
Preface

This volume emanated from a workshop on Self-Adaptive Software held at Lady
Margaret Hall, Oxford in April, 2000. The aim of the workshop was to bring
together researchers working on all aspects of self-adaptive software in order to
assess the state of the field, map out the research areas encompassed by the field,
develop a research agenda, and enumerate open issues.

The papers presented at the workshop were in some cases revised after the
workshop.

The first paper in the collection: “Introduction: The First International Work-
shop on Self-Adaptive Software” provides a brief overview of self-adaptive soft-
ware and a description of the layout of the volume.

November 2000 Paul Robertson



Organizers

Paul Robertson (Oxford University)
Janos Sztipanovits (DARPA, Vanderbilt University)

Program Committee

Paul Robertson (Oxford University)
Janos Sztipanovits (Vanderbilt University)
Howie Shrobe (MIT)
Robert Laddaga (MIT)



Introduction:
The First International Workshop

on Self-Adaptive Software

Paul Robertson, Robert Laddaga, and Howie Shrobe

MIT

1 Introduction

This collection of papers was presented at the international workshop on self
adaptive software (IWSAS2000) held at Lady Margaret Hall at the University
of Oxford between April 17th and April 19th 2000. They represent the state of
the art in a new evolving field of research that attempts to build software systems
that are more robust to unpredictable and sometimes hostile environments than
we have managed to produce by conventional means.

As we try to solve increasingly difficult problems with computer software we
develop new architectures and structures to help support our aggressive ende-
avors. It is in this light that the need for and the potential benefits of “Self-
Adaptive Software” have become apparent.

2 What is Self Adaptive Software

The traditional view of computation is one in which a computational process
executes within a fixed and well defined environment. Traditionally computers
have existed in isolated environments with minimal contact to the outside world.
On occasions the real world has leaked into the equation. Input and output is
an example of such leakage. Programs that (say) have to read characters typed
by a human operator are operating in an environment that is not well defined or
predictable. Writing robust programs to perform input is notably hard. When
the environment becomes even slightly unpredictable it becomes necessary for
the programmer to carefully consider all possibilities and program them in to
the code. Programs that are coded only for what is wanted as input rather than
the full range of what might be presented are brittle and such program often fail
badly in practice.

If writing programs that robustly perform input is hard it is only the tip of the
iceberg. Increasingly we are taking computation away from the tightly controlled
environments that have characterized the early development of computer science
– away from the machine rooms and trained expert users – and putting them
into situations where the environment is unconstrained. Computers are now often
connected to a network which provides many additional forms of interaction with
the outside world and the incredible reduction in both size and cost of computers

P. Robertson, H. Shrobe, and R. Laddaga (Eds.): IWSAS 2000, LNCS 1936, pp. 1–10, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



2 P. Robertson, R. Laddaga, and H. Shrobe

now allows us to embed processors throughout our homes, cars, and workplaces
in ever widening and inventive roles.

Where we have done well with these embedded applications of computation
have been precisely those areas where the environment can still be constrai-
ned. For example Digital Signal Processors (DSP’s) are embedded into a wide
array of devices (such as cell phones) where they can perform simple repetitive
operations on an input signal that may be voice or image. Where the range of un-
predictability is limited to the sequence of button presses on a cellular telephone
keyboard or a microwave oven the computation can be adequately addressed
using traditional techniques.

Gradually our ambitions are drawing us to use computation in situations
where the unpredictable nature of the environment poses a formidable challenge.
Obvious examples include robot navigation in unconstrained environments, the
interpretation of human speech in noisy environments, the interpretation of vi-
sual scenes by mobile robots and so on. In the cited examples there is a significant
domain specific component to the problem – such as visual feature extraction –
that is unique to each domain but there is also a shared problem. The shared
problem is that of writing programs that operate robustly in complex environ-
ments.

It is already the case that embedded systems represent the majority of our
use of computers and it will never be less true than it is today. Most current
embedded systems involve rather simple processors with highly limited memory
and computational power. Until recently the limitations of what these embedded
systems could do has constrained them to being rather simple and manageable.
That picture however is changing rapidly. The new breed of embedded systems
can expect to have enough computational power and memory for them to get
themselves into some serious trouble. Over time these complex embedded sy-
stems will come to dominate.

While the model of computation as operating within a fixed and well defi-
ned environment has served us well during the early phases of development of
computer science it now seems likely that in order to move forward we must
develop a less restrictive model for computation and along with the new model,
new methodologies and tools.

In a sense the kind of computation that we developed in the last century was a
peculiar and even unnatural one. Nature is full of examples of computation. Most
of these examples like the orientation of leaves towards the sun and the opening
and closing of flowers in response to changes in light and temperature are fixed
computation but many involve what is more recognizable as a programmable
capability – such as the ability to learn exhibited by many animals. Whatever
degree of learning these computational devices may have virtually all of them
are involved with direct interaction with the real world. These natural examples
of computation work in the presence of complex and often hostile environments.
Indeed they exist precisely because the environment is unpredictable and hostile.

At a fundamental level computation is not different in these unconstrained
environment situations. We can still describe them in terms of Turing machines



Introduction: The First International Workshop on Self-Adaptive Software 3

and in principle we can program them using traditional techniques by carefully
considering at every turn the full range of possibilities that the environment
can present and programming for each case. On the other hand the traditional
approach arguably missed the point. The notion of a computation halting is un-
interesting in many of these applications and while it is theoretically possible to
consider every possibility when programming a system it makes for unmanage-
ably complex software that challenges our ability to build and test them.

When the environment is constrained we can develop an algorithm tradi-
tionally, whose complexity is a function of the problem being solved. If the
environment must also be considered, again using traditional technology, the
complexity of the program must mirror the complexity of the environment, be-
cause the program must consider every possibility... If a program’s complexity
is a linear or worse function of the complexity of the environment, then we are
clearly in trouble because the world is a complex place.

Computation may be a much wider concept than we have historically believed
it to be. In the future computation that operates in tightly constrained environ-
ments will represent a tiny fraction of computation as a whole. The Computer
Science that we have developed to date may turn out to be a very special case of
computation that occurs only when the environment is very tightly constrained.

For the time being those building systems involving sensors and effectors and
those developing systems that must navigate robots, missiles, and land vehicles
through complex and often hostile environments share a need for new approaches
to building robust applications in these domains.

This need for a new approach was recognized by DARPA in 1997 when it
published its Broad Agency Announcement (BAA) for proposals in the area of
“Self-Adaptive Software”. The BAA [14] describes Self Adaptive Software as
follows:

“Self-adaptive software evaluates its own behavior and changes behavior
when the evaluation indicates that it is not accomplishing what the software
is intended to do, or when better functionality or performance is possible.”

2.1 Benefits of a Self Adaptive Approach

The principle idea behind the self adaptive approach to achieving robust perfor-
mance is that it is easier and often more efficient to postpone certain decisions
until their need is evident from the circumstances. It is often easier to make a
program that monitors its performance and recovers from errors than it is to
make a program that goes to great lengths to avoid making any errors. This
notion is already familiar to us in our use of errors and exceptions in languages
like Common Lisp [24] and Java. Exceptions allow simple code to be written
that expects the environment to be well behaved. The code must also include
checks that everything is as expected. If things are not as expected an exception
is raised. Elsewhere an exception handler contains the code that decides how
the exception should be handled. For example if the code was trying to read a
number and a non numeric character was detected a ’non numeric character in
number’ exception may be raised. The handler could then clear the input buffer,



4 P. Robertson, R. Laddaga, and H. Shrobe

caution the user against using non numeric characters and retry the read. In this
example the program has a ’model’ of what it expects (a sequence of numeric
digits). The program checks for differences between what it is getting as input
and the model and when such differences occur the program tries to deal with
them robustly–in this case by issuing a warning and trying again.

While the exception mechanism is invaluable for a certain class of problems
and is suggestive of a general approach it does not easily extend to the full
range of problems that can occur in complex systems. When a robot encounters
difficulty in understanding a visual scene it could be for a variety of reasons:
a sensor may be functioning incorrectly or have failed completely; the lighting
may have changed so as to require a different set of algorithms; the contents
of the scene may have changed requiring the robot to update its model of the
environment; and so on. In general the environment cannot be given a warning
and asked to try again! The program must deal with what it gets as best it can.
In these situations when a sensor fails or an algorithm doesn’t work or some other
assumption about the environment turns out to be untrue the solution will often
require reconstituting the program to deal with the actual environment rather
than having enough complexity to deal with all possible environments hidden
within exception handlers.

Self adaptive software therefore involves having suitable models of the envi-
ronment and of the running program, the ability to detect differences between
the models and the actual runtime environment, the ability to diagnose the
nature of the disparity, and the ability to re-synthesize or modify the running
program (or its models) so that the program can operate robustly.

The notion of programs that can manipulate their own representation is not
new and has been a key characteristic of Lisp [24,12] since its inception alt-
hough the full power of that capability has not often been used. The idea of
programs that reason about their own behavior and modify their own semantics
is well developed. Programming languages that support self reasoning and self
modification are called ’reflective’ a term coined by Brian Smith in his original
development of the idea of reflective programs [4,5]. Reflection has been around
long enough for efficient implementation methodologies to be developed [7,2,11,
8] and some level of reflective capability is now available in CLOS [12] and Java.
Reflection makes it possible (and convenient) to write programs that can reason
about the state of computation and make changes to the semantics of the run-
ning program. Self adaptive software can clearly benefit from such a capability
but there is more to self adaptive software than reflection. Self adaptive soft-
ware must have a model of what the computation is trying to achieve in order
to have something against which to compare the current computation. Having
determined some difference between the intended program state and the actual
one a self adaptive program must be able to automatically adjust the semantics
of the program so that the difference is reduced. Reflection provides the tools
for writing such programs but it doesn’t provide any guidance in how it should
be done.



Introduction: The First International Workshop on Self-Adaptive Software 5

Managing complexity is a key goal of self adaptive software. If a program
must match the complexity of the environment in its own structure it will be
very complex indeed! Somehow we need to be able to write software that is less
complex than the environment in which it is operating yet operate robustly. By
keeping the program code separate from the code the diagnosis and synthesis
code the core code can remain simple and the synthesis can be performed by
a purpose built synthesis engine. Such an architecture makes writing the core
code much less of a tangled web. In essence the total runtime program may be a
sequence of different programs each one individually simple. The complexity of
the program as a whole is moved into the architectural mechanism that maintains
models, checks models against performance, and re-synthesizes new programs.

There are many advantages to this approach beyond making it possible to
write programs that operate in complex environments. Correctness of our pro-
grams may be easier to establish whether by testing, proof, or other means
because at any point the operating program should be simpler than a program
that considered every possibility would be. To some extent correctness testing
may be guaranteed by the synthesis engine or may be checked automatically
because there is a model of the program against which it may be tested. Grea-
ter efficiency may also be achieved through the self adaptive software approach.
Greater efficiency occurs when a crude but fast program that may not always
work is substituted for a complex but slow program that tries to guarantee that
it always works. By making decisions at run time when much more is known
about the actual environment than could have been known when the program
was originally designed it is possible to select more suitable procedures for achie-
ving the intended goal. this can result in a more direct solution with less failure
and less backtracking. Having better information about the environment allows
better decisions to be made which can result in more efficient and successful
execution.

There are also concerns and difficulties evident in the approach. A program
that changes itself at runtime may in some sense be a less well understood entity
than a program that remains unchanging during its execution. The notion that
it may be more robust than its fixed counterpart should make us feel more com-
fortable about its behavior but the notion that the program changes at runtime
is unsettling to people responsible for building complex missile delivery systems
(for example). How can we trust a smart missile that may reprogram itself in mid
flight? There are (at least) two answers to this. The first is that if the program
fails in mid flight because it was unable to deal with its complex environment
it may do a very bad thing in its failure mode so the self adaptive version that
is less brittle should be less of a concern. The second is that we must develop a
better understanding of self adaptive software and new approaches to software
testing, debugging, and semantics that allow us to be confident about the sy-
stems that we deploy either through a proof theoretic framework or through a
testing regime.

Today self adaptive software draws upon a great many technologies that may
be used as building blocks. Reflection and exception handling mechanisms have



6 P. Robertson, R. Laddaga, and H. Shrobe

already been mentioned but there are a great many other candidate contributing
technologies including model based computing, theorem provers, models for rea-
soning about uncertainty, and agent based systems to name a few. The papers
in this collection begin to address many of the issues described above as well and
explore how many of these technologies can be harnessed to realize the goals of
self adaptive software.

3 About the Papers

Self adaptive software is a relative new idea and the approach involves taking a
significant departure from established software development methodologies and
potentially requiring a rethinking of some basic concepts in computer science.
Self adaptive software will be achieved by taking small steps from what we cur-
rently know. Some people are attempting to build self adaptive software solutions
to solve existing problems, some are experimenting with existing technologies to
see how they can be used to achieve self adaptive software, some are working
with systems that interpret the world through sensors, and some are directly
studying aspects of self adaptive software ideas in order to extend our under-
standing of their semantics. The papers in this collection provide examples of all
of these areas of activity.

3.1 Understanding Self Adaptive Software

Robert Laddaga’s paper on ’Active Software’ [15] provides a good definition of
Self adaptive software and a survey of related concepts and technologies.

One of the more ambitious self adaptive software projects that brings to-
gether a wide range of technologies is being being conducted at the University of
Massachusetts at Amherst. Two papers from the University of Amherst project
appear in this collection [19,6]. Osterweil et. al. describe a process of perpetual
testing in ’Continuous Self Evaluation for the Self-Improvement of Software’ as
a means of achieving self improving software.

The environment in natural systems as well as artificial ones is not only com-
plex but in many instances it can be hostile. Information survivability attempts
to deal with systems that come under attack from outside agents. Shrobe and
Doyle [23] consider how self adaptive software can provide software services in
an environment that is actively hostile. Rather than considering issues of infor-
mation survivability as a binary affair in which the system is either compromised
(and useless) or not compromised (and useable) they consider how survivability
can be achieved by self-testing to detect that the system has been compromised
in various ways and then adapting so as to be able to provide the best level of
service possible given the compromised state if the system.

There is a bone fide need for formal methods in a number of places in buil-
ding self adaptive software. Formal methods may be involved in the automatic
synthesis of the program when adaptation is required. Formal methods may also
be useful in understanding the range of behaviors that a self adaptive program



Introduction: The First International Workshop on Self-Adaptive Software 7

may exhibit. Dusko Pavlovic’s paper ’Towards semantics of self adaptive soft-
ware’ [20] provides a first attempt at building a theoretical basis for self adaptive
software.

3.2 Self-Adaptive Software Compared to Control Systems

The straightforward characterization of self adaptive software as continual run-
time comparison of performance against a preset goal and subsequent adjustment
of the program so that performance is brought back towards the goal is very si-
milar in structure to a control system. The task of building self adaptive systems
may be much more like building a control system than it is to conventional soft-
ware development. We are trying to develop new methodologies for building
software that is robust to changes in the environment within certain limits and
we have observed that systems characterized as self adaptive are more control
like in structure than conventional program like. Since control systems and their
design are well understood it is hoped that some ideas can be borrowed from
control system design and adapted to self adaptive software. Two papers in this
collection deal with attempting to understand self adaptive software in terms
of control systems and the subsequent borrowing of ideas from control systems.
Alex Meng’s paper ’On Evaluating Self Adaptive Software’ [16] makes explicit
the relationship between control systems and self adaptive software and discusses
terminology and issues surrounding viewing software as a control system. The
Kokar et. al. paper entitled ’Mapping an Application to a Control Architecture:
Specification of the Problem’ takes a radar-based target tracking problem and
shows how it can be mapped onto a control system architecture [17].

3.3 Technologies for Self Adaptive Software

When a system is reconfigured at runtime such as by the replacement of one
set of sensors with another set undesirable transient effects may occur at the
point of switching. Gyula et. al. [9] investigate the management of such effects
in ’Transient Management in Reconfigurable Systems’.

A key notion of self adaptive software is that the software contains some
embedded account (or model) of its intention and of its environment. In ’Model-
Integrated Embedded Systems’ Bakey et. al. [1] describe a model based gene-
rative technology they call ’Model-Integrated Computing’ and show how the
technology is applicable to self adaptive software.

In ’Coordination of View Maintenance Policy Adaptation Decisions: A Nego-
tiation-Based Reasoning Approach’ Bose and Matthews [3] develop a negotiation
based reasoning model for adapting view maintenance policies to meet changes
in quality of service (QoS) needs.

While much attention has been given to robotic, sensor based, and embedded
applications for self adaptive software there is a role to be played in the network
computing environment. Network computing provides all of the attributes of a
naturally complex environment within a man made network. In ’Dynamic Self



8 P. Robertson, R. Laddaga, and H. Shrobe

Adaptation in Distributed Systems’ Ben-Shaul [10] describes two implemented
architectures that provide support for self adaptive software in Java.

Since the need for self adaptive software derives from running applications in
an unpredictable environment many of the applications of self adaptive software
involve real-time issues. One paper in the collection specifically addresses the
real-time issue. Musliner [18] describes in ’Imposing Real-Time Constraints on
Self Adaptive Controller Synthesis’ a system that can adapt by dynamically re-
synthesizing new controllers. Musliner shows how the synthesis process can be
managed so that reconfiguration can meet real-time deadlines.

3.4 Systems that Interpret Their Environment through Sensors

The remaining papers describe implemented self adaptive software systems that
involve sensors.

In ’Software Mode Changes for Continuous Motion Tracking’ Grupen et.
al. [6] describe a self adaptive motion tracking system that has redundant sensors
and the ability to adjust which sensors are best suited to tracking.

In ’Port-Based Adaptable Agent Architecture’ Khosla et. al. [13] describe an
architecture that supports self adaptive software through an agent architecture.
They go on to demonstrate the architecture on a multi-robot mapping problem.

In ’An architecture for self adaptation and its application to aerial image un-
derstanding’ Robertson [22] describes a self adaptive architecture that is tailored
to image understanding. The systems learns models from expert annotations of
images from a corpus and then uses those models to monitor performance of the
system on other images and to re-synthesize the program code when necessary
in order to produce good interpretations of the images.

In ’Self Adaptive Multi-Sensor Systems’ Reece [21] describes a system that
utilizes redundant sensors for image interpretation. Sensor performance is lear-
ned from test sets and qualitative reasoning (QR) models of the imaged envi-
ronment’s physics allows a theorem prover to synthesize interpretation code.

3.5 Conclusion

The workshop brought together a wide range of researchers involved in the pro-
jects described above and provided an opportunity for us to collect our thoughts
and experiences and access how far we have come with self-adaptive software,
what problems remain to be solved, and how to characterize self-adaptive sy-
stems in terms of a set of capabilities.

The final paper summarizes some of these discussions and provides a taxo-
nomy of capabilities and technologies and suggests areas where more research is
needed.



Introduction: The First International Workshop on Self-Adaptive Software 9

References

1. Arpad Bakay Akos Ledeczi and Miklos Maroti. Model-integrated embedded sy-
stems. In Robert Laddaga Paul Robertson and Howard E. Shrobe, editors, Self-
Adaptive Software. Spriger-Verlag, 2000.

2. Alan Bawden. Reification without evaluation. In Proceedings of the ACM Confe-
rence on LISP and Functional Programming, pages 342–351, 1988.

3. Prasanta Bose and Mark G. Matthews. Coordination of view maintenance policy
adaptation decisions: A negotiation-based reasoning approach. In Robert Laddaga
Paul Robertson and Howard E. Shrobe, editors, Self-Adaptive Software. Spriger-
Verlag, 2000.

4. C. Smith Brian. Reflection and semantics in a procedural language. Technical
Report 272, MIT Laboratory for Computer Science, January 1982.

5. C. Smith Brian. Reflection and semantics in lisp. In Proceedings 11th Annual ACM
Symposium on Principles of Programming Languages, Salt Lake City, Utah, pages
23–35, January 1984.

6. Elizeth Araujo Yunlei Yang Gary Holness Zhigang Zhu Barbara Lerner Rode-
ric Grupen Deepak Karuppiah, Patrick Deegan and Edward Riseman. Software
mode changes for continuous motion tracking. In Robert Laddaga Paul Robertson
and Howard E. Shrobe, editors, Self-Adaptive Software. Spriger-Verlag, 2000.

7. Jim des Rivieres and C. Smith Brian. The implementation of procedurally re-
flection languages. In Proceedings 1984 ACM Symposium on Lisp and Functional
Programming, Austin, Texas, pages 331–347, August 1984.

8. G. Daniel G. Kiczales, J. des Rivieres. The art of the Metaobject Protocol. MIT
Press, 1993.

9. Tam s Kov csh zy Gyula Simon and G bor P celi. Transient management in
reconfigurable systems. In Robert Laddaga Paul Robertson and Howard E. Shrobe,
editors, Self-Adaptive Software. Spriger-Verlag, 2000.

10. Ophir Holder Israel Ben-Shaul, Hovav Gazit and Boris Lavva. Transient manage-
ment in reconfigurable systems. In Robert Laddaga Paul Robertson and Howard E.
Shrobe, editors, Self-Adaptive Software. Spriger-Verlag, 2000.

11. P. Cointe J. Malenfant and C. Dony. Reflection in prototype-based object-oriented
programming languages. In Proceedings of the OOPSLA Workshop on Reflection
and Metalevel Architectures in Object-Oriented Programming, 1991.

12. S. E. Keene. Object-Oriented Programming in Common Lisp: A programmer’s
Guide to CLOS. Addison-Wesley, 1989.

13. Theodore Q. Pham Kevin R. Dixon and Pradeep K. Khosla. Port-based adaptable
agent architecture. In Robert Laddaga Paul Robertson and Howard E. Shrobe,
editors, Self-Adaptive Software. Spriger-Verlag, 2000.

14. Robert Laddaga. Self-adaptive software sol baa 98-12.
http://www.darpa.mil/ito/Solicitations/CBD 9812.html, 1998.

15. Robert Laddaga. Active software. In Robert Laddaga Paul Robertson and Ho-
ward E. Shrobe, editors, Self-Adaptive Software. Spriger-Verlag, 2000.

16. Alex C. Meng. On evaluating self-adaptive software. In Robert Laddaga
Paul Robertson and Howard E. Shrobe, editors, Self-Adaptive Software. Spriger-
Verlag, 2000.

17. Kenneth Baclawski Mieczyslaw M. Kokar, Kevin M. Passino and Jeffrey E. Smith.
Mapping an application to a control architecture: Specification of the problem.
In Robert Laddaga Paul Robertson and Howard E. Shrobe, editors, Self-Adaptive
Software. Spriger-Verlag, 2000.



10 P. Robertson, R. Laddaga, and H. Shrobe

18. David J. Musliner. Imposing real-time constraints on self-adaptive controller syn-
thesis. In Robert Laddaga Paul Robertson and Howard E. Shrobe, editors, Self-
Adaptive Software. Spriger-Verlag, 2000.

19. Leon J. Osterweil and Lori A. Clarke. Continuous self-evaluation for the self-
improvement of software. In Robert Laddaga Paul Robertson and Howard E.
Shrobe, editors, Self-Adaptive Software. Spriger-Verlag, 2000.

20. Dusko Pavlovic. Towards semantics of self-adaptive software. In Robert Laddaga
Paul Robertson and Howard E. Shrobe, editors, Self-Adaptive Software. Spriger-
Verlag, 2000.

21. Steven Reece. Self-adaptive multi-sensor systems. In Robert Laddaga Paul
Robertson and Howard E. Shrobe, editors, Self-Adaptive Software. Spriger-Verlag,
2000.

22. Paul Robertson. An architecture for self-adaptation and its application to aerial
image understanding. In Robert Laddaga Paul Robertson and Howard E. Shrobe,
editors, Self-Adaptive Software. Spriger-Verlag, 2000.

23. Howard Shrobe and Jon Doyle. Active trust management for autonomous adap-
tive survivable systems (atm’ for ass’s). In Robert Laddaga Paul Robertson and
Howard E. Shrobe, editors, Self-Adaptive Software. Spriger-Verlag, 2000.

24. G. Steele. Common Lisp: The Language. Digital Press, 1984.


	Preface
	Organizers
	Program Committee
	Introduction: The First International Workshop on Self-Adaptiv Software
	1 Introduction
	2 What is Self Adaptiv Software
	2.1 Benefits of a Self Adaptive Approach

	3 About the Papers
	3.1 Understanding Self Adaptive Software
	3.2 Self-Adaptive Software Compared to Control Systems
	3.3 Technologies for Self Adaptive Software
	3.4 Systems that Interpret Their Environment through Sensors
	3.5 Conclusion

	References


