
Preface

Statistical design is one of the fundamentals of our subject, being at the core of
the growth of statistics during the previous century. Design played a key role in
agricultural statistics and set down principles of good practice, principles that
still apply today. Statistical design is about understanding where the variance
comes from, and making sure that is where the replication is. Indeed, it is
probably correct to say that these principles are even more important today.
Fisher (1947) compared a dataset to a sample of gold ore. The finest analysis
could only extract the proportion of gold contained in the ore. But a good
design could produce a sample with more gold.

There are plenty of “Design of Experiments” books available, many of
which do a fine job of describing not only how to design experiments, but
also how to analyze them. So why bother with another book? There were two
main reasons.

The first reason is the observation that many of our “standard” analyses
have become driven by the default setting of one’s favorite computer package
and, unfortunately, many times these default settings provide an incorrect
analysis. More frightening is the fact that sometimes such default analyses
have found their way into textbooks.

The second reason is that, although design books have gotten broader
in coverage of designs and often have much to say about analysis, the basic
theoretical underpinnings are not always covered, and if they are, they are
not covered in sufficient detail to understand how to construct the correct
analysis and to understand why the computer package default analysis may
be incorrect. Without fully understanding what the correct analysis should be,
it is impossible to design a good experiment.

So ... the goal is to describe the principles that drive good design, which
are also the principles that drive good statistics. Moreover, this will be done
with detail and attention paid to the theoretical background – only by having
more than a passing familiarity with the fundamental theory can one truly
understand statistical design.
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This book is not an encyclopedia of designs. There is no attempt to cover
all designs, and no attempt to teach data analysis at all. Although we will
analyze many datasets, we will usually use common anova techniques and not
preach about transformations, heterogeneity, missing data, and all the other
good stuff that a good data analyst needs to know. We assume that the design
has been run with enough success so that rescue techniques are not needed
for the analysis. We also assume that the student has been exposed to such
data analysis strategies.

We will cover the most popular designs in depth, both with theory and
examples, and datasets from consulting sessions and research publications. We
emphasize basic principles and careful modeling and, armed with such tools,
the student should be able to apply these principles in any situation

This book grew out of a course on Statistical Design taught at Cornell
during the 1990s, and at Florida in the 2000s. Most of the examples and
datasets are from consulting sessions with graduate students writing theses
or professors writing papers, and the subjects span everything from planting
alfalfa in the field to harvesting brain stem cells. (Most of my career has been
spent at Colleges of Agriculture – Rutgers, Cornell, and split between Arts
and Sciences and Agriculture at Florida. This will show in the examples.) I
have found that although the data and the lab techniques have changed, the
statistical principles remain quite constant.

Now, for the more important details:

◦ The level of the text is for first or second year graduate students. The
students should be familiar with standard statistical methodology (anova,
blocking, multiple regression) that one would get from a typical one-year
methods sequence (from books such as Ott and Longnecker 2000, Rawlings
et al. 1998).

◦ The material in the text is about right for a one-semester course. There
is probably a bit more than can be comfortably covered, so some picking
and choosing will be necessary. However, marching through the text is a
reasonable strategy.

◦ The chapters cover, for the most part, the standard material of a design
book, with mostly real examples, and applications of design in real sit-
uations. Although we cover many microarray designs, we do not have a
special section, instead treating them as the topics apply. The only un-
usual chapter is Chapter 4, where the concept of blocking is explored
further, and the effect of a random factor is examined. To me, blocks are
not about being samples from a larger population (which can be difficult
to justify) but rather about the correlation structure that they induce.

◦ Most chapters have a section Technical Notes, which contains the under-
lying theory in detail. The level in these notes is “anything goes”; we
use a lot of matrix algebra, some calculus, and also some statistical con-
cepts such as likelihood and sufficiency. These are in-depth looks that will
enhance the understanding of the advanced student, but skipping these
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sections will not hamper the beginner. To fully appreciate these sections it
would be good if the student has had a course from a book like Statistical
Inference by Casella and Berger (2001).

◦ The exercises are divided into “Essential” and “Accompaniment”. Every-
one should do the essentials. The accompaniments tend to be more of
a theoretical nature, going into the details of the procedures. I strongly
suggest that, if the students are able, they should do these exercises too.
I have always found that, for me, true understanding only comes from
slogging through the details.

◦ The datasets are on the book web page found at

www.stat.ufl.edu/∼casella

and, for most datasets in the examples there will be an accompanying R
program. These will not be sophisticated analyses, but rather will serve
as a starting point. I make no guarantees about the R programs. Smaller
datasets may only appear in text.

My best advice is that if you really want to understand statistical design,
read (or even better, reread) Fisher. His ideas, especially about blocking, have
greatly influenced my thinking. In fact, what I perceived as mishandling of
the randomized complete block design was one of the driving forces behind
the text. Fisher, of course, got it right.

There are many gray areas in design – when to pool, how to replicate, etc. –
some of which cannot be fully answered with statistical fact. This is where
we enter the realm of opinions, where judgments are made more on anecdotal
evidence and experience rather than formal calculations. After doing this stuff
for over 20 years opinions form about how to do things – I have taken the
liberty of sharing those thoughts.

Finally, thanks to all of my mentors. First there was Leon Gleser, my PhD
advisor, who taught me to work hard and try to learn as much as possible.
My design mentors were many, starting with Virgil Anderson at Purdue, and
Walt Federer at Cornell, who not only made me really understand split-plot
designs, but also taught me to say “a model” and never “the model”. And Carl
Lowe, the Plant Breeding Professor at Cornell who taught the course “Field
Plot Techniques”, and knew more about field plot layouts than anyone on
the planet. When he retired he gave me all of his notes and examples, many
of which appear as examples and exercises (and in the Appendix). I also
thank the students and colleagues who suffered through my learning process,
who listened as I thought through all of this, read through notes, and solved
problems: Mihai Giurcanu, Jamie Jarabek, David Lansky, Michael Meredith,
Deborah Reichert, and Andy Scherrer.

My most special mentor was Myra Samuels. A true sadness in my life is
that she died in 1992. She taught me to always ask questions until you really
understand. Thanks, Myra.
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And to all of my other mentors – you have all helped me more than you
know – Bob Bechhoffer, Jim Berger, Larry Brown, Shanti Gupta, Jean-Pierre
Habicht, George McCabe, Doug Robson, Bill Strawderman. And all of the
others that I have learned from. Thanks.

George Casella
Gainesville, Florida

June 6, 2008
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Completely Randomized Designs

And so it was ... borne in upon me that very often, when the most
elaborate statistical refinements possible could increase the precision
by only a few percent, yet a different design involving little or no ad-
ditional experimental labour might increase the precision two-fold, or
five-fold or even more

R. A. Fisher (1962)

If the idea looked lousy, I said it looked lousy. If it looked good, I said
it looked good. Simple proposition.

Richard P. Feynman
Surely You’re Joking, Mr. Feynman

2.1 Introduction

The terminology Completely Randomized Design (CRD) refers to the exper-
iment design, not the data layout. In a CRD the treatments can be either
crossed or nested,
but the key feature is that the randomization must be car-
ried out throughout the data layout. One important impli-
cation of this is that all factors in a CRD must be fixed
factors – as a random factor

CRDs have
only fixed
factors

is necessarily a restriction on randomization, there are no random factors in
a CRD.

A theoretical consequence of the fact that all factors in a CRD must be
fixed factors is that we can study the theory for all CRD simply by looking
at the oneway CRD. This follows because of the simple error structure of the
CRD, and the fact that any effect can be built up through contrasts. However,
this fact is only useful as a theoretical tool, say when we are trying to develop
some distributional properties, as the data layout and the treatment structure
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always play an important practical role. But the oneway CRD is the place to
start.

Most importantly, the randomization structure of the CRD implies that
there is only one error term, the within error, and all effects are tested against
it.

2.1.1 A Oneway CRD Model

Example 2.1. Oneway CRD An experiment was done to assess in vitro
digestibility (IVD) of dried forage samples for alfalfa grown at different tem-
peratures. The object is to determine if growing temperatures affected the
feeding quality of alfalfa. There are four observations for each temperature,
with data layout:

Growing Temperatures
(Celsius)

17o 22o 27o 32o

x x x x
IVD x x x x

Values x x x x
x x x x

The data are in dataset IVD. This experiment was done as a oneway CRD,
which means that treatments were assigned at random to the different units.
In particular, the four IVD values measured at 17o were not taken from
four plots exposed together to the same 17o temperature. They were four
separate trials, with independent exposure to the 17o temperature. That is, a
treatment is selected at random, an the experimental unit is then subjected
to the treatment. If 22o is selected twice in a row, the temperature must be
reset! ‖

The test on treatments is

F =
MS(Treatments)

MS(Within)
,

which, under H0 has an F -distribution. The validity of this test can be justified
with Cochran’s Theorem (see the discussion following Theorem 2.20).

2.1.2 CRD and the Two-sample t-test

The oneway anova is a generalization of the two sample t-test, and by building
on the theory of contrasts, gives us an effective way of comparing many means.
If we had just two growing conditions, say 17o and 22o, we could then do a
two sample t-test to check if the responses are significantly different. If we
denote the means, variances, and cell sizes by
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Growing Temperatures
(Celsius)

17o 22o 27o 32o

ȳ1 ȳ2 ȳ3 ȳ4

IVD s2
1 s2

2 s2
3 s2

4

Values n1 n2 n3 n4

the t-test is

tcalc =
ȳ1 − ȳ2

s
√

1
n1

+ 1
n2

= 1.399, p = .211,

where s2 = [(n1 − 1)s2
1 + (n2 − 1)s2

2]/[n1 + n2 − 2] is the pooled variance. We
see that there is no significant difference in response between the 17oC and
22oC growing temperature. We compare this t-test to a oneway anova using
only treatments 17oC and 22oC.

Source df Sum Sq Mean Sq F p
Trt 1 0.211 0.211 1.957 0.211
“Residuals” 6 0.647 0.107

The anova table is taken from R output. Like all computer packages, R calls
the last line of the anova “residuals”. However, for us it is very important to
actually keep track of what this is: within? interaction? technical replication?
Here, in the oneway CRD, we have “within” error.

Within error, sometimes called “pure” error, is very differ-
ent from a “residual”. As the name implies, a residual is
something that is left over. In statistics, the residual is left
over from the model fit.

A digression
on “residual”
error

For example, if a higher-order interaction term is used as an error term, it is
left over from a model fit, and its validity as an error estimate depends on the
validity of the model. In contrast, the validity of a within error as an error
estimate is not dependent on the fit of the model. Regardless of the model,
each experimental unit within the cell receives exactly the same treatment,
and hence any difference between the observations is not dependent on the
model, and only reflects the inability of the experiment to replicate itself.

Example 2.2. IVD Oneway CRD continued

Returning to the IVD anova, we know that the oneway anova on two treat-
ments is identical to the two sample t-test. We can continue, and if we (for
example) use the simple contrasts of Exercise 1.10, we could run three t-tests
and find the results in Table 2.1.

Although in this example the results are, qualitatively, about the same, it
is important to realize that the anova uses the pooled MSE for its estimate
of error, so the contrast tests have 12 degrees of freedom rather than 6. In
the anova we get to use an error estimate based on pooling the within error
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Table 2.1. Two-sample t tests and anova contrast t tests corresponding to IVD
simple contrasts

Two-Sample t Anova contrasts

Test df tcalc p df tcalc p

17oC vs. 22oC 6 1.399 0.211 12 1.181 .260

27oC vs. 32oC 6 −.160 .878 12 −.181 .858

17oC + 22oC
vs. 6 −5.851 .001 12 −6.102 < .0001
27oC + 32oC

from all four treatments, even if those treatments are not being tested in the
contrast.

Orthogonal contrasts
do not guarantee
independent tests

It is also important to remember that even though
we are using orthogonal contrasts, which are inde-
pendent in this case, the tests are not independent
because they share the same denominator.

If we apply the formula for contrast sums of squares (Definition 1.14) to
Table 2.1, we see that the contrast sums of squares will add to the anova
treatment sum of squares. Moreover, the contrast t-statistics are a breakdown
of the anova F -test in that (referring to Table 2.1)

(1.181)2 + (−0.181)2 + (−6.102)2

3
= 12.89

which is the F -statistic from the complete anova (Exercise 2.3). ‖

2.1.3 CRD Anova

The oneway anova F -test is summarized in Table 2.2, which reflects the par-
titioning of the sums of squares according to (1.8)

The CRD design, of course, does not stop at the oneway. As we will see,
the treatment design in a CRD can take many forms, the defining feature
being that the randomization is unrestricted throughout the table, and there
in no correlation between any two observations.

Example 2.3. Red clover twoway CRD To investigate the effect of
sulfur and nitrogen on the growth of red clover, a plant scientist conducted a
greenhouse experiment using a CRD with the treatments in a crossed layout.
The sulfur levels were applied at rates of 0, 3, 6, and 9 pounds/acre, and
the rate of nitrogen application was either 0 or 20 pounds/acre. Greenhouse
pots were prepared with uniform soil, allowing for r = 3 pots per treatment
combination. The data are given in Table 2.3 ‖



2.1 Introduction 47

Table 2.2. Oneway anova table.

Source of Degrees of Sum of Mean F -Statistic
Variation Freedom Squares Square

SS(Trt) = MS(Trt) = F =
MS(Trt)

MS(Within)
Treatments t − 1

∑
i
r(yi· − y)2

SS(Trt)
t−1

SS(Within) = MS(Within)=

Within t(r − 1)
∑

i

∑
j
(yij − yi·)

2 SS(Within)
t(r−1)

SS(Total) =
Total rt − 1

∑∑
(yij − y)2

Table 2.3. Dry matter yields, in grams/pot, of red clover.

Sulfur
0 3 6 9

0
4.48
4.52
4.63

4.70
4.65
4.57

5.21
5.23
5.28

5.88
5.98
5.88

Nitrogen −−−−−−−

20
5.76
5.72
5.78

7.01
7.11
7.02

5.88
5.82
5.73

6.26
6.26
6.37

The partitioning of the sums of squares for the twoway anova is a straight-
forward generalization of the oneway partition, giving

SS(Total) = SS(Treatment A)+SS(Treatment B)+SS(A × B)+SS(Within),

where, here, the interaction term measures the nonadditivity of the treat-
ments, and the within serves as the error for all estimation and tests. The
details of the partitioning are

t∑
i=1

g∑
j=1

r∑
k=1

(yijk − ¯̄y)2 =
t∑

i=1

rb(yi·· − ¯̄y)2 +
g∑

j=1

ra(y·j· − ¯̄y)2

+
t∑

i=1

g∑
j=1

(yij· − yi·· − y·j· + ¯̄y)2(2.1)

+
t∑

i=1

g∑
j=1

r∑
k=1

(yijk − yij·)
2,

which results in the anova table given in Table 2.4.
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Table 2.4. Twoway anova table

Source of Degrees of Sum of Mean F -statistic
Variation Freedom Squares Square

SS(T) = MS(T)) = F =
MS(T)

MS(Within)T t − 1
∑

i
rg(yi·· − ¯̄y)2

SS(T)
t−1

SS( G) = MS( G) = F =
MS (G)

MS(Within)
G g − 1

∑
j

rg(y·j· − ¯̄y)2
SS(G)

g−1

SS( T × G) = MS( T × G) = F =
MS ( T × G)

MS(Within)
T × G (t − 1)(g − 1)

∑
ij

r(yij· − yi··
SS( T x G)
(t−1)(g−1)

−y·j· + ¯̄y)2

SS(Within) = MS(Within)=

Within tg(r − 1)
∑

ijk
(yijk − yij·)

2 SS(Within)
tg(r−1)

SS(Total) =

Total tgr − 1
∑

ijk
(yijk − ¯̄y)2

Remember that the treatment design, which is a twoway
factorial, is all that is needed to determine all of the anova
table except the last column. The F -ratios can only be prop-
erly formed with knowledge of the experiment design, and
those in Table 2.4 reflect the fact that we have a CRD.

The treatment
design gives
the anova
table

The error term in the CRD anova is a true “within” error. It comes from
true replication of the experimental unit within the smallest cell of the ex-
periment. All of the units in the cell are subjected to exactly (we hope!)
the same treatment combination, so any differences in the response is model-
independent true error. In the CRD all tests are done against this term.

There is often discussion about how to perform tests on main effects, T
and G, in the presence of interaction, and how to interpret these effects. We
will address this topic later in Section 2.4, when we look at expected mean
squares.

Example 2.4. Twoway CRD continued The anova for the data of Ex-
ample 2.3 is given in Table 2.5. The data can be found in dataset RedClover.
All tests are done against the within MSE, and all terms are wildly signifi-
cant, showing that there are effects due to Sulphur and Nitrogen, and they
also interact. To understand what is going on we need some further analysis.
We will return to this example in Section 2.5. ‖

2.2 Model and Distribution Assumptions

The IVD experiment (Example 2.1) is a oneway CRD with model (1.1), that
is
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Table 2.5. Twoway CRD anova for the red clover data.

Source df Sum Sq Mean Sq F -statistic p

Sulfur 3 3.06 1.02 285.53 < .00001
Nitrogen 1 7.83 7.83 2185.63 < .00001
Sulphur × Nitrogen 3 3.76 41.25 349.78 < .00001
Within 16 0.06 0.0036

Yij = µ + τi + εij , i = 1, . . . , t; j = 1, . . . , r,(2.2)

where Yij is the observed response, µ is an overall mean, τi is the treatment
effect, and εij is the error. For identifiability we can assume that τ̄ = 0;
otherwise we can consider the treatment effect to be τi − τ̄ and the overall
mean to be µ + τ̄ (see the discussion in Section 1.1). We also assume

(i) The random variables εij ∼ N(0, σ2) for i = 1, . . . , t, and j = 1, . . . , r
(normal errors with equal variances).

(ii) Corr(εij , εi′j′) = 0.

It is somewhat more common to assume that the εij are iid, from which
(ii) would follow. Under normality, this is equivalent to the assumption of zero
correlation. We think it is most important to emphasize correlation structure,
however, and thus present the assumptions in this way.

The mean and variance of Yijs are

E(Yij) = µ + τi, Var (Yij) = σ2.(2.3)

Building on the oneway CRD, more complicated CRD experiments will
tend to have a factorial structure for the treatment design. We will mainly
emphasize twoway factorials in our development, for most of the theoretical
development is straightforward for higher-order factorials (see Exercise 2.23
and Section 2.5.2).

A model for the twoway CRD is

Yijk = µ + τi + γj + (τγ)ij + εijk,(2.4)
i = 1, . . . , t; j = 1, . . . , g, k = 1, . . . , r,

where Yijk is the observed response, µ is an overall mean, τi is one treatment
effect, and γj is the other treatment effect. The term (τγ)ij represents the
interaction of the two factors, a deviation from an additive response. Finally,
εijk is the error.

We further assume

(i) The random variables εijk ∼ N(0, σ2) for i = 1, . . . , t, and j = 1, . . . , g, k =
1, . . . , r (normal errors with equal variances).

(ii) Corr(εijk, εi′j′k′) = 0.
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Note that without loss of generality we can assume

τ̄ = γ̄ = ¯(τγ) = 0,(2.5)

for this is equivalent to redefining the mean level µ as µ + τ̄ + γ̄ + ¯(τγ) and
has no effect on interpretation of the parameters. However, for identifiability,
it is necessary to go further, and it is typical to also assume that

¯(τγ)i· = ¯(τγ)·j = 0 for all i, j

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

Restrictions
for
identifiability

(2.6)

This is because the data from such an experiment will be in an g × t table,
with the parameter estimates coming from the cell means. Losing 1 degree of
freedom for the overall mean, that leaves tg−1 degrees of freedom to estimate
the parameters. Since we have g + t + tg effect parameters in model (2.4), the
restrictions (2.6) ensure identifiability.

To estimate the parameters in the CRD, we use least squares. We give
some details for the twoway CRD, and leave other cases for exercises. Under
model (2.4), least squares is quite straightforward in the CRD design. The
least squares estimates satisfy

min
µ,τi,γj ,(τγ)ij

t∑
i=1

g∑
j=1

r∑
k=1

(yijk − µ − τi − γj − (τγ)ij)2.(2.7)

Under (2.5), the solution (see Exercise 2.7) is given by

¯̄y = µ̂

ȳij· − ¯̄y = τ̂i + γ̂j + ˆ(τγ)ij(2.8)

ȳi·· − ¯̄y = τ̂i + ˆ̄(τγ)i·

ȳ·j· − ¯̄y = γ̂j + ˆ̄(τγ)·j

where we see that, due to the identifiability constraint, the parameter estimate
contains two pieces - for example - τi + ¯(τγ)i·, where τi is often interpreted as
a “main effect”, an effect that is constant across the levels of γ, while ¯(τγ)i·
is an average effect. That is, the effect may be different in the levels of γ, and
we are just estimating the average.

It is important to understand that we cannot separate these effects, main
and average, without an additional assumption, such as ¯(τγ)i· = 0.

Note: It is very important to understand the difference between the identifia-
bility constraint (2.6) and the assumption that ¯(τγ)i· = 0.
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The identifiability constraint gets us a set of parameters to estimate. It
does not imply that ¯(τγ)i· = 0, but rather has the effect of redefining the pa-
rameters. That is, the effect of (2.6) is equivalent to redefining the parameters
as

τ ′
i = τi + ¯(τγ)i·,

γ′
j = γj + ¯(τγ)·j ,

(τγ)′ij = (τγ)ij − ¯(τγ)i· − ¯(τγ)·j .

Thus, the average interaction effect does not go away, it just relocates.
In our calculations we will assume that τ̄ = γ̄ = ¯(τγ) = 0 or, equivalently,

the overall mean is µ + τ̄ + γ̄ + ¯(τγ). Also, to keep notation manageable, we
will also assume that ¯(τγ)i· = ¯(τγ)·j = 0. Thus, a treatment effect will be
written as τi, but this should always be interpreted as τi + ¯(τγ)i·.

2.3 Expected Squares and F -tests

The calculation of expected values of mean squares (EMS) is an important
part of any design, as it indicates the correct denominators for F -tests in
the anova and the correct error terms for testing and estimating contrasts.
Moreover, it helps us to see which replication helps control different sources
of variation, and thus helps us in setting up a better design.

Although the direct calculation of EMS can be painful, it is important to
carry it our carefully, and not rely on so-called “EMS algorithms”, which can
sometimes give incorrect results unless used very carefully. Moreover, after
doing a few of the calculations, the procedure becomes fairly transparent and
the actual calculations can go quite smoothly.

We will do the calculations for the twoway CRD of model (2.4), leaving
the other CRDs for exercises (see Exercises 2.11 and 2.23). Calculation of the
EMS is the first step in justifying the F -tests in Table 2.4.

Starting with the first treatment sum of squares, we have

E(SS(T)) = E
∑

i

rg(Y i·· − ¯̄Y )2

= E
∑

i

rg
(
[µ + τi + ¯(τγ)i· + εi··] − [µ + ε···]

)2

=
∑

i

rgτ2
i + E

∑
i

rg (ε̄i·· − ε̄···)
2
,

where the cross term in zero in the last line. From Lemma 2.16 it follows that

E
∑

i

rg (ε̄i·· − ε̄···)
2 = rg

(
1 − 1

t

) ∑
i

Var(ε̄i··) = (t − 1)σ2(2.9)
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and thus
E(SS(T)) = (t − 1)σ2 + rg

∑
i

τ2
i .

Continuing in this fashion, we can produce Table 2.6 (see Exercises 2.22 and
2.20).

Table 2.6. Expected Mean Squares for twoway CRD anova.

Source df EMS

Treatment T t − 1 σ2 + rg
t−1

∑
i
τ2

i

Treatment G g − 1 σ2 + rt
g−1

∑
j
γ2

i

T × G (t − 1)(g − 1) σ2 + r
(t−1)(g−1)

∑
ij

(τγ)2ij

Within tg(r − 1) σ2

The null hypothesis of no effect of treatment T is

H0 : τi = 0 for all i(2.10)

and is tested by

Ft−1,tg(r−1) =
MS(Treatment T)

MS(Within)
.

The other tests are formed similarly. Note that all tests are against the
within error – a very simple situation. Justification of the tests comes through
Cochran’s Theorem, which we relegate to Technical Note 2.8.3.

There is sometimes discussion about the interpretation of “main effects” in
the presence of interaction. That is, if there is interaction, which means that
one treatment acts differently depending on the levels of the other treatment,
then there is sometimes concern about the interpretation of the “treatment
effect”.

However, upon close examination of the parameterization of the model,
there is really no complication here. Without restricting the parameters, the
interaction test is of the hypothesis

H0 : (τγ)ij − ¯(τγ)i· − ¯(τγ)·j = 0 for all i, j,

Interpreting
treatment
effects

and whether this is true has no bearing on the sizes of
¯(τγ)i· and ¯(τγ)·j . Furthermore, as we cannot separate τi and
¯(τγ)i· without further assumptions (that are unverifiable),

the treatment effect is “always” an average effect. The treat-
ment hypotheses, such as (2.10), are concerned with the sizes
of the average effects.
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2.4 Estimating Contrasts

Under model (2.4) we have already derived the least squares estimates of
the parameters. Since contrasts in these parameters are the typical focus of
inference, we now develop those inferences.

Point Estimates

As least squares estimates are unbiased, it follows immediately that, for ex-
ample,

E
(
Ȳi·· − ¯̄Y

)
= τi,(2.11)

and a contrast
∑

i ai

(
Ȳi·· − ¯̄Y

)
is an unbiased estimator of

∑
i aiτi with vari-

ance

Var

(∑
i

ai(Ȳi·· − ¯̄Y )

)
= Var

(∑
i

ai(ε̄i·· − ¯̄ε)

)
=

σ2

rg

∑
i

a2
i ,(2.12)

with analogous formulas for the other effects (see Exercise 2.8).
For the oneway CRD it follows immediately that

E(Ȳi· − Ȳ ) = τ̂i, Var

(∑
i

aiτ̂i

)
=

σ2

r

∑
i

a2
i ,(2.13)

see Exercise 2.6.
Note that in the estimation of contrasts, the term involving ¯̄Y cancelled.

Thus, the variance calculation only involved independent terms. If we had
estimated τi alone, with Ȳi· − Ȳ , we would have to deal with a covariance
term (see Exercise 2.8).

Variance Estimates

The residuals from the least squares fit of the model (2.4) are

yijk − µ̂ − τ̂i − γ̂j − ˆ(τγ)ij = yijk − ȳij· = εijk − ε̄ij·,

which represents the within variance. The within sum of squares has expected
value

E[SS(Within)] = E

⎛
⎝∑

ijk

(εijk − ε̄ij·)2

⎞
⎠ = rtg

(
1 − 1

r

)
σ2,

making MS(Within) = 1
tgr(r−1)

∑
ijk(yijk − yij·)2 an unbiased estimate of σ2,

and, for example, we can estimate a contrast variance

V̂ar

(∑
i

aiτ̂i

)
=

MS(Within)
rg

∑
i

a2
i .(2.14)
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Inference in the CRD

The main objects of interest in an anova are treatment contrasts, which are
usually tested following an anova. Inference for contrasts can be based on
multiple comparison procedures (Miscellanea 2.9.1), or on individual tests
and intervals. In either case, the inferential distribution is built up from the
model (2.4)

Under model (2.4)

Yijk ∼ N
(
µ + τi + γj + (τγ)ij , σ

2
)
, Cov(Yijk, Yi′j′k′) = 0,

and using results from Sections 1.8 and 2.4 we can build up the distribution
of any contrast. For example,

∑
i

aiYi·· ∼ N

(∑
i

aiτi,
σ2

rg

∑
i

a2
i

)
(2.15)

and hence ∑
i aiYi·· −

∑
i aiτi√

σ2

rg

∑
i a2

i

∼ N (0, 1) .

We now can apply Theorem 2.23 to replace σ2 with σ̂2 =MS(Within)/(tg(r−1)
to get ∑

i aiYi·· −
∑

i aiτi√
σ̂2

rg

∑
i a2

i

∼ ttg(r−1).

2.5 Deeper into Factorials

In this section we look a little closer at the interpretations of interaction
in factorial experiments. There is often the urge to get as much as possible
out of an experiment and, in doing so, to include many different treatments.
However, interpretations of treatment effects, in the face of many interactions,
can be difficult. We look at a number of examples of types of interactions that
can be expected, and try to better understand them through contrasts.

2.5.1 Investigating Interactions

The existence of an interaction means that the effect of one treatment is
dependent on the levels of another. This makes interpretation more difficult,
and also can cause problems if the experimenter is looking to control future
responses by setting treatment levels.

One overall distinction in interactions is between qualitative and quanti-
tative interactions. In the first case, although the treatment response differs
according to the levels of another factor, the response is only changed in
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quantity. In the second case there is a change in quality, that is, the “better”
treatment changes according to the level of another treatment.1

Example 2.5. Fish microarrays revisited As an example, we revisit
Example 1.16, where the experimenter measured gene expression level in fish
tissue as a function of two treatments. Figure 2.1 shows a plot of the cell
means, often called an “interaction plot”. There is can be seen that there is a
qualitative interaction - the lines cross - and the effect of hCG is different at
the different levels of tissue. ‖

Fig. 2.1. Interaction plot for log expression-level data from the fish tissue experi-
ment. The solid line corresponds to the absence of hCG, and the dashed line to the
presence of hCG.
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Example 2.6. Red clover revisited We next revisit another experi-
ment seen in Examples 2.3 and 2.4. The interaction plot for the two treat-
ments is shown in Figure 2.2, where there is a strong quantitative interaction.
1 Procedures that test for qualitative interactions have been developed, especially in

the biostatistics literature. See, for example, Gail and Simon (1985) or Piantidosi
and Gail (1993).
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Although the lines do not cross, there seems to be a strong elevation of yield
at one combination of Sulfur and Nitrogen. The anova, summarized in Table
2.7 shows that all effects are significant.

The fact that all the polynomial trends are significant does not really tell
us much - in terms of using this information we see that Nitrogen = 20 is
preferred. Because everything is so significant we suspect that the peak at
Sulfur = 3 is real, which seems to point to an optimal combination. ‖

Table 2.7. Breakdown of interaction effect for the red clover data

Source df Sum Sq Mean Sq F -statistic p

Sulfur × Nitrogen 3 3.76 1.25 349.78 < .00001
Linear Sulfur × Nitrogen 1 1.40 1.40 388.2 < .00001
Quadratic Sulfur × Nitrogen 1 0.72 0.72 199.33 < .00001
Cubic Sulfur × Nitrogen 1 1.64 1.64 456.95 < .00001

Within 16 0.057 0.0036

Fig. 2.2. Interaction plot for yield from the red clover experiment. The solid line
corresponds to Nitrogen=0, and the dashed line to Nitrogen=20.
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Before leaving the subject of interpretation of interactions, we look at one
more example that arose in a QTL experiment2, where the experimenter was
investigating the interaction of two QTL, known in the genetics literature as
epistasis.

Example 2.7. QTL epistasis Data were collected in an experiment to ex-
amine the main effects and interactions of two QTL. The data look like

QTL1
AA Aa aa

BB x x x x x x
QTL2 Bb x x x x x x

bb x x x x x x

In QTL experiments there are a number of interaction patterns that are
expected, and one researcher at the University of Florida wondered if, simply
due to the interaction, could it happen that the mere presence of QTL2 in the
experiment could increase the power to detect an effect due to QTL1. That
is, for typical interaction patterns such as those shown in Figure 2.3, does
increasing the difference in the means of QTL1 result in an increase in the
means of QTL2?

To answer this question we examine the EMS of the effects, which are given
in Table 2.6 for the twoway analysis. The EMS are important because they
are the noncentrality parameters corresponding to the treatment hypothesis
tests (Technical Note 2.8.4).

If H0 : τi = 0 for all i is true, then the usual ratio of mean squares has a
central F distribution and, under the alternative, the distribution is noncen-
tral F with noncentrality parameter

∑
i τ2

i . The F -statistic is stochastically
increasing in its noncentrality parameter, which implies that the ratio of mean
squares will tend to be large if this parameter is larger. Thus, the larger this
value is, the more power we have to reject H0 and detect QTL differences.
Now we look more closely at the pattern of means in Figure 2.3, and show
that by increasing the marginal mean difference in QTL1, we automatically
increase the marginal mean difference in QTL2.

First, we show that when there is no interaction the values of one factor
cannot influence the other, but when there is any interaction whatsoever, the
levels of one factor can cause higher values in the other.

If there is no interaction, then (τγ)ij = 0, so the margins control the cells,
and when computing any marginal mean the effect of the other parameter
disappears because of the restrictions (2.5). So in this case the effects are
independent of one another, and no matter what happens in the means of one
parameter, it can have no effect on the marginal means of the other parameter.
This case is shown in the left panel of Figure 2.3.
2 Quantitative Trait Loci (QTL) are regions on the genome that can be linked to

quantitative traits. For example, one may find a certain region on the corn genome
to be linked with yield.
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Fig. 2.3. The left panel shows no interaction between two QTL, while the right
panel shows a typical interaction pattern between two QTL.
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We now illustrate a pattern of cell means that look like the right panel.
The cell entries are the cell mean parameters and the marginal entries are the
marginal mean parameters. We use two free parameters, a and b, to arrive at
the pattern in Table 2.8.

Table 2.8. Cell means that correspond to the pattern displayed in the right panel
of Figure 2.3.

QTL1 Average

a + 4
3
b 4

3
b −a − 2

3
b 2

3
b

QTL2 a + 1
3
b 1

3
b −a − 2

3
b 0

a − 2
3
b − 2

3
b −a − 2

3
b − 2

3
b

Average a + 1
3
b 1

3
b −a − 2

3
b 0

Since Table 2.8 adds to zero for any choice of a and b, any values represent
a legitimate set of QTL parameters.
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This is really
an interesting
occurrence

Now the main point is that if the main effect of QTL2 in-
creases, that is, if b increases, because of the interaction this
has the effect of increasing the main effect of QTL1. That is,
as b increases, the marginal means of QTL1 separate more,
giving us more power to detect a difference in QTL1, solely
due to the interaction with QTL2.

‖

Thus, the presence of interaction can make one marginal factor seem signifi-
cant simply due to the presence of the other factor!

2.5.2 Higher-Order Factorials

Optimizing resources in experimentation would suggest that putting more
treatments in one experiment is a good thing – we can argue that:

(1) With many treatments in one experiment, we get simultaneous informa-
tion. This allows better comparisons.

(2) With more treatments to explain variation, the error will be reduced.
(3) Running one experiment saves resources and time.

These are all excellent arguments, but in practice big factorials, except in
certain situations, are not a good thing to do. What we saw in the previous
section is that in the presence of interaction, effects can get muddled together
and precise inferences become problematic. And this problem worsens when we
move to higher-order factorial; threeway, fourway, ten-way! (Just take a look
at the EMS from the threeway in Exercise 2.23, and the formal conclusions
from the hypothesis tests.)

Having said this, we need to understand how to deal with higher-order
factorials for at least two reasons: (i) Experimenters do them, and (ii) They
are good for exploration.

Although many-way designs can be run with treatments having many lev-
els, in such designs we run into the problem of interpretation of factors with
many degrees of freedom. A significant threeway interaction with 18 degrees
of freedom is difficult to make sense of - there are 18 contrasts to think about!

Higher order exploratory factorials are best run with treatments having
two levels – the levels are typically chosen to span the range of possible treat-
ment levels, representing a “high” and “low” setting. This gives the greatest
chance of finding an effect. (See Section 6.3.) Also, since the treatment has only
two levels and 1 degree of freedom, it is represented by one contrast, making
interpretation easy. Moreover, all interactions between two-level treatments
have 1 degree of freedom, making their interpretation easy

Another circumstance that sometimes arises in higher-order factorials is
the lack of within error. Although sometimes the experimental conditions are
replicated to get a within error, sometimes they are not. In such cases it
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is typical to use the higher-order interactions (threeway and higher) as error
terms. The thinking is that these higher-order factors do not carry much main
effect information and are mostly error anyway. Whether this is true, to use
these are errors means that we assume that their contribution to the EMS is
only through σ2, and there is no contribution from the interaction. This leads
to conservative tests, meaning that it is harder to reject H0, so if we do reject
we have some confidence that a true effect has been found.

Example 2.8. 2 × 2 factorial A 2 × 2 factorial can be represented by
the four cell means

Factor A

Factor B θ11 θ12

θ21 θ22

and each effect can be represented by a contrast

A effect
1 −1
1 −1

B effect
1 1

−1 −1

A × B
1 −1

−1 1

where the contrasts merely account for the mean differences. Note, in partic-
ular, that the interaction contrast is the “difference of the differences”. ‖

Example 2.9. Interaction contrasts If factor A has four levels and
factor B has three levels, then there are 6 interaction contrasts for A×B, each
with 12 coefficients. These can be obtained as all products of three orthogonal
contrasts in A and two orthogonal contrasts in B:

A
1 0

B −1/2 1
−1/2 −1

1 −1/3 −1/3 −1/3
0 1 −1/2 −1/2
0 0 1 −1

The six interaction contrasts are now obtained as the products of the coeffi-
cients, and the interpretation is a bit more straightforward. For example, the
first B contrast compares the first level of B with the average of the other
two, and the first A contrast compares the first level of A with the average of
the other three. The product of these contrasts is an interaction contrast.

A
1 −1/3 −1/3 −1/3

B −1/2 1/6 1/6 1/6
−1/2 1/6 1/6 1/6
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This interaction contrast compares the B contrast applied to level 1 of A with
the average B contrast in the other levels of A. In other words, it is as if we
collapsed the above table into a 2 × 2 table

A

Level 1 Average of
Levels 2-4

B Level 1

Average of
Levels 2-3

and did an interaction contrast here.
So we see that it is possible to interpret interactions using contrasts, but

the task is not simple and the interpretations may not be meaningful. And
we have only done twoway interactions – adding a third factor complicates
things even more (see Exercise 2.15). ‖

Example 2.10. A social science experiment To examine the effect of
different factors on a citizenship test performance, a factorial experiment was
set up with the following factors:

(1) Education: Three levels (less than high school, high school, greater than
high school),

(2) Home Environment: Four levels,
(3) Country of Origin: Seven countries.

The response variable was Y = score on a citizenship aptitude test.
The twoway interaction of Education × Home Environment would be of

interest, but the other twoway interactions are of less interest. Moreover, the
threeway interaction, with 36 degrees of freedom, would be very difficult to
interpret.

‖

Finally, we look at the classical higher-order factorial design (see Section
6.3 for another treatment of these designs), the 2n design, where we have
n factors, each at two levels. Things are actually quite simple here because
everything has two levels – all effects are contrasts and all contrasts are easily
obtainable as products.

It is common to specify the two levels of each factor, low and high, in the
following way. The high level of A is denoted by a, and the low level is denoted
by the absence of a. Thus the treatment combination ab has A and B at their
high level and C at the low level, while ac has A and C high and B low. The
treatment combination with all factors at their low level is denoted by (1).
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Example 2.11. A 24
factorial A 24 factorial design would have 24 =

16 treatment combinations, and the full anova would specify 15 factors: 4
main effects,

(
4
2

)
= 6 twoway interactions,

(
4
3

)
= 4 threeway interactions,

and 1 fourway interaction. Each effect has one degree of freedom, and all
contrasts are obtainable as products. This makes for easy interpretation. A is
the difference, AB is the difference of the differences, ABC is the difference
of the AB differences, etc.

The following table shows some of the effects in the 24 design. The low
level is −1 in the contrast and the high level is 1. The interaction contrasts
are all products; for example the AD contrast is obtained by multiplying the
A contrast by the D contrast, and the ABD contrast comes from AB×D (or
AD × B or A × B × D).

Treatment A B D AD ABD
(1) −1 −1 −1 1 −1
d −1 −1 1 −1 1
c −1 −1 1 −1 1
...

...
...

...
...

...
abc 1 1 −1 −1 −1
abcd 1 1 1 1 1

Unless there was express interest in the threeway and higher interactions, it
would be typical to pool these terms for an error estimate (Exercise 2.16) ‖

2.6 Adjusting for Covariates

The analysis of covariance (ancova) in some sense has no business being in a
design book, as it is more of an analysis tool than a design tool. However, its
function is to reduce variance of the treatment means, so from that view it is
a design strategy.

Here we look at a few examples of ancova, and do some variance calcu-
lations to understand how ancova works, and how it may benefit (on not!) a
design.

Example 2.12. Some ancova examples

(1) In agriculture, an experiment is done to examine the effect of treatments
on yield. However, it is known that the density/plot of the plants could
affect yield, and this variable is used as a covariate.

(2) In a nutrition experiment where the growth of laboratory rats is tracked,
the initial weight of the rats influences their growth rate, and could be
used as a covariate.

(3) In a microarray experiment with a spotted array, the florescence of a spot
is related to the size of the spot, which could vary from gene to gene.
Thus, spot size is a possible covariate.

‖
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In each of the above examples the candidate covariate satisfies two condi-
tions:

(1) The covariate is related to the response, and can account for variation in
the response.

(2) The covariate is not related to the treatment.

Note: We will see in (2.23) that the second condition is extremely important,
and if it is not satisfied it can erase all the benefits of using a covariate.

A covariate functions somewhat like a block, in that it removes variation.
However, it may not be a planned part of the experiment (it may be noticed
after the design is set up) and it is typically continuous, so it really cannot be
blocked over. If the covariate is recognized during the design phase, we could
stratify over it, effectively using it to balance the observations by having a
range of the covariate in each treatment.

Example 2.13. Corn yield covariance When trying to compare yields
of different varieties of corn, the response is confounded due to the fact that
the number of plants in a plot may vary. Since the number of plants clearly
influences yield, and should not be related to any treatment, it is an ideal
covariate. The following data are the yield (Y ) (dry weight) of four varieties
of corn, along with a covariate (X) measuring the number of plants per plot.

Varieties
Cornell Robson Ohio Ohio

M-4 360 K-24 M-15
Obs. X Y X Y X Y X Y

1 20 12.8 20 12.2 20 14.1 13 8.6
2 17 11.0 20 10.0 20 13.1 18 10.2
3 20 10.9 16 9.8 20 12.8 17 8.7
4 15 9.1 20 9.8 20 11.8 14 7.3
5 20 9.6 19 9.8 20 10.8 15 9.3
6 15 9.3 20 12.1 13 7.8 11 8.2

Examining the data suggests that, regardless of the variety, the yield is in-
creased if the number of plants per plot is increased (Figure 2.4). ‖

Here we will concentrate of the design effect of the covariate, in particular
looking at the effect of the covariate on the variance of a treatment contrast,
and attempting to document when the use of a covariate will be beneficial.
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We will only look at models with one covariate, and stay with CRDs. The
design effect in more complicated situations should be clear, and for details
of more complex ancova models there are data analysis books that treat this.
(A more advanced treatment can be found in Mead 1988; see also Federer and
Meredith 1992.)

Recall the oneway anova model (2.2)

Yij = µ + τi + εij , i = 1, . . . t, j = 1, . . . , r.

If there is a covariate, xij , we can use an ancova model

Yij = µ + τi + β(xij − x̄) + εij , i = 1, . . . t, j = 1, . . . , r,(2.16)

where εij ∼ N(0, σ2), independent, and we add to the anova model a “regres-
sion” piece that adjusts for the covariate. Although it is not immediately clear
how to estimate the treatment means in this model, we can appeal to least
squares to obtain

̂µ + τi = ȳi − β̂1(x̄i − x̄),(2.17)

where

β̂1 =

∑
ij(xij − x̄i·)(yij − ȳi·)∑

ij(xij − x̄i·)2
.

If we restrict
∑

τi = 0, then µ̂ = ¯̄y and we can estimate the effects τi. However,
this breaks down if the cell sizes are unequal (Exercise 2.29).

Fig. 2.4. Least squares line fit to the four varieties of corn in Example 2.13. Re-
gardless of the treatment, there is a positive relationship between yield and number
of plants per plot.
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The crucial
covariance
assumption

Note that the means are adjusted to by covariate mean with
the assumption that, in each group, the slope is the same.
This assumption is both crucial and bothersome. Without it,
the mean comparisons could be very sensitive to where they
are adjusted – look at Figure 2.4. There it seems that the
equal slope assumption may be violated,

but if we fit different slopes then, depending on where we adjust the means,
they may be far apart or close together. It seems best to try to live with the
equal slope assumption if covariance analysis is to be performed, unless there
is a good reason to adjust each mean by a specific covariate value.

Since the least squares estimate is unbiased, we have E( ̂µ + τi) = µ + τi

with variance

Var( ̂µ + τi) = Var(Ȳi − β̂1(x̄i − x̄))

= Var(Ȳi) + (x̄i − x̄)2Var(β̂1)(2.18)

= σ2

(
1
r

+
(x̄i − x̄)2∑

ij(xij − x̄i·)2

)
,

where we use the fact that Ȳi and β̂1 are independent.
There are two ways we can interpret (2.16), neither of which is formally

correct as an ancova model, but each of which lends some insight:

(1) If we write (2.16) as

Yij − µ − τi = β(xij − x̄) + εij ,

then the left side of the equation are the anova residuals, so we can think
of ancova as doing a regression on the anova residuals. Note that in this
interpretation we see that the variation due to regression will come out of
the anova residual, and thus should decrease experimental error.

(2) If we write (2.16) as

Yij − β(xij − x̄) = µ + τi + εij ,

then we can think of ancova as an anova on the regression residuals. In
this case the observations have been adjusted, and their variance has been
decreased, so the anova error should be decreased.

Although both of these interpretations are useful, the ancova actually does
things simultaneously, and fits the model

Yij − Ȳi· = β(xij − x̄i·) + εij ,(2.19)

where we adjust the means in each treatment. Notice that the total sum of
squares for this regression is, in fact, the within sum of squares from the
oneway anova, that is,
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SS(Regression Total) =
∑
ij

(yij − ȳi·)2 = SS(Within from anova),

and thus the ancova adjustment does come out of the anova “residual”.

Partitioning the Sums of Squares

Model (2.19) actually leads to two different partitioning of the sums of squares.
Since the regression comes out of the anova within, the ancova table can be
written

Source df SS

Treatments t − 1 r
∑

i(ȳi − ¯̄y)2

Within Treatments t(r − 1)
∑

ij(yij − ȳi·)2

Regression 1 β̂1

∑
ij(xij − x̄i·)(yij − ȳi·)

(Covariate after Trt)
Residual t(r − 1) − 1

∑
ij [(yij − ȳi·) − β̂1(xij − x̄i·)]2

where β̂1 is given at (2.17). Here we have partitioned the sum of squares by
first fitting the anova, and then pulling out the effect of the covariate from
the regression, as in interpretation (1) above. This table allows us to do the
usual anova test, and see if the regression is significant by forming the F -ratio
MS(Regression)/MS(Residual).

Although this test may be interesting, it does not get at the heart of the
ancova rationale, in that we want to see if the adjusted yields are significantly
different. To do this, we first partition the sums of squares by doing the
regression, and then removing the treatment variability from the residuals, as
in interpretation (2) above. The resulting ancova table is

Source df SS

Regression 1 β̂0

∑
ij(xij − x̄)(yij − ¯̄y)

Residual from Regression tr − 2
∑

ij [(yij − ¯̄y) − β̂0(xij − x̄)]2

Treatment 1 SS(Residual from Regression)
(after Covariate) −SS(Residual)
Residual t(r − 1) − 1

∑
ij [(yij − β̂1xij) − (ȳi· − β̂1x̄i·)]2

where

β̂0 =

∑
ij(xij − x̄)(yij − ¯̄y)∑

ij(xij − x̄)2
,

and it is easiest to get the adjusted treatment sum of squares by subtrac-
tion. The SS(Residual from Regression) becomes the total sum of squares for
the adjusted treatment anova, and SS(Residual) is actually a within sum of
squares of the adjusted data yij − β̂1xij ; we have written it this way in the
second table. However, realize that the bottom-line residual is the same in
both tables.
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Example 2.14. Corn yield covariance continued The two anova ta-
bles for the corn data are

Covariate After Treatment Treatment After Covariate

Source df SS MS

Varieties 3 27.955 9.318
Within 20 46.765 2.338

Plants 1 21.729 21.729
(after Var.)
Residual 19 25.036 1.318

Source df SS MS

Plants 1 43.916 43.916
Residual 22 30.804 1.400
(from Reg.)

Varieties 3 5.768 1.923
(after Plants)
Residual 19 25.036 1.318

where the test statistic for varieties, after adjusting for the covariate, is

F3,19 =
1.923
1.318

= 1.459,

which is not significant. ‖

Testing Treatments

The ancova test on treatments, done in the above example, is a test of the
adjusted treatments. Formally, we test the hypotheses

H0 : Yij = µ + β(xij − x̄) + εij vs. H1 : Yij = µ + τi + β(xij − x̄) + εij ,

where the null hypothesis specifies only a regression relationship, and the
alternative specifies a treatment effect in addition to the regression. To test
these hypotheses note that the H0 model is a special case of the H1 model (we
also say that the H0 model is nested in the H1 model), and thus the H1 model
will always provide a better fit (since it has more parameters). To measure if
this fit is better, we can use the F -ratio

F =
[SS(Residual from H0) − SS(Residual from H1)]/(dfH0 − dfH1)

SS(Residual from H1)/dfH1

,(2.20)

where dfH0 and dfH1 are the residual degrees of freedom under the respective
models. This is the test done in Example 2.14. Specifically, from the above
ancova tables we have

Ft−1, t(r−1)−1

=

(∑
ij [(yij−¯̄y) − β̂0(xij−x̄)]2−

∑
ij [(yij − ȳi·) − β̂1(xij − x̄i·)]2

)
/(t − 1)

(∑
ij [(yij − ȳi·) − β̂1(xij − x̄i·)]2

)
/(t(r − 1) − 1)

.
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Fig. 2.5. Adjusted and unadjusted treatment means for the data of Example 2.13.
The fitted lines are from model (2.16). The ancova adjusts the means to their co-
variate mean (left panel), and the anova (unadjusted) is equivalent to adjusting the
means to the overall covariate mean (right panel).
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Note: The strategy to get the F -statistic in (2.20) is a general one for linear
models.

If the H0 model is nested in the H1 model, then (2.20) provides a valid test
of whether the richer model H1 is a significant improvement.

Estimating Contrasts

Building on (2.18), the variance of a contrast is given by

Var

(∑
i

ai( ̂µ + τi)

)
= Var

(∑
i

aiȲi

)
+ Var(β̂1)

(∑
i

ai(x̄i − x̄)

)2

=
σ2

r

∑
i

a2
i +

σ2

∑
ij(xij − x̄i·)2

(∑
i

aix̄i

)2

,(2.21)

where we use the independence of Ȳi and β̂1 and the fact that
∑

i ai = 0. We
then estimate σ2 with the MS(Residual) from the ancova.
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Example 2.15. Contrasts for corn yield experiment Returning to
Example 2.13, we calculate the estimated treatment means and their standard
errors. Figure 2.5 illustrates the covariance adjustment of the means. There it
can be seen that the adjustment increases the mean estimate as the number of
plants increases, and results in a spreading out of the treatment means. The
ancova also reduces the treatment variances, as the following table shows.

Varieties

360 K-24 M-15 M-4

Unadjusted Mean 10.617 11.733 8.717 10.450
Std. Error 0.624 0.624 0.624 0.624

Adjusted Mean 11.447 12.384 7.124 10.562
Std. Error 0.496 0.486 0.563 0.469

Note, in particular, the adjustment for M-15, which had fewer plants per plot.
The ancova tells us that the yield of M-15 is, in fact, lower than the others
even after adjusting for the number of plants.

If we test the contrast H0 : τM−15 = 1
3 (τ360 + τK−24 + τM−4), we find

Unadjusted: t20 = −4.100,

Adjusted: t19 = −6.659,

both wildly significant. Thus, even though the ancova gave greater separation,
this differences was large enough so that the original anova would find it. See
Exercise 2.13 for more. ‖

Variance of a Treatment Difference

We close this section with a deeper look at the variance of a treatment differ-
ence, which may add some insight as to when the ancova can be expected to
improve things. From (2.21), the estimated variance of the difference of two
adjusted means is

Var
(
( ̂µ + τi) − ( ̂µ + τi′)

)
=

2σ̂2

r
+

σ̂2

∑
ij(xij − x̄i·)2

(x̄i − x̄i′)
2
,

where σ̂2 is the MS(Residual) from the ancova and we recognize the sum in the
denominator as the within sum of squares from an anova of X on Treatments;
we denote it by SS(Withinx). An idea that goes back to Finney (1946) is
to replace this variance with a common one that can be used for all of the
differences. To do this, we can replace the term (x̄i − x̄i′)

2 with its average
over all pairs.

First, it can be verified that for any numbers b1, b2, . . . , bn we have
n∑

i=1

n∑
i′=1

(bi − bi′)2 = 2n
n∑

i=1

(bi − b̄)2.(2.22)
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There are t(t− 1) nonzero terms in the x̄i − x̄i′ pairs, and applying (2.22) we
obtain

Var
(
( ̂µ + τi) − ( ̂µ + τi′)

)
≈ 2σ̂2

r
+

σ̂2

∑
ij(xij − x̄i·)2

[
2

t − 1

∑
i

(x̄i − x̄)2
]

=
2σ̂2

r

(
1 +

1
t − 1

SS(Trtx)
SS(Withinx)

)
,(2.23)

where SS(Trtx) is the treatment sum of squares from the anova of X on
Treatments. From (2.23) we see two things very clearly

(1) The variance of a treatment difference is reduced as the regression of Y
on X in (2.19) improves, as σ̂2 will decrease.

(2) The variance of a treatment difference is increased if the covariate X is
related to the treatment, that is, if SS(Trtx)/SS(Withinx) increases. This
is a clear message that it is never advantageous to use a covariate that is
related to the treatment.

2.7 Exercises

Essential

2.1 Referring to Example 2.1
(a) For this experiment to be a CRD, explain how the data would need to be

collected.
(b) Complete the anova table:

Source df SS MS F

Temp - 5.86 - -
Within - - -
Total - 7.67

(c) The experimenter is trying to decide which of two different temperature
contrasts to test (i) (−3, 1, 1, 1) or (ii) (−3,−1, 1, 3). Give the experi-
menter an interpretation of each of these contrasts.

(d) For contrast (i) of part (c), find two others that are orthogonal.
(e) Calculate the t-statistic for testing H0: −3τ1 − τ2 − τ3 + 3τ4 = 0, and find

the proportion of variation in Temperature that is not explained by the
contrast (−3,−1, 1, 3).

2.2 Referring to Section 1.2 of Chapter 1:
(a) Write Ȳi· − ¯̄Y as a contrast in Yij .
(b) Use the contrast formulas to find the mean and variance of Ȳi·− ¯̄Y . Check

that they agree with those in Section 1.2
(c) Write Yij − Ȳi· as a contrast in Yij and then verify (1.6) and (1.6).

2.3 Referring to the IVD data of Example 2.1:
(a) Describe, in words, the conclusions that you would draw from the results

of Table 2.1.
(b) Produce the complete anova table for the IVD data.
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(i) Break down the treatment sum of squares into the contrast sum of
squares corresponding to Table 2.1.

(ii) Reproduce the t-statistics for the contrasts.
(iii) Verify that the average squared t-statistic is the anova F -ratio.

(c) Use another set of orthogonal contrasts, those that correspond to the
linear, quadratic and cubic trend, to break down the treatment sum of
squares. Test the significance of each contrast and describe the conclu-
sions that can be made.

2.4 Here we look more closely at parameter restrictions.
(a) Referring to model (2.4), show that the restriction τ̄ = γ̄ = (̄τγ)i·· =

(̄τγ)·j· = 0 results in exactly tg − 1 parameters to be estimated.
(b) Extend the results of (a) to a threeway CRD with all interactions.
(c) For a general factorial with T different treatments, each at ti levels, i =

1, . . . T , show that there are
∏

i
ti−1 degrees of freedom to estimate effect

parameters. Describe a restriction on the parameters that will result in
identifiability, that is, that will reduce the parameters space to

∏
i
ti − 1

elements.
2.5 For the oneway model (2.2),

(a) Show that under the assumption that τ̄ = 0, which makes the τi estimable,
the least squares estimates in the oneway CRD are given by

τ̂i = ȳi· − ¯̄y , µ̂ = ¯̄y .

Derive the variances of τ̂i and τ̂i − τ̂i′ .
(b) For the following oneway CRD, provide the anova table and estimates of

the parameter effects and their variances. To determine diet quality, male
weanling rats were fed diets with various protein levels. Fifteen rats were
randomly assigned to one of three diets, and their weight gain in grams
was recorded. The data are (also in dataset Protein).

Diet Protein Level

Low Medium High

3.89 8.54 20.39
3.87 9.32 24.22
3.26 8.76 30.91
2.70 9.30 22.78
3.82 10.45 26.33

2.6 Show the following for the oneway CRD (1.1):
(a) E(Ȳi· − Ȳ ) = τ̂i.
(b) A contrast

∑
i
ai

(
Ȳi·· − ¯̄Y

)
is an unbiased estimator of

∑
i
aiτi with vari-

ance σ2

r

∑
i
a2

i .
(c) If there are ri observations per treatment, then (a) and (b) hold with

variance σ2
∑

i
a2

i /ri.
2.7 For the twoway CRD (2.4):

(a) Verify the derivation of the least squares estimators and their variances.
(Hint: First add ±yij· and show that the estimates will only depend on
yij·. Then write τi + γj + (τγ)ij = γij and show that the least squares
estimate of γij is yij·.)
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(b) For the data of Example 2.4, found in dataset RedClover, estimate all of
the treatment effects and their variances.

2.8 Calculation of variances in the twoway CRD.
(a) Show that the estimator Ȳi·· − ¯̄Y has variance

Var
(
Ȳi·· − ¯̄Y

)
= Var (εi·· − ¯̄ε) =

(
1 − 1

t

)
σ2

rg
.

Note that εi·· and ¯̄ε are correlated, which has to be accounted for in the
variance calculation. Justify the application of Lemma 2.16 with Wi = εi··.

(b) Verify (2.12) by showing
∑

i

ai(Ȳi·· − ¯̄Y ) =
∑

i

ai(εi·· − ¯̄ε) =
∑

i

aiεi··

and then use the fact that εi·· are independent with variance σ2/rg.
(c) Find the expectation and variance for contrasts in the other effect esti-

mates in (2.8).
(d) Repeat (b) and (c) for the case of unequal cell sizes, where there are rij

observations per cell. As a guide, first verify that

Var

(∑
i

ai(Ȳi· − Ȳ )

)
= σ2

∑
i

a2
i∑

j
rij

2.9 For the following experiment
(i) specify the model equation

(ii) set up the anova table (source, df and EMS)
(iii) specify two hypotheses and how they would be tested
The cathode warm-up time in seconds was determined for three different tube
types using eight observations on each tube type. The order of the experiment
was completely randomized. The results were

Tube Type

A B C

Warm-up 19 20 20 40 16 19
Time 23 20 20 24 15 17
(Seconds) 26 18 32 22 18 19

18 35 27 18 26 18

2.10 (Finding an Optimal Region)3

If we are looking for maximum yield it would be wasteful to examine regions
of low yield. Typically, the main features of such regions are first-order, that
is, they are main effects rather than interactions. Thus, in a first search for
such regions, we would be willing to use interaction terms as a denominator.
Moreover, we consider this the first of a series of experiments; after we ap-
proximately locate a region of optimal response we will continue with a more
precise experiment.

3 Methods for finding optimal regions are called Response Surface methods. Al-
though we are not treating these methods in detail, they are an important topic.
The textbooks of Mead (1988) and Dean and Voss (1999) contain chapter length
treatments; a thorough introduction is the book by Khuri and Cornell (1996).
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As a particular example, an experimenter is rearing beneficial insects and is
trying to find the conditions that produce insects most rapidly. The researcher
has four large environmental chambers that can be used to control tempera-
ture, photoperiod, and humidity. There are other factors, for example, diet,
but these will not be considered at this time.
We consider four possible designs, where photoperiod is hours of light and
dark in a 24-hour period; for example, 16:8 is 16 hours of light and 8 hours of
dark. The designs are given below.

Relative
(1) Chamber Temperature (oC) Humidity % Photoperiod

1 20 60 16:8
One factor 2 25 60 16:8
at a time 3 30 60 16:8

4 35 60 16:8

Relative
(2) Chamber Temperature (oC) Humidity % Photoperiod

1 20 60 16:8
One factor 2 20 60 16:8
at a time 3 25 60 16:8

4 25 60 16:8

Relative
(3) Chamber Temperature (oC) Humidity % Photoperiod

1 20 60 16:8
Factorial, 2 20 60 14:10
ignore 3 25 60 16:8
humidity 4 25 60 14:10

Relative
(4) Chamber Temperature (oC) Humidity % Photoperiod

1 20 60 14:10
Fraction 2 25 60 16:8

3 20 80 14:10
4 25 80 16:8

(Experiment (4) is an example of a fractional factorial. See Section 6.3.)
(a) Construct the anova table (just source and df ) for each design.
(b) Recall that the major goal of these experiments is to locate the condition

for optimal growth. List at least one advantage and one disadvantage of
each design.

(c) Which design would you use for locating the region with the fastest insect
growth?

2.11 Here we calculate expected mean squares to justify the F -test in Table 2.2.
(a) Show that

E(SS(Trts)) = rE

t∑
i=1

[ȳi· − ¯̄y ]2 = rE

t∑
i=1

[(τi − τ̄) + (ε̄i· − ¯̄ε)]2
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= r

t∑
i=1

τ2
i + r

t∑
i=1

E(ε̄i· − ¯̄ε)2 [cross term is zero]

= r

t∑
i=1

τ2
i + (t − 1)σ2 [Lemma 2.16] .

(b) Calculate the other EMS and produce the anova table

Source df EMS

Treatments t − 1 σ2 + r
t−1

∑
i
τ2

i

Within r(t − 1) σ2

(c) For model (2.2), suppose j = 1, . . . ri, so there are unequal numbers of
experimental units per treatment. Produce the anova table analogous to
that in part (b).

2.12 Kuehl (1994) reported data on weight gain (mg) of shrimp cultured in aquaria,
subjected to different levels of temperature (T ), density of shrimp populations
(D), and water salinity (S). The factors were crossed, and the experiment was
run as a threeway CRD. Here is a schematic of the data, given in dataset
Shrimp.

T = 25oC T = 35oC
D

80 160

10% x, x, x x, x, x
S 25% x, x, x x, x, x

40% x, x, x x, x, x

D

80 160

10% x, x, x x, x, x
S 25% x, x, x x, x, x

40% x, x, x x, x, x

(a) Produce the anova table and do the appropriate F -tests.
(b) You should find that, at the .05 level, the T × D and S × D interactions

are not significant. Provide interpretations of this.
(c) You should find that, at the .05 level, the T × S and T × S × D interac-

tions are significant. Provide interpretations of this.
(d) Explore the interactions in part (c) further. Look at interaction with the

linear and quadratic contrasts of S. Can you refine your conclusions from
part (c)?

(e) Suppose you were asked to design a second experiment to further explore
the treatments that result in large weight gain. Based on what you have
learned in parts (a)-(d), what would you suggest?

2.13 Referring to Example 2.5, look further into the interaction term to see if there
is any significant effects.
(a) Get the contrast coefficients for the three orthogonal (in the parameters)

interaction contrasts for linear, quadratic and cubic tissue × hCG.
(b) Calculate the contrast sums of squares for each contrast, and perform the

anova F -tests. Note that the estimated contrasts are correlated, and the
sums of squares do not add to that of the 3 df interaction.

(c) Perform the same linear, quadratic, and cubic breakdowns for the main
effect of tissue.
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(d) What can you conclude about the effects and interactions?
2.14 Referring to Example 2.7:

(a) Produce a table like Table 2.7 for the left panel of Figure 2.3, where there
is no interaction. Show that the marginal effect parameters act indepen-
dently.

(b) The following figure has two more possible QTL interactions patterns.

QTL1

Q
TL

2

bb

Bb

BB

aa Aa AA

QTL1

Q
TL

2

bb

Bb

BB

aa Aa AA

Show that, by constructing tables similar to Table 2.8, the left panel results
in the marginal means of one QTL affecting the other, while for the second
panel (where there is interaction) the marginal QTLs act independently
(in fact, one has no effect).

2.15 Referring to Example 2.9:

(a) Fill in the table with the six interaction contrasts for A × B.
(b) Make a similar table using polynomial contrasts.
(c) Verify, using the cell means, that the contrast from the collapsed 2 × 2

table is exactly the same as the contrast with all twelve cells.
(d) Suppose that a third factor C, with three levels, was crossed with A and B.

Obtain the coefficients of the A×B×C interaction contrast that compares
the first level of B with the average of the other two, the first level of A
with the average of the other three, and a linear trend in C. Also, give the
collapsed table, and attempt to interpret the contrast in words.

2.16 Referring to Example 2.11:
(a) Fill in the table with all of the effect contrasts.
(b) Give the anova table, source, df, and EMS, where we pool the threeway

and fourway interactions to get an error estimate. Specify the assumptions
needed for this pooling.

2.17 Referring to Example 2.13:
(a) Verify the analysis of covariance, the adjusted treatment means and their

standard errors.
(b) Test the significance of the pairwise differences, using both adjusted and

unadjusted means. Do the conclusions change from the anova to the an-
cova?

(c) Redo part (b) using the average standard error of the difference give in
(2.23). How do the results compare to part (b)? Based on your assessment
of SS(Trtx) was the ancova worthwhile?
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2.18 An experiment described in Snedecor and Cochran (1989) (same Cochran4)
concerned treatment of leprosy in the Philippines. On each patient, six sites
were examined for leprosy bacilli, with the abundance of the bacilli being mea-
sured. The covariate, X, is a score representing the abundance before treat-
ment, and the response Y is the same score after several months of treatment
with antibiotics A and B or a control C. The data are in dataset Antibiotic.
(a) Run both an anova on Y and an ancova with covariate X. Explain the

results with respect to the significance of the treatments.
(b) The treatment design suggests testing the two orthogonal contrasts A +

B − 2C and A−B. Do this both for the adjusted and unadjusted means.
Describe your conclusions.

(c) Is the initial measurement X a good covariate? Explain. You may want
to look at the anova of X on treatment.

(d) Plot the individual regression lines for each drug, along with the over-
all regression (from the covariance analysis) and the unadjusted means.
Explain the plot in terms of the results of the analysis.

Accompaniment

2.19 A Useful Identity:

(a) Show that for numbers xij ,

t∑
i=1

t∑
j=1

(xij − x̄i − x̄j + x̄)2 =
∑

ij

x2
ij − b

∑
i

x̄2
i − t

∑
j

x̄2
j + btx̄2.

(b) If Xij are random variables with EXij = 0, show that

E

[
t∑

i=1

t∑
j=1

(Xij − X̄i − X̄j + X̄)2

]

=
∑

ij

VarXij −b
∑

i

VarX̄i − t
∑

j

VarX̄j + btVarX̄.

2.20 (a) Show how to apply Lemma 2.16 to establish (2.9).
(b) Finish the calculations to fill in Table 2.6. To calculate the EMS for the

interaction term you might first want to establish that

ε̄ij· − ε̄i·· − ε̄·j· + ε̄··· ∼ N

(
0,

(t − 1)(g − 1)

r
σ2

)
.

2.21 (Some anova theory: the t-F relationship)
(a) Referring to Example 2.2, there it was demonstrated numerically that the

oneway CRD anova F -statistic is equal to the average squared t-statistics
from uncorrelated contrasts. Show, analytically, that this is true for any
set of orthogonal contrasts.

4 This is really a famous pair. You know some of what Cochran did. Among the
accomplishments of Snedecor is the derivation of the anova F -statistic, which has
sometimes been called “Snedecor’s F”. Snedecor named it “F” in honor of Fisher.
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(b) Another way to derive the anova F -statistics is as a maximum of t-
statistics. In a oneway CRD with t treatments and ni observations per
treatment, we test contrast hypotheses by

reject H
(a)
0 :

∑
i

aiµi = 0 if |t(a)| =

∣∣∑
i
aiȳi

∣∣
√

MSE
∑

i
a2

i /ni

> tα/2.

(i) The union-intersection principle (see Casella and Berger 2001, Sections
8.3.3 and 11.2) tells us that H0 : µ1 = µ2 = · · · = µt is true if and

only if H
(a)
0 is true for every set of contrasts (a1, a2, . . . , ak). Prove this.

(Thus, H0 is the intersection of H
(a)
0 .)

(ii) Building on (i), show that H0 will be rejected if at least one H
(a)
0 is

rejected. (Thus, the rejection region of H0 is a union of the individual
rejection regions.)

(iii) Finally, argue that H0 will be rejected if and only if maxa |t(a)| exceeds
its critical point, and establish that

max
(a1,a2,...,ak):

∑
i

ai=0

(
∑

i
aiȳi)

2

∑
i
a2

i /ni
=

∑
i

ni(ȳi − ¯̄y)2,

showing that the maximum of the squared t-statistics is the anova F .
(This is a difficult maximization.)

2.22 Complete the calculations to produce the EMS in Table 2.6. In particular,
apply the identity in Exercise 2.19 to show

E
∑

ij

(Ȳij − Ȳi − Ȳj + ¯̄Y )2 = bt [Varεij − Varε̄i − Varε̄j + Var̄ε̄] .

2.23 For a threeway CRD, all factors fixed, a model is

yijkl = µ + αi + δj + γk + (αδ)ij + (αγ)ik + (δγ)jk + (αδγ)ijk + εijkl,

where i = 1, . . . , t,j = 1, . . . , b, k = 1, . . . , c, l = 1, . . . , r, and εijkl ∼ N(0, σ2),
independent, and we have the identifiability restrictions

ᾱ = δ̄ = γ̄ = ¯(αδ) = ¯(αγ) = ¯(δγ) = ¯(αδγ) = 0,

¯(αδ)i = ¯(αδ)j = ¯(αγ)i = ¯(αγ)k = ¯(δγ)j = ¯(δγ)k = 0,

¯(αδγ)i = ¯(αδγ)j = ¯(αδγ)k = ¯(αδγ)ij = ¯(αδγ)ik = ¯(αδγ)jk = 0.

(a) Verify that the EMS for factor A is given by

E(MS(A)) = σ2 +
1

t − 1

t∑
i=1

α2
i .

(b) Verify that the EMS for the A × B interaction is given by

E(MS(A × B)) = σ2 +
1

(t − 1)(b − 1)

t∑
i=1

b∑
j=1

(αδ)
2

ij .
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(c) Based on what you learned in (a) and (b) fill in the complete threeway
anova table (Source, df, EMS). (You do not need to do any more calcula-
tions – you should be able to deduce what the other EMS will be.)

(d) An experimenter will typically state a hypothesis in words. For the two
hypothesis

H0 : No B effect and H0 : No BC effect

state each hypothesis in terms of the appropriate parameter values.
2.24 Refer to Miscellanea 2.9.2. If the treatment is applied, we assume that either

δij ∼ iid N(0, σ2
δ ), or δi ∼ iid N(0, σ2

δ ), in both cases independent of εij ∼
N(0, σ2

ε).
(a) Show that, if we have the case where δi ∼ iidN(0, σ2

δ ), then Cov(Yij , Yij′)=
σ2

δ , and in the other cases the Yij are all independent.
(b) Show that the following table summarizes the EMS for the case of mod-

eling the error due to applying the treatment, and that if δij = δi there is
no test on treatments.

EMS for Attributes

Source df EMS EMS EMS
δij = 0 δi ∼ iid N(0, σ2

δ ) δij ∼ iid N(0, σ2
δ )

Treatments t − 1 σ2
ε + r

t−1

∑
i
τ2
i σ2

ε + rσ2
δ + r

t−1

∑
i
τ2
i σ2

ε + σ2
δ + r

t−1

∑
i
τ2
i

Within t(r − 1) σ2
ε σ2

ε σ2
ε + σ2

δ

(This table once again illustrates the importance of true replication. In the
middle EMS column the treatment is not truly replicated, and the result is no
test on treatments!)

2.25 Here we see that a single contrast has a chi-squared distribution.
(a) Verify that the matrix aa′ in (2.24) is idempotent.
(b) Show that (a) implies that for Yi ∼ N(0, σ2) and any contrast, we have

(∑
i
aiYi

)2

σ2
∑

i
a2

i

∼ χ2
1

2.26 Referring to Technical Note 2.8.3:
(a) Show that A1 is idempotent and SS(Within) = Y′A1Y.
(b) Show that A2 is idempotent and SS(Within) = Y′A2Y.
(c) Show that A1A2 = A2A1 = 0, and hence A1 + A2 is idempotent and the

assumptions of Cochran’s Theorem are satisfied.
(d) Prove Theorem 2.21.

2.27 Referring to Technical Note 2.8.3, here we will prove Theorem 2.22.
(a) Establish (1)-(3) of Theorem 2.22, using arguments similar to those in

Exercise 2.26.
(b) To prove (4), we need to find the matrix A3 that satisfies YA3Y =

SS(T × G), and show that A3 is idempotent and satisfies A1A3 = A3A1 =
0, where A1 satisfies YA1Y = SS(Within). Cochran’s Theorem can then
be applied to get the F -test. (The matrix A3 is constructed in a manner
similar to the interaction matrix in Technical Note 3.8.2.)

2.28 Prove Theorem 2.23 by showing that, under model (2.4):
(a) Cov(Ȳi, Yi′jk − Ȳi′j) = 0 for all i, i′, j, k.
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(b) Cov(Ȳj , Yij′k − Ȳij′) = 0 for all i, j, j′, k.
(c) Cov(Ȳij − Ȳi − Ȳj , Yi′j′k − Ȳi′j′) = 0 for all i, i′, j, j′, k.
(d) Use the normality assumption to go from uncorrelated to independence

in (a)-(c), and use the properties of the t-distribution (Section 2.8.2) to
complete the proof.

2.29 Referring to Section 2.6:
(a) Use model (2.16) to derive the least squares estimators (2.17) and show

that the least squares estimator of µ + τi is unbiased.
(b) Show that, in (a), if

∑
i
τi = 0, then we can estimate τi. If the cell sizes

are unequal (ri instead of r), derive the least squares estimates. How can
we now estimate τi?

(c) Derive the variance of the least squares estimate of µ + τi in the case of
unequal ri.

2.30 For the variance of an ancova contrast:
(a) Verify the variance (2.21).
(b) Prove the identity (2.22) and use it to verify the variance approximation

(2.23). (Add ±b̄ on the left side and expand.)
(c) Suppose that, in (2.22), each bi is a mean based on ri observations. For-

mulate and prove an analogous identity to (2.22), and then establish an
analogous average variance to (2.23).

2.31 The following data are measurements on the strength index of three varieties of
cotton, where the treatments are pounds of potassium oxide per acre (dataset
Imbalance). Here we want to see the effect of imbalance on the anova.

Strength Index of Cotton
Varieties

Treatment 1 2 3

36 7.06 7.75, 8.22 7.95, 8.59
60 7.51, 7.5 8.08, 8.18 8.69, 8.39
84 7.27, 7.49 7.9 8.04
108 6.55, 6.47 7.26, 7.06 7.35
132 6.97, 7.14 7.52, 7.83 7.63, 7.2

(a) Verify the anova tables in Miscellanea 2.9.3.
(b) Produce one anova table that contains the partial sums of squares. (You

can do this by combining the two tables from part (a) or by using the R

command drop1.)
(c) In terms of the analysis of these data, explain why the table in part (b) is

most appropriate.
(d) Calculate the contrast sum of squares for the linear effect of potassium

oxide and test its significance.
(e) Estimate the contrast and its standard error, and give a 95% confidence

interval.

2.8 Technical Notes

2.8.1 Helpful Lemma I

The following lemma is helpful in calculating expected sums of squares in
CRD designs.
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Lemma 2.16. Suppose that W1, W2, . . . , Wn satisfy EW = 0, VarW = σ2, and
Cov(Wi, Wi′) = 0. Then

(1) E
∑n

i=1
(Wi − W̄ )2 =

∑n

i=1
VarWi − nVarW̄ =

(
1 − 1

n

)∑n

i=1
VarWi,

(2) Cov(Wi − W̄ , Wi′ − W̄ ) = − 1
n
σ2,

(3) Var(Wi − W̄ ) = E(Wi − W̄ )2 =
(
1 − 1

n

)
σ2.

If the Wi are normal, then

(4) Wi − W̄ ∼ N
(
0,

(
1 − 1

n

)
σ2

)
.

2.8.2 Anova Theory
In this section we outline the statistical theory behind anova, which leads
us to t-tests and F -tests, as well as confidence intervals. Many of the details
that we suppress here can be found in Casella and Berger (2001), especially
in Section 5.3.

Theorem 2.17 (Independence of Linear Combinations). Let Yi ∼
N(µi, σ

2
i ), i = 1, 2, . . . , r, be jointly normal, with Cov(Yi, Yi′) = φii′ , and let

Wj =
∑r

i=1
aijYi, j = 1, 2, . . . , m be any collection of linear combinations.

Then
(1) The random variables Wj, j = 1, 2, . . . , m, are jointly normal, with

Wj ∼ N

(
r∑

i=1

aijµi,

r∑
i=1

a2
ijσ

2
i + 2

∑
i>i′

aijai′jφii′

)
.

(2) If Cov(Wj , Wj′) = 0, Wj and Wj′ are independent.
(3) If Cov(Wj , Wj′) = 0 for all j �= j′, then the Wj are all independent.

The proof follows from the properties of the normal distribution and some
algebra. It uses the fact that, because of the special form of the normal distri-
bution, if the covariances are zero the density function factors into products.

Theorem 2.18 (From normals to χ2 random variables). Let χ2
p denote

a chi squared random variable with p degrees of freedom.
(1) If Z ∼ N(0, 1), then Z2 ∼ χ2

1.
(2) If Wi, i = 1, 2, . . . , r are independent, each distributed as χ2

pi
, then∑

Wi ∼ χ2∑
pi

.

So the degrees of freedom of independent χ2 random variables sum. Of course,
Wi could be the square of a standard normal or, more generally, if Yi ∼
N(µi, σ

2
i ), i = 1, 2, . . . , r are independent, then

r∑
i=1

(
Yi − µi√

σ2
i

)2

∼ χ2
r.

Now, we take the final step to the t and F distributions.
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Theorem 2.19 (t and F distributions).
(1) If Z ∼ N(0, 1) and V ∼ χ2

p, independent of Z, then

Z√
V/p

∼ tp,

where tp is Student’s t distribution with p degrees of freedom.
(2) If W ∼ χ2

q and V ∼ χ2
p, independent, then

W/q

V/p
∼ Fq,p,

where Fq,p has an F distribution with q numerator degrees of freedom and
p denominator degrees of freedom.

2.8.3 Cochran’s Theorem for CRDs
Thus far, we have reached the t and F distributions when starting from inde-
pendent normal random variables. However, we need more, as we will often be
dealing with variables of the form Yi−Ȳ , and these are not independent. More
generally, in anova, we are typically interested in the distributions of sums
of squares that are built up from linear combinations (actually contrasts)
of normal variables. (For more details about anova theory see Graybill and
Hultquist 1961, Albert 1976, Khuri 1982. Speed (1987) gives a very detailed
derivation of this decomposition.)
For example, from Theorem 2.17, consider a linear combination

∑
i
aiYi

with
∑

i
a2

i = 1. Write
∑

i
aiYi = a′Y, where a = (a1, a2, . . . , ap) and

Y = (Y1, Y2, . . . , Yp). Then

(∑
i

aiYi

)2

= (a′Y)2 = Y′(aa′)Y,(2.24)

where the matrix (aa′) satisfies (aa′)2 = (aa′). Recall that a matrix A that
satisfies the condition A2 = A is called idempotent, and there is a strong
connection between idempotent matrices and the chi squared distribution.
The major result that we need is known as Cochran’s Theorem, which dates
back to Cochran (1934)5.

Theorem 2.20 (Cochran’s Theorem). Let Y ∼ N(0, Σ), and let Ak, k =
1, 2, . . . , m satisfy

∑m

k=1
Ak = A, where AΣ is idempotent. If

AkΣ is idempotent for every k and AkΣAk′ = 0, k �= k′,

then
(1) Y′AkY ∼ χ2

tr(AkΣ) for every k,
(2) Y′AkY and Y′Ak′Y are independent for k �= k′,
(3) Y′AY ∼ χ2

tr(AΣ).

5 A complete treatment of Cochran’s Theorem can also be found in Stuart and Ord
1987, Chapter 15 or Scheffé1959 Appendix VI.
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If Σ = σ2I, a scalar multiple of the identity matrix, it follows from the pre-
vious discussion that Y′Y/σ2 =

∑
Y 2

i /σ2 ∼ χ2
p. Using Cochran’s theorem,

if A is an idempotent matrix then we can write

Y′Y = Y′AY + Y′(I − A)Y,

and, when divided by σ2, both quadratic forms on the right side are indepen-
dent χ2 random variables, with degrees of freedom equal to the trace of the
matrix in the quadratic form. That is, for Y ∼ N(0, σ2I) and idempotent A
we have

Y′AY/σ2 ∼ χ2
tr(A) and Y′(I − A)Y/σ2 ∼ χ2

tr(I−A),

where tr(A) is the sum of the diagonal elements. Since A(I−A) = 0, we have
partitioned χ2

p = χ2
tr(A) + χ2

tr(I−A).
As we have seen, many of the sums of squares that we deal with in anova
are built up from contrasts in normal random variables. We now look at the
oneway CRD anova

Yij = µ + τi + εij , εij ∼ N(0, σ2), independent, i = 1, . . . t, j = 1, . . . , r,

and work our way to the F distribution for the test on treatments.
Within cell i, we have observations Yi1, Yi2, . . . , Yir and we can write the
deviations from the mean as

⎛
⎜⎜⎝

Yi1 − Ȳi·
Yi2 − Ȳi·

...
Yir − Ȳi·

⎞
⎟⎟⎠ =

(
I − 1

r
J
)

⎛
⎜⎜⎝

Yi1

Yi2

...
Yir

⎞
⎟⎟⎠ ,

where I is the identity matrix and J is a matrix of ones. Now we note that

(
I − 1

r
J
)(

I − 1

r
J
)

=
(
I − 1

r
J
)

is an idempotent matrix. The entire set of deviations can be written as

⎛
⎜⎜⎝

Y11 − Ȳ1·
Y12 − Ȳ1·

...
Ytr − Ȳt·

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

(
I − 1

r
J
)

0 · · · 0

0
(
I − 1

r
J
)

· · · 0
...

...
...

...

0 0
(
I − 1

r
J
)

⎞
⎟⎟⎟⎠

tr×tr

⎛
⎜⎜⎝

Y11

Y12

...
Ytr

⎞
⎟⎟⎠

def
= A1Y.

It can be shown that A1 is idempotent and SS(Within) = Y′A1Y. Similarly,
we can write the deviations for the treatment sum of squares as

⎛
⎜⎜⎜⎝

Ȳ1· − ¯̄Y

Ȳ2· − ¯̄Y
...

Ȳt· − ¯̄Y

⎞
⎟⎟⎟⎠ =

(
I − 1

t
J
)

⎛
⎜⎜⎝

Ȳ1·
Ȳ2·
...

Ȳt·

⎞
⎟⎟⎠=

(
I − 1

t
J
)

1

r

⎛
⎜⎜⎝

1r×1 0 · · · 0
0 1r×1 · · · 0
...

...
...

...
0 0 1r×1

⎞
⎟⎟⎠

t×tr

Y,
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however, the matrix multiplying Y is not square and cannot be idempotent.
To remedy this we take t copies of it (this is why there is a t multiplying the
treatment sum of squares) and define

A2 =

⎛
⎜⎜⎜⎝

(
I − 1

t
J
)

(
I − 1

t
J
)

...(
I − 1

t
J
)

⎞
⎟⎟⎟⎠

tr×t

1

r

⎛
⎜⎜⎝

1r×1 0 · · · 0
0 1r×1 · · · 0
...

...
...

...
0 0 1r×1

⎞
⎟⎟⎠

t×tr

and then A2 is idempotent and SS(Treatments) = Y′A2Y. We are now in
the position to apply Cochran’s Theorem to get the following, whose proof is
left to Exercise 2.26.

Theorem 2.21 (Oneway CRD F -distribution). For the oneway CRD

Yij = µ + τi + εij , εij ∼ N(0, σ2), independent, i = 1, . . . t, j = 1, . . . , r,

(1) SS(Within)/σ2 ∼ χ2
t(r−1).

(2) Under H0 : τi = 0 for all i, SS(Trt)/σ2 ∼ χ2
t−1, independent of SS(Within).

(3) Under H0 : τi = 0 for all i, F = SS(Trt)/(t−1)
SS(Within)/(t(r−1))

∼ Ft−1,t(r−1).

A similar theorem holds for the twoway (and higher) CRDs, with the compli-
cation that we have to deal with the matrices for the interaction terms. We
leave that pleasant task to Exercise 2.27, and simply state the theorem here.

Theorem 2.22 (Twoway CRD F -distributions). For the twoway CRD of
model (2.4),
(1) SS(Within)/σ2 ∼ χ2

tg(r−1).

(2) Under H0 : τi = 0 for all i, SS(T)/σ2 ∼ χ2
t−1, independent of SS(Within)

and F = SS(T)/(t−1)
SS(Within)/(tg(r−1))

∼ Ft−1,tg(r−1).

(3) Under H0 : γj = 0 for all j, SS(G)/σ2 ∼ χ2
g−1, independent of SS(Within)

and F = SS(G)/(g−1)
SS(Within)/(tg(r−1))

∼ Fg−1,tg(r−1).

(4) Under H0 : (τγ)ij = 0 for all i, j, SS(T × G)/σ2 ∼ χ2
(t−1)(g−1), independent

of SS(Within) and F = SS(TxG)/((t−1)(g−1))
SS(Within)/(tg(r−1))

∼ F(t−1)(g−1),tg(r−1).

Finally, the distribution of contrasts in the CRD is also straightforward. We
state the theorem here and leave the proof to Exercise 2.28.

Theorem 2.23 (Contrasts in the twoway CRD). For the twoway CRD
of model (2.4), let σ̂2 = MS(Within)/(tg(r − 1)). Then for any contrast
(1)

√
gr

∑
i
ai(Ȳi − τi)/σ̂ ∼ ttg(r−1).

(2)
√

tr
∑

j
aj(Ȳj − γij)/σ̂ ∼ ttg(r−1).

(3)
√

r
∑

ij
aij(Ȳij − Ȳi − Ȳj + ¯̄Y − (τγ)ij)/σ̂ ∼ ttg(r−1).

There has been much research in answering the question “When is a sum of
squares an analysis of variance”, the title of Albert (1976). What is meant is,
under what conditions can we partition the total sum of squares into orthogonal
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pieces, and get out the usual F -tests. This was first addressed by Graybill and
Hultquist (1961), who investigated the connections between such a decompo-
sition and minimal sufficiency, which implies that the inference would then be
based on the likelihood function. The most general treatment of this problem
can be found in Speed (1987). On a related note, Bradley (1973) gives conditions
for the equivalence of likelihood and least squares estimates in linearmodels (see
Berger and Casella 1992 for a more elementary treatment of this equivalence).

2.8.4 Noncentral Distributions

In the anova, if we set up the ratio of mean squares correctly, then under
the appropriate H0 their ratio will have an F distribution. More precisely, it
is a central F distribution as described in Theorem 2.19. If H0 is false, and
the appropriate parameter is nonzero, then the ratio of mean squares has a
noncentral F distribution. This noncentral distribution, and its properties,
is related to the power of the anova tests, and a good understanding of the
behavior of the F -statistic under the noncentral distribution will be helpful
in better evaluating anova strategies. Here we discuss the oneway and twoway
CRD; extensions to other designs should be clear.
The central F distribution (we usually omit the adjective unless we need to be
very clear) is obtained from the ratio of two independent central χ2 random
variables. The noncentral F comes from the noncentral χ2 distribution.

Definition 2.24. If X1, X2, . . . , Xp are independent normal random variables,
Xi ∼ N(θi, σ

2), then

W =

∑
i
X2

i

σ2
∼ χ2

p(λ),

a noncentral χ2 random variable with p degrees of freedom and noncentrality
parameter λ =

∑
i
θ2

i . If V ∼ χ2
q (central), independent of W , then

W/p

V/q
∼ Fp,q(λ),

a noncentral F with degrees of freedom p and q and noncentrality parameter
λ =

∑
i
θ2

i /σ2.

The density function of the noncentral χ2 is quite imposing, being an infinite
sum of weighted central χ2 densities. We will not display it here, but rather
share a more useful characterization of the noncentral χ2: If

K ∼ Poisson(λ) and W |K ∼ χ2
p+2K , then W ∼ χ2

p(λ),

which also tells us that the weights in that infinite sum are Poisson proba-
bilities. The important property about these noncentral distributions is that
they are stochastically increasing in the noncentrality parameter. That is, for
a fixed value a

W ∼ χ2
p(λ) ⇒ Pλ(W > a) is an increasing function of λ

T ∼ Fp,q(λ) ⇒ Pλ(T > a) is an increasing function of λ.

Thus, if W or T are test statistics, and we reject H0 for large values of the
statistic, then the power of the test increases with λ, since the probability of
the statistics exceeding the cutoff point increases in λ.
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Oneway CRD

In the oneway CRD of model (2.2), with EMS given in Exercise 2.11, we
test H0 :

∑
i
τ2

i = 0 with F = MS(Treatments)/MS(Within), calculated as in

Table 2.2. If H0 is violated, then E(Ȳi− ¯̄Y ) = τi, the numerator sum of squares
is noncentral χ2 with noncentrality parameter

∑
i
τ2

i /σ2, and the F -statistic
has the corresponding noncentral F distribution. The power of the F -test
increases with

∑
i
τ2

i . Thus the power increases no matter which τi increases,
and the power is constant on spheres where

∑
i
τ2

i is constant. Note also that
the denominator of the F -statistic remains an independent central χ2.

Twoway CRD

Similar conclusions hold for the twoway CRD of model (2.4) with respect to
the tests of the main effects and the interactions, with denominator mean
square MS(Within). That is, the power of the respective tests is increasing
in

∑
i
τ2

i ,
∑

i
γ2

i , and
∑

i
(τγ)2i (see Table 2.6). There is an interesting occur-

rence, however, if we look at the practice of pooling error terms.
In Definition 2.24, if V is an independent noncentral χ2, say V ∼ χ2

q(δ), then
T = (W/p)/V/q) has a doubly noncentral F distribution, Fp,q(λ, δ). More-
over, it should be clear that Pλ,δ(T > a) is increasing in λ for fixed δ, and
decreasing in δ for fixed λ (see Scheffé1959, Section 4.8).
Now, in the twoway CRD, suppose that we, for example, test H0 :

∑
i
τ2

i = 0
using a denominator that is obtained by pooling the interaction and within
sum of squares. (Possibly based on first accepting the null hypothesis that
there is no interaction.) If, in fact there is an interaction, so

∑
i
(τγ)2i > 0, then

we have increased the noncentrality parameter in the denominator of the F -
ratio, which has a doubly noncentral F distribution. Thus, we have decreased
the probability of the test statistic exceeding the cutoff or, in other words,
we have decreased the power of the test. This is what is called a conservative
test, where it is more difficult to reject H0 because the distribution of the de-
nominator of the statistic has been inflated. This procedure is more prone to
making the Type I error, and a rejection is usually greeted with enthusiasm.

2.9 Miscellanea

2.9.1 Multiple Comparisons and Error Rates
Post-anova analysis will often involve many inferences, typically on contrasts
or pairwise differences. Of course, we know that the simultaneous inference
from many α level tests is not necessarily at level α, so the question is how
do we control this in a meaningful way.
This is actually a difficult and important question, especially in light of mi-
croarray experiments where we might be faced with thousands of hypothesis
tests. In such cases, we must intelligently balance power and false detection
rates.

Classical Error Rate Control

First, there are many definitions of Type I Error for multiple comparisons, so
exactly what is meant by “α level” is not always clear. Some of the types of
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error rates considered are experimentwise error rate or comparisonwise error
rate. Miller (1981) and Hsu (1996) are good references for this topic.

Experimentwise error rate: Controls the error rate of the entire experiment,
so a 5% experimentwise α level means that if all nulls are true, there will be
a false rejection in 5% of experiments, no matter how many tests are done.
This is a very conservative criterion and is virtually useless for exploratory
studies (no power)

Comparisonwise error rate: Controls the error rate of comparisons, so a
5% comparisonwise α level means that if all nulls are true, there will be a
false rejection in 5% of comparisons. So if you do 1000 comparisons you can
expect 50 false rejections. This is a very liberal criterion with high power,
and is good for exploratory studies. It will produce a lot of false rejections,
however.

There is also a familywise error rate, which is the experimentwise error applied
to a smaller group of comparisons, a “family”.
Note that, if we are combining results of independent tests, then things are
simple in the following sense: If we do m tests, each at level α, and if all of the
null hypotheses are true, then the overall Type I error rate (experimentwise)
error is 1− (1−α)m, so 20 independent .05 tests have an overall Type I error
rate of .64 and 20 independent .01 tests have an overall Type I error rate of .18.
Simultaneous coverage of the 20 intervals would be .36 and .82, respectively.
However, this is not a realistic situation, as we will seldom find independent
tests in any experiment. For example, if we have a set of uncorrelated contrasts
under normality, and we know the variance, or we use an independent variance
estimate for each contrast, then we have independent tests. In almost any
other situation, such as correlated contrasts or the use of pooled variances,
the tests are dependent.
As a more realistic example, if we want to make a simultaneous 1−α statement
about the coverage of m confidence sets, then, from the Bonferroni Inequality,
we can construct each confidence set to be of level 1− α

m
. If we do each test at

level α/m then we are controlling the experimentwise error at level α. If we do
each test at level α, then we are controlling the comparisonwise error at level
α. In an anova with k treatments, simultaneous inference on all k(k − 1)/2
pairwise differences can be made with confidence 1 − α if each t interval has
confidence 1 − 2α/[k(k − 1)].
An alternative to Bonferroni, which also controls the experimentwise error,
is the Scheffé procedure, which provides simultaneous confidence intervals
on all contrasts. The procedure states that simultaneously for all contrasts
(a1, . . . , ak),

k∑
i=1

aiȲi· − M

√√√√σ̂2

k∑
i=1

a2
i /ni ≤

k∑
i=1

aiθi ≤
k∑

i=1

aiȲi· + M

√√√√σ̂2

k∑
i=1

a2
i /ni,

where M =
√

(k − 1)Fk−1,n−k,α and σ̂2 has n − k degrees of freedom.
One of the real strengths of the Scheffé procedure is that it allows legitimate
“data snooping”, and we can test hypotheses that have been suggested by
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the data. Suggested hypotheses can bias the results and, hence, invalidate
the inference, but intervals or tests that are valid for all contrasts, whether
they have been suggested by the data, have already have been taken care of
by the Scheffé procedure. So the bias is eliminated. Of course, we pay for this
data snooping privilege because the confidence intervals are very wide, and
the tests are not very powerful.
There is a plethora of other simultaneous inference procedures, most con-
cerned with pairwise comparisons. A method due to Tukey gives simultaneous
confidence intervals on all pairwise differences, not all contrasts.
Other types of multiple comparison procedures, which deal with pairwise dif-
ferences, are more powerful than the Scheffé method or the Tukey method.
Some procedures are the LSD (Least Significant Difference) Procedure, Pro-
tected LSD, Duncan’s Procedure, and Student–Neumann–Keuls’ Procedure.

These last two are multiple range procedures, where
the cutoff point to which comparisons are made
changes between comparisons. (These should be
avoided, as they can lead to contradictory inferences.)

Avoid multiple
range procedures

False Discovery Rate Control

There are many other error rate definitions, but we will only mention one
more here, one that has become very popular in recent years, and has seen
much use in microarray analysis. Table 2.9 is adapted from Benjamini and
Hochberg (1995).

Table 2.9. Number of errors committed when testing m hypotheses,
where m0 nulls are true

Declared Declared Total
Significant Nonsignificant

True Null Hypothese V m0 − V m0

False Null Hypotheses S m − m0 − S m − m0

R m − R m

Note that the only numbers that we know in Table 2.9 are m and R, but
error rates can be obtained as probabilities and expected values.

E
(

V

m

)
= Comparisonwise Error Rate

P (V ≥ 1) = Familywise Error Rate

and testing each hypothesis at α/m guarantees that P (V ≥ 1) ≤ α, while
testing each hypothesis at α guarantees that E(V/m) ≤ α.
Benjamini and Hochberg (1995) suggest that we should control another error
rate

E
(

V

R

)
= False Discovery Rate,
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which is the proportion of discoveries (rejections of H0) that are false (H0

is true). They note that if all the nulls are true, this is equivalent to the
familywise error rate, but is a smaller number once m0 < m.
A procedure for controlling the false discovery rate (FDR) at a set value q∗

is the following:
(1) For testing m hypotheses, obtain the p-values and order them p(1) <

p(2) < · · · < p(m). (Note that p(i) is not the p-value for the ith hypothesis.)
(2) Let k be the largest i for which p(i) < (i/m)q∗.
(3) Reject all nulls with a p-value less than p(k).
Controlling the FDR has almost become a standard in microarray analysis,
partially due to the popularity of a procedure known as SAM (Statistical
Analysis of Microarrays, Tusher et al. 2001). The SAM procedure is essen-
tially multiple t-tests processed using the FDR control.
There has been much other work done in estimating the FDR (Storey and
Tibshirani 2003) and on other variations of FDR. A large literature on FDR is
developing, and good entries are Storey (2002, 2003), Genovese and Wasser-
man (2002, 2004), and Genovese et al. (2006).

2.9.2 Application or Attribute?

The question has sometimes come up about whether a treatment that is
applied is different from a treatment that is an attribute. For example, a
treatment could be a certain level of nitrogen in a fertilizer that is applied to
a plot of land, or a treatment could be an age group, which is an attribute.
Statistically, is there a difference?
This discussion could be about the difference between designed experiments
and observational studies, but it is not. We are here dealing with designed
studies, but could include, as treatments, factors that are attributable to the
experimental units rather than applied to the experimental units. A possible
way to understand the difference is with the following model, a variation on
the oneway CRD (2.2):

Yij = µ + τi + δij + εij ,

where we add δij as the error in applying treatment i to the jth unit in that
treatment group. The error δij can have one of three forms

δij =

{
0 if the treatment is an attribute
δi if the treatment is applied once to the group
δij if the treatment is applied independently to each unit.

This model says that there is no error in the application of the treatment
if the treatment is an attribute. So, for example, if τ1 is the application of
a fertilizer with 10% nitrogen, and the batch is mixed with 12%, that error
is reflected in δ. (This is in contrast to ε, which would reflect the different
responses in yield to the same treatment of 10% nitrogen.)
If we assume that the errors are independent, then there is no discernable
difference between the first and third cases, that is, whether the treatment
is an attribute, or applied independently to each unit, results in the same
analysis. The only difference arises is if δij = δi, for then a correlation is
introduced and the analysis cannot proceed as a oneway CRD. In fact, in a
formal sense the analysis cannot proceed at all (Exercise 2.24).
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2.9.3 Imbalance

In this book we are dealing almost exclusively with balanced designs. When
looking at the experiment from the design viewpoint, it would be silly to
design an unbalanced experiment, as too many things are given up. Dealing
with imbalance in data is a topic that is better treated in a book devoted to
analysis rather than design (see, for example, Rawlings et al. 1998).
A design is balanced if there are the same number of observations in each cell.
Imbalance only becomes a serious problem in twoway and higher designs, as
the oneway CRD can handle imbalance pretty well (although it wreaks havoc
with contrasts, as we have seen in Chapter 1; see Exercise 1.18).
Imbalance is a fact of life. Rats or plants can die, microarray wells may not
be correctly read, data may be lost. Sometimes we have the luxury of having
extra observations in each cell to plan for this- which might be one of the only
valid reasons for have within observations in an RCB. However, discarding
data for any reason is typically a bad idea.6

For example, if every cell but one in a twoway design has 5 obser-
vations, and one has four observations, balance can be achieved
by discarding, at random, one observation from each of the cells
with 5 observations. Never, never do this. Never throw away data
unless there is a really good reason to do so. Each data point has
information, and discarding information is never good.

Data are
sacred!

There is a fundamental difference between unbalanced data and missing data.
We take the approach that our analysis should always be based on the like-
lihood for the data. In the balanced case this agrees with the anova-based
analysis, but in the unbalanced case things differ.

◦ In the unbalanced (but not missing) case, we can write down a model
and a likelihood, and estimate and test based on the likelihood. In fact,
this is regression analysis! There are problems, however, with identifiability
constraints and estimability, but these can be handled.

◦ In the case where there is missing data, so we have empty cells, things get
a bit more complicated. If the parameter for the cell is in the model then,
formally, the likelihood function is calculated by averaging over all possible
values that could have been in that cell. This is not a simple calculation,
but can be handled by modern missing data techniques such as the EM
algorithm (see, for example, Little and Rubin (2002). Alternatively, we can
do an observed case analysis using the likelihood for the observed data, but
this can sometimes be a difficult calculation, and may sometimes require
discarding data.

The main problem caused by imbalance is that, under the usual models, effects
are no longer orthogonal. For example, consider model (2.4) with unequal cell
sizes where, for simplicity, we assume no interaction:

Yijk = µ + τi + γj + εijk, i = 1, . . . , t; j = 1, . . . , g, k = 1, . . . , rij ,

andtherij arenotnecessarilyequal. Ifwedenotethetotalnumberofobservations
by n =

∑
ij

rij , and the marginal totals by ri· =
∑

j
rij and r·j =

∑
i
rij ,

6 If there is a nonstatistical reason to believe that a data point is an outlier, an
analysis with and without it can show if it is unduly affecting the inference.
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then

E(Ȳi − ¯̄Y ) = τi −
1

n

∑
i

ri·τi +
1

ri·

∑
j

rijγj −
1

n

∑
r·jγj .

The identifiability constraints
∑

i
τi =

∑
j
γj = 0 do not do much here,

and thus there are “pieces” of extraneous parameters in this expected value
no matter what we do. This means that the sums of squares will not be
orthogonal – they will not add to the total – and we must be more careful
if we do an anova. Specifically, we must decide between sequential or partial
sums of squares.
The data in Exercise 2.31 is an unbalanced twoway. We can produce two
different anova tables depending on which factor we fit first:

Treatments Before Varieties Before
Varieties Treatments

Source df SS

Treatments 4 4.253
Varieties 2 3.004
Residual 19 1.023

Source df SS

Varieties 2 3.563
Treatments 4 3.694
Residual 19 1.023

Since the sums of squares are not orthogonal, fitting one will account for
some variation in the other, so the order matters. In each of these tables we
see the sequential sums of squares, which add to the total. Note that in the
second table, where varieties are fit first, the sum of squares for treatments
is smaller.
The second line of each table gives the partial sum of squares for that
factor and this is the sum of squares that should be used for evaluating
the effect. For example, if we want to evaluate the effect of treatment, it
should be done after the variation due to varieties is removed, resulting in
SS(Treatments After Varieties) = 3.694. These partial sums of squares can
be presented in one anova table, where the sums of squares will not add to
the total sum of squares. Also note that in each table, since the residual is fit
last, its sum of squares is the same.
So, in general, what to do? The nonorthogonality problem, which leads to
problems with the identifiability constraints, does not go away even if we
calculate least squares means. However, it should be clear that this problem
grows worse if the imbalance grows worse. Thus, if the imbalance is minimal,
we can forge ahead with partial sums of squares and, for the most part, ignore
the imbalance in our effect estimates. If the imbalance is great, or if there are
cells without data, then it is probably best to turn to a cell means model,
which we first saw in (1.2), and here would be

Yijk = θij + εijk, i = 1, . . . , t; j = 1, . . . , g, k = 1, . . . , rij ,

where θij is the mean of cell (i, j), and EȲij = θij . We can then estimate
treatment effects with contrasts in the Ȳij .


