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O

A Primer on Ordered Sets and Lattices

This introductorychapter serves as a convenient source of reference for certain
basic aspects of complete lattices needed in what follows. The experienced
readermaywish to skip directly toChapter I and the beginning of the discussion
of the main topic of this book: continuous lattices anddomains.
SectionO-1 fixes notation, while SectionO-2 defines complete lattices, com-

plete semilattices and directed complete partially ordered sets (dcpos), and
lists a number of examples which we shall often encounter. The formalism of
Galois connections is presented in Section 3. This not only is a very useful
general tool, but also allows convenient access to the concept of a Heyting
algebra. In Section O-4 we briefly discuss meet continuous lattices, of which
both continuous lattices and complete Heyting algebras (frames) are (overlap-
ping) subclasses. Of course, the more interesting topological aspects of these
notions are postponed to later chapters. In Section O-5 we bring together for
ease of referencemany of the basic topological ideas that are scattered through-
out the text and indicate how ordered structures arise out of topological ones.
To aid the student, a few exercises have been included. Brief historical notes
and references have been appended, but we have not tried to be exhaustive.

O-1 Generalities and Notation

Partiallyorderedsetsoccureverywhere inmathematics, but it isusuallyassumed
that the partial order isantisymmetric. In the discussion of nets and directed
limits, however, it is not always so convenient to assume this property. We
begin, therefore, with somewhat more general definitions.

DefinitionO-1.1. Consider a setL equippedwith a reflexive and transitive re-
lation≤. Such a relationwill be called apreorderandL apreordered set.We say

1



2 O A Primer on Ordered Sets and Lattices

thata is a lower boundof a setX ⊆ L, andb is anupper bound, provided that

a ≤ x for all x ∈ X, and
x ≤ b for all x ∈ X, respectively.

A subsetD of L is directedprovided it is nonempty and every finite subset
of D has an upper bound inD. (Aside from nonemptiness, it is sufficient to
assume that everypair of elements inL has an upper bound inL.) Dually, we
call a nonempty subsetF of L filtered if every finite subset ofF has a lower
bound inF .
If the set of upper bounds ofX has a unique smallest element (that is, the set

of upper bounds contains exactly one of its lower bounds), we call this element
the least upper boundand write it as

∨
X or supX (for supremum). Similarly

thegreatest lower boundis written as
∧

X or inf X (for infimum); we will not
be dogmatic in our choice of notation. The notationx =∨↑ X is a convenient
device to express that, firstly, the setX is directed and, secondly,x is its least
upper bound. In the case of pairs of elements it is customary to write

x ∧ y = inf {x, y},
x ∨ y = sup{x, y}.

These operations are also often calledmeetand join, and in the case of meet
the multiplicative notationxy is common and often used in this book. �

Definition O-1.2. A net in a setL is a function j 
→ xj : J → L whose
domainJ is a directed set. (Nets will also be denoted by (xj ) j∈J , by (xj ), or
even byxj , if the context is clear.)
If the setL also carries a preorder, then the netxj is calledmonotone(resp.,

antitone), if i ≤ j always impliesxi ≤ xj (resp.,xj ≤ xi ).
If P(x) is aproperty of theelementsx ∈ L,wesay thatP(xj ) holdseventually

in the net if there is aj0 ∈ J such thatP(xk) is true wheneverj0 ≤ k.
The next concept is slightly delicate: ifL carries a preorder, then the netxj

is adirected netprovided that for each fixedi ∈ J one eventually hasxi ≤ xj .
A filtered netis defined dually. �

Every monotone net is directed, but the converse may fail. Exercise O-1.12
illustrates pitfalls to avoid in defining directed nets. The next definition gives
us some convenient notation connected with upper and lower bounds. Some
important special classes of sets are also singled out.

Definition O-1.3. Let L be a set with a preorder≤. ForX ⊆ L andx ∈ L we
write:

(i) ↓X = {y ∈ L : y ≤ x for somex ∈ X};
(ii) ↑X = {y ∈ L : x ≤ y for somex ∈ X};
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(iii) ↓x = ↓{x};
(iv) ↑x = ↑{x}.

We also say:

(v) X is a lower setiff X = ↓X;
(vi) X is anupper setiff X = ↑X;
(vii) X is anideal iff it is a directed lower set;
(viii) X is afilter iff it is a filtered upper set;
(ix) an ideal isprincipal iff it has a maximum element;
(x) a filter isprincipal iff it has a minimum element;
(xi) Id L (resp., FiltL) is the set of all ideals (resp. filters) ofL;
(xii) Id0 L = Id L ∪ {Ø};
(xiii) Filt 0 L = Filt L ∪ {Ø}. �

Note that the principal ideals are just the sets↓x for x ∈ L. The set of lower
bounds of a subsetX ⊆ L is equal to the set

⋂{↓x: x ∈ X}, and this is the
same as the set↓inf X in case infX exists. Note, too, that

X ⊆ ↓X = ↓(↓X),

and similarly for↑X.
Remark O-1.4. For a subset X of a preordered set L the following are
equivalent:

(1) X is directed;
(2) ↓X is directed;
(3) ↓X is an ideal.

Proof: (2) iff (3): By Definition O-1.3.
(1) implies (2): If A is a finite subset of↓X, then there is a finite subsetB

of X such that for eacha ∈ A there is ab ∈ B with a ≤ b by O-1.3(i). By (1)
there is inX an upper bound ofB, and this same element must also be an upper
bound ofA.
(2) implies (1): IfA is a finite subset ofX, it is also contained in↓X; therefore,

by (2), there is an upper boundy ∈ ↓X of A. By definition y ≤ x ∈ X for
somex, and thisx is an upper bound ofA. �

Remark O-1.5. The following conditions are equivalent for L and X as in
O-1.4:

(1) supX exists;
(2) sup↓X exists.
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And if these conditions are satisfied, thensupX = sup↓X. Moreover, if every
finite subset of X has a sup and if F denotes the set of all those finite sups, then
F is directed, and(1) and (2) are equivalent to

(3) supF exists.

Under these circumstances,supX = supF. If X is nonempty, we need not
assume the empty sup belongs to F.

Proof: Since, by transitivity and reflexivity, the setsX and↓X have the same
set of upper bounds, the equivalence of (1) and (2) and the equality of the sups
are clear. Now suppose that supA exists for every finiteA ⊆ X and thatF is
the set of all these sups. SinceA ⊆ B implies supA ≤ supB, we know thatF
is directed. ButX ⊆ F , and any upper bound ofX is an upper bound ofA ⊆ X;
thus, the setsX andF have the same set of upper bounds. Theequivalence of
(1) and (3) and the equality of the sups is again clear, also in the nonempty case.

�

The – rather obvious – theme behind the above remark is that statements about
arbitrary sups can often be reduced to statements about finite sups and sups of
directed sets. Of course, both O-1.4 and O-1.5 have straightforward duals.

Definition O-1.6. A partial order is a transitive, reflexive, and antisymmetric
relation≤. (This last meansx ≤ y andy ≤ x always implyx = y.) A partially
ordered set, or posetfor short, is a nonempty setL equipped with a partial
order≤. We say thatL is totally ordered, or achain, if all elements ofL are
comparable under≤ (that is,x ≤ y or y ≤ x for all elementsx, y ∈ L).
An antichainis a partially ordered set in which any two different elements are
incomparable, that is, in whichx ≤ y iff x = y. �

We have remarked informally on duality several times already, and the next
definition makes duality more precise.

Definition O-1.7. For R ⊆ L × L any binary relation on a setL, we define
theopposite relation Rop (sometimes: theconverse relation) by the condition
that, for allx, y ∈ L, we havexRopy iff yRx.
If in (L ,≤), a set equipped with a transitive, reflexive relation, the relation

is understood, then we writeLop as short for (L ,≤op). �

The reader should note that ifL is a poset or a chain, then so isLop. One should
also be aware how the passage fromL to Lop affects upper and lower bounds.
Similar questions of duality are also relevant to the next (standard) definition.
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Definition O-1.8. An inf semilatticeis a posetS in which any two elements
a,b have an inf, denoted bya∧ b or simply byab. Equivalently, a semilattice
is a poset in which every nonempty finite subset has an inf. Asup semilatticeis
a posetS in which any two elementsa,b have a supa ∨ b or, equivalently, in
which every nonempty finite subset has a sup. A poset which is both an inf
semilattice and a sup semilattice is called alattice.
As we will deal with inf semilattices very frequently, we adopt the shorter

expression “semilattice” instead of “inf semilattice”.
If a posetL has a greatest element, it is called theunit or top element ofL

and is written as 1 (or, rarely, as�). The top element is the inf of the empty
set (which, if it exists,is the same as supL). A semilattice with aunit is called
unital. If L has a smallest element, it is called thezeroor bottomelement ofL
and is written 0 (or⊥). The bottom element is the sup of the empty set (which,
if it exists, isthe same as infL). �

Note that in a semilattice an upper set is a filter iff it is a subsemilattice. A dual
remark holds for lower sets and ideals in sup semilattices. We turn now to the
discussion of maps between posets.

Definition O-1.9. A function f : L → M between two posets is calledorder
preservingormonotoneiff x ≤ y always impliesf (x) ≤ f (y). A one-to-one
function f : L → M where bothf and f −1 are monotone is called anisomor-
phism. We denote byPOSETthe category of all posets with order preserving
maps as morphisms.
We say thatf preserves

(i) finite sups, or (ii) (arbitrary) sups, or (iii) nonempty sups, or (iv) directed
sups

if, wheneverX ⊆ L is

(i) finite, or (ii) arbitrary, or (iii) nonempty, or (iv) directed,

and supX exists inL, then supf (X) exists inM andequalsf (supX). A parallel
terminology is applied to the preservation of infs. �

In the case of (iv) above, the choice of expression may not be quite satisfactory
linguistically, but the correct phrase “preserves least upper bounds of directed
sets” is too long. The preservation of directed sups can be expressed in the form

f
(∨↑

X
)
=

∨↑
f (X).

For semilattices a map preserving nonempty finite infs might be called ahomo-
morphismof semilattices. The reader should notice that a function preserving
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all finite infs preserves the inf of the empty set; that is, it maps the unit to the
unit – provided that unit exists. In order to characterize mapsf preserving only
the nonempty finite infs (if this is the condition desired), we can employ the
usual equation:

f (x ∧ y) = f (x) ∧ f (y),

for x, y ∈ L. Note thatsuch functions are monotone, and the dual remark also
holds for homomorphisms of sup semilattices.

Remark. It should be stressed that our definition of “preservation of sups” is
quite strong, as we require that, whenever a setX in the domain has a sup, then
its image has a sup in the range. As a consequence, if a functionf : L → M
preserves (directed) sups, it also preserves the order. Indeed, ifa ≤ b in L,
then{a,b} is a (directed) set that has a sup; asf preserves (directed) sups, then
f (a)∨ f (b) exists andf (b) = f (a∨b) = f (a)∨ f (b), whencef (a) ≤ f (b).
Often in the literature a weaker definition is adopted:f “preserves sups” if

whenever supX and supf (X) both exist, thenf (supX) = sup f (X). In this
weak sense, a one-to-one map from the two element chain to two incomparable
elements preserves sups. Thus a function that preserves (directed) sups in this
weak sense need not be order preserving. In order to avoidambiguities one
should keep in mind that if a map preserves (directed) sups in our sense, then
it is automatically order preserving. This implies in particular that the image of
a directed set is also directed.

Remark O-1.10. Let f : L → M be a function between posets. The following
are equivalent:

(1) f preserves directed sups;
(2) f preserves sups of ideals.

Moreover, if L is a sup semilattice and f preserves finite sups, then(1) and(2)
are also equivalent to

(3) f preserves arbitrary sups.

A dual statement also holds for filtered infs, infs of filters, semilattices and
arbitrary infs.

Proof: Both conditions (1) and (2) imply the monotonicity off . Then the
equivalence of (1) and (2) is clear from O-1.4 and O-1.5. Now supposeL is a
sup semilattice andf preserves finite sups. LetX ⊆ L have a sup inL. By the
method of O-1.5(3), we can replaceX by a directed setF having the same sup.
Hence, if (1) holds, thenf (supX) = sup f (F). But since f preserves finite
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sups, it is clear thatf (F) is constructed fromf (X) in the same way asF was
obtained fromX. Thus, by another application of O-1.5(3), we conclude that
f (supX) = sup f (X). That (3) implies (1) is obvious. �

Exercises

Exercise O-1.11.Let f : L → M be monotone on posetsL andM , and let
X ⊆ L. Show that↓ f (X) = ↓ f (↓X). �

Exercise O-1.12.Construct a net (xj ) j∈J with values in a poset such that for
all pairsi, j ∈ J there is ak ∈ J with xi ≤ xk andxj ≤ xk but such that (xj ) j∈J
is notdirected.

Hint. Consider the lattice 2= {0,1}, let J = {0,1,2, . . .}, and let the net be
defined so thatxi = 0 iff i is even. �

Exercise O-1.13.Modify O-1.10 so that for (3) we have only to assume that
f preservesnonemptyfinite sups. �

Exercise O-1.14.Is the category of preordered sets andmonotonemapsequiv-
alent to the category of posets and monotone maps? In these categories what
sort of functor isop? �

Exercise O-1.15.Let L be a poset, and let theI j for j ∈ J be ideals ofL.
Prove the following.

(i)
⋂

j I j is an ideal ofL iff
⋂

j I j �= Ø, for L a sup semilattice.
(ii) In general,

⋂
j I j is not necessarily an ideal ofL, even if

⋂
j I j �= Ø.

Hint. Consider the semilattice and ideals inthe followingfigure.
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(iii) The intersectionI1∩ I2 of two idealsI1, I2 is an ideal, forL a semilattice.
(iv) If L is directed,

⋃
j I j is contained in some ideal ofL (however, even if

this is the case, there need not be a smallest ideal containingI1 ∪ I2) and
the converse holds if this is true for any two idealsI1, I2.

(v) Id L is a sup semilattice iffL is a sup semilattice.

Hint. If L is a sup semilattice, thenI = ↓{a ∨ b: a ∈ I1,b ∈ I2} is the
sup of the idealsI1 and I2 of L. Conversely, if IdL is a sup semilattice,
then we claim there is a unique elementc ∈ ↓a ∨ ↓b with a,b ≤ c. In-
deed, there is at least one since↓a ∨ ↓b is directed; moreover, ifc and
c1 were two such elements, then↓c and↓c1 would be two ideals ofL
both containinga andb and both contained in↓a ∨ ↓b. Hence↓c =
↓c1 = ↓a ∨ ↓b.

(vi) Dual statements hold for FiltL, where one assumesL is a semilattice in
part (v). �

Exercise O-1.16.Let L be a preordered set, and letL denote the family of all
nonempty lower sets ofL. Prove the following.

(i) Id L ⊆ L andL is a sup semilattice.
(ii) If L is a poset, then the mapx 
→ ↓x: L → L is an isomorphism ofL

onto the family of principal lower sets ofL.
(iii) If L is a filtered poset, thenL is a lattice with respect to intersection and

union.
(iv) Let L andM be semilattices,f : L → M be a function, andL andM be

the lattices of nonempty lower sets. Letf∗ = (A 
→ ↓ f (A)):L→M.
Then f is a semilattice morphism ifff∗ is a lattice morphism. �

Old notes

The notion of a directed set goes back to the work of [Moore and Smith, 1922],
where they use directed sets and nets to determine topologies. A convenient
survey of this theory is provided inChapter 2 of [Kelley,b1955]; we shall utilize
this approach in our treatment of topologies on lattices, especially in Chapters II
and III of this work. Thematerial in this section is basic and elementary; a guide
to additional reading – if more background is needed – is provided in the notes
for Section O-2.

O-2 Completeness Conditions for Lattices and Posets

No excuse need be given for studying complete lattices, because they arise so
frequently in practice. Perhaps the best infinite example (aside from the lattice
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of all subsets of a set) is the unit intervalI = [0,1]. Many more examples will
be found in this text – especially involving nontotally ordered lattices.

Definition O-2.1. (i) A poset is said to becomplete with respect to directed
sets(shorter:directed completeor alsoup-complete) if every directed subset
has a sup. Adirected completeposet is called adcpo for short. A dcpo

with a least element is called apointeddcpo, or adcpo with zero0 orwith
bottom⊥.
(ii) A poset which is a semilattice and directed complete will be called a

directed complete semilattice.
(iii) A complete latticeis a poset in whicheverysubset has a sup and an inf.

A totally ordered complete lattice is called acomplete chain.
(iv) A poset is called acomplete semilatticeiff every nonempty (!) subset

has an inf and every directed subsethas a sup.
(v) A poset is calledbounded complete, if every subset that is bounded above

has a least upper bound. In particular, a bounded complete poset has a smallest
element, the least upper bound of the empty set. �

We advise the reader to keep in mind that “up-complete poset” and “dcpo”
are completely synonymous expressions; this advice is appropriate since the
second terminology has become prevalent in the theoretical computer science
community and since we use it in this book. We observe in the following that
a poset is a complete lattice iff it is both adcpo and a sup semilattice with a
smallest element.In the exercises for this section we comment further on the
relation of the concepts we have just introduced.

Proposition O-2.2. Let L be a poset.

(i) For L to be a complete lattice it is sufficient to assume the existence of
arbitrary sups (or the existence of arbitrary infs).

(ii) For L to be a complete lattice it is sufficient to assume the existence of
sups of finite sets and of directed sets (or the existence of finite infs and
filtered infs).

(iii) If L is a unital semilattice, then for completeness it is sufficient to assume
the existence of filtered infs.

(iv) L is a complete semilattice iff L is a bounded completedcpo.

Proof: For (i) we observe that the existence of arbitrary sups implies the exis-
tence of arbitrary infs. LetX ⊆ L and let

B =
⋂
{↓x: x ∈ X}
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be the set of lower bounds ofX. (If X is empty, we takeB = L.) We wish to
show that

supB = inf X.

If x ∈ X, thenx is an upper bound ofB; whence, supB ≤ x. This proves that
supB ∈ B; as it clearly is the maximal element ofB, this also proves thatX
has a greatest lower bound. (There is obviously a dual argument assuming infs
exist.)
For (ii) we first observe by RemarkO-1.5 that the existence offinite sups and

of directed sups implies the existence of arbitrary sups and then apply part (i).
For (iii), since the existence of finite infs is being assumed, the existence of

all infs follows from (the dual of) (ii).
For a proof of (iv) if L is a complete semilattice andA ⊆ L is bounded

above, then the set of upper bounds has a greatest lower bound which will be
the least upper bound ofA. Conversely, for a bounded completedcpo L and
Ø �= A ⊆ L the 0 is contained in the setB of lower bounds ofA. Any member
of A is an upper bound ofB and henceB has a least upper bound which is the
greatest lower bound ofA. �

Manysubsets of complete latticesareagain complete lattices (with respect to the
restricted partial ordering). Obviously, if we assume thatM ⊆ L isclosedunder
arbitrary sups and infs of the complete latticeL, thenM is itself a complete
lattice. But this is a very strong assumption onM . In view of O-2.2, if we
assume only thatM is closed under the sups ofL, thenM is a complete lattice
(in itself as a poset). The well-worn example is withL equal toall subsets of a
topological spaceX and withM the lattice ofopensubsets ofX. This example
is instructive because in generalM is not closed under the infs ofL (open sets
are not closed under the formation of infinite intersections). Thus the infs of
M (as a complete lattice) arenot the infs ofL. (Exercise: What is the simple
topological definition of the infs ofM?)
An even more general construction of subsets which form complete lattices

is provided by the next theorem from [Tarski, 1955]. This theorem is of great
interest in itself, as it implies that everymonotone self-mapona complete lattice
has a greatest fixed-point and a least fixed-point.

Theorem O-2.3. (The Tarski Fixed-Point Theorem) Let f : L → L be a
monotone self-map on a complete lattice L. Then the setfix( f ) = {x ∈ L :
x = f (x)} of fixed-points of f forms a complete lattice in itself. In particular,
f has a least and a greatest fixed-point. �
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Proof: Let us consider first the setM = {x ∈ L : x ≤ f (x)} of pre-fixed-
pointsof f . We first show that the sup (formed inL) of every subsetX ⊆ M
belongs toM again. Indeed,x ≤ supX implies x ≤ f (x) ≤ f (supX) by
the monotonicity off for all x ∈ X; hence supX ≤ f (supX) which shows
that supX ∈ M . By O-2.2(i) we conclude thatM is a complete lattice in itself.
Furthermore,f mapsM into itself, asx ≤ f (x) implies f (x) ≤ f ( f (x)) by
the monotonicity off andM �= Ø since 0∈ M . Thus, restrictingf yields a
monotone self-map on the complete latticeM . A dual argument to the above
shows that the setF = {x ∈ M : f (x) ≤ x} also is a complete lattice. ButF
is exactly the set of all fixed-points off as the elements ofF are exactly those
elements ofL that satisfy both inequalitiesx ≤ f (x) and f (x) ≤ x. �

If we consider again the topological example withL the powerset lattice of
the spaceX, the mapping assigning to a subset its interior is monotone; so the
completeness of the lattice of open sets also follows from O-2.3. We shall see
many other examples of monotone maps. In particular, a function preserving
directed sups is monotone (see Remark preceding O-1.10).

Remark O-2.4. Let f : L → M be a map between complete lattices preserv-
ing sups. Then f(L) is closed under sups in M and is a complete lattice in
itself.

Proof: LetY ⊆ f (L) and letX = f −1(Y). Then f (X) = Y. Also

supY = sup f (X) = f (supX),

becausef preserves sups. Hence, supY ∈ f (L). �

The above argument is not sufficient to show that iff preserves directed sups,
then its image is closed under directed sups. We have to be satisfied with a
special case: a self-mapp: L → L on a posetL will be called aprojection
operatoror a projection, for short, if it is monotone and idempotent, i.e., if
p = p ◦ p. Note that a self-map is idempotent ifp(x) = x for all x in the
image. Projections will play a prominent role in the theory of domains.

Remark O-2.5. For a projection p on a poset L, consider its image p(L) in
L with the induced ordering. Then the following properties hold.
(i) If X is a subset of p(L) which has a sup in L, then X has a sup in p(L)

and

supp(L) X = p(supL X).

The same holds for meets.
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(ii) If L is a semilattice, a lattice, adcpo, a bounded completedcpo, a
complete lattice, respectively, the same holds for p(L).
(iii) If, in addition, p preserves directed sups, then p(L) is closed in L for

directed sups, i.e., every directed subset D⊆ p(L) that has a sup in L also has
a sup in p(L) and

supp(L) D = supL D.

Proof: (i) Let X ⊆ p(L) have a sup inL. From x ≤ supL X we deduce
that p(x) ≤ p(supL X) for every x ∈ X by the monotonicity ofp. By the
idempotence ofp, we obtainx = p(x) ≤ p(supL X) and we we conclude that
p(supL X) is an upper bound ofX in p(L). Let a ∈ p(L) be another upper
bound ofX. Thena ≥ supL X, whencea = p(a) ≥ p(supL X) again by
monotonicity and idempotence ofp. Thusp(supL X) is the least upper bound
of X in p(L).
Part (ii) is an immediate consequence of (i).
(iii) If D ⊆ p(L) is directed and has a sup inL, then by (i), supp(L) D =

p(supL D). If p: L → L preserves directed sups, thenp(supL D) =
supL p(D) = supL D, which finishes the proof. �

As a very simple example of the application of O-2.5, letV be a vector space
(say, over the realsR) and letL be the lattice of allsubsetsof V . For x ∈ L,
define f (x) to be theconvex closureof the setx (no topology here, only convex
linear combinations). The fact that an element off (x) depends on onlyfinitely
many elements ofx is responsible forf preserving directed unions (sups)
of subsets ofV . Obviously we havef ( f (x)) = f (x). By O-2.5, the convex
subsets ofV form a complete lattice. Note, however, thatx ≤ f (x) for all
x ∈ L. This special property of the functionf gives a special property to
f (L), as we shall see in Chapter I. In particular, with this property, the set of
fixed-points of f is closed under infs – which is a simpler reason whyf (L) is
a complete lattice. And, of course, this can all be verified directly for convex
sets.
The next definition introduces some classical kinds of complete lattices that

we shall often refer to in what follows; however, it should be noted that they
only partly overlap with the class of continuous lattices.

Definition O-2.6. A Boolean algebra(sometimes also calledBoolean lattice)
is a lattice with 0 and 1 which isdistributivein the sense that, for all elements
x, y, z,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), (D)
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and where every elementx has acomplement x′ in the sense that

x ∧ x′ = 0 andx ∨ x′ = 1. (C)

It is well known that (D) implies its dual, and that indeed every Boolean algebra
is isomorphicto its opposite. Also well known is the fact that complements are
unique.
A completeBoolean algebra(cBa for short) is a Boolean algebra that is

complete as a lattice.
A frame(wealso use the termcompleteHeyting algebra(cHa) as a synonym)

is a complete lattice which satisfies the following infinite distributive law:

x ∧
∨

Y =
∨
{x ∧ y: y ∈ Y}, (ID)

for all elementsx and all subsetsY. �

The proper definition of a Heyting algebrawithoutcompleteness will emerge
in the next section. From the above definition it is not immediately obvi-
ous that every cBa is a cHa, but this is the case. We return to these ideas in
Exercise O-3.20.
We turn now to a list of complete lattices that, so to speak, “occur in nature”.

This list is far from exhaustive, and many more examples are contained in the
remainder of this work. The reader may take these assertions as exercises.

Examples O-2.7. (1) We have already often referred to theset of all subsets,
or powerset, of a setX. We employ the notation 2X and of course regard this
as a lattice under inclusion with union and intersection as sup and inf. It is a
cBa but a rather special one. (It is atomic, for instance; and all atomic cBa’s
are of this form. Here,atomicmeans that every nonzero element contains a
minimal nonzero element – anatom; for cBa’s this is the same as saying that
every element is the sup of atoms.)
(2) Generalizing (1), we can form the direct powerLX of any posetL;

this is just the poset ofall functions f : X → L under the pointwise ordering.
Similarly, we can form direct products

∏
j∈J L j of any family of posets in the

well-knownway. If all the factorsL j aredcpos, semilattices, lattices, complete
lattices, etc., respectively, then the same holds for the direct product

∏
j∈J L j .

(3) If X is a topological space, our notation for thetopology, or set of open
subsets, of X isO(X). It is a sublattice of 2X closed under finite intersections
and under arbitrary unions. It is clear then thatO(X) is a frame since we know
the truth of O-2.6 (ID) for the set theoretical operations. In generalO(X) isnot
closed under arbitrary intersections, and its opposite isnot a frame. (Consider
the case ofX = R, the real line.)
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The opposite ofO(X) is a complete lattice and is obviously isomorphic
to the lattice�(X) of closedsubsets ofX. The isomorphism betweenO(X)op

and�(X) is by complements:U 
→ X\U .
Contained inO(X) is a very interesting complete latticeOreg(X) of regular

open sets, that is, those sets equal to the interiors of their closures. The sup is
not the union of the regular open sets but theinterior of the closure of the
union. The inf is theinterior of the intersection(which is the same as the inf
in O(X)). Remarkably,Oreg(X) is a cBa where the lattice complement of a
U ∈ Oreg(X) is the interiorof (X\U ). Actually thisconstruction of a cBa can
be done abstractly in any frame (cHa), and we return to it in the next section
(see Exercise O-3.21).
For much more on Boolean algebras and the proof thateverycBa is isomor-

phic toOreg(X) for some spaceX, the reader is referred to Halmos,b1963. (It
is interesting to note thatOreg(R) is anatomlesscBa. That is to say, there are
no minimal nonzero elements.)
(4) LetA be an abstract algebra with any number of operations. The poset

(Cong A,⊆) of all congruence relationsunder inclusion (of the graphs
of the relations) forms a complete lattice, because congruence relations are
closed under arbitrary intersections. This example includes numerous special
cases:

(i) If A is agroup, then CongA can be identified with the lattice of all
normalsubgroups in the usual way, and ifA is anabelian group(or a
module or a vector space), with the lattice ofall subgroups (submodules,
vector subspaces). In general this lattice isnotdistributive.

(ii) If A is aring, then CongA is canonically isomorphic to the lattice of all
two-sided ideals. IfA is a lattice ordered group(lattice ordered ring),
then CongA can be identified with the lattice of all order convex normal
subgroups (ideals) which are also sublattices. In general the ideals of a
ring do notform a distributive lattice.

(iii) If A is a lattice, then CongA cannot generally be identified with either
the ideals or the filters ofA, but itdoesform a frame. (Exercise: Prove
the distributivity.) IfA is a Boolean algebra, then identification with the
lattice of ideals is possible.

Note that in the case of algebras with finitary operations, CongA is closed
under directed unions. The significance of this remark will become clear in
Section I-4.
(5) If A is an abstract algebra, then (SubA,⊆), the structure of allsub-

algebrasof A under inclusion, also becomes a complete lattice. The reader
can supply special cases easily. In the case of vector spaces, the lattice of
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subspaces has complements but not unique ones owing to the failure of the
distributive law.
(6) LetA be a compact Hausdorff topological algebra. Then the set Cong−A

of closed congruences(congruencesR⊆ A×A closed in the product space)
also forms a complete lattice. The relevance of this example is that these con-
gruences correspond precisely to compact Hausdorff quotient algebras.
(7) LetA be a Hausdorff topological ring, then the set Id− A of closed two-

sided idealsforms a complete lattice. Again the interest lies in the fact that the
quotient rings are Hausdorff.
(8) LetH be a Hilbert space. Then Sub− H, the closed subspacesof H,

forms a complete lattice. This generalizes to the lattice of projections in any
von Neumann algebra.
(9) Every nonempty compact interval of real numbers in its natural order is

a complete lattice, and all nonsingleton intervals are isomorphic toI = [0,1]
and to the infinite interval

R
∗ = R ∪ {−∞,+∞} = [−∞,+∞].

As complete lattices are closed under directproducts (see (2) above), we
can formI

X, whereX is an arbitrary set. Such lattices are calledcubes. In
Exercise O-2.10, we note what can be said ifX is a topological space and only
certain functions are admitted; this connects with the ideas of semicontinuous
functions and real-valued random variables, to which we return in I-1.22. An
easy example of a restricted function space which is a complete lattice would
be the subspaceM ⊆ I

I of allmonotonefunctions fromI into itself.
(10) LetF be the set of allpartial functions from the setN of natural numbers

into itself (this could be generalized to any other set besides the setN). Thus, if
the functionf ∈ F , then itsdomain, domf , is a subset ofNand f : dom f → N.
The empty function Ø:Ø→ N is allowed. We definef ≤ g to mean that

domf ⊆ domg and f = g|domf ,

that is, wheneverf is defined, theng is defined and they have the same value.
This definition makesF into a poset with directed sups and arbitrarynonempty
infs:F is a complete semilattice, it fails to be a lattice only in lacking a top.
In Exercise O-2.12 we show how to adjoin a top to such structures. Another

repair would be to expandN to N
∗ = N ∪ {⊥,�}, which is a poset under the

ordering where forx, y ∈ N
∗ we have

x ≤ y iff x = ⊥ or x = y or y = �.
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ThenF can be regarded as a subset of (N
∗)N under the pointwise ordering (we

define f (x) = ⊥ if x �∈ domf ). (Note that this ordering has nothing to do with
natural ordering ofN.) Now (N∗)N is a complete lattice, but it ismuch larger
thanF ∪ {�}, because forf ∈ (N∗)N the values taken in{⊥,�} and inN can
be very mixed.
For applications to the theory of computation this proliferation of top ele-

ments is most inconvenient. If we readf ≤ g as an “information ordering”
(roughly, f and g are consistent butg has possibly more information than
f ), then the only interpretation of� is to consider it as theinconsistentele-
ment. (Thewords “overdefined” for� and “underdefined” for⊥ have also been
used.) As we generally try to keep our values “consistent” as much as possible,
it seems natural to avoid�. Because of the importance of the applications to
computability, we should keep in mind the need to cover examples like this in
our general theory. �

The following also deals with examples,but they play such a veryprominent
role in what follows that we separate them out.

Examples O-2.8. Let L be a poset.
(1) The family of all lower setsof L and the family of allupper setsare

both complete lattices under⊆; indeed, both of these families are closed under
arbitrary intersections and unions in 2L .
(2) In any posetL, Filt0 L and FiltL are closed under directed unions and

hencedcpos. If L is a semilattice, then Filt0 L is a complete lattice; ifL
is also unital, then FiltL is complete. In the latter case both lattices of sets
are closed under arbitrary intersections in 2L . In a semilattice the ideals only
form a semilattice, since in 2L both Id0 L and IdL are only closed under finite
intersections. We note that the infinite intersection of ideals in a semilattice
need not be an ideal (cf. O-1.15 and its figure).
(3) In a lattice, both Filt0 L and Id0 L are complete lattices; and ifL has a

top and bottom, then FiltL and IdL are complete lattices.
(4) The functionx 
→ ↓x : L → Id L is an embedding preserving arbitrary

infs and finite sups; it is called theprincipal ideal embedding. (There is a
dual principal filter embedding.) The exampleL = N ∪ {∞} (with its natural
ordering) shows that the principal ideal embedding neednotpreserve arbitrary
(or even directed) sups.
(5) If L is aBooleanalgebra,wecanconstrue it asanalgebraof “propositions”

(0 is falseand 1 istrue, ∧ and∨ areconjunctionanddisjunction, complemen-
tation isnegation). Filt L can be thought of as the lattice oftheories. Any subset
A ⊆ L can be taken as a set of “axioms” generating the following “theory”,
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which is just a filter and corresponds to the propositions “implied” by the
axioms:

{x ∈ L : (∃a0, . . . ,an−1 ∈ A) a0 ∧ · · · ∧ an−1 ≤ x}.

The “inconsistent” theory isL, that is, the top filter generated by{0}. If we
eliminateL, then FiltL\{L} is closed under arbitrary nonempty intersections
and directed unions. This is similar to the poset of O-2.7(10). As is well known,
the lattice FiltL is lattice isomorphic to the lattice of open subsets of the Stone
space of the Boolean algebraL. �

Exercises

Exercise O-2.9. (Clopen sets)Let X be a topological space and let�O(X) =
O(X) ∩ �(X) be the sublattice of 2X of all closed-and-open sets(sometimes:
clopen sets). Show that�O(X) is not complete in general, but it is always a
Boolean algebra. For a compact totally disconnected space, show that�O(X)
is complete iff the closure of every open set is open (such spaces are called
extremally disconnected). (This complements Example O-2.7(3).) �

Exercise O-2.10. (Semicontinuous functions)Let X be a topological space,
and letC(X, R

∗) be the set of continuous extended real-valued functions. Verify
the following assertions: under the pointwise ordering,C(X, R

∗) is not com-
plete, but it is a lattice with a top and bottom. For compactX, it is complete
iff X is extremely disconnected.
Over an arbitrary space to have a complete lattice we must pass to a larger

lattice. Thelower semicontinuousfunctions f ∈ LSC(X, R
∗) are characterized

by the condition that the set{x ∈ X: r < f (x)} is open inX for everyr ∈ R
∗.

(For upper semicontinuousfunctions we reverse the inequality.) The lattice
LSC(X, R

∗) is complete because it is closed under arbitrary pointwise sups.
Notice that LSC(X, R

∗) is also closed under finite pointwise infs but not under
arbitrary pointwise infs. The lattices LSC(X, R

∗) and USC(X, R
∗) are anti-

isomorphic and

C(X, R
∗) = LSC(X, R

∗) ∩ USC(X, R
∗). �

In the next exercises, and many times elsewhere in this text, we shall have
occasion to discuss weaker forms of completeness as was already indicated in
Definition O-2.1. In order to compare the definitions of a complete lattice and a
complete semilattice we suggest that the reader recall that a complete lattice is
a poset with all conceivable completeness properties which a lattice may have
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and which aresymmetric(i.e., remain invariant under passage to the opposite
poset); whereas a complete semilattice has, coarsely speaking, the maximal
completeness properties which a semilattice may have, short of becoming a lat-
tice. Everyfinitesemilattice of course is a complete semilattice. Every complete
semilattice which is, in addition, unital is clearly a complete lattice (O-2.2).

Exercise O-2.11.Let Sbe a poset in which every nonempty subset has an inf.
Show that everyX ⊆ Swith an upper bound has a sup. �

Exercise O-2.12. Let againSbe a poset in which every nonempty subset has
an inf. Adjoin an identity by formingS1 = S∪ {1} with an element 1�∈ Sand
x ≤ 1 for all x ∈ S. Show thatS1 is a complete lattice. �

As a consequence, the adjunction of an identity to a complete semilattice will
produce a complete lattice.

Exercise O-2.13.Let Sbe the closed lower left triangle{(x, y): x+ y ≤ 1} in
the square [0,1]2.

Verify the following assertions:S is a complete semilattice butnota complete
lattice. (Actually, the subsemilatticeT of Sconsisting of the three corner points
serves to illustrate this.) The interior of the triangle,{(x, y): x + y < 1}, is a
semilattice in which every nonempty subset has an inf, but it isnota complete
semilattice.
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Thehalf open interval ]0, 1] is a directed complete lattice, but it isnota complete
semilattice. �

Exercise O-2.14.Prove the following.

(i) A poset is directed complete iff all ideals have sups.
(ii) A semilattice is a complete semilattice iff all filters have infs and all ideals

have sups. �

Exercise O-2.15.Prove the following.

(i) Every poset may be embedded into a complete lattice with the
preservation of all existing infs.

(ii) Every lattice may be embedded into a complete lattice with the
preservation of all finite lattice operations and all existing infs.

(iii) Every lattice may be embedded into a complete lattice with the
preservation of all existing sups and infs.

Hint. Parts (i) and (ii) are easily accomplishedwith themeans availablein
Section 2. For (i) use the complete lattice of all lower sets and the embed-
dingx 
→ ↓x. For (ii) use the complete lattice IdL and the principal ideal
embedding. Finally, (iii) is the so-calledMacNeille completion, which
is likewise constructed by using suitable ideals; we refer to the existing
literature for details, e.g., [Balbes and Dwinger,b1974], p. 235. �

Exercise O-2.16.Prove the following.

(i) For every semilatticeS, the poset IdS is a directed complete semilattice.
(ii) If S is a semilattice in which every nonempty subset has an inf, then IdS

is a complete semilattice. �

Exercise O-2.17.In a Boolean algebra, is the lattice of finitely axiomatizable
“theories” complete? directed complete? �

Exercise O-2.18.Let G be a group and letH be any subgroup. LetL be the
lattice of all subsets ofG, that is,L = 2G. Let M be the collection ofdouble
cosetsof H ; that is, let

M = {X ⊆ G : X = XH = HX}.
Prove thatM is a cBa, anddiscuss the closure properties ofM within L with
respect to sups and infs.

Hint. Consider the mapX 
→ HXH. �
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Exercise O-2.19.LetF be as in O-2.7(10). DefineG ⊆ F to be the collection
of all one-to-onepartial functions. IsG a complete semilattice? �

Exercise O-2.20. (Least Fixed-Point Theorem fordcpos) Let L be adcpo

with a bottom element⊥. Show that every monotone self-mapf : L → L has
a least fixed-point.

The preceding result generalizes the fixed-point theorem O-2.3 for complete
lattices. We will indicate two proofs for this fact. The first proof uses transfinite
induction:

Hint. We definea0 = ⊥ and, by transfinite induction,aα+1 = f (aα) for every
ordinal α andaα = supβ<α aβ for limit ordinals. As the cardinality ofL is
bounded, there is an ordinalγ such thataγ+1 = aγ . This aγ is a fixed-point
of f , and it is the least one, as one can verify readily. �

A second proof avoiding transfinite or equivalent reasonings due to D. Pataraia
(unpublished) is included in the following exercise.

Exercise O-2.21.Let L be adcpo with a bottom element⊥. We denote byL
the set of all monotone self-mapsg: L → L that areinflationary, i.e.,x ≤ g(x)
for all x ∈ L. We equipL with the pointwise ordering of functions. Letf be
an arbitrary monotone self-map ofL. Prove the following.

(i) L is adcpo with a greatest elementT .

Hint. First, let us remark thatL is nonempty, as it contains the identitymap
as least element. Asg ≤ g◦h andh ≤ g◦h for inflationary mapsg andh,
we conclude thatL is directed. It is readily verified thatL is complete with
respect to directed pointwise suprema. Hence,L has a greatest element
that we denote byT .

(ii) For everyx ∈ L, T(x) is a common fixed-point of allg ∈ L.
Hint. Clearly,g ◦ T ∈ L for everyg ∈ L. Hence,g ◦ T ≤ T asT is
the top element ofL. On the other hand,g ◦ T ≥ T for inflationaryg.
Consequently,g ◦ T = T which implies the claim.

(iii) Let M = {x ∈ L : x ≤ f (x)} be the set of pre-fixed-points off . Show
that (a)⊥ ∈ M , (b)M is closed for directed sups, and (c)M is mapped
into itself by f .

Hint. Compare the proof of O-2.3.

(iv) Every monotone self-mapf : L → L has a least fixed-point.




