
Preface

A large international conference, Intelligent Systems and Computer Engineering,
was held in Hong Kong, March 21–23, 2007, under the International MultiConfer-
ence of Engineers and Computer Scientists (IMECS) 2007. The IMECS 2007 is
organized by the International Association of Engineers (IAENG), a nonprofit inter-
national association for engineers and computer scientists. The IMECS conferences
serve as good platforms for the engineering community to meet with each other and
to exchange ideas. The conferences also strike a balance between theoretical and ap-
plication development. The conference committees have been formed with over two
hundred committee members who are mainly research center heads, faculty deans,
department heads, professors, and research scientists from over thirty countries. The
conferences are truly international meetings with a high level of participation from
many countries. The response that we have received for the multiconference is ex-
cellent. There have been more than one thousand one hundred manuscript submis-
sions for the IMECS 2007. All submitted papers have gone through the peer review
process and the overall acceptance rate is 58.46%.

This volume contains revised and extended research articles on intelligent sys-
tems and computer engineering written by prominent researchers participating in
the multiconference IMECS 2007. There is huge demand, not only for theories but
also applications, for the intelligent systems and computer engineering in the society
to meet the needs of rapidly developing top-end high technologies and to improve
the increasing high quality of life. Topics covered include automated planning, ex-
pert systems, machine learning, fuzzy systems, knowledge-based systems, computer
systems organization, computing methodologies, and industrial applications. The
papers are representative of these subjects. The book offers state-of-the-art tremen-
dous advances in intelligent systems and computer engineering and also serves as
an excellent reference work for researchers and graduate students working with in-
telligent systems and computer engineering.
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Chapter 2
Automatically Defined Groups for Knowledge
Acquisition from Computer Logs
and Its Extension for Adaptive Agent Size

Akira Hara, Yoshiaki Kurosawa, and Takumi Ichimura

2.1 Introduction

Recently, a large amount of data is stored in databases through the advance of com-
puter and network environments. To acquire knowledge from the databases is im-
portant for analyses of the present condition of the systems and for predictions of
coming incidents. The log file is one of the databases stored automatically in com-
puter systems. Unexpected incidents such as system troubles as well as the histories
of daily service programs’ actions are recorded in the log files. System adminis-
trators have to check the messages in the log files in order to analyze the present
condition of the systems. However, the descriptions of the messages are written in
various formats according to the kinds of service programs and application software.
It may be difficult to understand the meaning of the messages without the manuals
or specifications. Moreover, the log files become enormous, and important messages
are liable to mingle with a lot of insignificant messages. Therefore, checking the log
files is a troublesome task for administrators.

Log monitoring tools such as SWATCH [1], in which regular expressions for
representing problematic phrases are used for pattern matching, are effective for
detecting well-known typical error messages. However, various programs running in
the systems may be open source software or software companies’ products, and they
may have been newly developed or upgraded recently. Therefore, it is impossible to
detect all the problematic messages by the predefined rules. In addition, in order to
cope with illegal use by hackers, it is important to detect unusual behavior such as
the start of the unsupposed service program, even if the message does not correspond
to the error message. To realize this system, the error-detection rules depending on
the environment of the systems should be acquired adaptively by means of evolution
or learning.

Genetic programming (GP) [2] is one of the evolutionary computation meth-
ods, and it can optimize the tree structural programs. Much research on extracting
rules from databases by GP has been done in recent years. In the research [3–5],
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the tree structural program in a GP individual represents an IF-THEN rule. In order
to acquire multiple rules, we had previously proposed an outstanding method that
united GP with cooperative problem-solving by multiple agents. We called this
method automatically defined groups (ADG) [6, 7]. By using this method, we had
developed the rule extraction algorithm from the database [8–12]. In this system,
two or more rules hidden in the database, and respective rules’ importance can be
acquired by cooperation of agents. However, we meet a problematic situation when
the database has many latent rules. In this case, the number of agents runs short
for search and for evaluation of each rule because the number of agents is fixed in
advance. In order to solve this problem, we have improved ADG so that the method
can treat the variable number of agents. In other words, the number of agents in-
creases adaptively according to the acquired rules.

In Sect. 2.2, we explain the algorithm of ADG, and the application to rule ex-
traction from classified data. In Sect. 2.3, we describe how to extract rules from log
files by ADG, and show a preliminary experiment using a centralized control server
for many client computers. In Sect. 2.4, we describe an issue in the case where we
apply the rule-extracting algorithm to a large-scale log file, and then we propose the
ADG with variable agent size for solving the problem. We also show the results of
experiments using the large-scale log files. In Sect. 2.5, we describe conclusions and
future work.

2.2 Rule Extraction by ADG

2.2.1 Automatically Defined Groups

In the field of data processing, to cluster the enormous data and then to extract
common characteristics from each cluster of data are important for knowledge ac-
quisition. In order to accomplish this task, we adopt a multiagent approach, in which
agents compete with one another for their share of the data, and each agent gener-
ates a rule for the assigned data; the former corresponds to the clustering of data,
and the latter corresponds to the rule extraction in each cluster. As a result, all rules
are extracted by multiagent cooperation. However, we do not know how many rules
subsist in the given data and how data should be allotted to each agent. Moreover,
as we prepare abundant agents, the number of tree structural programs increases in
an individual. Therefore, search performance declines.

In order to solve these problems, we have proposed an original evolutionary
method, automatically defined groups. The method is an extension of GP, and it op-
timizes both the grouping of agents and the tree structural program of each group in
the process of evolution. By grouping multiple agents, we can prevent the increase of
search space and perform an efficient optimization. Moreover, we can easily analyze
agents’ behavior group by group. Respective groups play different roles from one
another for cooperative problem-solving. The acquired group structure is utilized
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Fig. 2.1 Concept of automatically defined groups

for understanding how many roles are needed and which agents have the same role.
That is, the following three points are automatically acquired by using ADG.

• How many groups (roles) are required to solve the problem?
• To which group does each agent belong?
• What is the program of each group?

In the original ADG, each individual consists of a predefined number of agents.
The individual maintains multiple trees, each of which functions as a specialized
program for a distinct group as shown in Fig. 2.1. We define a group as the set of
agents referring to the same tree for the determination of their actions. All agents
belonging to the same group use the same program.

Generating an initial population, agents in each GP individual are divided into
several groups at random. Crossover operations are restricted to corresponding tree
pairs. For example, a tree referred to by agent 1 in an individual breeds with a
tree referred to by agent 1 in another individual. This breeding strategy is called
restricted breeding [13–15]. In ADG, we also have to consider the sets of agents
that refer to the trees used for the crossover. The group structure is optimized
by dividing or unifying the groups according to the inclusion relationship of the
sets.

The concrete processes are as follows. We arbitrarily choose an agent for two
parental individuals. A tree referred to by the agent in each individual is used for
crossover. We use T and T ′ as expressions of these trees, respectively. In each
parental individual, we decide a set A(T ), the set of agents that refer to the se-
lected tree T . When we perform a crossover operation on trees T and T ′, there are
the following three cases.

(a) If the relationship of the sets is A(T ) = A(T ′), the structure of each individual
is unchanged.

(b) If the relationship of the sets is A(T ) ⊃ A(T ′), the division of groups takes
place in the individual with T , so that the only tree referred to by the agents in
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Fig. 2.2 Examples of crossover

A(T )∩A(T ′) can be used for crossover. The individual which maintains T ′ is
unchanged. Figure 2.2 (type b) indicates an example of this type of crossover.

(c) If the relationship of the sets is A(T ) �⊃ A(T ′) and A(T ) �⊂ A(T ′), the unification
of groups takes place in both individuals so that the agents in A(T )∪ A(T ′)
can refer to an identical tree. Figure 2.2 (type c) shows an example of this
crossover.

We expect that the search works efficiently and the adequate group structure is
acquired by using this method.
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2.2.2 Rule Extraction from Classified Data

In some kinds of databases, each datum is classified into the positive or negative
case (or more than two categories). For example, patient diagnostic data in hospitals
are classified into some categories according to their diseases. It is an important task
to extract characteristics for a target class. However, even if data belong to the same
class, all the data in the class do not necessarily have the same characteristics. A
part of a dataset might show a different characteristic. It is possible to apply ADG to
rule extraction from such classified data. In ADG, multiple tree structural rules are
generated evolutionally, and each rule represents the characteristic of a subset in the
same class of data. Figure 2.3 shows a concept of rule extraction using ADG. Each
agent group extracts a rule for the divided subset, and the rules acquired by multiple
groups can cover all the data in the target class. Moreover, when agents are grouped,
the load of each agent and predictive accuracy of its rule are considered. As a result,
a lot of agents come to belong in the group with the high use-frequency and high-
accuracy rule. In other words, we can regard the number of agents in each group as
the important degree of the rule. Thus, two or more rules and the important degree
of respective rules can be acquired at the same time. This method was applied to
medical data and the effectiveness has been verified [8–11].

Database

Target Class

Rule for
subset 1

Rule for
subset 2 

Rule for
subset 3 

An individual of ADG-GP

Grouping

Agent

Fig. 2.3 Rule extraction using ADG
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2.3 Knowledge Acquisition from Log Files by ADG

2.3.1 How to Extract Rules from Unclassified Log Messages

We apply the rule extraction method using ADG to detect trouble in computer sys-
tems from log files. In order to use the method described in the previous section,
we need supervised information for its learning phase. In other words, we have to
classify each message in the log files into two classes: normal message class and
abnormal message class indicating system trouble. However, this is a difficult task
because complete knowledge for computer administration is needed and log data
are of enormous size. In order to classify log messages automatically into the ap-
propriate class, we consider a state transition pattern of computer system operation.
We focus on the following two different states and make use of the difference of the
states as the supervised information.

1. Normal state. This is the state in the period of stable operation of the computer
system. We assume that the administrators keep good conditions of various sys-
tem configurations in this state. Therefore, frequently observed messages (e.g.,
“Successfully access,” “File was opened,” etc.) are not concerned with the error
messages. Of course, some insignificant warning messages (e.g., “Short of paper
in printer,” etc.) may sometimes appear.

2. Abnormal state. This is the state in the period of unstable operation of the com-
puter system. The transition to the abnormal state may happen due to hardware
trouble such as hard disk drive errors, or by restarting service programs with new
configurations in the current system. Moreover, some network security attacks
may cause the unstable state. In this state, many error messages (e.g., “I/O error,”
“Access denied,” “File not found,” etc.) are included in the log files. Of course,
the messages observed in the normal state also appear in the abnormal state.

The extraction of rules is performed by using log files in the respective states.
First, we define the base period of the normal state, which seems to be stable, and
define the testing period, which might be in the abnormal state. Then we prepare the
two databases. One is composed of log messages in the normal state period, and the
other is composed of log messages in the abnormal state period. By evolutionary
computations, we can find rules, which respond to the messages appearing only in
the abnormal state.

For knowledge representation to detect a remarkable problematic case, we use
the logical expressions, which return true only to such problematic messages. The
tagging procedure using regular expressions as described in [16] was used for the
preprocessing to the log files and the representation of the rules. Figure 2.4 shows
an illustration of the preprocessing. Each message in the log files is separated into
several fields (e.g., daemon name field, host name field, comment field, etc.) by
the preprocessing, and each field is tagged. Moreover, words that appear in the log
messages are registered in the word lists for respective tags beforehand.
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[server1 : /var/log/messages] 

2005/11/14  12:58:16  server1  named  unexpected
RCODE(SERVFAIL) resolving ’host.there.ne.jp/A/IN’ 

2006/12/11  14:34:09  server1  smbd  write_data:
write failure in writing to client. Error Connection rest by peer 

:

preprocessing

<HOST> server1 </HOST> <LOGNAME> messages </LOGNAME>
<DATE> 2005/11/14 </DATE> <TIME> 12:58:16 </TIME>
<COMP> server1 </COMP> <DAEMON> named </DAEMON> 
<EXP> unexpected RCODE(SERVFAIL) resolving

<HOST> server1 </HOST> <LOGNAME> messages </LOGNAME>
<DATE> 2006/12/11 </DATE> <TIME>14:34:09 </TIME>
<COMP> server1 </COMP> <DAEMON> smbd </DAEMON>
<EXP> write_data: write failure in writing to client.

       Error Connection rest by peer </EXP> 
:

Log FIles

(Tagging)

HOST Tag

1. named
2. smbd
3. nfsd

:

1. unexpected
2. RCODE
3. SERVFAIL
4. resolving
5. host.there.. .
6. write
7. data
8. failure

:

1. server1
2. server2

:

DAEMON Tag EXP Tag

Word Lists

’host.there.ne.jp/A/IN’ </EXP> 

Fig. 2.4 Preprocessing to log files

The rule is made by the conjunction of multiple terms, each of which judges
whether the selected word is included in the field of the selected tag. The following
expression is an example of the rule.

(and (include <DAEMON> 3)(include <EXP> 8))

We assume that the word “nfsd” is registered third in the word list for the
<DAEMON> tag, and the word “failure” is registered eighth in the word list for
the <EXP> tag. For example, this rule returns true to the message including the
following strings.

<DAEMON>nfsd</DAEMON> <EXP>Warning:access failure</EXP>

Multiple trees in an individual of ADG represent the respective logical expres-
sions. Each message in the log files is input to all trees in the individual. Then,
calculations are performed to determine whether the message satisfies each logical
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expression. The input message is regarded as the problematic case if one or more
trees in the individual return true. In contrast, the input message is not regarded as
the problematic case if all trees in the individual return false. Therefore, all the rules
should return false to the messages that appear in both states.

The fitness is calculated based on the accuracy for error detection and load bal-
ancing among agents. High accuracy for error detection means that the rules detect
as many messages as possible in the abnormal state and react to as few messages
as possible in the normal state. The concept of each agent’s load arises from the
viewpoint of cooperative problem-solving by multiple agents. The load is calcu-
lated from the adopted frequency of each group’s rule and the number of agents in
each group. The adopted frequency of each rule is counted when the rule returns
true to the messages in the abnormal state log. If multiple trees return true for a
message, the frequency of the tree with more agents is counted. When the agent a
belongs to the group g, the load of the agent wa is defined as follows,

wa =
fg

ng
Agent

, (2.1)

where ng
Agent represents the number of agents that belong to group g, and fg repre-

sents the adopted frequency of g. For balancing every agent’s load, the variance of
the loads Vw as shown in (2.2) should be minimized.

Vw = 1
NAgent

{
∑

NAgent
i=1 (w̄−wi)2

}
, (2.2)

w̄ = 1
NAgent

∑
NAgent
i=1 wi, (2.3)

where NAgent represents the number of agents in the individual. By load balanc-
ing, more agents are allotted to the group that has a greater frequency of adoption.
On the other hand, the number of agents in the less-adopted group becomes small.
Therefore, the number of agents of respective rules indicates how general each rule
is for the detection of problematic messages. Moreover, when usual messages in the
normal state are judged to be problematic messages through a mistake of a rule,
it is considered that the number of agents who support the rule should be small.
To satisfy the requirements mentioned above, we maximize the fitness f defined as
follows.

f =
HAbn/NAbn

HNorm/NNorm

−β
∑NNorm

fault agent
HNorm ×NAgent

−δ Vw. (2.4)

In this equation, NAbn and NNorm represent the number of messages in the abnormal
state and normal state, respectively. HAbn and HNorm represent the frequency that
one or more trees in the individual return true for abnormal state logs and normal
state logs, respectively. fault agent represents the number of agents who support the
wrong rule, when the rule returns true for messages in the normal state. Therefore,
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the second term represents the average rate of agents who support the wrong rules
when misrecognition occurs. By this term, the allotment of agents to a rule with
more misrecognition will be restrained. By the third term, load balancing of agents
will be achieved. In addition, in order to inhibit the redundant division of groups,
the fitness value is modified according to the number of groups, G (G ≥ 1), in the
individual as follows,

f ← γG−1 × f (0 < γ < 1), (2.5)

where γ represents the discount rate for the fitness. This equation means that the
fitness is penalized according to the increase of G.

By evolution, one of the multiple trees learns to return true for problematic mes-
sages that appear only in the abnormal state logs, and all trees learn to return false
for normal messages that appear both in the normal and abnormal state logs. More-
over, agents are allotted to respective rules according to the adopted frequency and
the low rate of misrecognition. Therefore, the rule with more agents is the typical
and accurate error-detection rule, and the rule with less agents is a specialized rule
for the rare case.

2.3.2 Preliminary Experiment

In order to examine the effectiveness of the rule extraction method, we apply the
method to the log files in an actual computer environment. As the actual log files, the
logs in the centralized control server for many client computers are used. The server
can apply management operations such as boot or shutdown to client machines all
at once. The numbers of messages included in log files, NNorm and NAbn, are 2992
and 728, respectively.

The parameter settings are as follows: population size is 300. The number of
agents in each individual at initial population is 50. The respective weights in (2.4)
and (2.5) are β = 0.0001, δ = 0.0001, and γ = 0.9999. These parameter values were
determined by preliminary trials.

As the result of a tagging procedure using regular expressions, six kinds of tags
(HOST, LOGNAME, SORT, FUNC, EXP, and DATA) are attached to the messages
in the log files. When we make word lists for respective tags, the largest word list
size is 81 for the EXP tag. Figure 2.5 illustrates the generated word lists for respec-
tive tags.

Table 2.1 shows GP functions and terminals for these experiments. We impose
constraints on the combination of these symbols, such as strongly typed genetic
programming [17]. For example, terminal symbols do not enter directly in the ar-
guments of the and function. Crossovers and mutations that break the constraints
are not performed. In addition, the sizes of word lists for respective tags are differ-
ent from one another. Therefore, the value in the second argument of the include
function may exceed the size of the word list for the corresponding tag. In that case,
the remainder in dividing the value by the word list size is used for the selection
of a word.



24 A. Hara et al.

HOST Tag

0. PCmonitor
0. INFO
1. WARNING

:
5. NOTICE

0. srv1

LOGNAME Tag SORT Tag
0. poweron
1. pcvsched

:
:

20. off

FUNC Tag
0. restarting
1. all
2. booting
3. failure

:
:

80. detect

EXP Tag
0.  0, 0, 1 
1.  1, 0, 0 
2.  1, 1, 1 

:
:

59.  2, 2, 2, 2 

DATA Tag

Fig. 2.5 Word lists for the centralized control server’s log

Table 2.1 GP functions and terminals
Symbol #Args Functions

and 2 arg0 ∧ arg1
include 2 If Tag arg0 includes arg1

(Word) then T else F
<HOST>,<EXP>,. . . 0 Tag name
0,. . . ,N-1 0 Select corresponding word

from word list. N is the
number of words in list.

2

3

4

5

6

7

8

9

10

11

12

0 50 100 150 200 250 300
Generation
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Fig. 2.6 Change of the average number of groups

As the result of a evolutionary optimization, multiple rules, which respond to
the messages appearing only in the abnormal state, were acquired successfully.
Figure 2.6 illustrates the change of the average number of groups. The number of
groups corresponds to the number of extracted rules. As a result, 50 agents in the
best individual were divided into eight groups. The best individual detected 157
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Rule1 (42agents): (and (and (include <LOGNAME> PCmonitor)
             (include <HOST> srv1))(and (include <EXP> booting)
             (include <SORT> INFO)))

Rule2 ( 2agents): (include <DATA> 2,0,2,2,2,2,2,2,2,2,2,2,2,2,2,
                   2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)

Rule3 ( 1agent) : (include <EXP> Ftrans)

Rule4 ( 1agent) : (and (include <LOGNAME> PCmonitor)
            (include <EXP> dst=/usr/aw/maya7.0/scripts/startup))

Rule5 ( 1agent) : (include <DATA> 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
                   2,2,2,2,2,2,2,2,2,2,0,2,0,2,2,2,2,2,2,2,2)

Rule6 ( 1agent) : (and (include <EXP> rexec)
                       (include <LOGNAME> PCmonitor))

Rule7 ( 1agent) : (include <EXP> Rexec)

Rule8 ( 1agent) : (include <DATA> 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
                   2,2,2,2,2,2,2,2,2,2,0,2,0,2,0,2,0,2,0,2,0)

Fig. 2.7 Acquired rules for the centralized control server

<HOST>srv1</HOST> <LOGNAME>PCmonitor</LOGNAME> 
<SORT>INFO[0]</SORT> 
<FUNC>ftrans(470).boot_request_ftrans</FUNC> 
<EXP>pc300 Already booting</EXP>

<HOST>srv1</HOST> <LOGNAME>PCmonitor</LOGNAME> 
<SORT>INFO[0]</SORT><FUNC>poweron(31968).main</FUNC> 
<EXP>322ALL</EXP> <DATA>2,0,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2</DATA>

Fig. 2.8 Examples of detected messages by the acquired rules

messages as problematic ones from the abnormal state log. On the other hand, the
best individual detected no messages in the normal log.

Figure 2.7 shows the acquired rules in the best individuals. These rules are
arranged according to the number of agents, and the second arguments of the
include function are replaced by the corresponding words. Figure 2.8 shows ex-
amples of detected messages by the acquired rules. For example, the word “2, 0, 2,
. . . , 2” in the second rule in Fig. 2.7 represents a part of an output message, which
is returned when performing the “power on” operation for all the client machines.
According to an system administration expert, the values delimited by a comma
correspond to the conditions of respective machines, and the value “0” means the
occurrence of a failure of the operation. Thus, the proposed method can extract
error-detection rules without expertise by utilizing the characteristic that such error
messages do not appear in the normal state.

In addition, the first rule detects a large part of problematic messages (136
messages) from the abnormal state log. That is, the first rule can be considered as
the typical error-detection rule for the environment. As shown in Fig. 2.7, the great
mass of agents is assigned to the search of the rule. Thus, the number of agents in
each group represents the important degree of the corresponding rule.
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2.4 ADG with Variable Agent Size

2.4.1 Issue in Applying ADG to Large-Scale Logs

As mentioned in the previous section, we can extract problematic messages from
actual log files by ADG without expertise on administration. As another experiment,
we applied the method to large-scale log files. The log files used in the experiment
were picked up by a network file server for many client computers. The numbers of
messages included in log files NNorm and NAbn are 32,411 and 17,561, respectively.
As a result, 44 rules were extracted by ADG using 50 agents as shown in Fig. 2.9.
This result indicates an issue of this method. Only one agent was allotted for most
rules because the number of prepared agents is insufficient. Even the rule with the
maximum number of agents has only three agents. It was impossible to understand
minutely the difference of the importance of the rules.

The above results show that the capability of evaluating the important degree
of each rule is correlated with the number of agents in an individual. Each agent
group extracts one rule. Therefore, the maximum of extractable rules is equal to the
number of agents. We have to use as many agents as the supposed rules at least.
Moreover, the rules’ importance can be judged by the number of agents. Therefore,
to evaluate rules in detail, more agents are needed so that the number of agents can
exceed the extracted number of rules sufficiently. In short, the problem is that the
number of agents is not sufficient to manage the rules. However, it is impossible to
estimate the extracted number of rules because it is difficult to set a large enough
number of agents beforehand.

2.4.2 ADG with Variable Agent Size

In order to solve the problem on the number of agents, we set that the number
of agents dynamically increases to be more than multiples of the number of the
acquired rules. The procedures for increasing agents are as follows.

In the best individual of each generation t, we find Nt
Rules, the number of rules that

return true for problematic messages. When the number of agents in each individual

Rule1 ( 3agents): (include <DAEMON> smbd)
Rule2 ( 3agents): (include <EXP> race)
Rule3 ( 2agents): (include <EXP> nrpc)
Rule4 ( 1agent) : (include <EXP> NOTLIB)
:
:
Rule42( 1agent) : (include <DAEMON> gdm(pam_unix))
Rule43( 1agent) : (include <EXP Connection)
Rule44( 1agent) : (include <EXP> I/O)

Fig. 2.9 Acquired rules for a large-scale log files
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at the generation t is Nt
Agents, the condition for increasing agents is expressed as

follows,
Nt

Agents < kNt
Rules (k ≥ 1.0), (2.6)

where k is the parameter for controlling the agent size. When this condition is satis-
fied, the number of agents in each individual is incremented by one. The flow of the
evolutionary process is shown below.

(a) Initialization of individuals.
(b) Fitness evaluation of each individual.
(c) Genetic operations

(Selection + Elitist Strategy, Crossover, Mutation).
(d) Operation for increasing agents.

(We find the number of rules and agents in the best individual. If the condition
for increasing agents is satisfied, one agent is added to respective individuals.)

(e) If termination condition is not satisfied, return to (b).

When the number of extracted rules increases to NRules, the number of agents
finally reaches kNRules by the above operations.

2.4.3 Experiments for Large-Scale Logs

2.4.3.1 Comparison Among Variable/Fixed Agent Size Methods

We apply the proposed method to rule extraction from large-scale log files, where
the problem concerning the number of agents previously occurred as described in
Sect. 2.4.1. We set the number of agents in each individual at initial population at 50,
and set the parameter k in the condition for increasing agents at 3.0. For comparison
with fixed large size of agents, we also perform another experiment using ADG with
fixed 200 agents in each individual.

The parameter settings are as follows: population size is 300. The respective
weights in (2.4) and (2.5) are β = 0.001, δ = 0.01, and γ = 0.9999. These parameter
values were determined by preliminary experiments.

As a result, agents in the best individual were divided into 72 groups by the
proposed method. That is, we could get 72 rules. The number of agents was 216 at
the last generation. Figure 2.10 shows the best fitness curves by the conventional
ADG [16] using fixed 50 or 200 agents and the proposed ADG with variable agent
size. We can see from this figure that the search of any method converged by 1000
generations, and the proposed method got better fitness value than the conventional
fixed agent size methods. Figure 2.11 shows the change of the number of extracted
rules and agents by the proposed method. We can see from this figure that 50 agents
are enough for search upto 127 generations, but after the generation the number of
agents increases according to the number of rules so as not to be short.
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When the number of the extracted rules converged at about the 950th generation,
the number of agents also converged. Table 2.2 shows some of the acquired rules
by the conventional method and proposed method. Respective rules correspond to
the tree structural programs in the best individual. Table 2.2 also shows the number
of agents of each rule. These rules are arranged according to the number of agents.
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Table 2.2 Some acquired rules and the number of agents

ID Rule #Agents #Agents
fixed (50) variable

1 (Include DAEMON smbd) 3 15
2 (Include EXP race) 3 12
3 (Include EXP nrpc) 2 14
4 (Include EXP NOTLB) 1 9
...
42 (Include DAEMON 1 2

gdm(pam unix))
43 (Include EXP Connection) 1 1
44 (Include EXP I/O) 1 1
...
72 (Include EXP Journalled) – 1

<HOST> fsv </HOST> <LOGNAME> messages </LOGNAME>
<DATE>2006/04/19</DATE> <TIME>14:15:37</TIME>
<COMP> fsv </COMP> <DAEMON> smbd </DAEMON>
<EXP> decode_pac_date: failed to verify PAC server
 signature </EXP>

<HOST> fsv </HOST> <LOGNAME> messages </LOGNAME>
<DATE>2006/04/19</DATE> <TIME>14:34:09</TIME>
<COMP> fsv </COMP> <DAEMON> smbd </DAEMON>
<EXP> write_data: write failure in writing to
client. Error Connection reset by peer </EXP>

<HOST> fsv </HOST> <LOGNAME> messages </LOGNAME>
<DATE>2006/04/19</DATE> <TIME>16:43:30</TIME>
<COMP> fsv </COMP> <DAEMON> kernel </DAEMON>
<EXP> I/O error: dev 08:f0, sector 0 </EXP>

Fig. 2.12 Log messages detected by the acquired rules

In the conventional method, the number of agents for each rule ranges from one to
three, and most rules (rule ID 4, 5, . . . , and 44) have only one agent. Therefore, we
cannot list the rules in order of importance. In the proposed method, the number
of agents for each rule ranges widely from 1 to 15 by the increase of agents. This
result shows that the proposed method is useful for the minute evaluation of the
importance of the respective rules.

Furthermore, the number of acquired rules by the proposed method is 72. On
the other hand, the number of rules by the conventional method is 44. That is, we
can get more rules by using a variable number of agents. This result indicates that
the search performance of the proposed method becomes better with the increase of
agents, and the new rule can be acquired. Therefore, the proposed method shows a
higher fitness value than the conventional method as shown in Fig. 2.10. Examples
of log messages detected by the acquired rules are shown in Fig. 2.12.
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2.4.3.2 Effect of Parameter for Agent Size

In order to examine the effect of the parameter k used in condition (2.6) for increas-
ing agents, we perform experiments with various values of k. Figure 2.13 shows the
number of extracted rules of four kinds of k (k = 1.0,2.0,3.0, and 4.0). We can see
from this figure that 44 rules, 56 rules, 72 rules, and 75 rules were extracted, respec-
tively. In the case of k = 1.0, the condition (2.6) for increasing agents had not been
satisfied in the evolutionary process, and the number of agents remains 50 for the
initial individual. As the value of k increases from 1.0 to 3.0, the number of rules
also increases. That is, the more agents are used for evolutionary search, the more
rules can be acquired. However, the number of acquired rules in k = 4.0 is almost
the same as that in k = 3.0. To determine the adequate value of k adaptively is one
of the challenges for improving the method.

2.5 Conclusions and Future Work

In this research, the mechanism where the number of agents increases in proportion
to the number of discovered rules was introduced to the ADG method. As a result,
two good effects were observed. One effect is that it becomes possible to evaluate
the importance of respective rules in detail, and the other is that the number of ex-
tracted rules increases. In these experiments, we set that the number of agents should
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be more than three times the number of extracted rules. We have to examine an ap-
propriate criterion for increasing the number of agents. Moreover, in the present
fitness function, agents are allotted to respective rules from the viewpoints of load
balancing of agents and from the viewpoint of the decrease of agents who support
the wrong rules. As a result, the number of agents becomes an index of the impor-
tance for each rule, in which both the frequency of use and accuracy are considered.
However, when log information is treated, not only the occurrence frequency but
also the degree of the influence on computer systems becomes important. We have
to investigate the way to introduce other viewpoints (e.g., risk or urgency level, etc.)
into the fitness function, so that the number of agents can become a more profitable
index.
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