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O

A Primer on Ordered Sets and Lattices

This introductorychapter serves as a convenient source of reference for certain
basic aspects of complete lattices needed in what follows. The experienced
reader may wish to skip directly to Chapter | and the beginning of the discussion
of the main topic of this book: continuous lattices atmmnains.

Section O-1 fixes notation, while Section O-2 defines complete lattices, com-
plete semilattices and directed complete partially ordered deso§), and
lists a number of examples which we shall often encounter. The formalism of
Galois connections is presented in Section 3. This not only is a very useful
general tool, but also allows convenient access to the concept of a Heyting
algebra. In Section O-4 we briefly discuss meet continuous lattices, of which
both continuous lattices and complete Heyting algebras (frames) are (overlap-
ping) subclasses. Of course, the more interesting topological aspects of these
notions are postponed to later chapters. In Section O-5 we bring together for
ease of reference many of the basic topological ideas that are scattered through-
out the text and indicate how ordered structures arise out of topological ones.
To aid the student, a few exercises have been included. Brief historical notes
and references have been appended, but we have not tried to be exhaustive.

O-1 Generalities and Notation

Partially ordered sets occur everywhere in mathematics, butitis usually assumed
that the partial order iantisymmetricIn the discussion of nets and directed
limits, however, it is not always so convenient to assume this prapéfty
begin, therefore, with somewhat more general definitions.

Definition O-1.1. Consider a sdt equipped with a reflexive and transitive re-
lation <. Such arelation will be calledmeorderandL apreordered setWe say

1



2 O A Primer on Ordered Sets and Lattices

thata is alower boundof a setX C L, andb is anupper boundprovided that

a<xforallx e X, and
x < bforall x € X, respectively

A subsetD of L is directedprovided it is nonempty and every finite subset
of D has an upper bound iD. (Aside from nonemptiness, it is sufficient to
assume that evergair of elements irL has an upper bound in.) Dually, we
call a nonempty subséi of L filteredif every finite subset ofF has a lower
bound inF.

If the set of upper bounds of has a unique smallest element (that is, the set
of upper bounds contains exactly one of its lower bounds), we call this element
theleast upper boundnd write it as\/ X or supX (for supremurp Similarly
thegreatest lower bouni written as/\ X or inf X (for infimun); we will not
be dogmatic in our choice of notation. The notatioa \/" X is a convenient
device to express that, firstly, the setis directed and, secondly,is its least
upper bound. In the case of pairs of elements it is customary to write

XAy =inf{x, y},

X V'y = sup{x, y}.
These operations are also often caltedetandjoin, and in the case of meet
the multiplicative notatiorxy is common and often used in this book. O

Definition O-1.2. A netin a setL is a functionj — x; : J — L whose
domainJ is a directed set. (Nets will also be denoted ky) (<3, by (X;j), or
even byx;, if the context is clear.)

If the setL also carries a preorder, then the rets calledmonotongresp.,
antitong, if i < j always impliesx; < X; (resp..X; < x).

If P(x)isaproperty ofthe elememntse L, we say thaP(x;) holdseventually
in the net if there is §o € J such thatP(x) is true whenevefy < k.

The next concept is slightly delicate:lif carries a preorder, then the ngt
is adirected neprovided that for each fixeide J one eventually hag < x;.
A filtered netis defined dually. O

Every monotone net is directed, but the converse may fail. Exercise O-1.12
illustrates pitfalls to avoid in defining directed nets. The next definition gives
us some convenient notation connected with upper and lower bounds. Some
important special classes of sets are also singled out.

Definition O-1.3. Let L be a set with a preorder. For X € L andx € L we
write:

(i) IX={yel:y<xforsomex e X};
(i) 1 X ={yelL:x<yforsomex e X};
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(iii) Ix = {{x};
(iv) tx = 1{x}.
We also say:

(v) Xis alower setiff X = | X;
(vi) Xisanupper seiff X = 1X;
(vii) X is anidealiff it is a directed lower set;
(viii) X is afilter iff it is a filtered upper set;
(ix) an ideal isprincipal iff it has a maximum element;
(x) afilter isprincipal iff it has a minimum element;
(xi) Id L (resp., FiltL) is the set of all ideals (resp. filters) bf
(xii) IdoL =1d L U {@};
(xiii) FiltoL = Filt L U {&}. O

Note that the principal ideals are just the sgxsfor x € L. The set of lower
bounds of a subseX C L is equal to the sgf){|x: x € X}, and this is the
same as the sétinf X in case infX exists. Note, too, that

X< IX=[(X),
and similarly for4 X.

Remark O-1.4. For a subset X of a preordered set L the following are
equivalent:

(1) X is directed;
(2) | X is directed;
(3) | X isanideal.

Proof: (2) iff (3): By Definition O-1.3.

(1) implies (2): If A is a finite subset of X, then there is a finite subsBt
of X such that for each € Athereis & € B with a < b by O-1.3(i). By (1)
there is inX an upper bound dB, and this same element must also be an upper
bound ofA.

(2) implies (1): IfAis afinite subset oX, itis also contained iy X; therefore,
by (2), there is an upper bounde | X of A. By definitiony < x € X for
somex, and thisx is an upper bound oA. O

Remark O-1.5. The following conditions are equivalent for L and X as in
0-14

(1) supX exists;
(2) sup| X exists.
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And if these conditions are satisfied, thmmpX = sup| X. Moreover, if every
finite subset of X has a sup and if F denotes the set of all those finite sups, then
F is directed, and1) and (2) are equivalent to

(3) supF exists.

Under these circumstancesypX = supF. If X is nonempty, we need not
assume the empty sup belongs to F.

Proof: Since, by transitivity and reflexivity, the seXsand | X have the same

set of upper bounds, the equivalence of (1) and (2) and the equality of the sups

are clear. Now suppose that s@gexists for every finiteA € X and thatF is

the set of all these sups. SinéeC B implies supA < supB, we know that~

is directed. BuX C F, and any upper bound &fis an upper bound oA C X;

thus, the setX andF have the same set of upper bounds. €haivalence of

(1) and (3) and the equality of the sups is again clear, also in the nonempty case.
(|

The —rather obvious — theme behind the above remark is that statements about
arbitrary sups can often be reduced to statements about finite sups and sups of
directed sets. Of course, both O-1.4 and O-1.5 have straightforward duals.

Definition O-1.6. A partial order is a transitive, reflexive, and antisymmetric
relation<. (This last means < y andy < x always implyx = y.) A partially
ordered setor posetfor short, is a nonempty sét equipped with a partial
order<. We say thal is totally ordered or achain if all elements ofL are
comparable undex (that is,x < y ory < x for all elementsx,y € L).

An antichainis a partially ordered set in which any two different elements are
incomparable, that is, in whick < y iff x = y. O

We have remarked informally on duality several times already, and the next
definition makes duality more precise.

Definition O-1.7. For R € L x L any binary relation on a sé&t, we define
the opposite relation R (sometimes: theonverse relationby the condition
that, for allx, y € L, we havex R°Py iff yRx

Ifin (L, <), a set equipped with a transitive, reflexive relation, the relation
is understood, then we write®? as short for [, <°P). O

The reader should note thatifis a poset or a chain, then sdig°. One should
also be aware how the passage frorto L°P affects upper and lower bounds.
Similar questions of duality are also relevant to the next (standard) definition.
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Definition O-1.8. An inf semilatticels a posetS in which any two elements
a, b have an inf, denoted by A b or simply byab. Equivalently, a semilattice
is a poset in which every nonempty finite subset has an istipj\semilatticés
a posetSin which any two elements, b have a sum Vv b or, equivalently, in
which every nonempty finite subset has a sup. A poset which is both an inf
semilattice and a sup semilattice is calleldttice.

As we will deal with inf semilattices very frequently, we adopt the shorter
expression “semilattice” instead of “inf semilattice”.

If a posetL has a greatest element, it is called thrét or top element ofL
and is written as 1 (or, rarely, a8). The top element is the inf of the empty
set (which, if it existsjs the same as sup. A semilattice with aunit is called
unital. If L has a smallest element, it is called #texoor bottomelement ofL
and is written O (orL). The bottom element is the sup of the empty set (which,
if it exists, isthe same as inf). O

Note that in a semilattice an upper set is a filter iff it is a subsemilattice. A dual
remark holds for lower sets and ideals in sup semilattices. We turn now to the
discussion of maps between posets.

Definition O-1.9. A function f: L — M between two posets is calledder
preservingor monotoneff x < y always impliesf (x) < f(y). A one-to-one
function f: L — M where bothf and f ! are monotone is called asomor-
phism We denote byPOSETthe category of all posets with order preserving
maps as morphisms.

We say thatf preserves

(i) finite supsor (ii) (arbitrary) sups or (iii) nonempty sup®r (iv) directed
sups

if, wheneverX C L is
(i) finite, or (ii) arbitrary, or (iii) nonempty, or (iv) directed,

and supX existsinL, then supf (X) exists inM and equald (supX). A parallel
terminology is applied to the preservation of infs. O

In the case of (iv) above, the choice of expression may not be quite satisfactory
linguistically, but the correct phrase “preserves least upper bounds of directed
sets” is too long. The preservation of directed sups can be expressed in the form

0 0
f (\/ x) =\ tx).
For semilattices a map preserving nonempty finite infs might be cahed-
morphismof semilattices. The reader should notice that a function preserving
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all finite infs preserves the inf of the empty set; that is, it maps the unit to the
unit — provided that unit exists. In order to characterize mapseserving only

the nonempty finite infs (if this is the condition desired), we can employ the
usual equation:

fxAy) = 1) A f(y),

for x, y € L. Note thatsuch functions are monotone, and the dual remark also
holds for homomorphisms of sup semilattices.

Remark. It should be stressed that our definition of “preservation of sups” is
quite strong, as we require that, whenever ax#t the domain has a sup, then
its image has a sup in the range. As a consequence, if a funttion—> M
preserves (directed) sups, it also preserves the order. Indeeds ib in L,
then{a, b} is a (directed) set that has a sup;fagreserves (directed) sups, then
f(a) v f(b) exists andf (b) = f(avb) = f(a) Vv f(b), whencef (a) < f(b).

Often in the literature a weaker definition is adoptédpreserves sups” if
whenever suiX and supf (X) both exist, thenf (supX) = supf(X). In this
weak sense, a one-to-one map from the two element chain to two incomparable
elements preserves sups. Thus a function that preserves (directed) sups in this
weak sense need not be order preserving. In order to araluiguities one
should keep in mind that if a map preserves (directed) sups in our sense, then
it is automatically order preserving. This implies in particular that the image of
a directed set is also directed.

Remark O-1.10. Let f:L — M be a function between posets. The following
are equivalent:

(1) f preserves directed sups;
(2) f preserves sups of ideals.

Moreover, if L is a sup semilattice and f preserves finite sups, (theamd (2)
are also equivalent to

(3) f preserves arbitrary sups.

A dual statement also holds for filtered infs, infs of filters, semilattices and
arbitrary infs.

Proof: Both conditions (1) and (2) imply the monotonicity d¢f Then the
equivalence of (1) and (2) is clear from O-1.4 and O-1.5. Now suphdsea
sup semilattice and preserves finite sups. L&t C L have a sup iri.. By the
method of O-1.5(3), we can repla&eby a directed seff having the same sup.
Hence, if (1) holds, therf (supX) = supf(F). But sincef preserves finite
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sups, it is clear thaf (F) is constructed front (X) in the same way aB was
obtained fromX. Thus, by another application of O-1.5(3), we conclude that
f (supX) = supf(X). That (3) implies (1) is obvious. O

Exercises
Exercise O-1.11.Let f:L — M be monotone on posets and M, and let
X € L. Show that} f(X) = | f(] X). O

Exercise O-1.12.Construct a netxj);cs with values in a poset such that for
allpairsi, j € Jthereis& € Jwith x; < x andx; < x, butsuch thatx;);e,
is notdirected.

Hint. Consider the lattice 2 {0, 1}, letJ = {0, 1, 2, ...}, and let the net be
defined so that; = Qiff i is even. O

Exercise O-1.13.Modify O-1.10 so that for (3) we have only to assume that
f preservesmonemptyfinite sups. O

Exercise O-1.14.Is the category of preordered sets and monotone @@qyus-
alentto the category of posets and monotone maps? In these categories what
sort of functor is’P? O

Exercise O-1.15.Let L be a poset, and let thig for j € J be ideals ofL.
Prove the following.

() N; 1jisanideal ofL iff (), 1; # G, for L a sup semilattice.
(i) Ingeneral,M; I is not necessarily an ideal &f, evenif(); I; # @.

Hint. Consider the semilattice and idealglire followingfigure.

Iy

I,

Iy
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(i) The intersectionl; N I, of two idealsly, I, is an ideal, fol. a semilattice.

(iv) If Lis directedUj I; is contained in some ideal &f (however, even if
this is the case, there need not be a smallest ideal contdiping,) and
the converse holds if this is true for any two idehlsl».

(v) Id L is a sup semilattice iff. is a sup semilattice.

Hint. If L is a sup semilattice, theh= |[{aVv b:a € I;,b € I,} is the
sup of the ideald; and |, of L. Conversely, if Id_ is a sup semilattice,
then we claim there is a unique element |a v |bwitha,b < c. In-
deed, there is at least one singa v |b is directed; moreover, i€ and
c; were two such elements, thegmre and | c; would be two ideals ot
both containinga andb and both contained iga v |b. Hence|c =
e =lav b

(vi) Dual statements hold for Filt, where one assumdsis a semilattice in
part (v). O

Exercise O-1.16.Let L be a preordered set, and l&denote the family of all
nonempty lower sets df. Prove the following.

() IdL <€ £and/L is a sup semilattice.

(i) If L is a poset, then the map— |x: L — L is an isomorphism ok
onto the family of principal lower sets df.

(iii) If L is afiltered poset, thef is a lattice with respect to intersection and
union.

(iv) Let L andM be semilatticesf: L — M be a function, and’ and M be
the lattices of nonempty lower sets. Lgt= (A~ | f(A)): L - M.
Then f is a semilattice morphism iff, is a lattice morphism. O

Old notes

The notion of a directed set goes back to the work of [Moore and Smith, 1922],
where they use directed sets and nets to determine topologies. A convenient
survey of this theory is provided in Chapter 2 of [Kelle$955]; we shall utilize

this approach in our treatment of topologies on lattices, especially in Chapters I
and Ill of this work. The material in this section is basic and elementary; a guide
to additional reading — if more background is needed — is provided in the notes
for Section O-2.

0-2 Completeness Conditions for Lattices and Posets

No excuse need be given for studying complete lattices, because they arise so
frequently in practice. Perhaps the best infinite example (aside from the lattice
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of all subsets of a set) is the unit intenia= [0, 1]. Many more examples will
be found in this text — especially involving nontotally ordered lattices.

Definition O-2.1. (i) A poset is said to beomplete with respect to directed
sets(shorter:directed complet®r alsoup-completgif every directed subset
has a sup. Adirected completeposetis called adcpo for short. A dcpo
with a least element is calledminteddcpo, or adcpo with zeroO or with
bottom_L.

(ii) A poset which is a semilattice and directed complete will be called a
directed complete semilattice

(i) A complete latticés a poset in whicleverysubset has a sup and an inf.
A totally ordered complete lattice is calleccamplete chain

(iv) A poset is called a&omplete semilatticéf every nonempty (!) subset
has an inf and every directed subkat a sup.

(v) A posetis calledbounded completé every subset that is bounded above
has a least upper bound. In particular, a bounded complete poset has a smallest
element, the least upper bound of the empty set. O

We advise the reader to keep in mind that “up-complete poset” doplc”

are completely synonymous expressions; this advice is appropriate since the
second terminology has become prevalent in the theoretical computer science
community and since we use it in this book. We observe in the following that
a poset is a complete lattice iff it is bothdzpo and a sup semilattice with a
smallest elementn the exercises for this section we comment further on the
relation of the concepts we have just introduced.

Proposition O-2.2. Let L be a poset.

(i) For L to be a complete lattice it is sufficient to assume the existence of
arbitrary sups (or the existence of arbitrary infs).

(ii) For L to be a complete lattice it is sufficient to assume the existence of
sups of finite sets and of directed sets (or the existence of finite infs and
filtered infs).

(iii) If L is a unital semilattice, then for completeness it is sufficient to assume
the existence of filtered infs.

(iv) L is a complete semilattice iff L is a bounded comptitpo.

Proof: For (i) we observe that the existence of arbitrary sups implies the exis-
tence of arbitrary infs. LeK € L and let

B=[(lx:xeX}



10 O A Primer on Ordered Sets and Lattices

be the set of lower bounds . (If X is empty, we takéB = L.) We wish to
show that

supB = inf X.

If x € X, thenx is an upper bound dB; whence, suB < x. This proves that
supB € B; as it clearly is the maximal element 8 this also proves thaX

has a greatest lower bound. (There is obviously a dual argument assuming infs
exist.)

For (ii) we first observe by Remaf®-1.5 that the existence bhite sups and
of directed sups implies the existence of arbitrary sups and then apply part (i).

For (iii), since the existence of finite infs is being assumed, the existence of
all infs follows from (the dual of) (ii).

For a proof of (iv) if L is a complete semilattice an®l C L is bounded
above, then the set of upper bounds has a greatest lower bound which will be
the least upper bound &. Conversely, for a bounded complaetepo L and
@ #+ A C L the Ois contained in the sBtof lower bounds ofA. Any member
of Ais an upper bound d8 and henceB has a least upper bound which is the
greatest lower bound dA. O

Many subsets of complete lattices are again complete lattices (with respect to the
restricted partial ordering). Obviously, if we assume tlat L isclosedunder
arbitrary sups and infs of the complete latticethenM s itself a complete
lattice. But this is a very strong assumption bh In view of O-2.2, if we
assume only that! is closed under the sups bf thenM is a complete lattice

(in itself as a poset). The well-worn example is wittequal toall subsets of a
topological spac& and withM the lattice ofopensubsets oK. This example

is instructive because in geneidlis not closed under the infs &f (open sets

are not closed under the formation of infinite intersections). Thus the infs of
M (as a complete lattice) aret the infs of L. (Exercise What is the simple
topological definition of the infs oM ?)

An even more general construction of subsets which form complete lattices
is provided by the next theorem from [Tarski, 1955]. This theorem is of great
interestinitself, as itimplies that every monotone self-map on a complete lattice
has a greatest fixed-point and a least fixed-point.

Theorem O-2.3. (The Tarski Fixed-Point Theorem) Let f:L — L be a
monotone self-map on a complete lattice L. Then thdixet) = {x € L :
x = f(x)} of fixed-points of f forms a complete lattice in itself. In particular,
f has a least and a greatest fixed-point. O
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Proof: Let us consider first the séfl = {x € L : x < f(x)} of pre-fixed-
pointsof f. We first show that the sup (formed i) of every subseX C M
belongs toM again. Indeedx < supX impliesx < f(x) < f(supX) by
the monotonicity off for all x € X; hence suX < f(supX) which shows
that supX € M. By O-2.2(i) we conclude thatl is a complete lattice in itself.
Furthermore,f mapsM into itself, asx < f(x) implies f(x) < f(f(x)) by
the monotonicity off andM # @ since Oe M. Thus, restrictingf yields a
monotone self-map on the complete lattide A dual argument to the above
shows that the séf = {x € M : f(X) < x} also is a complete lattice. Bt
is exactly the set of all fixed-points df as the elements df are exactly those
elements oL that satisfy both inequalities < f(x) and f (x) < x. O

If we consider again the topological example withthe powerset lattice of

the spaceX, the mapping assigning to a subset its interior is monotone; so the
completeness of the lattice of open sets also follows from O-2.3. We shall see
many other examples of monotone maps. In particular, a function preserving
directed sups is monotone (see Remark preceding O-1.10).

Remark O-2.4. Let f:L — M be a map between complete lattices preserv-
ing sups. Then (L) is closed under sups in M and is a complete lattice in
itself.

Proof: LetY < f(L)andletX = f~1(Y). Thenf(X) =Y. Also
supY = supf(X) = f(supX),
becausef preserves sups. Hence, sug f(L). O

The above argument is not sufficient to show that ifreserves directed sups,
then its image is closed under directed sups. We have to be satisfied with a
special case: a self-mam L — L on a poset will be called aprojection
operator or a projection for short, if it is monotone and idempotent, i.e., if

p = po p. Note that a self-map is idempotentp{x) = x for all x in the
image. Projections will play a prominent role in the theory of domains.

Remark O-2.5. For a projection p on a poset L, consider its imag€@_pin
L with the induced ordering. Then the following properties hold.

(i) If X is a subset of (L) which has a sup in L, then X has a sup ifLp
and

sup,y X = p(sup. X).

The same holds for meets.
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(ii) If L is a semilattice, a lattice, alcpo, a bounded completdcpo, a
complete lattice, respectively, the same holds fr)p

(iii) If, in addition, p preserves directed sups, thefl pis closed in L for
directed sups, i.e., every directed subset€p(L) that has a sup in L also has
asupin gL) and

sup,y D =sup D.

Proof: (i) Let X < p(L) have a sup irL. Fromx < sup X we deduce
that p(x) < p(sup X) for everyx € X by the monotonicity ofp. By the
idempotence op, we obtainx = p(x) < p(sup. X) and we we conclude that
p(sup X) is an upper bound oK in p(L). Leta € p(L) be another upper
bound of X. Thena > sup X, whencea = p(a) > p(sug X) again by
monotonicity and idempotence of Thusp(sup X) is the least upper bound
of X'in p(L).

Part (i) is an immediate consequence of (i).

(i) If D < p(L) is directed and has a sup in then by (i), sug,, D =
p(sup D). If p: L — L preserves directed sups, thep(sup D)
sup. p(D) = sup D, which finishes the proof. O

As a very simple example of the application of O-2.5\febe a vector space
(say, over the realR) and letL be the lattice of alsubsetof V. Forx € L,
define f (x) to be theconvex closuref the setx (no topology here, only convex
linear combinations). The fact that an elemenf ¢f) depends on onlfinitely
many elements ok is responsible forf preserving directed unions (sups)
of subsets olV. Obviously we havef (f(x)) = f(x). By O-2.5, the convex
subsets oV form a complete lattice. Note, however, that< f(x) for all
X € L. This special property of the functioh gives a special property to
f (L), as we shall see in Chapter I. In particular, with this property, the set of
fixed-points off is closed under infs — which is a simpler reason vftf}) is
a complete lattice. And, of course, this can all be verified directly for convex
sets.

The next definition introduces some classical kinds of complete lattices that
we shall often refer to in what follows; however, it should be noted that they
only partly overlap with the class of continuous lattices.

Definition O-2.6. A Boolean algebrgsometimes also calldgoolean latticg
is a lattice with 0 and 1 which idistributivein the sense that, for all elements
X,Y, 2

XANYVZ=KXAY)V(XA2Z), (D)
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and where every elemerthas acomplement %in the sense that
XAX =0andx v x =1 ©)

Itis well known that (D) implies its dual, and that indeed every Boolean algebra
isisomorphicto its opposite. Also well known is the fact that complements are
unique

A completeBoolean algebracBa for short) is a Boolean algebra that is
complete as a lattice.

A frame(we also use the teroomplete Heyting algebi@Ha) as a synonym)
is a complete lattice which satisfies the following infinite distributive law:

X/\\/Y:\/{X/\yler}, (ID)
for all elementsc and all subset¥'. O

The proper definition of a Heyting algebnathout completeness will emerge
in the next section. From the above definition it is not immediately obvi-
ous that every cBa is a cHa, but this is the case. We return to these ideas in
Exercise O-3.20.

We turn now to a list of complete lattices that, so to speak, “occur in nature”.
This list is far from exhaustive, and many more examples are contained in the
remainder of this work. The reader may take these assertions as exercises.

Examples O-2.7. (1) We have already often referred to tet of all subsets

or powersetof a setX. We employ the notation’2and of course regard this

as a lattice under inclusion with union and intersection as sup and inf. It is a
cBa but a rather special one. (It is atomic, for instance; and all atomic cBa’s
are of this form. Hereatomic means that every nonzero element contains a
minimal nonzero element — atom for cBa’s this is the same as saying that
every element is the sup of atoms.)

(2) Generalizing (1), we can form the direct powlef of any posetL;
this is just the poset dll functions f: X — L under the pointwise ordering.
Similarly, we can form direct produclé[jEJ L; of any family of posets in the
well-known way. If all the factors j aredcpos, semilattices, lattices, complete
lattices, etc., respectively, then the same holds for the direct prﬂi}égtLj.

(3) If X is a topological space, our notation for ttepology or set of open
subsetsof X is O(X). It is a sublattice of 2 closed under finite intersections
and under arbitrary unions. It is clear then tB¥iX) is a frame since we know
the truth of O-2.6 (ID) for the set theoretical operations. In ger@() is not
closed under arbitrary intersections, and its oppositeisa frame. (Consider
the case oX = R, the real line.)
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The opposite of9(X) is a complete lattice and is obviously isomorphic
to the latticel’(X) of closedsubsets ofX. The isomorphism betweeafl(X)°P
andI'(X) is by complementdJ — X\U.
Contained irO(X) is a very interesting complete latticey( X) of regular

open setsthat is, those sets equal to the interiors of their closures. The sup is
not the union of the regular open sets but timterior of the closure of the
union The inf is theinterior of the intersectiorfwhich is the same as the inf
in O(X)). RemarkablyOre(X) is a cBa where the lattice complement of a
U € Orey(X) is the interiorof (X\U). Actually thisconstruction of a cBa can
be done abstractly in any frame (cHa), and we return to it in the next section
(see Exrcise 0-3.21).

For much more on Boolean algebras and the proofdahetycBa is isomor-
phic to Oey(X) for some spac, the reader is referred to Halmas,963. (It
is interesting to note thad..y(R) is anatomlesBa. That is to say, there are
no minimal nonzero elements.)

(4) Let A be an abstract algebra with any number of operations. The poset
(Cong A, ©) of all congruence relationsinder inclusion (of the graphs
of the relations) forms a complete lattice, because congruence relations are
closed under arbitrary intersections. This example includes numerous special
cases:

(i) If Aisagroup then CongA can be identified with the lattice of all
normalsubgroups in the usual way, andAfis anabelian group(or a
module or a vector space), with the latticeadifsubgroups (submodules,
vector subspaces). In general this latticaasdistributive.

(ii) If Ais aring, then CongA is canonically isomorphic to the lattice of all
two-sided ideals. I#4 is alattice ordered groulattice ordered ring),
then CongA can be identified with the lattice of all order convex normal
subgroups (ideals) which are also sublattices. In general the ideals of a
ring do notform a distributive lattice.

(iii) If Ais alattice, then CongA cannot generally be identified with either
the ideals or the filters ofl, but it doesform a frame. Exercise Prove
the distributivity.) If 4 is a Boolean algebra, then identification with the
lattice of ideals is possible.

Note that in the case of algebras with finitary operations, Cdng closed
under directed unions. The significance of this remark will become clear in
Section I-4.

(5) If A is an abstract algebra, then (Sub <), the structure of alsub-
algebrasof A under inclusion, also becomes a complete lattice. The reader
can supply special cases easily. In the case of vector spaces, the lattice of
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subspaces has complements but not unique ones owing to the failure of the
distributive law.

(6) Let.A be a compact Hausdorff topological algebra. Then the setCgng
of closed congruencgsongruence® C A x A closed in the product space)
also forms a complete lattice. The relevance of this example is that these con-
gruences correspond precisely to compact Hausdorff quotient algebras.

(7) Let A be a Hausdorff topological ring, then the set ld of closed two-
sided idealdorms a complete lattice. Again the interest lies in the fact that the
quotient rings are Hausdorff.

(8) Let H be a Hilbert space. Then Sul#, the closed subspacesf H,
forms a complete lattice. This generalizes to the lattice of projections in any
von Neumann algebra.

(9) Every nonempty compact interval of real numbers in its natural order is
a complete lattice, and all nonsingleton intervals are isomorphictd0, 1]
and to the infinite interval

R* = R U {—00, +00} = [—00, +00].

As complete lattices are closed under dirpobducts (see (2) above), we
can formIX, where X is an arbitrary set. Such lattices are caltdes In
Exercise O-2.10, we note what can be saif i a topological space and only
certainfunctions are admitted; this connects with the ideas of semicontinuous
functions and real-valued random variables, to which we return in I-1.22. An
easy example of a restricted function space which is a complete lattice would
be the subspaddl < I' of all monotondunctions froml into itself.

(10) LetF be the set of afpartial functions from the sé¥ of natural numbers
into itself (this could be generalized to any other set besides th séhus, if
the functionf € F,thenitsddomaindomf,isasubsetaVandf:domf — N.
The empty function @: @ N is allowed. We defind < g to mean that

domf € domgandf = g|gomf,

that is, whenevef is defined, themy is defined and they have the same value.
This definition makes- into a poset with directed sups and arbitraopnempty
infs: F is a complete semilattice, it fails to be a lattice only in lacking a top.

In Exercise O-2.12 we show how to adjoin a top to such structures. Another
repair would be to expandl to N* = NU {_L, T}, which is a poset under the
ordering where fok, y € N* we have

x<yiff x=_lorx=yory=T.
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ThenF can be regarded as a subseth§f)' under the pointwise ordering (we
definef (x) = L if x ¢ domf). (Note that this ordering has nothing to do with
natural ordering oN.) Now (N*)Y is a complete lattice, but it iswuch larger
thanF U {T}, because forf e (N*)Y the values taken i, T} and inN can
be very mixed.

For applications to the theory of computation this proliferation of top ele-
ments is most inconvenient. If we redd < g as an “information ordering”
(roughly, f and g are consistent buj has possibly more information than
f), then the only interpretation of is to consider it as thanconsistenele-
ment. (The words “overdefined” far and “underdefined” foi. have also been
used.) As we generally try to keep our values “consistent” as much as possible,
it seems natural to avoid. Because of the importance of the applications to
computability, we should keep in mind the need to cover examples like this in
our general theory. O

The following also deals with exampldasyt they play such a vergrominent
role in what follows that we separate them out.

Examples O-2.8. Let L be a poset.

(1) The family of alllower setsof L and the family of allupper setsare
both complete lattices under; indeed, both of these families are closed under
arbitrary intersections and unions ih.2

(2) In any poseL, Filtg L and FiltL are closed under directed unions and
hencedcpos. If L is a semilattice, then FJt is a complete lattice; ifL
is also unital, then FilL is complete. In the latter case both lattices of sets
are closed under arbitrary intersections n b a semilattice the ideals only
form a semilattice, since int2both Ich L and IdL are only closed under finite
intersections. We note that the infinite intersection of ideals in a semilattice
need not be an ideal (cf. O-1.15 and its figure).

(3) In a lattice, both FifL and Id) L are complete lattices; and if has a
top and bottom, then Filt and IdL are complete lattices.

(4) The functionx — |x : L — Id L is an embedding preserving arbitrary
infs and finite sups; it is called thgrincipal ideal embedding(There is a
dual principal filter embedding.) The example= N U {oo} (with its natural
ordering) shows that the principal ideal embedding nesgreserve arbitrary
(or even directed) sups.

(5) If L isaBoolean algebra, we can construe it as an algebra of “propositions”
(Oisfalseand 1 istrue, A andv areconjunctionanddisjunction complemen-
tation isnegation). Filt L can be thought of as the latticetbEories Any subset
A C L can be taken as a set of “axioms” generating the following “theory”,
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which is just a filter and corresponds to the propositions “implied” by the
axioms:

{xelL:(Jap,...,an-1€ A a@A---Aan1=<X}

The “inconsistent” theory i&, that is, the top filter generated §9}. If we
eliminateL, then FiltL\{L} is closed under arbitrary nonempty intersections
and directed unions. This is similar to the poset of O-2.7(10). As is well known,
the lattice FilL is lattice isomorphic to the lattice of open subsets of the Stone
space of the Boolean algebta O

Exercises

Exercise O-2.9. (Clopen setshet X be a topological space and BO(X) =

O(X) N T'(X) be the sublattice of’2of all closed-and-open se(sometimes:
clopen sefs Show that"O(X) is not complete in general, but it is always a
Boolean algebra. For a compact totally disconnected space, sholvd@jat)

is complete iff the closure of every open set is open (such spaces are called
extremally disconnectgd(This complements Example O-2.7(3).) O

Exercise 0-2.10. (Semicontinuous functionshet X be a topological space,
and letC(X, R*) be the set of continuous extended real-valued functions. Verify
the following assertions: under the pointwise orderi@gx, R*) is not com-
plete, but it is a lattice with a top and bottom. For comp¥cit is complete
iff X is extremely disconnected.

Over an arbitrary space to have a complete lattice we must pass to a larger
lattice. Thelower semicontinuousinctionsf € LSC(X, R*) are characterized
by the condition that the s¢x € X: r < f(X)} is open inX for everyr € R*.
(For upper semicontinuouiinctions we reverse the inequality.) The lattice
LSC(X, R*) is complete because it is closed under arbitrary pointwise sups.
Notice that LSCK, R*) is also closed under finite pointwise infs but not under
arbitrary pointwise infs. The lattices LSK(R*) and USCK, R*) are anti-
isomorphic and

C(X, R*) = LSC(X, R*) N USC(X, R*). O

In the next exercises, and many times elsewhere in this text, we shall have
occasion to discuss weaker forms of completeness as was already indicated in
Definition O-2.1. In order to compare the definitions of a complete lattice and a
complete semilattice we suggest that the reader recall that a complete lattice is
a poset with all conceivable completeness properties which a lattice may have
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and which aresymmetriq(i.e., remain invariant under passage to the opposite
poset); whereas a complete semilattice has, coarsely speaking, the maximal
completeness properties which a semilattice may have, short of becoming a lat-
tice. Evenyfinite semilattice of course is a complete semilattice. Every complete
semilattice which is, in addition, unital is clearly a complete lattice (O-2.2).

Exercise O-2.11.Let Sbe a poset in which every nonempty subset has an inf.
Show that everyX € Swith an upper bound has a sup. |

Exercise 0-2.12. Let againS be a poset in which every nonempty subset has
an inf. Adjoin an identity by formings* = SU {1} with an element & Sand
x < 1forallx e S. Show thatS' is a complete lattice. O

As a consequence, the adjunction of an identity to a complete semilattice will
produce a complete lattice.

Exercise O-2.13.Let Sbe the closed lower left triangléx, y): X +y < 1} in
the square [01]2.

Verify the following assertionsSis a complete semilattice babta complete
lattice. (Actually, the subsemilattiGe of Sconsisting of the three corner points
serves to illustrate this.) The interior of the triandlés, y): x +y < 1}, isa
semilattice in which every nonempty subset has an inf, butibt@ complete
semilattice.




Exercises 19

The half openinterval ]0, 1] is a directed complete lattice, butibisa complete
semilattice. O

Exercise O-2.14.Prove the following.

(i) A posetis directed complete iff all ideals have sups.

(i) A semilattice is a complete semilattice iff all filters have infs and all ideals
have sups. O

Exercise O-2.15.Prove the following.

(i) Every poset may be embedded into a complete lattice with the
preservation of all existing infs.
(i) Every lattice may be embedded into a complete lattice with the
preservation of all finite lattice operations and all existing infs.
(iii) Every lattice may be embedded into a complete lattice with the
preservation of all existing sups and infs.

Hint. Parts (i) and (ii) are easily accomplished with the means available
Section 2. For (i) use the complete lattice of all lower sets and the embed-
dingx — | Xx. For (ii) use the complete lattice ldand the principal ideal
embedding. Finally, (iii) is the so-callebllacNeille completionwhich

is likewise constructed by using suitable ideals; we refer to the existing
literature for details, e.g., [Balbes and Dwing&t974], p. 235. O

Exercise O-2.16.Prove the following.

(i) For every semilattices, the poset I is a directed complete semilattice.
(ii) If Sis a semilattice in which every nonempty subset has an inf, th&n Id
is a complete semilattice. O

Exercise O-2.17.In a Boolean algebra, is the lattice of finitely axiomatizable
“theories” complete? directed complete? O

Exercise O-2.18.Let G be a group and leil be any subgroup. Ldt be the
lattice of all subsets o6, that is,L = 2°. Let M be the collection oflouble
cosetf H; that is, let

M={XCG: X=XH=HX}

Prove thatM is a cBa, andliscuss the closure propertiesf within L with
respect to sups and infs.

Hint. Consider the maX — HXH. O
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Exercise O-2.19.Let F be as in O-2.7(10). Defing@ C F to be the collection
of all one-to-ongoartial functions. 17 a complete semilattice? O

Exercise 0-2.20. (Least Fixed-Point Theorem fodcpos) Let L be adcpo
with a bottom element.. Show that every monotone self-mépL — L has
a least fixed-point.

The preceding result generalizes the fixed-point theorem O-2.3 for complete
lattices. We will indicate two proofs for this fact. The first proof uses transfinite
induction:

Hint. We defineag = L and, by transfinite inductiom, ., = f(a,) for every
ordinala anda, = SUp,_, s for limit ordinals. As the cardinality ot is
bounded, there is an ordingl such thata, .1 = a,. Thisa, is a fixed-point
of f, and itis the least one, as one can verify readily. O

A second proof avoiding transfinite or equivalent reasonings due to D. Pataraia
(unpublished) is included in the following exercise.

Exercise 0-2.21.Let L be adcpo with a bottom element.. We denote by_
the set of all monotone self-magsL — L that areinflationary, i.e.,x < g(x)
for all x € L. We equip£L with the pointwise ordering of functions. Lét be
an arbitrary monotone self-map bf Prove the following.

(i) £ is adcpo with a greatest elemefit.

Hint. First, letus remark that is nonempty, as it contains the identity map
as least element. A3 < goh andh < goh forinflationary mapg andh,
we conclude thaf is directed. It is readily verified thdt is complete with
respect to directed pointwise suprema. Hentéas a greatest element
that we denote by .

(i) For everyx € L, T(x) is a common fixed-point of aly € L.

Hint. Clearly,go T € L for everyg € £. Hence,go T < T asT is
the top element of. On the other handg o T > T for inflationaryg.
Consequentlyg o T = T which implies the claim.

(i) Let M = {x € L : x < f(x)} be the set of pre-fixed-points df. Show
that (a)L € M, (b) M is closed for directed sups, and (d)is mapped
into itself by f.

Hint. Compare the proof of O-2.3.

(iv) Every monotone self-map: L — L has a least fixed-point.





