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PREFACE

The theory and practice of time series analysis have developed rapidly since the appear-
ance in 1970 of the seminal work of George E. P. Box and Gwilym M. Jenkins, Time
Series Analysis: Forecasting and Control, now available in its third edition (1994) with
co-author Gregory C. Reinsel. Many books on time series have appeared since then, but
some of them give too little practical application, while others give too little theoretical
background. This book attempts to present both application, and theory at a level acces-
sible to a wide variety of students and practitioners. Our approach is to mix application
and theory throughout the book as they are naturally needed. 

The book was developed for a one-semester course usually attended by students in
statistics, economics, business, engineering, and quantitative social sciences. Basic
applied statistics through multiple linear regression is assumed. Calculus is assumed
only to the extent of minimizing sums of squares, but a calculus-based introduction to
statistics is necessary for a thorough understanding of some of the theory. However,
required facts concerning expectation, variance, covariance, and correlation are
reviewed in appendices. Also, conditional expectation properties and minimum mean
square error prediction are developed in appendices. Actual time series data drawn from
various disciplines are used throughout the book to illustrate the methodology. The book
contains additional topics of a more advanced nature that can be selected for inclusion in
a course if the instructor so chooses.

All of the plots and numerical output displayed in the book have been produced
with the R software, which is available from the R Project for Statistical Computing at
www.r-project.org. Some of the numerical output has been edited for additional clarity
or for simplicity. R is available as free software under the terms of the Free Software
Foundation's GNU General Public License in source code form. It runs on a wide vari-
ety of UNIX platforms and similar systems, Windows, and MacOS.

R is a language and environment for statistical computing and graphics, provides a
wide variety of statistical (e.g., time-series analysis, linear and nonlinear modeling, clas-
sical statistical tests) and graphical techniques, and is highly extensible. The extensive
appendix An Introduction to R, provides an introduction to the R software specially
designed to go with this book. One of the authors (KSC) has produced a large number of
new or enhanced R functions specifically tailored to the methods described in this book.
They are listed on page 468 and are available in the package named TSA on the R
Project’s Website at www.r-project.org. We have also constructed R command script
files for each chapter. These are available for download at www.stat.uiowa.edu/
~kchan/TSA.htm. We also show the required R code beneath nearly every table and
graphical display in the book. The datasets required for the exercises are named in each
exercise by an appropriate filename; for example, larain for the Los Angeles rainfall
data. However, if you are using the TSA package, the datasets are part of the package
and may be accessed through the R command data(larain), for example.

All of the datasets are also available at the textbook website as ACSCII files with
variable names in the first row. We believe that many of the plots and calculations
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described in the book could also be obtained with other software, such as SAS©, Splus©,
Statgraphics©, SCA©, EViews©, RATS©, Ox©, and others.

This book is a second edition of the book Time Series Analysis by Jonathan Cryer,
published in 1986 by PWS-Kent Publishing (Duxbury Press). This new edition contains
nearly all of the well-received original in addition to considerable new material, numer-
ous new datasets, and new exercises. Some of the new topics that are integrated with the
original include unit root tests, extended autocorrelation functions, subset ARIMA mod-
els, and bootstrapping. Completely new chapters cover the topics of time series regres-
sion models, time series models of heteroscedasticity, spectral analysis, and threshold
models. Although the level of difficulty in these new chapters is somewhat higher than
in the more basic material, we believe that the discussion is presented in a way that will
make the material accessible and quite useful to a broad audience of users. Chapter 15,
Threshold Models, is placed last since it is the only chapter that deals with nonlinear
time series models. It could be covered earlier, say after Chapter 12. Also, Chapters 13
and 14 on spectral analysis could be covered after Chapter 10.

We would like to thank John Kimmel, Executive Editor, Statistics, at Springer, for
his continuing interest and guidance during the long preparation of the manuscript. Pro-
fessor Howell Tong of the London School of Economics, Professor Henghsiu Tsai of
Academica Sinica, Taipei, Professor Noelle Samia of Northwestern University, Profes-
sor W. K. Li and Professor Kai W. Ng, both of the University of Hong Kong, and Profes-
sor Nils Christian Stenseth of the University of Oslo kindly read parts of the manuscript,
and Professor Jun Yan used a preliminary version of the text for a class at the University
of Iowa. Their constructive comments are greatly appreciated. We would like to thank
Samuel Hao who helped with the exercise solutions and read the appendix: An Introduc-
tion to R. We would also like to thank several anonymous reviewers who read the manu-
script at various stages. Their reviews led to a much improved book. Finally, one of the
authors (JDC) would like to thank Dan, Marian, and Gene for providing such a great
place, Casa de Artes, Club Santiago, Mexico, for working on the first draft of much of
this new edition.

Iowa City, Iowa Jonathan D. Cryer
January 2008 Kung-Sik Chan
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CHAPTER 2

FUNDAMENTAL CONCEPTS

This chapter describes the fundamental concepts in the theory of time series models. In
particular, we introduce the concepts of stochastic processes, mean and covariance func-
tions, stationary processes, and autocorrelation functions.

2.1 Time Series and Stochastic Processes

The sequence of random variables {Yt : t = 0, ±1, ±2, ±3,…} is called a stochastic
process and serves as a model for an observed time series. It is known that the complete
probabilistic structure of such a process is determined by the set of distributions of all
finite collections of the Y’s. Fortunately, we will not have to deal explicitly with these
multivariate distributions. Much of the information in these joint distributions can be
described in terms of means, variances, and covariances. Consequently, we concentrate
our efforts on these first and second moments. (If the joint distributions of the Y’s are
multivariate normal distributions, then the first and second moments completely deter-
mine all the joint distributions.)

2.2 Means, Variances, and Covariances

For a stochastic process {Yt : t = 0, ±1, ±2, ±3,…}, the mean function is defined by

(2.2.1)

That is, μt is just the expected value of the process at time t. In general, μt can be differ-
ent at each time point t.

The autocovariance function, γt,s, is defined as

(2.2.2)

where Cov(Yt, Ys) = E[(Yt − μt)(Ys − μs)] = E(YtYs) − μt μs .
The autocorrelation function, ρt,s, is given by

(2.2.3)

where

(2.2.4)

μt E Yt( )= for t = 0, 1± 2 ...,±,

γt s, Cov Yt  Ys,( )= for t s = 0, 1± 2 ...,±,,

ρt s, Corr Yt  Ys,( )= for t s = 0, 1± 2 ...,±,,

Corr Yt Ys,( )
Cov Yt Ys,( )

Var Yt( )Var Ys( )
--------------------------------------------

γt s,

γt t, γs s,

---------------------= =
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We review the basic properties of expectation, variance, covariance, and correlation
in Appendix A on page 24.

Recall that both covariance and correlation are measures of the (linear) dependence
between random variables but that the unitless correlation is somewhat easier to inter-
pret. The following important properties follow from known results and our definitions:

(2.2.5)

Values of ρt,s near ±1 indicate strong (linear) dependence, whereas values near zero
indicate weak (linear) dependence. If ρt,s = 0, we say that Yt and Ys are uncorrelated.

To investigate the covariance properties of various time series models, the follow-
ing result will be used repeatedly: If c1, c2,…, cm and d1, d2,… , dn are constants and t1,
t2,…, tm and s1, s2,… , sn are time points, then

(2.2.6)

The proof of Equation (2.2.6), though tedious, is a straightforward application of
the linear properties of expectation. As a special case, we obtain the well-known result

(2.2.7)

The Random Walk

Let e1, e2,… be a sequence of independent, identically distributed random variables
each with zero mean and variance . The observed time series, {Yt : t = 1, 2,…}, is
constructed as follows:

(2.2.8)

Alternatively, we can write
(2.2.9)

with “initial condition” Y1 = e1. If the e’s are interpreted as the sizes of the “steps” taken
(forward or backward) along a number line, then Yt is the position of the “random
walker” at time t. From Equation (2.2.8), we obtain the mean function

γt t, Var Yt( )=

γt s, γs t,=

γt s, γt t, γs s,≤

ρt t, 1=

ρt s, ρs t,=

ρt s, 1≤ ⎭
⎪
⎬
⎪
⎫

Cov ciYti
i 1=

m

∑ djYsj
j 1=

n

∑,   cidjCov Yti
Ysj

,( )
j 1=

n

∑
i 1=

m

∑=

Var ciYti
i 1=

n

∑ ci
2Var Yti

( )
i 1=

n

∑ 2   cicjCov Yti
Ytj

,( )
j 1=

i 1–

∑
i 2=

n

∑+=

σe
2

Y1 e1=
Y2 e1 e2+=

...

Yt e1 e2
… et+ + +=

⎭
⎪
⎪
⎬
⎪
⎪
⎫

Yt Yt 1– et+=
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so that
μt = 0    for all t (2.2.10)

We also have

so that

(2.2.11)

Notice that the process variance increases linearly with time.
To investigate the covariance function, suppose that 1 ≤ t ≤ s. Then we have

From Equation (2.2.6), we have

However, these covariances are zero unless i = j, in which case they equal Var(ei) = .
There are exactly t of these so that γt,s = t .

Since γt,s = γs,t, this specifies the autocovariance function for all time points t and s
and we can write

(2.2.12)

The autocorrelation function for the random walk is now easily obtained as

(2.2.13)

The following numerical values help us understand the behavior of the random
walk.

The values of Y at neighboring time points are more and more strongly and posi-
tively correlated as time goes by. On the other hand, the values of Y at distant time
points are less and less correlated.

A simulated random walk is shown in Exhibit 2.1 where the e’s were selected from
a standard normal distribution. Note that even though the theoretical mean function is

μt E Yt( ) E e1 e2
… et+ + +( ) E e1( ) E e2( ) … E et( )+ + += = =

0 0 … 0+ + +=

Var Yt( ) Var e1 e2
… et+ + +( ) Var e1( ) Var e2( ) … Var et( )+ + += =

σe
2 σe

2 … σe
2+ + +=

Var Yt( ) tσe
2=

γt s, Cov Yt Ys,( ) Cov e1 e2
… et + + + e1 e2

… et et 1+
… es+ + + + + +,( )= =

γt s,   Cov ei ej,( )
j 1=

t

∑
i 1=

s

∑=

σe
2

σe
2

γt s, tσe
2= for 1 t s≤ ≤

ρt s,
γt s,

γt t, γs s,

--------------------- t
s
--= = for 1 t s≤ ≤

ρ1 2,
1
2
--- 0.707= =

ρ24 25,
24
25
------ 0.980= =

ρ8 9,
8
9
--- 0.943= =

ρ1 25,
1

25
------ 0.200= =
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zero for all time points, the fact that the variance increases over time and that the corre-
lation between process values nearby in time is nearly 1 indicate that we should expect
long excursions of the process away from the mean level of zero.

The simple random walk process provides a good model (at least to a first approxi-
mation) for phenomena as diverse as the movement of common stock price, and the
position of small particles suspended in a fluid—so-called Brownian motion.

Exhibit 2.1  Time Series Plot of a Random Walk

> win.graph(width=4.875, height=2.5,pointsize=8)
> data(rwalk) # rwalk contains a simulated random walk
> plot(rwalk,type='o',ylab='Random Walk')

A Moving Average

As a second example, suppose that {Yt} is constructed as

(2.2.14)

where (as always throughout this book) the e’s are assumed to be independent and iden-
tically distributed with zero mean and variance . Here

and
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Also

or

(2.2.15)

Furthermore,

Similarly, Cov(Yt, Yt−k) = 0 for k > 1, so we may write

For the autocorrelation function, we have

(2.2.16)

since 0.25 /0.5 = 0.5.
Notice that ρ2,1 = ρ3,2 = ρ4,3 = ρ9,8 = 0.5. Values of Y precisely one time unit apart

have exactly the same correlation no matter where they occur in time. Furthermore, ρ3,1
= ρ4,2 = ρt, t − 2 and, more generally, ρt, t − k is the same for all values of t. This leads us to
the important concept of stationarity.

Var Yt( ) Var
et et 1–+

2
----------------------

⎩ ⎭
⎨ ⎬
⎧ ⎫ Var et( ) Var et 1–( )+

4
---------------------------------------------------= =

0.5σe
2=

Cov Yt Yt 1–,( ) Cov
et et 1–+

2
----------------------

et 1– et 2–+

2
-----------------------------,

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Cov et et 1–,( ) Cov et et 2–,( ) Cov et 1– et 1–,( )+ +

4
--------------------------------------------------------------------------------------------------------------------------=

       
Cov et 1– et 2–,( )

4
-----------------------------------------+

Cov et 1– et 1–,( )
4

-----------------------------------------= (as all the other covariances are zero)

0.25σe
2=

γt t 1–, 0.25σe
2= for all t

Cov Yt Yt 2–,( ) Cov
et et 1–+

2
----------------------

et 2– et 3–+

2
-----------------------------,

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

0= since the e′s are independent.

γt s,

0.5σe
2    for t s– 0=

0.25σe
2    for t s– 1=

0    for t s– 1>
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

ρt s,

1    for t s– 0=

0.5    for t s– 1=

0    for t s– 1>⎩
⎪
⎨
⎪
⎧

=

σe
2 σe

2
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2.3 Stationarity

To make statistical inferences about the structure of a stochastic process on the basis of
an observed record of that process, we must usually make some simplifying (and pre-
sumably reasonable) assumptions about that structure. The most important such
assumption is that of stationarity. The basic idea of stationarity is that the probability
laws that govern the behavior of the process do not change over time. In a sense, the pro-
cess is in statistical equilibrium. Specifically, a process {Yt} is said to be strictly sta-
tionary if the joint distribution of  is the same as the joint distribution of

  for all choices of time points t1, t2,…, tn and all choices of time
lag k.

Thus, when n = 1 the (univariate) distribution of Yt is the same as that of Yt  − k for
all t and k; in other words, the Y’s are (marginally) identically distributed. It then follows
that E(Yt) = E(Yt  − k) for all t and k so that the mean function is constant for all time.
Additionally, Var(Yt) = Var(Yt  − k) for all t and k so that the variance is also constant over
time.

Setting n = 2 in the stationarity definition we see that the bivariate distribution of Yt
and Ys must be the same as that of Yt − k and Ys − k from which it follows that Cov(Yt, Ys)
= Cov(Yt − k, Ys − k) for all t, s, and k. Putting k = s and then k = t, we obtain

That is, the covariance between Yt and Ys depends on time only through the time differ-
ence |t − s | and not otherwise on the actual times t and s. Thus, for a stationary process,
we can simplify our notation and write

(2.3.1)

Note also that

The general properties given in Equation (2.2.5) now become

(2.3.2)

If a process is strictly stationary and has finite variance, then the covariance func-
tion must depend only on the time lag.

A definition that is similar to that of strict stationarity but is mathematically weaker

Yt1
Yt2

,… Ytn
, ,

Yt1 k– Yt2 k– ,… Ytn k–,

γt s, Cov Yt s– Y0,( )=

Cov Y0 Ys t–,( )=

Cov Y0 Y t s–,( )=

γ0 t s–,=

γk Cov Yt Yt k–,( )= and ρk Corr Yt Yt k–,( )=

ρk

γk

γ0
-----=

γ0 Var Yt( )=

γk γ k–=

γk γ0≤

ρ0 1=

ρk ρ k–=

ρk 1≤ ⎭
⎪
⎬
⎪
⎫
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is the following: A stochastic process {Yt} is said to be weakly (or second-order)
stationary if

In this book the term stationary when used alone will always refer to this weaker form of
stationarity. However, if the joint distributions for the process are all multivariate normal
distributions, it can be shown that the two definitions coincide. For stationary processes,
we usually only consider k ≥ 0.

White Noise

A very important example of a stationary process is the so-called white noise process,
which is defined as a sequence of independent, identically distributed random variables
{et}. Its importance stems not from the fact that it is an interesting model itself but from
the fact that many useful processes can be constructed from white noise. The fact that
{et} is strictly stationary is easy to see since

as required. Also, μt = E(et) is constant and

Alternatively, we can write

(2.3.3)

The term white noise arises from the fact that a frequency analysis of the model shows
that, in analogy with white light, all frequencies enter equally. We usually assume that
the white noise process has mean zero and denote Var(et) by .

The moving average example, on page 14, where Yt = (et + et − 1)/2, is another
example of a stationary process constructed from white noise. In our new notation, we
have for the moving average process that

1.

2.

The mean function is constant over time, and

γt t k–, γ0 k,= for all time t and lag k

Pr et1
x1≤ et2

x2≤ … etn
xn≤, , ,( )

Pr et1
x1≤( )Pr et2

x2≤( )…Pr etn
xn≤( )= (by independence) 

Pr et1 k– x1≤( )Pr et2 k– x2≤( )…Pr etn k– xn≤( )=

           (identical distributions)

Pr et1 k– x1≤ et2 k– x2≤ … etn k– xn≤, , ,( )= (by independence)

γk
Var et( )

0⎩
⎨
⎧

=
for k 0=

for k 0≠

ρk
1

0⎩
⎨
⎧

=
for k 0=

for k 0≠

σe
2

ρk

1

0.5

0⎩
⎪
⎨
⎪
⎧

=

for k 0=

for k 1=

for k 2≥
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Random Cosine Wave

As a somewhat different example,† consider the process defined as follows:

where Φ is selected (once) from a uniform distribution on the interval from 0 to 1. A
sample from such a process will appear highly deterministic since Yt will repeat itself
identically every 12 time units and look like a perfect (discrete time) cosine curve. How-
ever, its maximum will not occur at t = 0 but will be determined by the random phase Φ.
The phase Φ can be interpreted as the fraction of a complete cycle completed by time t =
0. Still, the statistical properties of this process can be computed as follows:

But this is zero since the sines must agree. So μt = 0 for all t.
Also

† This example contains optional material that is not needed in order to understand most of
the remainder of this book. It will be used in Chapter 13, Introduction to Spectral Analysis.

Yt 2π t
12
------ Φ+⎝ ⎠

⎛ ⎞cos= for t 0 1 2 …,±,±,=

E Yt( ) E 2π t
12
------ Φ+⎝ ⎠

⎛ ⎞cos
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

2π t
12
------ φ+⎝ ⎠

⎛ ⎞cos φd

0

1

∫=

1
2π
------ 2π t

12
------ φ+⎝ ⎠

⎛ ⎞sin
φ 0=

1

=

1
2π
------ 2π t

12
------ 2π+⎝ ⎠

⎛ ⎞sin 2π t
12
------⎝ ⎠

⎛ ⎞sin–=

γt s, E 2π t
12
------ Φ+⎝ ⎠

⎛ ⎞ 2π s
12
------ Φ+⎝ ⎠

⎛ ⎞coscos
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

2π t
12
------ φ+⎝ ⎠

⎛ ⎞ 2π s
12
------ φ+⎝ ⎠

⎛ ⎞coscos φd
0

1

∫=

1
2
--- 2π t s–

12
----------⎝ ⎠

⎛ ⎞cos 2π t s+
12

---------- 2φ+⎝ ⎠
⎛ ⎞cos+

⎩ ⎭
⎨ ⎬
⎧ ⎫

φd
0

1

∫=

1
2
--- 2π t s–

12
----------⎝ ⎠

⎛ ⎞cos
1

4π
------ 2π t s+

12
---------- 2φ+⎝ ⎠

⎛ ⎞sin
φ 0=

1

+
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

1
2
--- 2π t s–

12
------------⎝ ⎠

⎛ ⎞cos=
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So the process is stationary with autocorrelation function

(2.3.4)

This example suggests that it will be difficult to assess whether or not stationarity is
a reasonable assumption for a given time series on the basis of the time sequence plot of
the observed data.

The random walk of page 12, where , is also constructed
from white noise but is not stationary. For example, the variance function, Var(Yt) =
t , is not constant; furthermore, the covariance function  for 0 ≤ t ≤ s does
not depend only on time lag. However, suppose that instead of analyzing {Yt} directly,
we consider the differences of successive Y-values, denoted ∇Yt. Then ∇Yt = Yt − Yt−1 =
et, so the differenced series, {∇Yt}, is stationary. This represents a simple example of a
technique found to be extremely useful in many applications. Clearly, many real time
series cannot be reasonably modeled by stationary processes since they are not in statis-
tical equilibrium but are evolving over time. However, we can frequently transform non-
stationary series into stationary series by simple techniques such as differencing. Such
techniques will be vigorously pursued in the remaining chapters.

2.4 Summary

In this chapter we have introduced the basic concepts of stochastic processes that serve
as models for time series. In particular, you should now be familiar with the important
concepts of mean functions, autocovariance functions, and autocorrelation functions.
We illustrated these concepts with the basic processes: the random walk, white noise, a
simple moving average, and a random cosine wave. Finally, the fundamental concept of
stationarity introduced here will be used throughout the book.

EXERCISES

2.1 Suppose E(X) = 2, Var(X) = 9, E(Y) = 0, Var(Y) = 4, and Corr(X,Y) = 0.25. Find:
(a) Var(X + Y).
(b) Cov(X, X + Y).
(c) Corr(X + Y, X − Y).

2.2 If X and Y are dependent but Var(X) = Var(Y), find Cov(X + Y, X − Y).
2.3 Let X have a distribution with mean μ and variance σ2, and let Yt = X for all t.

(a) Show that {Yt} is strictly and weakly stationary.
(b) Find the autocovariance function for {Yt}.
(c) Sketch a “typical” time plot of Yt.

ρk 2π k
12
------⎝ ⎠

⎛ ⎞cos= for k 0 1 2 …,±,±,=

Yt e1 e2
… et+ + +=

σe
2 γt s, tσe

2=
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2.4 Let {et} be a zero mean white noise process. Suppose that the observed process is
Yt = et + θet − 1, where θ is either 3 or 1/3.
(a) Find the autocorrelation function for {Yt} both when θ = 3 and when θ = 1/3.
(b) You should have discovered that the time series is stationary regardless of the

value of θ and that the autocorrelation functions are the same for θ = 3 and θ =
1/3. For simplicity, suppose that the process mean is known to be zero and the
variance of Yt is known to be 1. You observe the series {Yt} for t = 1, 2, ... , n
and suppose that you can produce good estimates of the autocorrelations ρk.
Do you think that you could determine which value of θ is correct (3 or 1/3)
based on the estimate of ρk? Why or why not?

2.5 Suppose Yt = 5 + 2t + Xt, where {Xt} is a zero-mean stationary series with autoco-
variance function γk.
(a) Find the mean function for {Yt}.
(b) Find the autocovariance function for {Yt}.
(c) Is {Yt} stationary? Why or why not?

2.6 Let {Xt} be a stationary time series, and define 

(a) Show that is free of t for all lags k.
(b) Is {Yt} stationary?

2.7 Suppose that {Yt} is stationary with autocovariance function γk.
(a) Show that Wt = ∇Yt = Yt − Yt − 1 is stationary by finding the mean and autoco-

variance function for {Wt}.
(b) Show that Ut = ∇2Yt = ∇[Yt − Yt−1] = Yt − 2Yt−1 + Yt−2 is stationary. (You need

not find the mean and autocovariance function for {Ut}.)
2.8 Suppose that {Yt} is stationary with autocovariance function γk. Show that for any

fixed positive integer n and any constants c1, c2, ... , cn, the process {Wt} defined
by  is stationary. (Note that Exercise
2.7 is a special case of this result.)

2.9 Suppose Yt = β0 + β1t + Xt, where {Xt} is a zero-mean stationary series with auto-
covariance function γk and β0 and β1 are constants.
(a) Show that {Yt} is not stationary but that Wt = ∇Yt = Yt − Yt − 1 is stationary.
(b) In general, show that if Yt = μt + Xt, where {Xt} is a zero-mean stationary

series and μt is a polynomial in t of degree d, then ∇mYt = ∇(∇m−1Yt) is sta-
tionary for m ≥ d and nonstationary for 0 ≤ m < d.

2.10 Let {Xt} be a zero-mean, unit-variance stationary process with autocorrelation
function ρk. Suppose that μt is a nonconstant function and that σt is a positive-val-
ued nonconstant function. The observed series is formed as Yt = μt + σtXt.
(a) Find the mean and covariance function for the {Yt} process.
(b) Show that the autocorrelation function for the {Yt} process depends only on

the time lag. Is the {Yt} process stationary?
(c) Is it possible to have a time series with a constant mean and with

Corr(Yt ,Yt − k) free of t but with {Yt} not stationary?

Yt
Xt
Xt 3+⎩

⎨
⎧

=
for t odd

for t even.
Cov Yt Yt k–,( )

Wt c1Yt c2Yt 1–
… cnYt n– 1++ + +=
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2.11 Suppose Cov(Xt,Xt − k) = γk is free of t but that E(Xt) = 3t.
(a) Is {Xt} stationary?
(b) Let Yt = 7 − 3t + Xt. Is {Yt} stationary?

2.12 Suppose that Yt = et − et−12. Show that {Yt} is stationary and that, for k > 0, its
autocorrelation function is nonzero only for lag k = 12.

2.13 Let Yt = et − θ(et − 1)2. For this exercise, assume that the white noise series is nor-
mally distributed.
(a) Find the autocorrelation function for {Yt}.
(b) Is {Yt} stationary?

2.14 Evaluate the mean and covariance function for each of the following processes. In
each case, determine whether or not the process is stationary.
(a) Yt = θ0 + tet .
(b) Wt =  ∇Yt, where Yt is as given in part (a). 
(c) Yt = et et − 1. (You may assume that {et } is normal white noise.)

2.15 Suppose that X is a random variable with zero mean. Define a time series by
Yt = (−1)tX.
(a) Find the mean function for {Yt}.
(b) Find the covariance function for {Yt}.
(c) Is {Yt} stationary?

2.16 Suppose Yt = A + Xt, where {Xt} is stationary and A is random but independent of
{Xt}. Find the mean and covariance function for {Yt} in terms of the mean and
autocovariance function for {Xt} and the mean and variance of A.

2.17 Let {Yt} be stationary with autocovariance function γk. Let .
Show that

2.18 Let {Yt} be stationary with autocovariance function γk. Define the sample vari-

ance as .

(a) First show that .

(b) Use part (a) to show that

(c) . 

(Use the results of Exercise 2.17 for the last expression.)

(d) If {Yt} is a white noise process with variance γ0, show that E(S2) =  γ0.

Y
 _ 1

n
--- Ytt 1=

n∑=

Var Y
 _

( )
γ0

n
-----

2
n
--- 1 k

n
---–⎝ ⎠

⎛ ⎞ γk
k 1=

n 1–

∑+=

1
n
--- 1 k

n
-----–⎝ ⎠

⎛ ⎞ γk
k n– 1+=

n 1–

∑=

S2 1
n 1–
------------ Yt Y

 _
–( )2

t 1=

n

∑=

Yt μ–( )2

t 1=

n

∑ Yt Y
 _

–( )2

t 1=

n

∑ n Y
 _

μ–( )2+=

E S2( ) n
n 1–
------------γ0

n
n 1–
------------Var Y

 _
( )– γ0

2
n 1–
------------ 1 k

n
---–⎝ ⎠

⎛ ⎞ γk
k 1=

n 1–
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2.19 Let Y1 = θ0 + e1, and then for t > 1 define Yt recursively by Yt = θ0 + Yt−1 + et.
Here θ0 is a constant. The process {Yt} is called a random walk with drift.
(a) Show that Yt may be rewritten as .
(b) Find the mean function for Yt.
(c) Find the autocovariance function for Yt.

2.20 Consider the standard random walk model where Yt = Yt − 1 + et with Y1 = e1.
(a) Use the representation of Yt above to show that μt = μt − 1 for t > 1 with initial

condition μ1 = E(e1) = 0. Hence show that μt = 0 for all t.
(b) Similarly, show that Var(Yt) = Var(Yt − 1) +  for t > 1 with Var(Y1) = 

and hence Var(Yt) = t .
(c) For 0 ≤ t ≤ s, use Ys = Yt + et + 1 + et + 2 + + es to show that Cov(Yt, Ys) =

Var(Yt) and, hence, that Cov(Yt, Ys) = min(t, s) .
2.21 For a random walk with random starting value, let 

for t > 0, where Y0 has a distribution with mean μ0 and variance . Suppose fur-
ther that Y0, e1, ... , et are independent.
(a) Show that E(Yt) = μ0 for all t.
(b) Show that Var(Yt) = t + .
(c) Show that Cov(Yt, Ys) = min(t, s) + .

(d) Show that .

2.22 Let {et} be a zero-mean white noise process, and let c be a constant with |c| < 1.
Define Yt recursively by Yt = cYt − 1 + et with Y1 = e1.
(a) Show that E(Yt) = 0.
(b) Show that Var(Yt) = (1 + c2 +c4 + + c2t − 2). Is {Yt} stationary?
(c) Show that

and, in general,

Hint: Argue that Yt − 1 is independent of et. Then use
Cov(Yt, Yt − 1) = Cov(cYt − 1 + et, Yt −1 )

(d) For large t, argue that

so that {Yt} could be called asymptotically stationary.
(e) Suppose now that we alter the initial condition and put . Show

that now {Yt} is stationary.

Yt tθ0 et et 1–
… e1+ + + +=

σe
2 σe

2

σe
2

…
σe

2

Yt Y0 et et 1–
… e1+ + + +=

σ0
2

σe
2 σ0

2

σe
2 σ0

2

Corr Yt Ys,( )
tσa

2 σ0
2+

sσa
2 σ0

2+
----------------------= for 0 t s≤ ≤

σe
2 …

Corr Yt Yt 1–,( ) c
Var Yt 1–( )

Var Yt( )
---------------------------=

Corr Yt Yt k–,( ) ck
Var Yt k–( )

Var Yt( )
--------------------------= for k 0>

Var Yt( )
σe

2

1 c2–
--------------≈ and Corr Yt  Yt k–,( ) ck≈ for k 0>

Y1

e1
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2.23 Two processes {Zt} and {Yt} are said to be independent if for any time points t1,

t2,... , tm and s1, s2, ... , sn the random variables { } are independent

of the random variables { }. Show that if {Zt} and {Yt} are inde-

pendent stationary processes, then Wt = Zt + Yt is stationary.

2.24 Let {Xt} be a time series in which we are interested. However, because the mea-
surement process itself is not perfect, we actually observe Yt = Xt + et. We assume
that {Xt} and {et} are independent processes. We call Xt the signal and et the
measurement noise or error process.

If {Xt} is stationary with autocorrelation function ρk, show that {Yt} is also sta-
tionary with

We call  the signal-to-noise ratio, or SNR. Note that the larger the SNR,
the closer the autocorrelation function of the observed process {Yt} is to the auto-
correlation function of the desired signal {Xt}.

2.25 Suppose , where β0, f1, f2,..., fk are

constants and A1, A2, ... , Ak, B1, B2, ... , Bk are independent random variables with
zero means and variances Var(Ai) = Var(Bi) = . Show that {Yt} is stationary
and find its covariance function.

2.26 Define the function . In geostatistics, Γt,s is called the
semivariogram.
(a) Show that for a stationary process .
(b) A process is said to be intrinsically stationary if Γt,s depends only on the time

difference | t − s |. Show that the random walk process is intrinsically station-
ary.

2.27 For a fixed, positive integer r and constant φ, consider the time series defined by
.

(a) Show that this process is stationary for any value of φ.
(b) Find the autocorrelation function.

2.28 (Random cosine wave extended) Suppose that

where 0 < f < ½ is a fixed frequency and R and Φ are uncorrelated random vari-
ables and with Φ uniformly distributed on the interval (0,1).
(a) Show that E(Yt) = 0 for all t.
(b) Show that the process is stationary with .

Hint: Use the calculations leading up to Equation (2.3.4), on page 19.

Zt1
Zt2

… Ztm
, , ,

Ys1
Ys2

… Ysn
, , ,

Corr Yt Yt k–,( )
ρk

1 σe
2 σX

2⁄+
---------------------------= for k 1≥

σX
2 σe

2⁄

Yt β0 Ai 2πfit( ) Bi 2πfit( )sin+cos[ ]
i 1=

k

∑+=

σi
2

Γt s,
1
2
---E Yt Ys–( )2[ ]=

Γt s, γ0 γ t s––=

Yt et φet 1– φ2et 2–
… φret r–+ + + +=

Yt R 2π f t Φ+( )( )cos= for t 0 1 2 …,±,±,=

γk
1
2
---E R2( ) 2πf k( )cos=
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2.29 (Random cosine wave extended further) Suppose that

where 0 < f1 < f2 < … < fm < ½ are m fixed frequencies, and R1, Φ1, R2, Φ2,…,
Rm, Φm are uncorrelated random variables with each Φj uniformly distributed on
the interval (0,1).
(a) Show that E(Yt) = 0 for all t.
(b) Show that the process is stationary with .

Hint: Do Exercise 2.28 first.
2.30 (Mathematical statistics required) Suppose that

 

where R and Φ are independent random variables and f is a fixed frequency. The
phase Φ is assumed to be uniformly distributed on (0,1), and the amplitude R has
a Rayleigh distribution with pdf  for r > 0. Show that for each
time point t, Yt has a normal distribution. (Hint: Let  and
X = . Now find the joint distribution of X and Y. It can also be
shown that all of the finite dimensional distributions are multivariate normal and
hence the process is strictly stationary.)

Appendix A: Expectation, Variance, Covariance,
and Correlation

In this appendix, we define expectation for continuous random variables. However, all
of the properties described hold for all types of random variables, discrete, continuous,
or otherwise. Let X have probability density function f(x) and let the pair (X,Y) have
joint probability density function f(x,y).

The expected value of X is defined as .

(If ; otherwise E(X) is undefined.) E(X) is also called the expectation

of X or the mean of X and is often denoted μ or μX.

Properties of Expectation

If h(x) is a function such that , it may be shown that

Similarly, if , it may be shown that

Yt Rj 2π fj t Φj+( )[ ]cos
j 1=

m

∑= for t 0 1 2 …,±,±,=
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1
2
--- E Rj

2( ) 2πfj k( )cos
j 1=

m

∑=

Yt R 2π ft Φ+( )[ ]cos= for t 0 1 2 …,±,±,=

f r( ) re r2 2⁄–=
Y R 2π ft Φ+( )[ ]cos=

R 2π ft Φ+( )[ ]sin

E X( ) xf x( ) xd
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∞
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h x( ) f x( ) xd
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∞
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∞
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∞
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 (2.A.1)

As a corollary to Equation (2.A.1), we easily obtain the important result

(2.A.2)

We also have

(2.A.3)

The variance of a random variable X is defined as

(2.A.4)

(provided E(X2) exists). The variance of X is often denoted by σ2 or .

Properties of Variance

(2.A.5)

(2.A.6)

If X and Y are independent, then

(2.A.7)

In general, it may be shown that

(2.A.8)

The positive square root of the variance of X is called the standard deviation of X and
is often denoted by σ or σX. The random variable (X − μX)/σX is called the standard-
ized version of X. The mean and standard deviation of a standardized variable are
always zero and one, respectively.

The covariance of X and Y is defined as .

Properties of Covariance

(2.A.9)

(2.A.10)

(2.A.11)

(2.A.12)

(2.A.13)

If X and Y are independent,

(2.A.14)
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∞–
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The correlation coefficient of X and Y, denoted by Corr(X, Y) or ρ, is defined as

Alternatively, if X* is a standardized X and Y* is a standardized Y, then ρ = E(X*Y*).

Properties of Correlation

(2.A.15)

(2.A.16)

Corr(X, Y) =  if and only if there are constants a and b such that Pr(Y = a + bX) = 1.

ρ Corr X Y,( ) Cov X Y,( )
Var X( )Var Y( )

-----------------------------------------= =

1– Corr X Y,( ) 1≤ ≤

Corr a bX+ c dY+,( ) sign bd( )Corr X Y,( )=

where sign bd( )
1 if bd 0>
0 if bd 0=

1–  if bd 0<⎩
⎪
⎨
⎪
⎧

=

1±


