Preface

In 1992 we published a book entitled Fuzzy Measure Theory (Plenum Press,
New York), in which the term “fuzzy measure” was used for set functions
obtained by replacing the additivity requirement of classical measures with
weaker requirements of monotonicity with respect to set inclusion and conti-
nuity. That is, the book dealt with nonnegative set functions that were mono-
tone, vanished at the empty set, and possessed appropriate continuity
properties when defined on infinite sets.

It seems that Fuzzy Measure Theory was the only book available on the
market at that time devoted to this emerging new mathematical theory. Some
ten years after its publication we began to see that the subject had expanded so
much that a second edition of the book, or even a new book on the subject, was
needed. We eventually decided to write a new book because the new material we
wished to include was too extensive for—and far beyond the usual scope—of a
second edition. More importantly, we felt that some fundamental changes
regarding this topic’s scope and terminology would be desirable and timely.

As far as the scope of the new book, Generalized Measure Theory, is con-
cerned, we felt, on the basis of recent developments in the literature, that the
material should not be restricted to set functions that had to be nonnegative and
monotone. Rather, it needed to capture a broader class of set functions; a
function in this class would have only one requirement to qualify as a “mea-
sure”: it would vanish at the empty set. Then, various special requirements
could be introduced as needed to restrict this broad class of set functions to
specialized subclasses. One of these subclasses would consist of nonnegative,
monotone, and continuous set functions that vanish at the empty set—or fuzzy
measures—the subject of our previous book.

Regarding terminology, it was obvious that we needed to revise it completely
in view of the expanded scope of the book. First, we had to introduce a name for
the most general measures. We did so by referring to nonnegative set functions
that vanish at the empty set as general measures and referring to those that are
not required to be nonnegative as signed general measures. Second, we needed to
introduce appropriate names of the various subclasses of general measures or
signed general measures. This we did in Chapters 3 and 4, where we followed, by
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and large, the terminology established in the literature. However, it should be
emphasized that we made a deliberate decision to abandon the central term of
our previous book, the term “fuzzy measure.” We judge this term to be highly
misleading. Indeed, the so-called fuzzy measures do not involve any fuzziness.
They are just special set functions that are defined on specified classes of
classical sets, not on classes of fuzzy sets. Since the primary characteristic of
such functions is monotonicity, we deemed it reasonable to call these set func-
tions monotone measures rather than fuzzy measures.

However, contrary to the concept of fuzzy measures in our previous book,
monotone measures as understood in Generalized Measure Theory need not be
continuous. If, in fact, they are continuous then they are here specifically referred
to as continuous monotone measures. Moreover, if they are only semicontinuous
from below or from above, then they are called, respectively, lower-semicontinuous
or upper-semicontinuous monotone measures. Clearly, any continuous monotone
measure is both lower-semicontinuous and upper-semicontinuous.

There is another reason why abandoning the term “fuzzy measure” is justi-
fied: It is certainly meaningful to fuzzify any class of measures, as we show in
Chapter 14. A given class of measures is “fuzzified” when it is defined on fuzzy
sets rather than on classical sets. However, the resulting term—*"“fuzzified fuzzy
measures” we find awkward, not properly descriptive, and quite confusing. For
all these reasons, we decided to replace the term “fuzzy measure” with “con-
tinuous monotone measure” and to use the term “monotone measure” when
continuity or even semicontinuity is not required. When they are fuzzified we
refer to these measures as “fuzzified monotone measures.” When measures of
any other type are defined on classes of fuzzy sets we refer to them as fuzzified
measures of the respective type. We thus use names such as fuzzified general
measures, fuzzified monotone measures, fuzzified continuous monotone measures,
and the like.

We realize it is not likely that the confusing term “fuzzy measures” for
“measures defined on classes of crisp sets” will soon disappear in the literature.
However, we are confident that the time is ripe to stop using it. In a sense we
have joined some major contributors to generalized measure theory who have
already abandoned this ill-descriptive term.

We have made in this book a few additional terminological changes with
respect to our previous book. However, all these changes affect special con-
cepts, so we explain our rationale for making these changes as we introduce
each concept.

Our previous book contains, in addition to its original material, six of our
reprinted papers. In this book, no reprinted papers are included. Instead the
original material is substantially expanded. Major expansions are in the area of
integration, methods for constructing generalized measures, fuzzification of
generalized measures, and applications of generalized measure theory.

Much like our previous book, this book is primarily a text for a one-semester
graduate or upper division course. Such a course is suitable not only for
programs in mathematics, where it might be offered at the junior or senior
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level, but also for programs in numerous other areas. These would include
systems science, computer science, information science, and cognitive sciences,
as well as artificial intelligence, quantitative management, mathematical social
sciences, and virtually all areas of engineering and natural sciences. The book
may also be useful for researchers in these areas.

Although a solid background in mathematical analysis is required for under-
standing the material presented, the book is otherwise self-contained. This is
achieved by the inclusion of needed prerequisites regarding classical sets, clas-
sical measures, and fuzzy sets, as given in Chapter 2. In general, the book is
written in the textbook style, characterized by generous use of examples and
exercises. Each chapter concludes with notes containing relevant historical,
bibliographical, and other remarks relating to the covered material, which are
useful for further study of generalized measure theory and its applications.
Compared with our previous book, the bibliography of Generalized Measure
Theory is substantially expanded. Two glossaries are included for convenience
of the reader, Glossary of Key Concepts (Appendix A) and Glossary of Sym-
bols (Appendix B).

Omaha, Nebraska, USA Zhenyuan Wang
Binghamton, New York, USA George J.Klir



Chapter 2
Preliminaries

2.1 Classical Sets
2.1.1 Set Inclusion and Characteristic Function

Let X be a nonempty set. Unless otherwise stated, all sets that we consider are
subsets of X. Set X is called a universe of discourse or a universal set. The
elements of X are called points. Universal set X may contain finite, countably
infinite, or uncountably infinite number of points. A set that consists of a finite
number of points xj,xs,...,x, (or, a countably infinite number of points
X1, X2, ...) may be denoted by {x1,x2,...,x,}({x1,x2,...}, respectively). A set
containing no point is called the empty set and is denoted by O.
If x is a point of X and E is a subset of X, the notation

xek

means that x belongs to E, i.e., x is an clement of E; and the statement that x
does not belong to E is denoted by

x ¢ E.
Thus, for every point x of X we have
xeX
and
x ¢ 0.
A set of sets is called a class. If E is a set and C is a class, then
EeC

means that set £ belongs to class C.

Z. Wang, G.J. Klir, Generalized Measure Theory, 9
DOI: 10.1007/978-0-387-76852-6_2, © Springer Science+Business Media, LLC 2009
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If, for each x, 7(x) is a proposition concerning x, then the symbol
{x]n(x)}
denotes the set of all those points x for which 7(x) is true; that is,
X0 € {x|n(x)} < n(xp)is true.

If the point x is replaced with set E, such a symbol may be used to indicate a
class. For example,

{E|x € E}

denotes the class of those sets that contain the point x.

Example 2.1. Let X = {1,2,...}. Then, 4 = {x|x is odd and less than10} =
{1,3,5,7,9}.

Example 2.2. Let X be the set of all real numbers, which is often referred to as
the real line or one-dimensional Euclidean space. The class {(a,b)] — 0o <
a<b<oo} is the class consisting of all open intervals on the real line.
If E and F are sets, the notation
ECForFDE

means that £'is a subset of F, i.e., every point of E belongs to F. In this case, we
say that F includes E, or that E is included by F. For every set E we have

JCECX.
Two sets E and F are called equal iff
E C Fand F C E;
that is, they contain exactly the same points. This is denoted by
E=F.
The symbols C or D also may be used for classes. If E and F are classes, then
ECF

means that every set of E belongs to F, that is, E is a subclass of F.
If Ei, Es, ..., E, are nonempty sets, then

E={(x1,x2,...,x)|x; € E, i=1,2,...,n}
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is called an n-dimensional product set and is denoted by
E=FE xEy,x...xXE,.

Similarly, if {E,|¢t € T} is a family of nonempty sets, where 7 is an infinite index
set, then

E={x,teT|x,€E foreachte T}

is called an infinite-dimensional product set.

Example 2.3. Let X; and X, be one-dimensional Euclidean spaces. Then X =
X1 x Xo = {(x1,x2)]x1 € (—00,00),x2 € (—00,00)} is the two-dimensional
Euclidean space. The set {(x1,x2)|x; > x2} is a half (open) plane under the
line x, = xy, while the set {(x1,x2)|x7 + x3 <2} is the open circle centering at
the origin with a radius r, where r > 0.

Example 2.4. Let X, = {0,1},7 € {1,2,...}. The space

X=X XxXox...xX, x...
={(x1,x2,...,Xp,...)|x; € {0, 1} for each r € {1,2,...}}
is an infinite-dimensional product space. Each point (x, x,..., Xy, ...) in this
space corresponds to the binary number 0. x;x;...X,... in [0,1]. Such a

correspondence is not one to one, but it is onto.
If E is a set, the function Y, defined for all x € X by

1 ifxekE

Xe(X) = {o it x¢ E,

is called the characteristic function of set E. The correspondence between sets
and their characteristic functions is one to one, that is,

E=F<& x,(x) =x,(x), Vx € X.
It is easy to see that
ECFox,(x) < x(x), Vx € X,

and that
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2.1.2 Operations on Sets

Let C be any class of subsets of X. The set of all those points of X that belong to at
least one set of the class C is called the union of the sets of C. This is denoted by

Uc.

If to every ¢ of a certain index set 7 there corresponds a set £;, then the union
of the sets of class

{E/|t € T}

may be also denoted by

U E or |JE.
t

teT

Especially, when

C={E, Ea},
then U C is denoted by
E| U Ey;
and if
C={EE,....E,} (C=A{E\, Es...})
then U C is denoted by

E/UE,U...UE, or |JE (U E;, respectively >
i=1 '

i=1

The set of all those points of X which belong to every set of the class C is
called the intersection of the sets of C. This is denoted by (] C. Symbols similar
to those used for unions are available, such as ()., E; (or (), E),
EiNE,, EENEN...NE, (or (\_, E;), and (2, E;. If Fis a set, the class
{ENF|E € C} is denoted by C N F.

Example 2.5. Let X = {a,b,c,d},C = {{a},{b,c},{b,d},{c,d}}, F = {a,b}.
Then CN F = {{a},{b}, O}.

Example 2.6. Let X = (—o0,00), C = {[a,b]|] —oc0o<a < b<ox}, F=10,1].
Then, CN F = {[a,b]|0 < a < b < 1}, that s, the class of all closed subintervals
of the unit closed interval.
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It is convenient to adopt the conventions that

U E[ZQ
teT

and
ﬂE[:X
teT

when 7 is empty.

Proposition 2.1. The following statements are equivalent:

(1) ECF;
) EUF=F;
(3) ENF=E.

Two sets E and F are called disjoint iff

ENF=0.

A class C is called disjoint iff every two distinct sets of C are disjoint; in this
case we refer to the union of the sets of C as a disjoint union.

If Eis a set, the set of all those points of X that do not belong to E'is called the
complement of E. This is denoted by E.

Proposition 2.2. The set operations union, intersection, and complement have the
following properties:

Involution: E=E
Commutativity: FUF=FUEFE
ENF=FNE
Associativity: Ul UE]= E;
teT \seS, SEUier Sy
ﬂ ( ﬂ Es) - E;
teT \sesS, seEUrer Sy
Distributivity: Fn ( UE|=U(FNE)
teT teT

Idempotence: EUE=E
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Absorption:

Absorption of complement:

Absorption by X and Q:

Identity:

Law of contradiction:

Law of excluded middle:

DeMorgan’s laws:

where S;, T are index sets.

2 Preliminaries

EU(ENF)=E
EN(EUF)=E
EU(ENF)=EUF
EN(EUF)=ENF
EuX=X
ENO=0
EUQ=E
ENX=E
ENE=0
EUE=X
= O
IQTEI:[STE

From the above a duality is suggestive. In general, we have the following
principle of duality: Any valid identity among sets obtained by unions, inter-
sections, and complements, remains valid if the symbols

are interchanged with

N,C, and O

U, D, and X,

respectively (and if the equality and complementation are left unchanged).
If E and F are sets, the set of all those points of E that do not belong to F'is
called the difference of E and F. This is denoted by

E—F.

If E D F, the difference £ — F'is called proper. Clearly,

E—F=ENF.

The symmetric difference of E and F, in symbols

EAF,
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is defined by
EAF=(E-F)U(F—E).

Let {E|, E>, ...} (or {E,}, briefly) be a sequence of sets. The set of all those
points of X that belong to E,, for infinitely many values of 7 is called the superior
limit of {E,}, and is denoted by

limsup E, or limE,;
n n

the set of all points of X that belong to E,, for all but a finite number of values of
n is called the inferior limit of {E,}, and denoted by

liminfE, or limE,.
n n

Proposition 2.3.

hmsupE = ﬂ EJCE,,

n=1i=n

oo
lim 1nfE,, = U N E;.

n=1i=n

Example 2.7. Let X = {a, b} and let a set sequence {E,} be defined as follows:

_ J{a} ifniseven . B o B
E, { (b} ifnis odd. Then, limsup, E, = X and liminf, E, = O.

Example 2 8 Let X = ( , 00) and let a set sequence {E,} be defined as
follows: E; =[0,1), E [ 1/2), E5=[1/2,1), E [0 1/4), Es=1[1/4,
1/2), E¢ = [1/2 3/4), E; =[3/4,1), Eg = [0, 1/8) . Then, limsup, E, =
[0,1) and liminf, E, = Q
Proposition 2.4. liminf, £, C limsup, E,

If

limsup E, = liminf E,
n n

we use the notation
IimE,
n

for this set and say that the limit of {E,} exists and that this set is the /imit of
{E,}. Sometimes we write E, — E when lim, E, = E.
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Example 2.9. Let X ={1,2,...} and let {E,} be a set sequence in which
E, = {n},n=1,2,.... Then, we have

limsup E, = liminf E, = @.
n n

Hence, the limit of {E,} exists, and lim, E, = O.
We say that { £, } is increasing if

E,C Eny, Yn=12,...,
and {E,} is decreasing if
Ey D Ent, WYn=12,....

Both increasing and decreasing sequences are called monotone.

Proposition 2.5. For any monotone sequence {E,},lim, E, exists and equals
UE., or (E,
n n

according as {E,} is increasing or decreasing, respectively.

Usually, we write E,  E when {E,} is increasing and lim, E, = E, whereas
we write E, \, E when {E,} is decreasing and lim, E,, = E.

Example 2.10. Let X = (—o0,00). If {E,} is a set sequence in which
E,=[l/n1],n=1,2,..., then {E,} is increasing, and E, /" J, E, = (0, 1]. If
{F,} is a set sequence in which F, = (—(1+1/n),1 4+ 1/n),n=1,2,..., then
{F,} is decreasing, and F, \, (", F» = [-1, 1].

The discussion of monotone sequences { E, } can be generalized to families of
sets { E;|t € T}, where T'is an interval (finite or infinite) of real numbers. If for
any t, € T,E, C E, whenever 1 < ¢, then {E,} is increasing, and

hm E[ == U Eh

—ty—

t<tote€T
lim E[ = ﬂ E[,
=t t>tteT

ifforany 1,/ € T,E, D E, whenever t < ¢, then {E,} is decreasing, and

lim E[ == ﬂ E[’
=t t<toteT
hm E[ = U E[,

=t t>t.t€T
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where symbols lim,_,,_ and lim,_,,,; denote the left limit at 7y and the right limit
at ¢, respectively.

The following proposition gives the correspondence between the operations
of sets and the operations of characteristic functions of sets.

Proposition 2.6.
(1) X =Ssupy, , where E= U Ej;
teT ! teT
in particular,
Xeor = MaX(Xgr Xp);
2) Xy = tlgi}xfl, where E = zQTE’;

in particular,

X,., = min(x,, x,);

) . Xz =1 =X
4) Xer = X — min(x,, x,) = min(x,, 1 — x,) = max(0, x, — x,);
(5) X.‘;‘AF = ‘XE - XF|;
(6) Xiim sup s, = LM SUP X
n n
Xllm inf Ep = lim irlf)(l?,, )
n n

and if lim,, E,, exists, then

Xiimy £ — 11'1;1’1 Xk, -

2.1.3 Classes of Sets

Definition 2.1. The class of all subsets of X is called the power set of X, and is
denoted by

P(X).

Definition 2.2. A nonempty class R is called a ring, iff VE, F € R,

FUF e Rand E—F € R.

In other words, a ring is a nonempty class that is closed under the formation
of unions and differences. Because of the associativity of the set union a ring is
also closed under the formation of finite unions.
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Proposition 2.7. The empty set & belongs to every ring.

Theorem 2.1. Any ring is closed under the formation of symmetric differences and
intersections, and, conversely, a nonempty class that is closed under the formation
of symmetric differences and intersections is a ring.

Proof. From
EAF=(E-F)U(F-E)

and
ENF=(EUF)—(EAF),

we obtain the first conclusion. The converse conclusion issues from
EUF=(EAF)A (FNF)

and

E—F=(EAF)NE. 0

Theorem 2.2. A nonempty class that is closed under the formation of intersections,
proper differences, and disjoint unions is a ring.

Proof. The conclusion follows from
EAF=[E— (ENF)|U[F—(ENF)

and Theorem 2.1. O
Example 2.11. The class of all finite subsets of X is a ring.
Example 2.12. Let X be the real line, that is

X =(—o00,0) ={x

—oco<x<oo}.

The class of all finite unions of bounded, left closed, and right open intervals,
that is, the class of all sets which have the form

n
U{X| —oco<a <x< bi<oo},
i=1

is a ring.
Definition 2.3. A nonempty class R is called an algebra iff
(1) VE,F € R,

EUF € R;
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(2) VE € R,

E € R

In other words, an algebra is a nonempty class that is closed under the
formation of unions and complements. Obviously, in this definition, “U” can
be replaced by “N”.

Theorem 2.3. An algebra is a ring containing X and, conversely, a ring that
contains X is an algebra.

Proof. Let R be an algebra. Since

E—-F=ENF=(EUF),
and, if E € R, then
X=EUE € R,

we have the first part of the theorem. Conversely, if R is a ring containing X,
then VE € R,

E=X—-E c R,

and the second part follows. O

Example 2.13. The class of all finite sets and their complements is an algebra.
The property described by this example can be generalized into the following
proposition.

Proposition 2.8. I R is a ring, then RU{E|E € R} is an algebra.
Definition 2.4. A nonempty class S is called a semiring iff

(1) VE, F € S,

ENF eS;

(2) VE, F € S satisfying E C F, there exists a finite class {Cy, Cy,...,C,} of
sets in S, such that

E=Cc(CcCc...cC,=F
and

D,=C;—Ci_; €8S fori:1,2,...,n.

Every ring is a semiring, and the empty set belongs to any semiring.
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Example 2.14. The class consisting of all singletons of X and the empty set is a
semiring.

Example 2.15. Let X be the real line. The class of all bounded, left closed, and
right open intervals is a semiring.

Definition 2.5. A nonempty class F is called a o-ring iff
(1) VE, F € F,

E—FcF;
(2) VE; € F,i=1,2,...,

o0
U E; €F.
i=1
Any o-ring is a ring which is closed under the formation of countable unions.

Proposition 2.9. Any o-ring is closed under the formation of countable intersec-
tions; and, therefore, if ¥ is a o-ring and a set sequence {E,} C F, then

limsup E, € F and liminfE, € F.
n n

Example 2.16. The class of all countable sets is a o-ring.
Definition 2.6. A o-algebra (or say, o-field) is a o-ring that contains X.

Example 2.17. The class of all countable sets and their complements is a
o-algebra.

Proposition 2.10. I/ F is a o-ring, then F U{E|E € F} is a o-algebra.

Definition 2.7. A nonempty class M is called a monotone class iff, for every
monotone sequence {E,} C M, we have

lim E, € M.
n

Proposition 2.11. Any o-ring is a monotone class.
Proposition 2.12. If a ring is also a monotone class, then it is a o-ring.

Example 2.18. Let X be the real line. The class of all intervals (the empty set and
singletons may be regarded as intervals: @ = (a,a], {a} = [a, d]) is a monotone
class.

Definition 2.8. A nonempty class F, is called a plump class ift V{E,|t € T} CF,

JreF, and (E €F,
t t

where T is an arbitrary index set.
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Proposition 2.13. Any plump class is a monotone class.

Example 2.19. Let X be the unit closed interval [0,1]. The class of all sets that
have the form [0, a), or the form [0, @], where a € [0, 1], is a plump class.

The relations among the above-mentioned concepts of classes are illustrated
in Fig. 2.1.

Proposition 2.14. Let E be a fixed set. If C is a o-ring (respectively, ring, semiring,
monotone class, plump class), then so is CN E.

Theorem 2.4. Let C be a class. There exists a unique ring Ry such that it is the
smallest ring including C; that is,

RyDC
and for any ring R,
RD>C= R DR

Ry is called the ring generated by C and is denoted by R(C).

Power Set
Y Y
o -Algebra Plump Class
)
¢ -Ring
Y Y Y
Algebra Menotone Class
i Y
Ring
i
Semiring

Fig. 2.1 The ordering of classes of sets
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Proof. P(X) is aring including C. The intersection of all rings including C is also
a ring including C, and it is the desired ring Ry. The uniqueness is evident. O

In the same way, we can also give the concepts of o-ring, monotone class, and
plump class generated by C, and use F(C), M(C), and F,(C) to denote them,
respectively.

Example 2.20. Let X be an infinite set. If C is the class of all singletons, then
R(C) is the class of all finite sets, and F(C) is the class of all countable sets.

Example 2.21. Let X be the real line. If C is the class of all finite open intervals,
then M(C) is the class of all intervals, and F,(C) = P(X).

Proposition 2.15. [f C; C Cy, then K(C)) C K(C3), where K may be taken as R,
F. M, or F,.

Theorem 2.5. Let S be a semiring. Then, R(S) is the class of all finite, disjoint
unions of sets in S.

Proof. Denote the class of all finite, disjoint unions of sets in S by Ry Clearly,
Ry D S.
What follows is a proof that Ry is a ring.

(1) Ry is closed under the formation of intersections: VE, F € Ry with

n m
E=|JEiand F= ] F,

i=1 J=1

where {Ey,...,E,} and {F), ..., F,} are disjoint classes of sets in S, we have

nom
EﬂFZUUE,‘ﬂF/
=1 j=1

and, moreover, we know that
{ENFli=1,2,...,n; j=1,2,...,m}
is a disjoint class. Since S is closed under the formation of intersections,
EiNF e Sforanyi=1,2,...,nand j=1,2,...,m.
Hence, we have

ENF € Ry.
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(2) Ry is closed under the formation of proper differences: For any E and F
given in (1), if F C E, the difference £ — F may be expressed by a finite,
disjoint union of sets having the form

m

E—JF
=1

m
Each E; — | F; may also be expressed by a finite, disjoint union of the setsin S.
j=1

Thus, we have
E—F € R,.

(3) It is evident that Ry is closed under the formation of disjoint unions. By
Theorem 2.2, we know that Ry is a ring.

Finally, since R is closed under the formation of finite unions, if R is a ring
containing S, it should contain every finite union of sets in S. Hence, R D Ry.
This completes the proof. O

Theorem 2.6. F(S) = F(R(S)).
Proof. On the one hand, since S C R(S), by Proposition 2.15, we have

F(S) C F(R(S)).

On the other hand, since F(S) D S and F(S) is a ring, we have F(S) D R(S).
Furthermore, since F(S) is a o-ring, we have

F(S) D F(R(S)).
Consequently, we have

F(S) = F(R(S)). O

Example 2.22. Let X be the real line and let S be the semiring given in
Example 2.15. Then F(S) is called the Borel field on the real line, and it is
usually denoted by B. The sets in B are called Borel sets. We have seen the
process of constructing R(S) from S by Theorem 2.5, and R(S) is just the ring
given in Example 2.12. But the process for constructing B from R(S) is quite
complex. B is also the o-ring generated by the class of all open intervals, by the
class of all closed intervals, by the class of all left open and right closed intervals,
by the class of all left closed and right open intervals, or by the class of all
intervals, respectively.
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Theorem 2.7. If C is a class, then

F,(C) = {U ﬂ Es|Es € C, S, and T are arbitrary index sets}.

teT ses,;

Proof. Denote the right part of this equality by E.

(1) E D C because S; and T may be taken as singletons.

(2) By an application of the associativity of the set union, we know that E is
closed under the formation of arbitrary unions.

(3) Because an arbitrary intersection of arbitrary unions of sets in a class C may
be expressed by an arbitrary union of arbitrary intersections of sets in that
class C, and because arbitrary intersections are associative, E is closed
under the formation of arbitrary intersections.

Thus, E is a plump class including C and, therefore, E O F,(C). Conversely, any
plump class including C includes E; hence, F,(C) D E. Consequently,
F,(C) =E. O

Theorem 2.8. For any class C and any set A,
F(C)NA=F(CnNA).

Similar conclusions about rings, monotone classes, and plump classes are true, as
well.

Proof.

(1) F(C) N A is a o-ring and includes C N 4; so
F(C) N4> F(C NA4).

(2) Let

E={E[ENA € F(CNA),E € F(C)}.

Eis a o-ring, and E D C. So E D F(C), thatis, VE € F(C),
EnAd € F(CNA).
This shows that
F(C)nA CF(CNA).
Consequently,
F(C)NnA=F(CnA).

The rest may be proved in the same way. O
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Example 2.23. Let B be the Borel field on the real line. BN [0, 1] is called the
Borel field on the unit interval. It is the o-ring generated by the class of all
intervals in [0, 1].

Theorem 2.9. If R is a ring, then

Proof. From Proposition 2.11, we know that F(R) is a monotone class. Since
F(R) D R, we have

F(R) D M(R).
If M(R) is a o-ring, then we have
M(R) O F(R),

and, therefore, the proof would be complete.

To complete the proof, we need to prove that M(R) is a o-ring. For any set F,
let K(F) be the class of all those sets E for which E— F, F— E, and E U Fare all in
M(R). It is easy to see, by the symmetry of the positions of £ and F in the
definition of K(F), that

E € K(F) & F € K(E).
If {E,} is a monotone sequence of sets in K(F), then we have
li’rln E,— F= ]i,r,n(E” — F) € M(R),
F— lirxzn E, = li’gn(F— E,) € M(R),

FUlmE, =lim(FUE,) € M(R),

that is, lim, E, € K(F). So, if K(F) is not empty, then it is a monotone class.
VF € R,if E € R, then E € K(F); that is, R C K(F). It follows that

M(R) c K(F), VF € R.

Hence, VE € M(R),VF € R, we have E € K(F); therefore, by symmetry,
F € K(E); that is,

R C K(E),
for anyE € M(R). Noting again that K(E) is a monotone class, we have

M(R) C K(E), VE € M(R).
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This shows that M(R) is a ring. From Proposition 2.12, we know that M(R) is a
o-ring. O
Corollary 2.1. A monotone class including a ring includes the o-ring generated by
this ring.

2.1.4 Atoms and Holes

Let C be an arbitrary nonempty class of subsets of X.

Definition 2.9. For any pointx € X, theset(\{E|x € E € C}iscalled the atom
of C at x, and denoted by A(x/C). If there is no confusion, it will be called the
atom at x, or atom for short, and denoted by A(x). The class of all atoms of C is
denoted by A [C], that is,

A[C] = {A(x/C)|x € X}.

Clearly, for every x € X,x € A(x). So, every atom is nonempty.
When U C # X, then A(x/C) = X for any x ¢ J C. Thus, if we write

AT[C] = {A(x/C)lx € |JC},
then we have

AlC] — AT[C] © {X}.

Proposition 2.16. If x € E € C, then A(x) C E.

Example 2.24. Let X = {a,b,c},C = {A4,B,C}, where 4 = {a}, B={a,b},
C ={b,c}. Then, A, {b}, and C are atoms. That is, 4 = 4(a), {b} = A(b),
C = A(c). From this example, we can see that it is not necessary that all sets in C
be atoms of C, and that all atoms of C belong to C. But, if C is closed under the
formation of arbitrary intersections, then we have

AlC] C C;
that is, in this case, VA4(x),

A(x) =({Elx € E € C} € C.

Example 2.25. If C=P(X), then A[C] = {{x}|x € X}.
Proposition 2.17. U A~ [C]=UC.

Theorem 2.10. Any set in C may be expressed by a union of atoms of C,; moreover,
any intersection of sets in C may be expressed by a union of atoms of C.
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Proof. 1t is sufficient to prove the second conclusion.
Let {E,|t € T} be a family of sets in C. We have

ﬂTE, = {A(x)|x € ﬂTE,}

In fact, on the one hand, by Proposition 2.16, for any x € (,. £, and any
teT,

A(x) C E,.
So, forany x € (.7 Ei,

A(x) C () Ei,

teT

and it follows that

U{A(x)|x €N Et} c ) E:-

teT teT

On the other hand, since x € A(x), we have

teT teT teT

N E = {x|x €N Et} C U{A(x)|x €N Et}.

The proof is thus complete. O
Theorem 2.11. Any intersection of atoms may be expressed by a union of atoms.

Proof. Since any atom of C is an intersection of sets in C, by Theorem 2.10 and
the associativity of intersections, we obtain the conclusion.

Example 2.26. Let X = {a,b,¢,d}, C={A4,B,C,D}, where 4 = {a,c,d}, B
{b,c,d}, C={c}, D={d}. Then, A(a) = 4, A(b) = B, A(c) =C, A(d) =
We have

|

D.
A(a) N A(b) = A(c) U A(d).

Theorem 2.12. [f A’ € A[C],x € A, then A(x) C A’
Proof. Let

A =AX)=N{EY € Ec C} =) E,
teT
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where £, € C, T is an index set. Since x € A’, we have x € E, forallt € T.
Therefore, by Proposition 2.16, A(x) C E, for all t € T. Consequently, we have

A(x)c A'. 0
Theorem 2.13. A(x/C) = A(x/A[C]) for any x € X, and A[C] = A[A[C]].
Proof.Vx € X, if x € Bforsome B € A[C], we have, by Theorem 2.12,
A(x/C) C B,
and, therefore,
A(x/C) Cc ({Blx € B € A[C]}.
Reviewing x € 4(x/C) € A[C], we have
A(x/C) D (" {Blx € B € A[C]}.
Thus,
A(x/C) = ({Blx € B € A[C]} = A(x/A[C]).

Consequently, we have

Theorem 2.14. A[C U A[C]] = A[C].
Proof.Vx € X,

A(x/CUA[C)) = {Elx € E € CUA[C]}
=(N{Elx € E € CHN(N{Elx € E € A[C]}).
= A(x/C) N A(x/A[C]) = A(x/C)

Thus,

A[CUAC]] = A[C]. O

Theorem 2.15. If C' = {{, . E/|E, € C,t € T, T is an arbitrary index set},
then A[C'] = A[C].
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Proof. UC' =JC.Vx € |JC, by absorption, we have

A(x/C')=N{E|x € E € C'}

:U{ U Eix € UteTE,,E, € C,t € T,Tis an arbitrary set}.

teT

=({E|x € E € C} =A4(x/C)

Thus, we have

A[C'] = A[C. O

Theorem 2.16. If C is closed under the formation of difference, then A™[C] is a
partition ofu C (Definition 2.18).

Proof. Since UA~[C] = |JC, we only need to prove that the different atoms in
A" [C] must be disjoint, that is, VA(x), A(y) € A™[C],

A(x) # A(y) = A(x) NA(y) = 9.

If both x € A(y) and y € A(x), then, by Theorem 2.12, we have
A(x) = A(y). So, when A(x) # A(y), we can suppose x ¢ A(y) without any
loss of generality. In this case, if there exists z € A(x) N A(y), we have the result
that, from x ¢ A(y) and z € A(y), there exists £ € C such that x ¢ E, but
z € E. Thus, if we take F € C, satisfying x € F and set G = F— E, then
x € G € C,butz ¢ G. This contradicts the fact that z € A(x). Therefore, we
have A(x) N A4A(y) = @. O

Corollary 2.2. If'F is an algebra, then A[F] is a partition of X.

The following theorem provides an expression of F,(C) by the atoms of C.
Theorem 2.17. F,(C) = {{J,. y 4|4, € A[C], T is an arbitrary index set}.

Proof. By Theorem 2.7, Theorem 2.10, and the associativity of set unions, the

conclusion immediately follows. O
Theorem 2.18. A[F,(C)] = A[C].
Proof. Tt follows directly from Theorems 2.13, 2.15, and 2.17. O

Theorem 2.19. F,(C) = F,(A[C]).

Proof. From the definition of the atom and Theorem 2.10, the equality is easily
obtained. O
A concept of AU-class is interrelated closely with the concept of the atom.
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Definition 2.10. The A U-class is a nonempty class C with anticlosedness under
the formation of unions, that is, VC' C C,

UcecCc=C eC.

By the convention for operations of union and intersection (introduced in
Section 2.1.2), if C’ is an empty class, then Uc =o. Hence, if @ € C,and Cis
an AU-class, it should follow that @ € C’. This is a contradiction. So, no AU-
class contains the empty set O.

Proposition 2.18. If C is an AU-class, then all nonempty subclasses of C are
AU-classes as well.

Theorem 2.20. A[C] is an AU-class.
Proof. Let {A(x)|x € D} be a family of atoms of C. Denote
B=J{A(x)|x € D} = |J A(x).

xeD

If B € A[C], then Jxy € B such that B = A4(x,). From xy € (J,.p 4(x), we
have xg € A(x;) for some x; € D. By applying Theorem 2.12, it follows that

A(x)) D A(xg) = B.

The inverse inclusion relation is evident. Consequently, we have
B=A(x;) € {A(x)|x € DC ] C}.

This shows that A[C] is an AU-class. O
In general, if C is an AU-class, a set in C may not be an atom of C.

Example 2.27. X and C are given as in Example 2.24. It is easy to verify that C is
an AU-class, but B is not an atom of C.
However, we have the following property.

Theorem 2.21. Let C be an AU-class. If C D A[C], then we have

C = A[C].

Proof. If C # A[C], then there exists a nonempty set E € C, but E¢ A[C]. By
Theorem 2.10 there exists a family of atoms {4,| € T} such that E = |J, . 4;.
Since C is an AU-class, 31y € T such that E = A4,, € A[C]. This contradicts
E ¢ A[C]. O

A dual concept to the “atom” is the “hole.”
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Definition 2.11. Let C = {E|E € C}. For any point x € X, the set
U{Elx € E € €}

is called the hole of C at x, denoted by H(x/C), or H(x) for short. The class of all
holes of C is denoted by H[C].
We can also write

H(x/C) = | J{Elx ¢ E € C}.
It is evident that, for any x € X, x¢ H(x/C). So, X is not a hole.
The relation between hole and atom is given in the following proposition.
Proposition 2.19. H(x/C) = A(x/é)

Example 2.28. We use X and C given in Example 2.24. In this case, 4 = {b, ¢}
= C,B={c}, C={a} = A. Consequently, H(a) = C, H(b) = A, H(c) = B.

Example 2.29. If C = P(X), then H[C] = {{x}|x € X}.
Definition 2.12. The A/l-class is a nonempty class C with anticlosedness under
the formation of intersections, that is, VC' C C,

NC e C=NC e C.

All properties of the AU-class can be easily converted into analogous proper-
ties of the Al-class by replacing atoms with holes [Liu and Wang 1985, 1987].

2.1.5 S-Compact Space

Let C be a nonempty class of subsets of X. Usually, we also use the term “space”
to mean (X, C). Especially, when C is a o-algebra (or o-ring), denoted by F, we
call (X, F) a measurable space, and the sets in F are called measurable sets. We
say (X, C) or (X, F) is to be finite, countable, or uncountable if X is finite,
countable, or uncountable, respectively.

Definition 2.13. (X, C) is said to be S-precompact iff for any sequence of sets in C
there exists some convergent subsequence, that is, V{E,} C C,3{E, } C {E,}
such that,

limsup E,, = liminf £, ;

(X, C) is said to be S-compact iff it is S-precompact and the limit of the above-
mentioned subsequence belongs to C, that is, V{E,} C C,3{E,,} C {E,} such
that lim; E,, exists and

limE, € C.

Obviously, any S-precompact measurable space is S-compact.
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Example 2.30. Any finite space is S-compact. In fact, if (X, C) is a finite space,
then C is finite too. So, from any sequence of sets in C, we can always pick out a
subsequence in which all sets are identical; therefore, this subsequence con-
verges to the same set as that in the subsequence.

From the above example we can also see that, although X is not finite, (X, C)
is S-compact so long as C is finite.

Example 2.31. If C is a nest (or, say, a chain; in this case it is fully ordered by the
inclusion relation between sets), then (X, C) is S-precompact. To show this, it is
sufficient to prove the following lemma.

Lemma 2.1. If C is an infinite nest, then there exists a monotone subsequence of
sets in C.

Proof. According to the order given by the inclusion relation, if there exists
D C C that does not have the greatest element, then we can pick out an
increasing sequence of elements (that is, sets) in D (and therefore, in C). Other-
wise, any subset of C has its greatest element. Thus, we take the greatest element
of C as E), the greatest element of C — {E;} as E,, the greatest element
of C—{E, E»} as Es,.... Finally, we obtain a decreasing subsequence {E,}
of C. O

In the following, we give an example of the non-S-precompact space, in
which the universe of discourse X is an uncountable set.

Example 2.32. Let X, be a set that contains at least two points,
X=X x X5 x...x X, x...be an infinite-dimensional product space, where
X; =Xy, i=1,2,...,and C = P(X). Take a € X arbitrarily and denote

Ay =X1 x Xo X ... X X,mp x{a} x Xy X ...

A, is an nth dimensional cylinder set based on {a}. Then, for such a set sequence
{4,} there exists no subsequence that is convergent. In fact, for any given
subsequence {A4,,} C {4,}, we take b € X, — {a} arbitrarily, and set

{a ifk=mny,i=1,2,...
X =

b else.

Denote x = (x,x2,...); then x € A4,,,butx ¢ 4, ,,i=12,....
So,

x € limsup 4,,,
i

but

x liminf 4,,.
L
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That is, the subsequence {A4,,} does not converge. Therefore, (X, C) is not
S-precompact.
For a countable space we have an affirmative conclusion.

Theorem 2.22. If X is countable, then (X, C) is S-precompact.

Proof. Denote X = {x1,x2,...}. Any subset E of X corresponds uniquely to a
binary number

B(E) =1bx (1/2) 4+ 2bx (1/2)* + ... 4 b x (1/2)" + ...
= 0.4bsb... b ..
in [0,1], where

b{l if x; € E
' 0 ifx;¢E.

We should note that such a correspondence is not one to one; for example, {x; }
corresponds to 0.1, {x;} corresponds to 0.0111...,but 0.1 = 0.0111....

For an arbitrarily given set sequence {E,} C C,{E,} corresponds to a num-
ber sequence {b,} C [0, 1] with E,—b,. Since {b,} is bounded, there exists a
convergent subsequence {b,}. If all b,,i=1,2,..., are constant, then the
conclusion of this theorem is obviously true. Otherwise, we can suppose, with
no loss of generality, that {b,,} is strictly decreasing, and b,, — b € [0, 1]. If we
adopt the restriction that b is represented by a binary number with infinitely
many zeros after its decimal point, then b corresponds uniquely to a set £ by the
converse of the above-mentioned correspondence. It is not difficult to see that £
must be an infinite set. Arbitrarily fixing a bit ;b of b, we have ;b,, = ;b when i is
large enough. That is to say, there exist at most finitely many sets in { £, } that
do not contain x; when x; € E; and there exist at most finitely many sets in
{E,} that contain x; when x; € E. This shows that x; € liminf; E,, when
x; € Eand x; € liminf; E,, = limsup; E,, when x; € E, namely,

liminf E,, D E and limsup E,, D E.

The latter implies that

limsup E,, C E.

So,

limsup E,, C E C liminf E,,.

This means that lim; E,, exists.
Thus, we have proved that (X, C) is S-precompact. O
If we consider a measurable space (X, F) with X' € F, then, by Theorem 2.16,
A[F]is a partition of X. The quotient space (X4, F4) induced by A[F] from (X, F)
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(Definition 2.19) is called the reduced space of (X, F). F and F are isomorphic.
So, we can get a further theorem as follows.

Theorem 2.23. If the reduced space of (X, F) is countable, then (X, F) is
S-compact.

Proof. The conclusion of this theorem follows from Theorem 2.22 and the fact
that the S-precompact measurable space is S-compact. O

Theorem 2.24. If F is a o-algebra containing only countably many sets (that is, F is
a countable class), then (X, F) is S-compact.

Proof. Since F is a countable class of sets and F is closed under the formation of
countable intersections, every atom A(x/ F ) € F . So, A[F] is a countable
class, too. This shows that the reduced space (X4,F,4) of (X, F) is countable.
Therefore, by Theorem 2.23, (X, F) is S-compact. O

2.1.6 Relations, Posets, and Lattices

Definition 2.14. Let £ and F be nonempty sets. A relation R from E to Fis a
subset of E X F. If (a,b) € R, we say “a is related to b” and write aRb; if
(a,b) ¢ R, we say “a is not related to b” and write aRb. In the special case
when R C E x E, we use “on E” instead of “from E to E.”

Example 2.33. Let X = {a,b,c}, E = {a,b}, and B = {0, 1}. The characteristic
function x, of E is a relation (denoted by Rp) from X to B. We have
aRpl,bRel, cREO, aR;0,bR0, cR.1.

Example 2.34. Let X = (—o00,00). The symbol < with the common meaning
“less than” is a relation on X, and itisa subset of X x X : R = {(x,y)|x<y}. We
have, for example (1,2) € R,(=5,5) € R,(2,1) ¢ R, and (1,1) ¢ R.
Example 2.35. Let X be a nonempty set. The inclusion of sets C is a relation on
P(X); that is, {(E, F)|E C F} is a subset of P(X) x P(X).

Example 2.36. Let E be any nonempty set. The identity relation on E, denoted by
Ap, is the set of all pairs in E x E with equal elements:

Arp={(a,a)la € E}.

Example 2.37. Let X ={0,1,2,...}. We can define a relation R; on X as
follows: aRsb iff a = b (mod 3); that is, « and b have the same remainder
when they are divided by 3.

Definition 2.15. Let R be a relation from E to F. The inverse of R, denoted by
R~!, is the relation from F to E which consists of those ordered pairs (b, a) for
which aRb; thatis R™! = {(b,a)|(a,b) € R}.
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It is easy to see that
aRb < bR 'a

and, therefore, we have the following proposition.
Proposition 2.20. (R~)"' = R.

Example 2.38. Let R be the relation given in Example 2.34. Its inverse,
R ={(x,»)|y<x} = {(x,»)|x>y}, has the meaning “greater than” and is
denoted by the symbol >.

Definition 2.16. A relation R on a set E is called:

(a) reflexive iff aRa for each a € E;
(b) symmetric iff aRb implies bRa for any a,b € E;
(¢) transitive iff aRb and bRc implies aRc for any a,b,¢ € E.

Definition 2.17. A relation R on a set E is called an equivalence relation iff R is
reflexive, symmetric, and transitive.

Example 2.39. The identity relation A, as defined in Example 2.36, is reflexive,
symmetric, and transitive; hence, it is an equivalence relation.

Example 2.40. The relation defined in Example 2.34 (“less than,” <) is neither
reflexive nor symmetric, but it is transitive.

Example 2.41. Let X = (—o00,00). The relation described by the phrase “less
than or equal to,” which is usually denoted by the symbol <, is reflexive and
transitive but it is not symmetric.

Example 2.42. The relation R; defined in Example 2.37 is reflexive, symmetric,
and transitive; consequently, it is an equivalence relation.

Definition 2.18. A disjoint class {E\, Es,...,E,} of nonempty subsets of E is
called a partition of E iff U — Ei=E.

Example 2.43. Let X = {a, b, c,d,e,f, g}, and let

() 4, = {a,c, e},Az = {b}’A3 = {dvg}

(2) B = {aae,g}aB2 = {C7 d}aB3 = {baea.f}

(3) C = {a,b,e7g}, G = {C}7 G = {da/‘}

4 Di=X

(5) £y ={a}, Er = {b}, E5 = {c}, Ea = {d}, Es = {e}, Es = {[}, E7 = {g}.

Then, classes {C1, Cy, C3},{D1}, and {E\, E», E3, E4, Es, E¢, E;} are partitions
of X, but {4,, 45, A3} and { By, B2, B3} are not.

Example 2.44. Let X = [0,00). The class {[n — 1,n)|n = 1,2,...} is a partition
of X.
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Definition 2.19. Let R be an equivalence relation on E. For each x € E, the set
[x] = {y|xRy} is called an equivalence class of E (in fact, it is a subset of E). The
class of all equivalence classes of E induced by R, denoted by E/R, is called the
quotient of E by R, thatis, E/R = {[x]|x € E}.

Proposition 2.21. Let R be an equivalence relation on a set E. Then

[x] = D] < xRy

for any x,y € E, and E/R is a partition of E.

Example 2.45. For the relation R; defined in Example 2.37, the quotient X/Rj is
formed by the following three distinct equivalence classes:

Ey=1{0,3,6,9,...}
E ={1,4,7,10,...}
E=1{2,58,11,...}

{Ey, E\, E»} is a partition of X = {0,1,2,...}.

Definition 2.20. A relation R on set E is called antisymmetric iff aRb and bRa
imply a = b for any a,b € E.

Example 2.46. The relations given in Example 2.34, 2.35, and 2.41 are
antisymmetric.

Definition 2.21. Let R be a relation on a set E. If R is reflexive, antisymmetric,
and transitive, then R is called a partial ordering on E, and (E, R) is called a
partially ordered set (or, poset).

Example 2.47. Referring to Example 2.35, the pair (P(X),C) is a partially
ordered set.

Example 2.48. Referring to Example 2.41, the pair (X, <) is a partially ordered
set.

Example 2.49. Let F be the set of all generalized real-valued functions on
(—00,00). We define a relation < on F as follows: f < g iff f(x) < g(x) for all
X € (—o0,00). The relation < is a partial ordering on F and, therefore, (F, <) is
a partially ordered set.

From now on we use (P, <) to denote a partially ordered set.

Definition 2.22. Let (P, <) be a partially ordered set and let E C P. An element a
in Pis called an upper bound of Eiff x < aforallx € E. Anupper bound ¢ of E
is called the least upper bound of E (or supremum of E) iff a < b for any upper
bound b of E. The least upper bound of E'is denoted by sup £ or VE. An element
ain Piscalled a lower bound of Eiff a < xforallx € E. Alower bound a of Eis
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called the greatest lower bound of E (or infimum of E) iff b < a for any lower
bound b of E. The greatest lower bound of E is denoted by inf E or A E.

When E consists of only two elements, say x and y, we may write xV y
instead of VV {x,y} and x A y instead of A {x,y}.

Proposition 2.22. If the least upper bound (or the greatest lower bound) of a set
E C P exists, then it is unique.

Definition 2.23. A partially ordered set (P, <) is called an upper semilattice (or
lower semilattice) iff x V y (or x A y, respectively) exists forany x,y € P.(P,<).
is called a /lattice iff it is both upper semilattice and lower semilattice.

Example 2.50. The partially ordered set (P(X),C) is a lattice. For any sets
E FC X,EUF=sup{E,F} and EN F = inf{E, F}.

Definition 2.24. A partially ordered set (P, <) is called a fully ordered set or a
chain iff either x < y or y < xforany x,y € P.

Example 2.51. The partially ordered set (X, <) of Example 2.41 is a fully
ordered set.

Example 2.52. The partially ordered set (F, <), of Example 2.49 is not a fully
ordered set.

Example 2.53. The partially ordered set (P(X), C) is not a fully ordered set if X
consists of more than one point.

The fully ordered set ((—o0, c0), <) has many convenient properties. One of
them, which is often used in this text, is expressed by the following proposition.

Proposition 2.23. Let E be a set of real numbers. If E has an upper bound (or a
lower bound), then sup E (or inf E) exists; furthermore, for any given € > 0, there
exists x = x(e) € E such that sup E < x + ¢ (or x — e <inf E| respectively ).

2.2 Classical Measures

Let X be a nonempty set, C be a nonempty class of subsets of X, and
w: C — [0, oo] be a nonnegative, extended real valued set function defined on C.

Definition 2.25. A set E in C is called the null set (with respect to p) iff u(E) = 0.
Definition 2.26. 1 is additive iff

H(EUF) = p(E) + u(F)
whenever

Ee€eCFe CEUFe C, and ,ENF=0.
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Definition 2.27. p is finitely additive iff

u(LjJ Ei) = zn:u(Ef)

for any finite, disjoint class { £, E», . .., E, } of sets in C whose union is also in C.

Definition 2.28. 1. is countably additive iff

u(fj Ei) = iu(Ef)

for any disjoint sequence {E, } of sets in C whose union is also in C.

Definition 2.29. y is subtractive iff
EcCFe CECFF—E¢€C, and pu(E)<oo

imply

u(F — E) = p(F) — p(E).

Theorem 2.25. If i is additive, then it is subtractive.

Definition 2.30. p is called a measure on C iff it is countably additive and there
exists £ € C such that u(E) <oc.

Example 2.54. If u(E) = 0,VE € C, then p is a measure on C.

Example 2.55. Let C contain at least one finite set. If 4(E) = |E|,VE € C, where
|E| is the number of those points that belong to E, then y is a measure on C.

Theorem 2.26. If 1 is a measure on C and @ € C, then (@) = 0. Moreover, 1 is
finitely additive.

Definition 2.31. Let x be a measure on C. A set F in C is said to have a finite
measure iff p(E)<oo; E is said to have a o-finite measure iff there exists a
sequence {E,} of sets in C such that

EC UEn and pu(E,)<oco,m=1,2,....

n=1

w is finite (or o-finite) on C iff every u(E) is finite (or o-finite, respectively) for
every E € C.
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Definition 2.32. Let i be a measure on C. yu is complete iff

E € C,FC E,and u(E) =0
imply
F e C

In other words, a measure on C is complete if and only if any subset of a null set
belongs to C.

Definition 2.33. p is monotone iff

E e CFeCand ECF

imply
1(E) < pu(F).

In the following, we take a semiring S, a ring R, and a o-ring F, respectively,
as the class C, and p is always a nonnegative, extended real-valued set function
on this class.

Theorem 2.27. Let S be a semiring. If 1 is additive on S, then it is finitely additive
and monotone.

Definition 2.34. y is subadditive iff

w(E) < u(Er) + p(Es)
whenever

EeC E €C, E €C, and E=E|UE,.

Definition 2.35. p is finitely subadditive iff
n
W(E) < u(E)
=1

for any finite class {Ey, E, ..., E,} of sets in C such that E=J__, E; € C.
Definition 3.36. p is countably subadditive iff

W(E) < uE)
i=1

for any sequence {E;} of sets in C such that E = |J.2, E; € C.

Theorem 2.28. If 1 is countably subadditive and p(Q) =0, then p is finitely
subadditive.



40 2 Preliminaries

Definition 2.37. Let E € C. p is continuous from below at E iff
{E,}CcC, EiCE,C..., and lim, E, = F

imply

lim pu(E,) = p(E);
18 continuous from above at E iff

{E,} CC, E\ DE, D...,u(E) <00,
and
lirrln E,=F

imply

lim pu(E,) = p(E).

1 1s continuous from below (on C) iff it is continuous from below at every set
in C; pu1s continuous from above (on C) iff it is continuous from above at every set
in C; p is continuous iff it is both continuous from below and continuous from
above.

Theorem 2.29. If 11 is a measure on a semiring S, then i is countably subadditive
and continuous.

Definition 2.38. Let C; and C; be classes of subsets of X, C; C C,, and p; and pu;
be set functions on C; and C,, respectively. u, is called an extension of p; iff
,ul(E) = [Lz(E) whenever E € C;.

Let S be a semiring, R(S) be the ring generated by S. Since any set in R(S) can
be expressed by a disjoint finite union of sets in S, we have the following
extension theorem for a measure on S.

Theorem 2.30. If 11 is a measure on S, then there is a unique measure i on R(S)
such that [t is an extension of u. If  is finite or o-finite, then so is .

The extension of i (on S) may also be denoted by 7 [on R(S)] without any
confusion.

Example 2.56. Let X = (—00,00). S = {[a,b)| — co<a < b<oo} is a semiring.
Define a set function p on S by

/J([Cl,b)) =b—a.
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1 1s countably additive, and, therefore, p is a finite measure on S. p can be
extended to a finite measure on R(S), the class of all finite, disjoint unions of
bounded, left closed, and right open intervals. More generally, if g is a finite,
increasing, and left continuous real-valued function of a real variable, then

pg(la, b)) = g(b) — g(a),V[a,b) € S

determines a finite measure p, on S, and it can be extended onto R(S).

Example 2.57. Let the ring R consist of all finite subsets of X and f be an
extended real-valued, nonnegative function on X. If we define p by

p({x1, %2, xa}) = > f(x;) for any {x1,x2,..., %} € R and p(@) =0,
i=1

then y is a measure on R. In fact, the class S consisting of all singletons of X and
the empty set O is a semiring. If we define 1 on S by

u({x}) = f(x) for any x € X and p(9) =0,
then p is a measure on S, and the above-mentioned measure p on R is just the
extension of this measure on S.

Theorem 2.31. If 1 is a measure on a ring R, then it is continuous.

Theorem 2.32. Let p be additive on aring R and p(Q) = 0. If w is either continuous
from below, or continuous from above at the empty set @ and finite, then it is
o-additive on R.

It should be noted that, on a semiring, an analogous conclusion of Theorem
2.32 is not true.

Example 2.58. Let X = {x|0 < x < 1,x is a rational number}, S = {{x|a < x
< b, x is a rational number} [0<a < b < 1, a and b are rational numbers}.
If we define . on S by

p({x|la < x < b,x is a rational number}) = b — a,

then p is finitely additive and continuous, but it is not countably additive.

Definition 2.39. A nonempty class C is hereditary iff
FecC
whenever

E e Cand FCE.
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A hereditary class is a o-ring if and only if it is closed under the formation of
countable unions.

Example 2.59. The classes given in Examples 2.11, 2.14, and 2.16 are hereditary,
and the last one is a hereditary o-ring.

The hereditary o-ring generated by a class C, i.e., the smallest hereditary
o-ring containing C, is denoted by H,(C)

Theorem 2.33. H,,(C) is the class of all sets that can be covered by countably many
sets in C.

Example 2.60. Let X = (—o0,00) and C be the class of all bounded intervals
in X. Then H,(C) = P(X).

If C is a nonempty class closed under the formation of countable unions,
then H,(C) is just the class of all sets that are subsets of some set in C.

Definition 2.40. Let H,, be a hereditary o-ring, u* be an extended, real-valued,
nonnegative set function on H,. p* is called an outer measure iff it is monotone,
countably subadditive, and such that p* (@) = 0.

The same terminology concerning finiteness, o-finiteness, and extension is
used for outer measures as for measures.

Example 2.61. Let X be a finite set and X x X be a product space. P(X x X)isa
hereditary o-ring. Define p* on P(X x X) by

1 (E) = [Proj(E)|,VE € P(X x X),

where Proj(E) = {x
P(X x X).

(x,y) € E}. Then p* is a finite outer measure on

Theorem 2.34. If 1 is a measure on a ring R, then the set function p* on H,(R)
defined by

' (E) :inf{zu(En)En eRn=12..EC UE,,}
n=1

n=1

is an extension of  to an outer measure on H,(R); if u is o-finite, then so is j*.
This outer measure p* is called the outer measure induced by the measure p.

Definition 2.41. Let 1* be an outer measure on a hereditary o-ring H,. A set
E € H, is p*-measurable iff

p(A) = (ANE)+p (ANE),VYA € H,.

Theorem 2.35. If 11" is an outer measure on a hereditary o-ring H, and if F is the
class of all i -measurable sets, then'F is a o-ring, and the set function Ti defined for
every E € F by i(E) = p*(E) is a complete measure on F.

This measure 7 is called the measure induced by the outer measure p*.
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Theorem 2.36. Let pu be a measure on a ring R, p* be the outer measure induced
by u. Then every set in R is p*-measurable, and therefore F(R) C F

Theorem 2.37. If 11 is a o-finite measure on a ring R, then so is the measure [i on
F(R), and [ is the unique extension of 1 on R to F(R).

Theorem 2.38. If 1 is a measure on a o-ring F,
F' = {EAN|E € ¥, N C F for some F € F with u(F) =0},

then ¥ is a o-ring, and set function 1’ defined for every E € F by u/(EAN) =
w(E) is a complete measure on F'.
This measure g is called the completion of .

Theorem 2.39. If p is a o-finite measure on a ring R, then ¥' = F, and 1/ is just
identical with Tu

Theorem 2.40. If 1 is a o-finite measure on a ring R, then for every € > 0 and every
set E € F(R) that has finite measure there exists a set Ey € R such that

ME A Ey) <e¢

Example 2.62. In Example 2.56, a finite measure p on R(S) satisfying
w([a,b)) =b —afor any [a—b) € S ={[a,b)| — co<a < b<occ} is obtained.
This measure ;1 can be extended uniquely to a o-finite measure on a o-ring
B = F(R(S)) = F(S), the class of all Borel sets (this class is also a o-field,
so-called Borel field on the real line). The complete measure 7z on B is called a
Lebesgue measure (the incomplete measure g on B is usually called a Lebesgue
measure as well), and the sets in B are called Lebesgue measurable sets of the
real line. More generally, if g is a finite, increasing, and left continuous real-
valued function of a real variable, the measure y, on R(S) obtained in Example
2.56 can be extended uniquely to a complete measure zi, on a o-field F, contain-
ing the Borel field, and the measure 7z, is called a Lebesgue- Stlelt]es measure
induced by g. In particular, if g is a probability distribution function, then g can
uniquely determine a probability measure on the Borel field B on the real line.
At last, it should be noted that not all subsets of X = (—o0, oo) are Lebesgue
measurable.

2.3 Fuzzy Sets

Let X be a nonempty set considered as the universe of discourse. A standard
fuzzy set in X (that is, in fact, a standard fuzzy subset of X) is characterized by a
membership function m : X — [0, 1]. A standard fuzzy set is called normalized if

sup m(x) = L.
xeX
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We use the same symbols, capital letters 4, B, C, ..., to denote both standard
fuzzy sets and ordinary (crisp) sets in classical set theory. Membership functions
of standard fuzzy sets 4, B, C, ..., are denoted by m 4, mp, mc, . ... If A denotes
a standard fuzzy set, then m4(x) is called the grade of membership of x in A. The
class of all standard fuzzy sets is denoted by P(X). Since any ordinary set E in
P(X) can be defined by its characteristic function yz : X — {0, 1}, it is a special
standard fuzzy set and, therefore, P(X) C P(X). In this book, only standard
fuzzy sets are considered, and we refer to them from now on as, simply,
fuzzy sets.

Definition 2.42. If m4(x) < mp(x) for any x € X, we say that fuzzy set 4 is
included in fuzzy set B, and we write 4 C B or, equivalently, B> A. If 4 C B
and B C A, we say that 4 and B are equal (or, A equals B), which we write as
A=B8B.

Definition 2.43. Let 4 and B be fuzzy sets. The standard union of A and B,
A U B, is defined by

maup(x) =mu(x) Vmg(x), Vx € X,

where V denotes the maximum operator.

Definition 2.44. Let A and B be fuzzy sets. The standard intersection of A and B,
A N B, is defined by

manp(x) = my(x) ANmp(x), Vx € X,

where A denotes the minimum operator.

Similar to the way operations on ordinary sets are treated, we can generalize
the standard union and the standard intersection for an arbitrary class of fuzzy
sets: If {4t € T}isaclass of fuzzy sets, where 7'is an arbitrary index set, then
U;e 74, 1s the fuzzy set having membership function sup, . 7 my,(x),x € X, and
Nie 1A, is the fuzzy set having membership function inf;c 7 my4, (x),x € X.

Definition 2.45. Let 4 be a fuzzy set. The standard complement of A, A, is
defined by

m7(x) =1 —my(x), Vx € X.
Two or more of the three basic operations can also be combined. For
example, the difference 4 — B of fuzzy sets 4 and B can be expressed as 4 N B,
so that

my4_p(x) = min[my(x), 1 — mp(x)]

for all x € X. Since only standard operations on fuzzy sets are used in this
book, we omit from now on the adjective “standard” if there is no confusion.
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Example 2.63. Let X = {a, b, ¢} and let fuzzy sets A, B, and C be defined by the
following membership functions

04 ifx=ua
my(x)=4¢0.7 ifx=b
0 if x=c,
0.6 ifx=ua
mp(x) =< 1 ifx=»5
0.2 ifx=c¢,
0.1 ifx=ua
me(x) =40 ifx=5b
1 if x=c.
Then, A C B,
04 ifx=ua
mAuc(X) = 0.7 ifx=»
1 if x =,
0.1 ifx=ua
Mmync(x) =14 0 if x=>
0 if x=c¢,
and
04 ifx=a
mz(x) =< 0 ifx=>5
0.8 ifx=c

Example 2.64. Fuzzy sets can be used to represent fuzzy concepts. Let X be a
reasonable age interval of human beings: [0, 100]. Assume that the concept of
“young” is represented by a fuzzy set ¥ whose membership function is

1 if x < 25
my(x) ={ (40— x)/15 if25 < x < 40
0 if x > 40

and the concept of “old” is represented by a fuzzy set O whose membership
function is
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0 if x <50
mo(x) =14 (x—50)/15 if 50< x<65
1 if x > 65.

Then, the grade of membership of 28 years of age in Y is 0.8 while that of 45
years of age in O is 0. Consider now the complement of Y and O whose
membership functions are

0 if x <25
my(x) = ¢ (x=25)/15 if 25 <x <40
| if x > 40,
and
1 if x <50
mg(x) =< (65—x)/15 if 50<x<65
0 if x > 65.

These fuzzy sets represent the concepts of “not young” and “not old,” respec-
tively. Fuzzy set ¥ N O whose membership function is

0 if x <25
(x—25)/15 if 25<x<40

myp(x) =< 1 if 40 < x <50
(65—x)/15 if 50<x<65
0 if x > 65,

represents the concept of “neither young nor old,” that is, “middle-aged”
(Fig. 2.2a-2.2¢). Furthermore, we have O C Y that is, “old” implies “not
young.”

Theorem 2.41. The standard operations of union, intersection, and complement of
fuzzy sets have the following properties, where S, and T are index sets:

Involution: A=A
Commutativity. AUB=BUA
ANB=BNA

Associativity. U (U As) = U 4

teT\seS, SEUerS;

ﬂ ( ﬂ AS) - ﬂ A
teT \sesS, s€UerS)
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Distributivity: BN < U A,) = J(BNA4)
teT teT
su(na) = N@ua)
teT teT
Idempotence: AUA=A
ANA=A4
Absorption: AU(ANB)=A4
AN(AUB)=4
Absorption by X and O: AUX =X
AN =0
1 1
o 50 100 = o 50 00 x
(a} The Membership function of “young” B} The Membership function of “old™
1 1
0 50 100 % o o 50 00 x
1e) The membership function of “not young” (d)  The membership function of “not old”
1
o 50 100
e} The membership function of “middie aged"

Fig. 2.2 Membership functions of fuzzy sets defined on the interval [0,100] and representing
linguistic terms pertaining to age of human beings
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Identity: Aud =4
ANX=A4

De Morgan’s laws: U 4, = A,
teT teT
ﬂ At - Zr
teT teT

In comparison with crisp set operations (see Proposition 2.2), the law of
contradiction and the law of excluded middle are not true for fuzzy sets. This is
illustrated by the following example.

Example 2.65. X and A are given in Example 2.63. The complement A of 4 has a
membership function

06 ifx=a
m4(x) =403 ifx=5b
1 ifx=c
We have
04 ifx=a
m,(x)=1403 ifx=»h
0 fx=c
7# mg(x).
Similarly,
0.6 ifx=ua

m,7(x)=1407 ifx=»h
1 ifx=c¢

# my(x).

Definition 2.46. Let 4 € P(X). The (crisp) set {x|m4(x) >0} is called the
support of A, and denoted by supp 4.

Definition 2.47. Let 4 € P(X). For any a € [0, 1], the (crisp) sets {x|m,(x) >
a} and {x|m4(x) > a} are called the a-cut and the strong a-cut of A, denoted by
A, and A, , respectively.

Obviously, both 4, and 4,,. are nonincreasing with respect to «. Clearly, the
classes {4, € [0,1]} and {A,¢|a € [0, 1]} are nested.

Example 2.66. The fuzzy set Y is as given in Example 2.64. We have
YO‘Q = [O, 37] and Y()A6 = [0, 31].
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Theorem 2.42. Let {A,|t € T} C P(X). Then, for any a € [0, 1],

(UAf> = (Af)a+
teT ar ET

and

Theorem 2.43. Let A € P(X). Then

Z(Jn == (A(]_n)_;'_).

If we use a symbol « - E to denote the fuzzy set whose membership function is

a ifxekE
m(x) = ,
{0 if x¢ E

for any o € [0, 1] and any crisp set E € P(X), then each fuzzy set can be fully
characterized by its a-cuts, as expressed by the following theorem.

Theorem 2.44. (Decomposition Theorem). For any A € f’(X ),

A= U a-A,.

ael0,1]

Definition 2.48. Let X = (—0c0, 00). A normalized fuzzy set 4 € P(X) s called a
Sfuzzy number if A, is a finite closed interval for each o € (0, 1].

Definition 2.49. A rectangular fuzzy number is a fuzzy number with membership
function having a form as

m(x) = {1 if x € [, a/]

0 otherwise,

where a;,a, € Rwith ¢; < a,.

A rectangular fuzzy number is identified with the corresponding vector
(a1, a,) and is an interval number, essentially. Any crisp real number @ can be
regarded as a special rectangular fuzzy number with ¢; = a, = a.

Definition 2.50. A triangular fuzzy number is a fuzzy number with membership
function
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1 if x =ag
X—a .
Loifx e [ar, ao)
m(x) _ ap —a
T i x e (a, ar|
ayg — dy
0 otherwise,

where a;, ayg,a, € R, with a; < ay < a,.

A triangular fuzzy number is identified with the corresponding vector
(aj, ap, a,). A triangular fuzzy number is called symmetric if ay — a; = a, — ap.
Any crisp real number « can be regarded as a special triangular fuzzy number
with a; = ay = a, = a.

Example 2.67. Let X = (—o0, o0). Fuzzy sets 4 and B with

0 if x<6orx>12
my(x)=<¢ (x—6)/3 if6 <x<9
(12—=x)/3 if9 < x<12,

0 ifx<2orx >4
mp(x) =< x—2 if2 <x<3
4—x if3<x<4

are triangular fuzzy numbers (Fig. 2.3).

Definition 2.51. A trapezoidal fuzzy number is a fuzzy number with membership
function

Hg Ha

Fig. 2.3 Membership
functions of triangular
fuzzy numbers 4 and B
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1 if x = [ap, a.]
xX—a .
Lo ifx € [a,ap)
m(x) =23 44
X—a .
Tty e (ac,a,]
ac — a
0 otherwise,

where a;, ap, a.,a, € R, with a; < a, < a, < a,.

A trapezoidal fuzzy number is identified with the corresponding vector
(aj,ap,a.,a,). A trapezoidal fuzzy number is called symmetric if
ap — aj = a, — a.. Any rectangular fuzzy number (g, a,)can be regarded as a
special trapezoidal fuzzy number with a; = a, and a,. = a,. Similarly, any trian-
gular fuzzy number (a, ay, a,) can be regarded as a special trapezoidal fuzzy
number with a, = a. = ay. Of course, any crisp real number a can be regarded
as a special trapezoidal fuzzy number with ¢; = a4, = a, = a, = a.

Example 2.68. Fuzzy sets Y, M, and O discussed in Examples 2.64 are trape-
zoidal fuzzy numbers.

Definition 2.52. Let X = (—o0, 0). A fuzzy set 4 € P(X) is called convex, if
for any xy,x,x3 € X,

I’}’ZA(XQ) > mA(xl) /\mA(X3)

where x; < x5 < x3.

Theorem 2.45. Any fuzzy number is a convex fuzzy subset of (—oo,00), and its
membership function is upper semicontinuous.

The following extension principle introduced by Zadeh [1975] is a useful tool
for extending nonfuzzy mathematical concepts to fuzzy sets (to fuzzify classical
mathematical concepts).

Extension Principle. Let X}, X5,...,X,, and Y be nonempty (crisp) sets,
X=X X X; x---x X, bethe product set of X1, X> ..., X, and fbe a mapping
from X to Y. Then, for any given n fuzzy sets A; € 13(X,~), i=1,2,...,n,wecan
induce a fuzzy set B € P(Y) through fsuch that

mp(y) = f(sup )mil’l[mAl(xl)amAz(xz)?'"’mAn(x”)]’
V=1 (X1,X2,....Xp

where we use the convention that

sup{x|x € [0,00]} =0

xeQ

when f~1(y) = 0.
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As a special case, if x is a binary operator on points in the universe of
discourse X, then, by using the extension principle, we can obtain a binary
operator x (we use the same symbol) on fuzzy sets in P(X):

My, p(z) = sup [my(x) Amp(y)],vz € X,

Xky=z

where 4, B € P(X).

Now, we can use the extension principle to define addition, subtraction,
multiplication, and division operations on fuzzy numbers, which are general-
izations of the corresponding operations on real numbers.

Definition 2.53. Let 4 and B be fuzzy numbers. Then 4 + B, A — B, A - B and
A/B are defined by

myp(z) = Xiggz[m (x) Amg(y)],

my-p(z) = sup [ma(x) Amp(y)],

X—y=z

m.p(z) = sup [my(x) Amp(y)],

X-y=z

and

myp(z) = /sup [ma(x) Amg(y)] (when 0 ¢ supp B)
x/y=z,y#0

for any z € X, respectively.

Example 2.69. Fuzzy numbers 4 and B are given in Example 2.67. Then we have
0 if x<8orx>16

myp(x) =< (x—8)/4 if8 <x<12
(16— x)/4 if12<x <16

(Fig. 2.4), and
0 if x< 2orx>10

my_p(x)=<¢ (x—2)/4 if2 <x<16
(I0-x)/4 if6 <x<10

(Fig. 2.5). Viewing the real number 3 as a fuzzy number, we have 4 = 3 - Band
B=A4/3.
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Fig. 2.4 Membership
function of 4 + B

Fig. 2.5 Membership
function of 4-B

Fa-s

Definition 2.54. A fuzzy partition of X is a class of nonempty fuzzy sets defined
on X, {4,|i € I}, such that

ZmA,.(x) =1

iel

forall x € X.

Clearly, any fuzzy set on X and its standard complement is a fuzzy partition
of X. The three fuzzy sets that represent the concepts of young, old, and middle-
aged in Example 2.64 form a fuzzy partition of the interval [0, 100].

Notes

2.1. The basic knowledge on sets and classes can be found in numerous books,
including the classic book by Halmos [1950]. For a complete and up-to-date
coverage of classical set theory, we recommend the book by Jech [2003].
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2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2 Preliminaries

The concepts of S-precompact and S-compact were introduced by Wang
[1990b].

The concept of o-algebra can be generalized to fuzzy o-field, which is a class
of fuzzy sets. This issue is discussed by Qiao [1990], as well as in Chapter 14.
Basic concepts of classical measure theory are introduced in Section 2.2
following the terminology and notation employed in the classic book on
classical measure theory by Halmos [1950].

Standard fuzzy sets as well as standard operations on fuzzy sets were
introduced in the seminal paper by Zadeh [1965]. Several other types of
fuzzy sets were introduced later [Klir, 2006], but they are not considered in
this book. Set theoretic operations on fuzzy sets are not unique. Intersec-
tions and unions of standard fuzzy sets are mathematically captured by
operations known as triangular norms and conorms (or t-norms and t-
conorms) [Klement et al., 2000, Klir and Yuan, 1995]. Complements of
standard fuzzy sets are captured by monotone nonincreasing functions
c: [0,1] — [0, 1] such that ¢(0) =1 and ¢(1) = 0 [Klir and Yuan, 1995].
The standard intersection and union operations are the only cutworthy
operations among the t-norms and t-conorms, which means that they are
preserved in a-cuts for all a € (0,1] in the classical sense. That is,
(4N B), = A, N Byand(4U B), = A, U B,. No complements of fuzzy
sets are cutworthy [Klir and Yuan, 1995].

In addition to operations of intersection, union, and complementation on
fuzzy sets, it is perfectly meaningful to employ also averaging operations on
fuzzy sets [Klir and Yuan, 1995].

For the sake of simplicity, we restrict in this book to triangular fuzzy
numbers. A more general concept of a fuzzy number (sometimes called a
fuzzy interval) involves nonlinear functions and its a-cut for & = Imight
be an interval of real numbers [Klir and Yuan, 1995].

Arithmetic operations on fuzzy numbers introduced in Definition 2.53
form a basis for the so-called standard fuzzy arithmetic, which is based
on the assumption that there are no constraints among the fuzzy numbers
involved. If this assumption is not warranted, the constraints must be
taken into account. Principles of constrained fuzzy arithmetic are discussed
in [Klir, 1997, 2006; Klir and Pan, 1998].

The literature on fuzzy set theory has been rapidly growing, especially
during the last twenty years or so. Two important handbooks, edited by
Ruspini et al. [1998] and Dubois and Prade [2000], are recommended as
convenient sources of information on virtually any aspect of fuzzy set
theory. From among the growing number of textbooks on fuzzy set theory,
any of the following general textbooks is recommended for further study:
[Klir and Yuan, 1995a], [Lin and Lee, 1996], [Nguyen and Walker, 1997],
[Pedrycz and Gomide, 1998], and Zimmermann [1996]. Another valuable
resource is the following pair of books that contain classical papers on
fuzzy set theory by Lotfi A. Zadeh, the founder of fuzzy set theory: [Yager
et al., 1987] and [Klir and Yuan, 1996].
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Exercises

2.1.

2.2.

2.3.

2.4.

2.5.
2.6.

2.7.

2.8.

2.9.

Let X = (—o0, o0). Explain the following sets and classes in natural
language:

() {X0<x<1);
(b) {X[x<0};

© {{x}|x € X}
) {E|E C Xx}.

Let X7 =X, =(—00,00),X=X; x X5. Use shading to indicate the
following sets on the Euclidean plane:

@) {(x1,x2)[x1 +x2>1};

(b) {(x1,2x2)|xf < xa}s

(©) {(x1,x2)|x2>5}.

Prove the following equalities:

(@) (E—G)N(F=G)=(ENF) G

b) (E-F)—-G=E—(FUG);

() E-(F-G)=(E-F)U(ENG);

d) (E-F)N(G—-H)=(ENG)— (FUH).

Prove the following equalities:

(a) EAF=FAE;
(b) EA(FAG)=(EAF)AG;
() EN(FAG)=(ENF)A(ENG).

Prove that lim sup, E, = liminf, E,.
Indicate the superior limit and the inferior limit of the set sequence {E, }
where E, is given as follows:

(a) E, = (n,n+3/2);

(b) E, = [ay, b,] with @, = min(0, (-2)"); b, = max (0, (—2)");
(c) E.={nn+1,...}

(d) E, = {x|nx is a natural number};

(e) E, = [l/l’l,l’l].

Which set sequence in Exercise 2.6 is monotone and for which does the
limit exist?

Prove:
lim(EU F,) = EUlim F,,
n n
lim(E — F,) = E — lim F,.
n n
Prove Proposition 2.6 (4), (5), and (6).
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2.10.

2.11.
2.12.

2.13.

2.14.

2.15

2.16.

2 Preliminaries

Let X = (—00, 00) X (—00, 00) = {(x,¥)] — co<x <00, —00<y<o0}.
Prove that the class of all sets that have the form

{(x,y)] —o0<a; < x<b;<oo,—c0<a, < y<by<oco}

is a semiring.

Prove Proposition 2.11.

Is a monotone class closed under the formation of limit operations of set
sequence? Why or why not?

Prove that

F,(C) = {ﬂ U E(|E; € C, S, and T are arbitrary index sets}

teTseS,

Categorize the class C given in the following descriptions as either a ring,
semiring, algebra, o-ring, o-algebra, monotone class, or a plump class:

(a) X = (—00,00),C is the class of all bounded, left open, and right
closed intervals

b) x={12,..},C={{n,n+1,...}}n=1,2,...} U{D}

(c) Xisanonempty set, Eis a nonempty subset of X, C = {F|E C F C X}

(d) X is a nonempty set, £ is a nonempty subset of X, E # X,
C={FFCE}

(e) Xis a nonempty set, E is a nonempty subset of X, C = {E}.

What are the rings (algebras, o-rings, o-algebras, monotone classes, plump

classes, respectively) generated by the classes C given in Exercise 2.14?
Indicate what A [C] is for each of the following classes C:

(a) X=1{1,2,3,4,5}, C={4,B,C,D,E}, where A = {1,2,3},
B={1,2,4}, C={1},D={2,4}, E=0

(b) X={1,2,3,4,5},C={4,B,C,D, E}, where 4 = {1,2, 3},
B={1,2,4}, C={1},D={1,5}, E={4,5}

(c) X=1{1,2,3,4,5},C={A4,B,C,D,E}, where 4 = {1,2, 3},
B={1,24,C={1},D={1,5},E={1,2}

(d) X={1,234,5},C={A4,B,C,D,E}, where 4 = {4,5}, B={3,5},
C= {,3,,5}D {2,3,4}, E={3,4,5}

(e) X = (—00,00),C = {@, B, B, X}, where B = [0,00)

() X = (—o00,00),C is the class of all open intervals in X

(g) X = (—00,00),C is the class of all closed intervals in X

(h) X =(—o00,00), C={4,|n=1,2,...}, where 4,=[1 — 1/n,n], n =
1,2,.

1) X =11, 2 }, C={4,|n=1,2,...}, where 4, ={n,n+1,...},
n=1,2,.
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2.17.

2.18.

2.19.

2.20

2.21.

2.22.

2.23.

2.24.

2.25.
2.26.

2.27.
2.28.
2.29.

2.30.

2.31.

In Exercise 2.16, which classes are closed under the formation of arbitrary
intersections? Verify that A[C] C C for these classes C.

In Exercise 2.16, which classes are AU-classes? Referring to Exercise 2.17,
observe that Theorem 2.21 is applicable in some of these cases.

Prove that

A(x/CiUC,y) = A(x/C;) N A(x/Cy) for any x € X.

May we regard Theorem 2.14 as a special case of this statement?

Prove that if

C = { () E/|E; € C, t € T, T is an arbitrary index sets },

teT

then A[C'] = [C]. Can you find a class larger than C’ for which this result
still holds?

Determine the class H[C] based upon each of the classes given in Exercise
2.16.

Prove that any set in C may be expressed by an intersection of the holes of
C, moreover, prove that any union of sets in C may be expressed by an
intersection of the holes of C.

Use one of the classes given in Exercise 2.16 to verify the conclusion given
in Exercise 2.21.

Prove that

F,(C) = { () H/|H; € H[C], T is an arbitrary index set }
teT

Prove that if C is closed under the formation of unions then H[C] C C.
In Exercise 2.16, which classes are closed under the formation of unions?
Verify that [H[C] C C for these classes.

Prove that if C is an Al-class then X ¢ C.

Let C be an Al-class. Prove that if C D H[C] then C = HI[C].

In Exercise 2.16, which classes are Al-classes? Referring also to Exercise
2.26, verify, for some class(es) C, the statement suggested in Exercise 2.28.
Let X be the set of all integers and C = P(X). Is (X, C) S-compact?

Take E, = {x]0 < (=1)"x <n,x € X},n=1,2,....Canyou find a con-
vergent subsequence of {E, }?

Prove that, if (X, C) is S-precompact and 4 C X, then (4,CN A) is
S-precompact.
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2.32.

2.33.

2.34.

2.35.

2.36.

2.37.

2.38.

2 Preliminaries

Prove that if (X, C) is S-precompact and C’' C C, then (X,C’) is
S-precompact.

Let X = {1,2,3,4}. Consider the following relation on X:
Ry = {(la l)a (17 3)}

R, ={(2,2),(3,2),(4,1)}

R; = (174)7 (2’3)}

Ry = (1’ 1)7 (4’ 4)}

Rs = {(1’ l)v (2’2)’ (3’ 3)’ (45 4)? (154)}

R¢ = {(la 2)7 (27 1)7 (27 3)7 (11 3)7 (37 1)}

Ri=XxX

Ry =0

Determine whether or not each relation is

(a) reflexive

(b) symmetric

(c) transitive.

Let X = (—o00, 00) and 22 be the relation on X x X defined by

(x1,31) & (x2,»2) iff X1 —y1 = x2 — »2.

(a) Prove that = is an equivalence relation.

(b) Find the equivalence class of (2,1).

(c) Find the quotient X/==.

Let R be a relation on X. Prove that R C A iff R is both symmetric and
antisymmetric.

Let X ={0,1,2,...}. Arelation < on X x X is defined as follows:

(x1,01) < (x2,p2) iff x; < x7 and y; < ys.

Prove that (X x X, <) is a lattice. Show that by replacing X x X with the
two-dimensional Euclidean space (—oo, c0) X (—o0, oo) we still obtain
a lattice.

Let X = [0, 1] and let C consist of @, X, 4 =[0,0.25), B=0,0.5), C =
[0,0.75), and D = [0.25,0.75). Consider a set function x defined on C as
follows: (@) = 0, u(A) = 2, u(B) =2, u(C) = 4, (D) =2, p(X) = 4.

(a) Show that p is additive on C.
(b) Can pu be extended to an additive function on the ring generated by C?

Assuming that a set function p is finitely additive on a ring R, show that

u(A U B) = p(A) + pu(B) — p(4 N B)

forall 4,B € R.
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2.39. Let X = {x1,x2,x3}. 41 is a set function defined for all singleton of X

with p({x;}) =27",i = 1,2, 3. Extend x to be a measure on the power set
of X.

2.40. Let (X, F) be a measurable space, 1 be a measure on F. Show that

(09 2 el
i=1 Ic{1,..., n}l;éﬂ icl

()=, 2, (Ur)
i=1 Ic{l,.“,n}#lsﬁﬁ iel

where {E|, E>, ..., E,} is a finite subclass of F.

2.41 Prove Theorem 2.28.

2.42. Prove Theorem 2.31.

2.43. Let (X, F) be a measurable space, and let iz be a measure on F. For any
A C X, define set function 1/ by p/(4) = inf{u(E)|4 C E C X}.

and

Does ' coincide with i/ on F? Furthermore, is 1 a measure on P(X)? If
yes, prove it; if not, construct a counterexample.

2.44. Consider the fuzzy sets 4, B, and C defined on the set (interval)
= [0, 10] by the following membership functions:

2

x when x € [0,1]
my(x) =4 (2—x)> whenx € (1,2]
0 otherwise

x—2 when x € [2, 3]
mp(x) =< 4—x whenx € (3, 4]
0 otherwise

me(x) = max{0,2(x — 3) — (x — 3)*}.

Determine:

(a) plots of the given membership functions and those representing
standard complements of A4, B,and C, and C;

(b) the standard intersection and standard union of B and C;

(c) the a-cut representations of 4, B, and C.

2.45. Viewing fuzzy sets A, B, C in Exercise 2.44 as fuzzy numbers on R,
determine:
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2.46.

2.47.

2.48.

2.49.

2.50.

2.51.

2.52.

2 Preliminaries

(a) A+B+C

(by A—-B-C

(c) AB+ Cand AB-C
(d) BC/A.

Show that under the standard operations fuzzy sets do not satisfy the law
of excluded middle and the law of contradiction.

Show that under the standard operations fuzzy sets satisfy DeMorgan’s
laws.

Considering arithmetic operations on triangular fuzzy numbers, show
that their:

(a) additions and subtractions are again triangular fuzzy numbers;
(b) multiplications and divisions may not be triangular fuzzy numbers.

Show that for any pair of fuzzy sets 4 and B on X, the concepts of set
inclusion, standard intersection, and standard union are cutworthy (see
Note 2.5).

Prove Theorem 2.42, which states that the operation of standard inter-
section and standard union on fuzzy sets are cutworthy and strong
cutworthy, respectively.

Prove Theorem 2.43, which demonstrates that the standard complement
of fuzzy sets is not cutworthy.

Explain why averaging operations are meaningful for fuzzy sets (even
when they degenerate to crisp sets), while they are not meaningful for
classical sets.



