
Preface

This book covers the introduction and analysis of flows in open channels for
use as a text or as a reference book. Strong emphasis is given to the applica-
tion of efficient solution techniques, computational procedures and numerical
methods suitable for computer analyses. In addition, the coverage of unsteady
flow is as detailed as that of steady flow and extensive up-to-date references
are included.

To facilitate learning, short computer programs in FORTRAN related to
different chapters, the input data for sample problems, and the computer
output are included as Appendices on a CD. These may be used as a guide
for the development of software in other advanced languages, such as C, C++,
etc. Visual Basic, Mathcad, or Excel are suitable for the majority of these
applications.

The original text was based on the lecture notes for a course on open-
channel flow for senior-level undergraduate and graduate students and an
advanced graduate course on unsteady flow at Old Dominion University and
at Washington State University. This is a revised version of the material, parts
of which were used at the University of South Carolina in recent years. Sug-
gestions and comments of students, instructors, and several reviewers are in-
corporated, as appropriate. References are updated throughout the book and
additional problems are included. A chapter on sediment transport replaces
the chapter on finite-element method and chapters 4 and 15 are supplemented
with recent contributions on the topic. Photographs are used extensively to
facilitate and enhance the learning of the subject matter.

In recent years, the author has used Chapters 1 through 6, 9 and 10 and
parts of chapter 7 in a 3-semester-hour course for senior-level undergraduate
and graduate students in water resources and chapters 11 through 15 and part
of chapter 17 in an advanced graduate class. Other instructors may prefer to a
reduced coverage of chapters 6 and 7 and instead utilize chapters 7 and/or 11
and 16. Parts of different chapters may be used in a course on computational
hydraulics or on hydraulic structures.
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Satellite image of Tarbela Dam on the Indus River in Pakistan
(Courtesy, Johnson Space Center, NASA)
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1-1 Introduction

Liquids are transported from one location to another using natural or con-
structed conveyance structures. The cross section of these structures may be
open or closed at the top. The structures with closed tops are referred to as
closed conduits and those with the top open are called open channels. For ex-
ample, tunnels and pipes are closed conduits whereas rivers, streams, estuaries
etc. are open channels. The flow in an open channel or in a closed conduit
having a free surface is referred to as free-surface flow or open-channel flow.
The properties and the analyses of these flows are discussed in this book.

In this chapter, commonly used terms are first defined. The classification
of flows is then discussed, and the terminology and the properties of a channel
section are presented. Expressions are then derived for the energy and momen-
tum coefficients to account for nonuniform velocity distribution at a channel

in a channel section.

1-2 Definitions

The terms open-channel flow or free-surface flow (Fig. 1-1) are used synony-
mously in this book. The free surface is usually subjected to atmospheric
pressure. Groundwater or subsurface flows are excluded from the present dis-
cussions. If there is no free surface and the conduit is flowing full, then the
flow is called pipe flow, or pressurized flow. (Fig. 1-2)

Fig. 1-1. Free-Surface flow

In a closed conduit, it is possible to have both free-surface flow and pres-
surized flow at different times. It is also possible to have these flows at a given
time in different reaches of a conduit. For example, the flow in a storm sewer

section. The chapter concludes with a discussion of the pressure distribution
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Fig. 1-2. Pipe or pressurized flow

may be free-surface flow at a certain time. Then, due to large inflows produced
by a sudden storm, the sewer may flow full and pressurize it. Similarly, the
flow in a closed conduit may be free flow in part of the length and pipe flow
in the remaining length. This type of combined free-surface, pressurized flow
usually occurs in a closed conduit when the downstream end of the conduit
is submerged (Fig. 1-3).

Fig. 1-3. Combined free-surface and pressurized flow

The photographs of Fig. 1-4 show unsteady flow in the 1:84-scale hydraulic
model of the tailrace tunnel of Mica Power Plant, located on the Columbia
River in Canada. The flow in the two unlined, horseshoe tailrace tunnels, each
18.3 m high and 14.6 m wide, is normally free-surface flow. However, during
periods of high tailwater levels, the tunnels may be pressurized following major
load changes on the turbogenerators that produce large changes in the inflow
to the tunnels. The transient flow conditions shown in Fig. 1-4 are produced by
increasing or decreasing in 9 seconds the discharge of three turbines on tunnel
no. 2 while the discharge from the three turbines on tunnel no. 1 remains
constant. The discharge increase in Fig. 1-4a is from zero to 850 m3/s and the
discharge reduction in Fig. 1-4b is from 850 m3/s to zero. The free-surface
and pressurized flows in a laboratory experiment are shown in Fig. 1-5. The
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Fig. 1-4. Transient flow in the hydraulic model of Mica Tailrace Tunnel
(Courtesy, British Columbia Hydro and Power Authority, Canada)

initial steady state flow is from left to right and thus the upstream end is
located at the left-hand side of the photographs.

The height to which liquid rises in a small-diameter piezometer inserted in
a channel or a closed conduit depends upon the pressure at the location of the
piezometer. A line joining the top of the liquid surface in the piezometers is
called the hydraulic-grade line (Fig. 1-6). In pipe flow, the height of hydraulic-
grade line above a specified datum is called the piezometric head at that
location. In free-surface flow, the hydraulic grade line usually, but not always,
coincides with the free surface (see Section 1-6). If the velocity head, V 2/(2g),
in which V = mean flow velocity for the channel cross section, and g =
acceleration due to gravity, is added to the top of the hydraulic grade line and
the resulting points are joined by a line, then this line is called the energy-grade
line. This line represents the total head at different sections of a channel.

1-3 Classification of Flows

Based on different criteria, free-surface flows may be classified into various
types (Fig. 1-7), as discussed in the following paragraphs.
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Fig. 1-5. Free-surface and pressurized flows (Courtesy, Professor C. S. Song
[1984])

Steady and Unsteady Flows

If the flow velocity at a given point does not change with respect to time,
then the flow is called steady flow. However, if the velocity at a given location
changes with respect to time, then the flow is called unsteady flow.
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Fig. 1-6. Hydraulic- and energy-grade lines

Fig. 1-7. Classification of flows

Note that this classification is based on the time variation of velocity v at a
specified location. Thus, the local acceleration, ∂v/∂t, is zero in steady flows.
In two- or three-dimensional steady flows, the time variation of all components
of velocity is zero.

It is possible in some situations to transform unsteady flow into steady flow
by having coordinates with respect to a moving reference. This simplification is
helpful in the visualization of flow and in the derivation of governing equations.
Such a transformation is possible only if the wave shape does not change as the
wave propagates. For example, the shape of a surge wave moving in a smooth
channel does not change and consequently the propagation of a surge wave
in an otherwise unsteady flow may be converted into steady flow by moving
the reference coordinates at the absolute surge velocity. This is equivalent to
an observer traveling beside the surge wave so that the surge wave appears to
the observer to be stationary; thus the flow may be considered as steady. If
the wave shape changes as it propagates, then it is not possible to transform
such a wave motion into steady flow. Typical example of such a situation is
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the movement of a flood wave in a natural channel, where the shape of the
wave is modified as it propagates in the channel.

Uniform and Nonuniform flows

If the flow velocity at a given instant of time does not vary within a given
length of channel, then the flow is called uniform flow. However, if the flow
velocity at a time varies with respect to distance, then the flow is called
nonuniform flow, or varied flow.

This classification is based on the variation of flow velocity with respect to
space at a specified instant of time. Thus, the convective acceleration in uni-
form flow is zero. In mathematical terms, the partial derivatives of the velocity
components with respect to x, y, and z direction are all zero. However, many
times this strict restriction is somewhat relaxed by allowing a nonuniform ve-
locity distribution at a channel section. In other words, a flow is considered
uniform as long as the velocity in the direction of flow at different locations
along a channel remains the same.

Depending upon the rate of variation with respect to distance, flows may be
classified as gradually varied flow or rapidly varied flow. As the name implies,
the flow is called gradually varied flow, if the flow depth varies at a slow rate
with respect to distance, whereas the flow is called rapidly varied flow if the
flow depth varies significantly in a short distance.

Note that the steady and unsteady flows are characterized by the variation
with respect to time at a given location, whereas uniform or varied flows
are characterized by the variation at a given instant of time with respect to
distance. Thus, in a steady, uniform flow, the total derivative dV/dt = 0. In
one-dimensional flow, this means that ∂v/∂t = 0, and ∂v/∂x = 0. In two- and
three-dimensional flow, the partial derivatives of the velocity components in
the other two coordinate directions with respect to time and space are also
zero.

Laminar and Turbulent Flows

The flow is called laminar flow if the liquid particles appear to move in definite
smooth paths and the flow appears to be as a movement of thin layers on top
of each other. In turbulent flow, the liquid particles move in irregular paths
which are not fixed with respect to either time or space.

The relative magnitude of viscous and inertial forces determines whether
the flow is laminar or turbulent: The flow is laminar if the viscous forces
dominate, and the flow is turbulent if the inertial forces dominate.

The ratio of viscous and inertial forces is defined as the Reynolds number,

Re =
V L

ν
(1 − 1)
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in which Re = Reynolds number; V = mean flow velocity; L = a characteristic
length; and ν = kinematic viscosity of the liquid. Unlike pipe flow in which
the pipe diameter is usually used for the characteristic length, either hydraulic
depth or hydraulic radius may be used as the characteristic length in free-
surface flows. Hydraulic depth is defined as the flow area divided by the top
water-surface width and the hydraulic radius is defined as the flow area divided
by the wetted perimeter. The transition from laminar to turbulent flow in free-
surface flows occurs for Re of about 600, in which Re is based on the hydraulic
radius as the characteristic length.

In real-life applications, laminar free-surface flows are extremely rare. A
smooth and glassy flow surface may be due to surface velocity being less than
that required to form capillary waves and may not necessarily be due to the
fact that the flow is laminar. Care should be taken while selecting geometrical
scales for the hydraulic model studies so that the flow depth on the model is
not very small. Very small depth may produce laminar flow on the model even
though the prototype flow to be modelled is turbulent. The results of such a
model are not reliable.

Subcritical, Supercritical, and Critical Flows

A flow is called critical if the flow velocity is equal to the velocity of a gravity
wave having small amplitude. A gravity wave may be produced by a change
in the flow depth. The flow is called subcritical flow, if the flow velocity is less
than the critical velocity, and the flow is called supercritical flow if the flow
velocity is greater than the critical velocity. The Froude number, Fr, is equal
to the ratio of inertial and gravitational forces and, for a rectangular channel,
it is defined as

Fr =
V√
gy

(1 − 2)

in which y = flow depth. General expressions for Fr are presented in Section
3-2. Depending upon the value of Fr, flow is classified as subcritical if Fr < 1;
critical if Fr = 1; and supercritical if Fr > 1.

1-4 Terminology

Channels may be natural or artificial. Various names have been used for the
artificial channels: A long channel having mild slope usually excavated in the
ground is called a canal. A channel supported above ground and built of
wood, metal, or concrete is called a flume. A chute is a channel having very
steep bottom slope and almost vertical sides. A tunnel is a channel excavated
through a hill or a mountain. A short channel flowing partly full is referred
to as a culvert.

A channel having the same cross section and bottom slope throughout
is referred to as a prismatic channel, whereas a channel having varying cross
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section and/or bottom slope is called a non-prismatic channel. A long channel
may be comprised of several prismatic channels. A cross section taken normal
to the direction of flow (e.g., Section BB in Fig. 1-8) is called a channel section.
The depth of flow, y, at a section is the vertical distance of the lowest point of
the channel section from the free surface. The depth of flow section, d, is the
depth of flow normal to the direction of flow. The stage, Z, is the elevation
or vertical distance of free surface above a specified datum (Fig. 1-8). The
top width, B, is the width of channel section at the free surface. The flow
area, A, is the cross-sectional area of flow normal to the direction of flow. The
wetted perimeter, P is defined as the length of line of intersection of channel
wetted surface with a cross-sectional plane normal to the flow direction. The
hydraulic radius, R, and hydraulic depth, D, are defined as

R =
A

P

D =
A

B
(1 − 3)

Expressions for A, P , D and R for typical channel cross sections are pre-
sented in Table 1-1.

Fig. 1-8. Definition sketch

1-5 Velocity Distribution

The flow velocity in a channel section varies from one point to another. This
is due to shear stress at the bottom and at the sides of the channel and due
to the presence of free surface. Fig. 1-9 shows typical velocity distributions in
different channel cross sections.

The flow velocity may have components in all three Cartesian coordinate
directions. However, the components of velocity in the vertical and transverse
directions are usually small and may be neglected. Therefore, only the flow
velocity in the direction of flow needs to be considered. This velocity compo-
nent varies with depth from the free surface. A typical variation of velocity
with depth is shown in Fig. 1-10.
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Fig. 1-9. Velocity distribution in different channel sections
(After Chow [1959])

Fig. 1-10. Typical velocity variation with depth

Energy Coefficient

As discussed in the previous paragraphs, the flow velocity in a channel section
usually varies from one point to another. Therefore, the mean velocity head in
a channel section, (V 2/2g)m, is not the same as the velocity head, V 2

m/(2g),
computed by using the mean flow velocity, Vm, in which the subscript m
refers to the mean values. This difference may be taken into consideration by
introducing an energy coefficient, α, which is also referred to as the velocity-
head, or Coriolis coefficient. An expression for this coefficient is derived in the
following paragraphs.
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Referring to Fig. 1-11, the mass of liquid flowing through area ΔA per
unit time = ρV ΔA, in which ρ = mass density of the liquid. Since, the kinetic
energy of mass m traveling at velocity V is (1/2)mV 2, we can write

Kinetic energy transfer through area ΔA per unit time

=
1
2
ρV ΔAV 2

=
1
2
ρV 3ΔA (1 − 4)

Hence,

Kinetic energy transfer through area A per unit time

=
1
2
ρ

∫
V 3 dA (1 − 5)

Fig. 1-11. Definition sketch

It follows from Eq. 1-4 that the kinetic energy transfer through area ΔA
per unit time may be written as (γV ΔA)V 2/(2g) = weight of liquid passing
through area ΔA per unit time × velocity head, in which γ = specific weight
of the liquid. Now, if Vm is the mean flow velocity for the channel section, then
the weight of liquid passing through total area per unit time =γVm

∫
dA; and

the velocity head for the channel section =αV 2
m/(2g), in which α = velocity-

head coefficient. Therefore, we can write

Kinetic energy transfer through area per unit time

= ραVm
V 2
m

2

∫
dA (1 − 6)

Hence, it follows from Eqs. 1-5 and 1-6 that

α =
∫
V 3dA

V 3
m

∫
dA

(1 − 7)
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Figure 1-12 shows a typical cross section of a natural river comprising of
the main river channel and the flood plain on each side of the main channel.
The flow velocity in the floodplain is usually very low as compared to that in
the main section. In addition, the variation of flow velocity in each subsection
is small. Therefore, each subsection may be assumed to have the same flow
velocity throughout. In such a case, the integration of various terms of Eq.
1-7 may be replaced by summation as follows:

α =
V 3

1 A1 + V 3
2 A2 + V 3

3 A3

V 3
m(A1 +A2 +A3)

(1 − 8)

in which
Vm =

V1A1 + V2A2 + V3A3

A1 +A2 +A3
(1 − 9)

By substituting Eq. 1-9 into Eq. 1-8 and simplifying, we obtain

α =
(V 3

1 A1 + V 3
2 A2 + V 3

3 A3)(A1 +A2 +A3)2

(V1A1 + V2A2 + V3A3)3
(1 − 10)

Note that Eq. 1-10 is written for a section which may be divided into three
subsections each having uniform velocity distribution. For a general case in
which total area A may be subdivided into N such subareas each having
uniform velocity, an equation similar to Eq. 1-10 may be written as

α =
∑N
i=1(V

3
i Ai). (

∑
Ai)

2

(
∑
ViAi)3

(1 − 11)

Fig. 1-12. Typical river cross section

Momentum Cefficient

Similar to the energy coefficient, a coefficient for the momentum transfer
through a channel section may be introduced to account for nonuniform veloc-
ity distribution. This coefficient, also called Boussinesq coefficient, is denoted
by β. An expression for this may be obtained as follows.
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The mass of liquid passing through areaΔA per unit time = ρV ΔA. There-
fore, the momentum passing through area ΔA per unit time = (ρV ΔA)V =
ρV 2ΔA. By integrating this expression over the total area, we get

Momentum transfer through area A per unit time

= ρ

∫
V 2 dA (1 − 12)

By introducing the momentum coefficient, β, we may write the momentum
transfer through area A in terms of the mean flow velocity, Vm, for the channel
section, i.e.,

Momentum transfer through area A per unit time = βρV 2
m

∫
dA (1 − 13)

Hence, it follows from Eqs. 1-12 and 1-13 that

β =
∫
V 2 dA

V 2
m

∫
dA

(1 − 14)

Theoretical values for α and β can be derived from the power law and the
logarithmic law for velocity distribution in wide channels. Chen (1992) derived
the theoretical values of α and β using the power law distribution. The values
of α and β for typical channel sections [Temple 1986; Watts et al. 1967; Chow
1959] are listed in Table 1-2. For turbulent flow in a straight channel having a
rectangular, trapezoidal, or circular cross section, α is usually less than 1.15
[Henderson, 1966]. Therefore, it may not be included in the computations
since its value is not precisely known and it is nearly equal to unity.

Table 1-2. Values of α and β for typical sections∗

Channel section α β

Regular channels 1.10-1.20 1.03-1.07
Natural channels 1.15-1.50 1.05-1.17
Rivers under ice cover 1.20-2.00 1.07-1.33
River valleys, overflooded 1.50-2.00 1.17-1.33

∗ Compiled from data given by Chow [1959]
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Example 1-1

The velocity distribution in a channel section may be approximated by the
equation, V = Vo(y/yo)n, in which V is the flow velocity at depth y; Vo is
the flow velocity at depth yo, and n = a constant. Derive expressions for the
energy and momentum coefficients.

Solution:

Let us consider a unit width of the channel. Then, we can replace area A in
the equations for the energy and momentum coefficients by the flow depth y.
Now,

Vm =
∫
V dA∫
dA

For a unit width, this equation becomes

Vm =
∫
V dy∫
dy

By substituting the expression for V into this equation, we obtain

Vm =

∫ yo

0
Vo( yyo)

n dy∫ yo

0 dy

=
Vo
yno

yn+1

n+ 1

∣∣∣yo

0

1
yo

=
Vo
n+ 1

By substituting V = Vo(y/yo)n , Vm = Vo/(n+ 1), and dA = dy into Eq. 1-7,
we obtain

α =

∫ yo

0 V 3
o (y/yo)3ndy

[Vo/(n+ 1)]3
∫ yo

0 dy

=
(V 3
o /y

3n
o )[y3n+1/(3n+ 1)]
yo[Vo/(n+ 1)]3

=
(n+ 1)3

3n+ 1

Substitution of V = Vo(y/yo)n and Vm = Vo/(n+ 1) into Eq. 1-14 yields
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β =

∫ yo

0 V 2
o (y/yo)2n dy

[Vo/(n+ 1)]2
∫ yo

0 dy

=
(V 2
o yo)/(2n+ 1)

[Vo/(n+ 1)]2yo

=
(n+ 1)2

2n+ 1

1-6 Pressure Distribution

The pressure distribution in a channel section depends upon the flow condi-
tions. Let us consider several possible cases, starting with the simplest one
and then proceeding progressively to more complex situations.

Static Conditions

Let us consider a column of liquid having cross-sectional area ΔA, as shown
in Fig. 1-13. The horizontal and vertical components of the resultant force
acting on the liquid column are zero, since the liquid is stationary. If p =
pressure intensity at the bottom of the liquid column, then the force due to
pressure at the bottom of the column acting vertically upwards = pΔA. The
weight of the liquid column acting vertically downwards = ρgyΔA. Since the
vertical component of the resultant force is zero, we can write

pΔA = ρgyΔA

or
p = ρgy (1 − 15)

In other words, the pressure intensity is directly proportional to the depth
below the free surface. Since ρ is constant for typical engineering applications,
the relationship between the pressure intensity and depth plots as a straight
line, and the liquid rises to the level of the free surface in a piezometer, as
shown in Fig. 1-13. The linear relationship, based on the assumption that ρ
is constant, is usually valid except at very large depths, where large pressures
result in increased density.

Horizontal, Parallel Flow

Let us now consider the forces acting on a vertical column of liquid flowing
in a horizontal, frictionless channel (Fig. 1-14). Let us assume that there
is no acceleration in the direction of flow and the flow velocity is parallel
to the channel bottom and is uniform over the channel section. Thus the
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Fig. 1-13. Pressure in stationary fluid

streamlines are parallel to the channel bottom. Since there is no acceleration
in the direction of flow, the component of the resultant force in this direction
is zero. Referring to the free-body diagram shown in Fig. 1-14 and noting that
the vertical component of the resultant force acting on the column of liquid
is zero, we may write

ρgyΔA = pΔA

or
p = ρgy = γy (1 − 16)

in which γ = ρg = specific weight of the liquid. Note that this pressure
distribution is the same as if the liquid were stationary; it is, therefore, referred
to as the hydrostatic pressure distribution.

Fig. 1-14. Horizontal, parallel flow

Parallel Flow in Sloping Channels

Let us now consider the flow conditions in a sloping channel such that there is
no acceleration in the flow direction, the flow velocity is uniform at a channel
cross section and is parallel to the channel bottom; i.e., the streamlines are
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parallel to the channel bottom. Figure 1-15 shows the free-body diagram of a
column of liquid normal to the channel bottom. The cross-sectional area of the
column is ΔA. If θ = slope of the channel bottom, then the component of the
weight of column acting along the column is ρgdΔA cos θ and the force acting
at the bottom of the column is pΔA. There is no acceleration in a direction
along the column length, since the flow velocity is parallel to the channel
bottom. Hence, we can write pΔA = ρgdΔA cos θ, or p = ρgd cos θ = γd cos θ.
By substituting d = y cos θ into this equation (y = flow depth measured
vertically, as shown in Fig. 1-15), we obtain

p = γy cos2 θ (1 − 17)

Note that in this case the pressure distribution is not hydrostatic in spite of

Fig. 1-15. Parallel flow in a sloping channel

the fact that we have parallel flow and there is no acceleration in the direction
of flow. However, if the slope of the channel bottom is small, then cos θ � 1
and d � y. Hence,

p � ρgd � ρgy (1 − 18)

In several derivations in the subsequent chapters we assume that the slope
of the channel bottom is small. With this assumption, the pressure distribution
may be assumed to be hydrostatic if the streamlines are almost parallel and
straight, and the flow depths measured vertically or normal to the channel
bottom are approximately the same.

Curvilinear Flow

In the previous three cases, the streamlines were straight and parallel to the
channel bottom. However, in several real-life situations, the streamlines have
pronounced curvature. To determine the pressure distribution in such flows,
let us consider the forces acting in the vertical direction on a column of liquid
with cross-sectional area ΔA, as shown in Fig. 1-16.
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Fig. 1-16. Curvilinear flow

Mass of the liquid column = ρysΔA (1 − 19)

If r = radius of curvature of the streamline and V is the flow velocity at the
point under consideration, then

Centrifugal acceleration =
V 2

r
(1 − 20)

and

Centrifugal force = ρysΔA
V 2

r
(1 − 21)

Dividing the centrifugal force by the area of the column and converting the
pressure to pressure head, we obtain the following expression for the pres-
sure head, ya, acting at the bottom of the liquid column due to centrifugal
acceleration

ya =
1
g
ys
V 2

r
(1 − 22)

The pressure due to centrifugal force is in the same direction as the weight
of column if the curvature is concave, as shown in Fig. 1-16a, and it is in
a direction opposite to the weight if the curvature is convex (Fig. 1-16b).
Therefore, the total pressure head acting at the bottom of the column is an
algebraic sum of the pressure due to centrifugal action and the weight of the
liquid column, i.e.,

Total pressure head = ys(1 ± 1
g

V 2

r
) (1 − 23)

A positive sign is used if the streamline is concave, and a negative sign is
used if the streamline is convex. Note that the first term in Eq. 1-23 is the
pressure head due to static conditions while the second term is the pressure
head due to centrifugal action. Thus, the liquid in a piezometer inserted into
the flow rises, as shown in Fig. 1-16a. In other words, pressure increases due to
centrifugal action in concave flows and decreases in convex flows (Fig. 1-16b).

Boussinesq derived a formula for solving problems with small water sur-
face curvatures. Detailed derivations are presented in Subramanya [1991] and
Jaeger [1957].
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1-7 Reynolds Transport Theorem

The Reynolds transport theorem relates the flow variables for a specified fluid
mass to that of a specified flow region. We will utilize it in later chapters to
derive the governing equations for steady and unsteady flow conditions. To
simplify the presentation of its application, we include a brief description in
this section; for details, see Roberson and Crowe [1997].

We will call a specified fluid mass the system and a specified region, the
control volume. The boundaries of a system separate it from its surroundings
and the boundaries of a control volume are referred to as the control surface.
The three well-known conservation laws of mass, momentum, and energy de-
scribe the interaction between a system and its surroundings. However, in
hydraulic engineering, we are usually interested in the flow in a region as
compared to following the motion of a fluid particle or the motion of a quan-
tity of mass. The Reynolds transport theorem relates the flow variables in a
control volume to those of a system.

Let the extensive property of a system be B and the corresponding intensive
property be β. The intensive property is defined as the amount of B per unit
mass, m, of a system, i.e.,

β = lim
Δm→0

ΔB

Δm
(1 − 24)

Thus, the total amount of B in a control volume

Bcv =
∫
cv

βρdV (1 − 25)

in which ρ = mass density and dV = differential volume of the fluid, and the
integration is over the control volume.

We will consider mainly one-dimensional flows in this book. The control
volume will be fixed in space and will not change its shape with respect to
time, i.e., it will not stretch or contract. For such a control volume for one-
dimensional flow, the following equation relates the system properties to those
in the control volume:

dBsys
dt

=
d

dt

∫
cv

βρdV + (βρAV )out − (βρAV )in (1 − 26)

in which the subscripts in and out refer to the quantities for the inflow and
outflow from the control volume and V = flow velocity. The system is assumed
to occupy the entire control volume, i.e., the system boundaries coincide with
the control surface.

Let us now discuss the application of this equation to a control volume.
As an example, the time rate of change of momentum of a system is equal
to the sum of the forces exerted on the system by its surroundings (New-
ton’s second law of motion).To use this equation to describe the conservation
of momentum of the water of mass m in a control volume, the extensive
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property B is the momentum of water = mV and the corresponding inten-
sive property, β = limΔm→0 V (Δm/Δm) = V . To describe the conservation
of mass, B is the mass of water and the corresponding intensive property
β = limΔm→0(Δm/Δm) = 1.

1-8 Computer Program

A computer program for computing the energy and momentum coefficients
is presented in Appendix A. A trapeziodal rule is used for computing the
integrals.

1-9 Summary

In this chapter, commonly used terms were defined, classification of flows
using several different criteria was outlined, and the properties of a channel
section were presented. The distribution of velocity and pressure in a channel
section was discussed and two coefficients were introduced to account for the
nonuniform velocity distribution. The distribution of pressure was discussed
and a brief description of the Reynolds transport theorem was presented to
facilitate its application in later chapters.

Problems

1.1. Derive expressions for the flow area, A, wetted perimeter,P , hydraulic
radius,R, top-water surface width, B, and hydraulic depth,D, for the following
channel cross sections:

i. Rectangular (bottom width =Bo)
ii. Trapezoidal (bottom width = Bo, side slopes = 1 V : s H)
iii. Triangular (side slopes = 1 V : s H)
iv. Partially-full circular (diameter = D)
v. Standard horseshoe(Fig. 1-17).

1.2. The discharge in a channel is proportional to AR2/3 if the flow is uniform.
For a circular conduit having an inside diameter D, prove that the discharge
is maximum when the flow depth is 0.94D.

1.3. Compute (R/Rf)2/3 and AR2/3/(AR2/3)f for different values of y/D for
a circular conduit flowing partially full, in which y = flow depth; D = conduit
diameter; and the subscript ‘f’ refers to the values for the full section. At what
values of ratio y/D do the curves have maximum values?
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Fig. 1-17. Horseshoe section

1.4. Determine the energy and momentum coefficients for the velocity distri-
bution, V = 5.75Vo log(30y/k), in which Vo = flow velocity at the free surface;
yo = flow depth, and k = height of surface roughness. Assume the channel is
very wide and rectangular.

1.5. The flow velocities measured at various flow depths in a wide rectangular
flume are listed in the following table. Write a computer program to determine
the values of α and β. Use Simpson’s rule for the numerical integration.

Table 1-3. Flow velocities at different depths

y (m) 0.0 0.2 0.4 0.6 0.8 1.0 1.2
V (m/s) 0.0 3.87 4.27 4.53 4.72 4.87 5.0

1.6. At a bridge crossing, the mean flow velocities (in m/s) were measured at
the midpoints of various subareas, as shown in Fig. 1-18. Compute the values
of α and β for the cross section.

1.7. Write a computer program to compute α and β for the flow in a channel
having a general cross section. By using this program, compute α and β for
the velocity distributionshown in Fig. 1-19.

1.8. Fig. 1-20 shows the velocity distribution measured on the scale model of
a canal. By using the computer program of Problem 1-7, compute the energy
and momentum coefficients.

1.9. While computing the bending moment and the shear force acting on the
side walls of the spillway chute of Fig. 1-21, a structural engineer assumed
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Fig. 1-18. Velocities at bridge crossing

Fig. 1-19. Dimensionless isovels (After Knight and Hamed [1984])

Fig. 1-20. Velocity distribution (After Babb and Amorocho [1965])

that the water pressure varies linearly from zero at the free surface to ρgy at
the invert of the chute, in which y= flow depth measured vertically. What are
the computed values for the bending moment and the shear force at the invert
level? Are the computed results correct? If not, compute the percentage error.
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Fig. 1-21. Spillway chute

1.10. A spillway flip bucket has a radius of 20 m (Fig. 1-22). If the flow
velocity at section BB is 20 m/s and the flow depth is 5 m, compute the
pressure intensity at point C.

Fig. 1-22. Flip bucket

1.11. In a partially full channel having a triangular cross section (Fig. 1-23),
the rate of discharge Q = kAR2/3, in which k = a constant; A = flow area,
and R = hydraulic radius. Determine the depth at which the discharge is
maximum. For the triangular channel section shown, A = [B− (h/

√
3)]h, and

P = B + (4h/
√

3).

1.12. In the following situations, is the flow uniform or nonuniform?

i. Flow in a channel contraction or expansion
ii. Flow at a channel entrance
iii. Flow in the vicinity of a bridge pier
iv. Flow at the end of a long prismatic channel.

1.13. In the following situations, is the flow steady or unsteady?

i. Flow in a storm sewer during a large storm
ii. Flow in a power canal following shutting down of turbines
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Fig. 1-23. Triangular channel cross section

iii. Flow in a power canal when the turbines have been producing constant
power

iv. Flow in an estuary during a tide

1.14. In the following cases, is the flow laminar or turbulent?

i. Flow in a wide rectangular channelat a flow velocity of 1 m/s at 1 m flow
depth

ii. Flow in a wide rectangular channelat a flow velocity of 0.1 m/s at 2 mm
flow depth

1.15. Is it possible to have uniform flow in a frictionless sloping channel? Give
reasons for your answer.

1.16. Is it possible to have uniform flow in a horizontal channel? Justify your
answer.

1.17. If the angle between the flow surface and horizontal axis is φ and the
angle between the channel bottom and horizontal is φ, prove that the pressure
intensity at the channel bottom is

p =
1

1 + tan θ tanφ
ρgy

in which y = flow depth measured vertically.

1.18. For an assumed velocity distribution, V = 5.75 log(30y/k), prove that
α = 1 + 3r2 − 2r3 and β = 1 + r2. In the above expression, r = Vmax/V̄ − 1;
V̄ = mean velocity; and Vmax = maximum velocity.

1.19. Show that the bending moment on the side walls of a steep channel with
a bottom slope θ for a flow depth of y is 1

6γy
3 cos4 θ. Derive an expression for

the shear force.
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