
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Let Y1 = 09 + e, and then for t > 1 define Y, recursively by Y; =65 + Y_1 + €.
Here 6 isaconstant. The process{Y;} iscalled arandom walk with drift.
(@) Show that Y; may berewrittenas Y, = t0y+ €, +e_ 1+ - +e;.
(b) Find the mean function for Y;.
(c) Find the autocovariance function for Y;.
Consider the standard random walk model where Y, = Y;_ 1 + g with Y; = e;.
(a) Use the representation of Y; above to show that p; = p; _ 4 for t > 1 with initial
condition p; = E(e;) = 0. Hence show that p; = O for all t.
(b) Similarly, show that Var(Yt) Var(Y; _ 1) + o2 for t > 1 with Var(Yy) = o2
and hence Var(Yy) = tcs
(c)For0<t<suseYg= Yt+ G+1tEot -t estoshowthat Cov(Yy, Yo =
Var(YY;) and, hence, that Cov(Y;, Y9 = min(t, s)c
For arandom walk with random starting value, let Y = Y0 +e+ et +e
for t > 0, where Y has adistribution with mean p and variance Go Supposefur—
ther that Yo, ey, ..., & are independent.
() Show that E(Yt) po for al t.
(b) Show that Var(Y,) = tc?2 +60
(c) Show that Cov(Y;, Yg) = min(t, s)c2 + 60
to2+ GO

(d) Show that Corr(Y,, Y,) = for0O<t<s.

ch + 68

Let {e} be azero-mean white noise process, and let ¢ be a constant with |c| < 1.
Define Y; recursively by Y; = cY;_ 1 + g with Y; = ;.

(a) Show that E(Y;) = 0.

(b) Show that Var(Yy) = 62 (1 + ¢ +c*+- + c®~?). Is{ Y} stationary?

(c) Show that

Var (Y, l)
Var(Y )

o fvar(Yi_p)
Corr(Yt,Yt_k) =cC ""\'/a—r("Y"')— fork>0
t

Hint: Arguethat Y; _ 1 isindependent of g, Then use
Cov(Y;, Yr—1) =Cov(cY;_1 &, Y1)
(d) For large t, argue that

Corr(Y;,Y;_1) = ¢ and, in general,

2
(o}
var(Yy) ~ 7 _ecz and  Corr(Y,,Y,_)~ck  fork>0
so that { Y} could be called asymptotically stationary. e
(e) Suppose now that we alter the initial condition and put Y, = L Show

that now {Y;} is stationary. 1-c?



Exercises 23

2.23

2.24

2.25

2.26

2.27

2.28

Two processes {Z;} and {Y;} aresaid to be independent if for any time points ty,
ty, ..., tyand sy, Sy, ..., S, the random variables { Ztl’ th, Ztm} are independent
of the random variables { YSl’ YSz’ e st}. Show that if {Z} and {Y;} are inde-
pendent stationary processes, then W, = Z; + Y, is stationary.
Let { X} be atime seriesin which we are interested. However, because the mea-
surement process itself is not perfect, we actually observe Y; = X; + g. We assume
that { X} and {eg} are independent processes. We call X; the signal and e, the
measur ement Noise or error process.

If {X¢ isstationary with autocorrelation function py, show that { Y} isalso sta-
tionary with
Pk

Corr(Y,Y,_,) = ————
vtk 1+G§/0)2(

fork>1

Wecal 6%/c2 thesignal-to-noiseratio, or SNR. Note that the larger the SNR,
the closer the autocorrelation function of the observed process{Yy} is to the auto-
correlation function of the desired signal { X} .

Suppose Y, = B+ Zk: [A,cos(2rf;t) + B;sin(2rf;t)], where By, fy, fo,..., fi are

constants and Aq, AZ,I . ,1Ak, By, By, ..., By are independent random variables with

zero means and variances Var(A;) = Var(B;) = Giz. Show that {Y;} is stationary
and find its covariance function.

Define the function Iig= %E[(Yt—YS)Z]. In geostatistics, Ty is called the

semivariogram.

(a) Show that for a stationary process Iig= Yo~ Vjt—g -

(b) A processissaid to beintrinsically stationary if I'; s depends only on the time
difference |t — s|. Show that the random walk processisintrinsically station-
ary.

For afixed, positive integer r and constant ¢, consider the time series defined by

Vo= e toe g toe o+l .

(a) Show that this processis stationary for any value of ¢.

(b) Find the autocorrelation function.

(Random cosine wave extended) Suppose that

Y; = Rcos(2n(ft+ ®)) fort = 0,+1,£2, ...
where 0 < f <% isafixed frequency and R and @ are uncorrelated random vari-
ables and with @ uniformly distributed on the interval (0,1).

(a) Show that E(Y;) = O for al t. 1
(b) Show that the process is stationary with y, = EE(RZ) cos(2nf k).

Hint: Use the calculations leading up to Equation (2.3.4), on page 19.
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2.29

2.30

Fundamental Concepts

(Random cosine wave extended further) Suppose that

Y, = f“lecos[Zn(fjH@j)] fort = 0,+1,+2, ...

J =
where0 < f; <f, < ... <f, <% are mfixed frequencies, and Ry, ®4, Ry, ®»,...,
Ry, @, are uncorrelated random variables with each @; uniformly distributed on
theinterval (0,1).
(a) Show that E(Y;) =0 for al t. 1 m
(b) Show that the processis stationary with vy, = 5 z E(RJ-Z) cos(27cfj k) .

Hint: Do Exercise 2.28 first. j=1

(Mathematical statistics required) Suppose that

Y, = Rcos[2n(ft + ®)] fort = 0,1, %2, ...

where R and @ are independent random variables and f is a fixed frequency. The
phase @ is assumed to be uniformly distributed on (0, 1), and the amplitude R has
a Rayleigh distribution with pdf f(r) = re?/2 forr > 0. Show that for each
time point t, Y; has anormal distribution. (Hint: Let Y = Rcos[2n(ft + ®)] and
X = Rsin[2x(ft + ®)]. Now find the joint distribution of X and Y. It can also be
shown that al of the finite dimensional distributions are multivariate normal and
hence the process is strictly stationary.)

Appendix A: Expectation, Variance, Covariance,

and Correlation

In this appendix, we define expectation for continuous random variables. However, all
of the properties described hold for all types of random variables, discrete, continuous,
or otherwise. Let X have probability density function f(x) and let the pair (X,Y) have
joint probability density function f(x,y).

The expected value of X s defined as E(X) = | xf(x)dx.

0

(If jw [X|f(x)dx < « ; otherwise E(X) is undefined.) E(X) is also called the expectation

of X

or the mean of X and is often denoted . or py.

Properties of Expectation

If h(X) is afunction such that J'OO [h(x)|f(x)dx < oo, it may be shown that

Simi

E[h(X)] = jw h(x)f(x)dx

~0

larly, if j jw Ih(x,y)|f(x, y)dxdy < o , it may be shown that

0
o
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E[h(X, )] = [ [ h(x y)f(x y)dxdy (2A.1)
Asacorollary to Equation (2.A.1), we easily obtain the important result
E(aX +bY+c) = aE(X) + bE(Y) + ¢ (2.A.2)
We a'so have
EXY) = [ [ xyf(x y)dxdy 2A3)

The variance of arandom variable X is defined as
Var(X) = E{[X-E(X)]2} (2.A.4)
(provided E(X?) exists). The variance of X is often denoted by 2 or o2.

Properties of Variance

var(X) =0 (2.A.5)
Var(a+ bX) = b2Var(X) (2.A.6)

If X and Y are independent, then
Var(X+Y) = Var(X) + Var(Y) (2.A.7)

In general, it may be shown that
Var(X) = E(X2)—-[E(X)]? (2.A.8)

The positive square root of the variance of X is called the standard deviation of X and
is often denoted by  or oyx. The random variable (X — py)/ox is called the standard-
ized version of X. The mean and standard deviation of a standardized variable are
always zero and one, respectively.

The covariance of X and Yis defined as Cov(X, Y) = E[(X—py)(Y—py)].

Properties of Covariance

Cov(a+bX c+dY) = bdCov(X, Y) (2.A.9
Var(X+Y) = Var(X) + Var(Y) + 2Cov(X, Y) (2.A.10)
Cov(X+Y,Z) = Cov(X, Z) + Cov(Y, Z) (2.A.11)
Cov(X, X) = Var(X) (2.A.12)

Cov(X, Y) = Cov(Y, X) (2.A.13)

If X and Y are independent,
Cov(X,Y) =0 (2A.14)
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The correlation coefficient of X and Y, denoted by Corr (XX, Y) or p, is defined as

p = Corr(X,Y) = —<VXY)
JVar(X)Var(Y)

Alternatively, if X* isastandardized X and Y* isastandardized Y, then p = E(X* Y*).

Properties of Correlation
-1<Corr(X,Y)<1 (2.A.15)
Corr(a+bX,c+dY) = sign(bd)Corr(X,Y)
lifbd>0
where sign(bd) =< Oifbd =0
-1if bd<0

(2.A.16)

Corr(X,Y) = £1 if and only if there are constants a and b such that Pr(Y =a + bX) = 1.



