
Preface

In 1992we published a book entitled Fuzzy Measure Theory (Plenum Press,

New York), in which the term ‘‘fuzzy measure’’ was used for set functions

obtained by replacing the additivity requirement of classical measures with

weaker requirements of monotonicity with respect to set inclusion and conti-

nuity. That is, the book dealt with nonnegative set functions that were mono-

tone, vanished at the empty set, and possessed appropriate continuity

properties when defined on infinite sets.
It seems that Fuzzy Measure Theory was the only book available on the

market at that time devoted to this emerging new mathematical theory. Some

ten years after its publication we began to see that the subject had expanded so

much that a second edition of the book, or even a new book on the subject, was

needed.We eventually decided to write a new book because the newmaterial we

wished to include was too extensive for—and far beyond the usual scope—of a

second edition. More importantly, we felt that some fundamental changes

regarding this topic’s scope and terminology would be desirable and timely.
As far as the scope of the new book, Generalized Measure Theory, is con-

cerned, we felt, on the basis of recent developments in the literature, that the

material should not be restricted to set functions that had to be nonnegative and

monotone. Rather, it needed to capture a broader class of set functions; a

function in this class would have only one requirement to qualify as a ‘‘mea-

sure’’: it would vanish at the empty set. Then, various special requirements

could be introduced as needed to restrict this broad class of set functions to

specialized subclasses. One of these subclasses would consist of nonnegative,

monotone, and continuous set functions that vanish at the empty set—or fuzzy

measures—the subject of our previous book.
Regarding terminology, it was obvious that we needed to revise it completely

in view of the expanded scope of the book. First, we had to introduce a name for

the most general measures. We did so by referring to nonnegative set functions

that vanish at the empty set as general measures and referring to those that are

not required to be nonnegative as signed general measures. Second, we needed to

introduce appropriate names of the various subclasses of general measures or

signed general measures. This we did in Chapters 3 and 4, where we followed, by
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and large, the terminology established in the literature. However, it should be
emphasized that we made a deliberate decision to abandon the central term of
our previous book, the term ‘‘fuzzy measure.’’ We judge this term to be highly
misleading. Indeed, the so-called fuzzy measures do not involve any fuzziness.
They are just special set functions that are defined on specified classes of
classical sets, not on classes of fuzzy sets. Since the primary characteristic of
such functions is monotonicity, we deemed it reasonable to call these set func-
tions monotone measures rather than fuzzy measures.

However, contrary to the concept of fuzzy measures in our previous book,
monotone measures as understood in Generalized Measure Theory need not be
continuous. If, in fact, they are continuous then they are here specifically referred
to as continuous monotone measures. Moreover, if they are only semicontinuous
from below or from above, then they are called, respectively, lower-semicontinuous
or upper-semicontinuous monotone measures. Clearly, any continuous monotone
measure is both lower-semicontinuous and upper-semicontinuous.

There is another reason why abandoning the term ‘‘fuzzy measure’’ is justi-
fied: It is certainly meaningful to fuzzify any class of measures, as we show in
Chapter 14. A given class of measures is ‘‘fuzzified’’ when it is defined on fuzzy
sets rather than on classical sets. However, the resulting term—‘‘fuzzified fuzzy
measures’’ we find awkward, not properly descriptive, and quite confusing. For
all these reasons, we decided to replace the term ‘‘fuzzy measure’’ with ‘‘con-
tinuous monotone measure’’ and to use the term ‘‘monotone measure’’ when
continuity or even semicontinuity is not required. When they are fuzzified we
refer to these measures as ‘‘fuzzified monotone measures.’’ When measures of
any other type are defined on classes of fuzzy sets we refer to them as fuzzified
measures of the respective type. We thus use names such as fuzzified general
measures, fuzzified monotone measures, fuzzified continuous monotone measures,
and the like.

We realize it is not likely that the confusing term ‘‘fuzzy measures’’ for
‘‘measures defined on classes of crisp sets’’ will soon disappear in the literature.
However, we are confident that the time is ripe to stop using it. In a sense we
have joined some major contributors to generalized measure theory who have
already abandoned this ill-descriptive term.

We have made in this book a few additional terminological changes with
respect to our previous book. However, all these changes affect special con-
cepts, so we explain our rationale for making these changes as we introduce
each concept.

Our previous book contains, in addition to its original material, six of our
reprinted papers. In this book, no reprinted papers are included. Instead the
original material is substantially expanded. Major expansions are in the area of
integration, methods for constructing generalized measures, fuzzification of
generalized measures, and applications of generalized measure theory.

Much like our previous book, this book is primarily a text for a one-semester
graduate or upper division course. Such a course is suitable not only for
programs in mathematics, where it might be offered at the junior or senior
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level, but also for programs in numerous other areas. These would include
systems science, computer science, information science, and cognitive sciences,
as well as artificial intelligence, quantitative management, mathematical social
sciences, and virtually all areas of engineering and natural sciences. The book
may also be useful for researchers in these areas.

Although a solid background in mathematical analysis is required for under-
standing the material presented, the book is otherwise self-contained. This is
achieved by the inclusion of needed prerequisites regarding classical sets, clas-
sical measures, and fuzzy sets, as given in Chapter 2. In general, the book is
written in the textbook style, characterized by generous use of examples and
exercises. Each chapter concludes with notes containing relevant historical,
bibliographical, and other remarks relating to the covered material, which are
useful for further study of generalized measure theory and its applications.
Compared with our previous book, the bibliography of Generalized Measure
Theory is substantially expanded. Two glossaries are included for convenience
of the reader, Glossary of Key Concepts (Appendix A) and Glossary of Sym-
bols (Appendix B).

Omaha, Nebraska, USA Zhenyuan Wang
Binghamton, New York, USA George J.Klir
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Chapter 2

Preliminaries

2.1 Classical Sets

2.1.1 Set Inclusion and Characteristic Function

Let X be a nonempty set. Unless otherwise stated, all sets that we consider are
subsets of X. Set X is called a universe of discourse or a universal set. The
elements of X are called points. Universal set X may contain finite, countably
infinite, or uncountably infinite number of points. A set that consists of a finite
number of points x1; x2; . . . ; xn (or, a countably infinite number of points
x1; x2; . . .) may be denoted by fx1; x2; . . . ; xngðfx1; x2; . . .g, respectively). A set
containing no point is called the empty set and is denoted by Ø.

If x is a point of X and E is a subset of X, the notation

x 2 E

means that x belongs to E, i.e., x is an element of E; and the statement that x
does not belong to E is denoted by

x =2 E:

Thus, for every point x of X we have

x 2 X

and

x =2 Ø:

A set of sets is called a class. If E is a set and C is a class, then

E 2 C

means that set E belongs to class C.

Z. Wang, G.J. Klir, Generalized Measure Theory,
DOI: 10.1007/978-0-387-76852-6_2, � Springer ScienceþBusiness Media, LLC 2009

9



If, for each x; pðxÞ is a proposition concerning x, then the symbol

fxjpðxÞg

denotes the set of all those points x for which pðxÞ is true; that is,

x0 2 fxjpðxÞg , pðx0Þis true:

If the point x is replaced with set E, such a symbol may be used to indicate a
class. For example,

fEjx 2 Eg

denotes the class of those sets that contain the point x.

Example 2.1. Let X ¼ f1; 2; . . .g: Then, A ¼ fxjx is odd and less than10g ¼
f1; 3; 5; 7; 9g:

Example 2.2. Let X be the set of all real numbers, which is often referred to as
the real line or one-dimensional Euclidean space. The class fða; bÞj �15
a5b51g is the class consisting of all open intervals on the real line.

If E and F are sets, the notation

E � F or F � E

means that E is a subset of F, i.e., every point of E belongs to F. In this case, we
say that F includes E, or that E is included by F. For every set E we have

Ø � E � X:

Two sets E and F are called equal iff

E � F and F � E;

that is, they contain exactly the same points. This is denoted by

E ¼ F:

The symbols� or � also may be used for classes. If E and F are classes, then

E � F

means that every set of E belongs to F, that is, E is a subclass of F.
If E1;E2; . . . ;En are nonempty sets, then

E ¼ fðx1; x2; . . . ; xnÞjxi 2 Ei; i ¼ 1; 2; . . . ; ng
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is called an n-dimensional product set and is denoted by

E ¼ E1 � E2 � . . .� En:

Similarly, if fEtjt 2 Tg is a family of nonempty sets, where T is an infinite index
set, then

E ¼ fxt; t 2 T j xt 2 Et for each t 2 Tg

is called an infinite-dimensional product set.

Example 2.3. Let X1 and X2 be one-dimensional Euclidean spaces. Then X ¼
X1 � X2 ¼ fðx1; x2Þjx1 2 ð�1;1Þ; x2 2 ð�1;1Þg is the two-dimensional
Euclidean space. The set fðx1; x2Þjx1 > x2g is a half (open) plane under the
line x2 ¼ x1, while the set fðx1; x2Þjx21 þ x225r2g is the open circle centering at
the origin with a radius r, where r > 0.

Example 2.4. Let Xt ¼ f0; 1g; t 2 f1; 2; . . .g. The space

X ¼ X1 � X2 � . . .� Xn � . . .

¼ fðx1; x2; . . . ; xn; . . .Þjxt 2 f0; 1g for each t 2 f1; 2; . . .gg

is an infinite-dimensional product space. Each point ðx1; x2; . . . ; xn; . . .Þ in this
space corresponds to the binary number 0. x1x2 . . . xn . . . in ½0; 1�: Such a
correspondence is not one to one, but it is onto.

If E is a set, the function �
E
, defined for all x 2 X by

�
E
ðxÞ ¼

1 if x 2 E

0 if x =2 E;

�

is called the characteristic function of set E. The correspondence between sets
and their characteristic functions is one to one, that is,

E ¼ F, �
E
ðxÞ ¼ �

F
ðxÞ; 8x 2 X:

It is easy to see that

E � F, �
E
ðxÞ � �

F
ðxÞ; 8x 2 X;

and that

�
X
� 1; �

Ø
� 0:
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2.1.2 Operations on Sets

LetC be any class of subsets ofX. The set of all those points ofX that belong to at

least one set of the class C is called the union of the sets of C. This is denoted by

[
C:

If to every t of a certain index set T there corresponds a set Et, then the union

of the sets of class

fEtjt 2 Tg

may be also denoted by

[
t 2 T

Et or
[
t

Et:

Especially, when

C ¼ fE1;E2g;

then
S
C is denoted by

E1 [ E2;

and if

C ¼ fE1;E2; . . . ;Eng ðC ¼ fE1;E2; . . .gÞ

then
S
C is denoted by

E1 [ E2 [ . . . [ En or
[n
i¼1

Ei

[1
i¼1

Ei; respectively

 !
:

The set of all those points of X which belong to every set of the class C is

called the intersection of the sets of C. This is denoted by
T
C. Symbols similar

to those used for unions are available, such as
T

t2T Et ðor
T

t EtÞ;
E1 \ E2; E1 \ E2 \ . . . \ En ðor

Tn
i¼1 EiÞ; and

T1
i¼1 Ei: If F is a set, the class

fE \ FjE 2 Cg is denoted by C \ F.

Example 2.5. Let X ¼ fa; b; c; dg;C ¼ ffag; fb; cg; fb; dg; fc; dgg;F ¼ fa; bg.
Then C \ F ¼ ffag; fbg;Øg.

Example 2.6. Let X ¼ ð�1;1Þ; C ¼ f½a; b�j �15a � b51g; F ¼ ½0; 1�.
Then,C \ F ¼ f½a; b�j0 � a � b � 1g, that is, the class of all closed subintervals

of the unit closed interval.
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It is convenient to adopt the conventions that

[
t2T

Et ¼ Ø

and

\
t2T

Et ¼ X

when T is empty.

Proposition 2.1. The following statements are equivalent:

(1) E � F;
(2) E [ F ¼ F;
(3) E \ F ¼ E:

Two sets E and F are called disjoint iff

E \ F ¼ Ø:

A class C is called disjoint iff every two distinct sets of C are disjoint; in this
case we refer to the union of the sets of C as a disjoint union.

IfE is a set, the set of all those points ofX that do not belong toE is called the
complement of E. This is denoted by E.

Proposition 2.2. The set operations union, intersection, and complement have the

following properties:

Involution: E ¼ E

Commutativity: E [ F ¼ F [ E
E \ F ¼ F \ E

Associativity:
S
t2T

S
s2St

Es

 !
¼

S
s2[t2T St

Es

T
t2T

T
s2St

Es

 !
¼

T
s2[t2T St

Es

Distributivity: F \
S
t2T

Et

� �
¼
S
t2T
ðF \ EtÞ

F [
T
t2T

Et

� �
¼
T
t2T
ðF [ EtÞ

Idempotence: E [ E ¼ E

E \ E ¼ E
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Absorption: E [ ðE \ FÞ ¼ E

E \ ðE [ FÞ ¼ E

Absorption of complement: E [ ðE \ FÞ ¼ E [ F

E \ ðE [ FÞ ¼ E \ F

Absorption by X and Ø: E [ X ¼ X

E \Ø ¼ Ø

Identity: E [Ø ¼ E

E \ X ¼ E

Law of contradiction: E \ E ¼ Ø

Law of excluded middle: E [ E ¼ X

DeMorgan’s laws: [
t2T

Et ¼ \
t2T

Et

\
t2T

Et ¼ [
t2T

Et

where St;T are index sets.

From the above a duality is suggestive. In general, we have the following

principle of duality: Any valid identity among sets obtained by unions, inter-

sections, and complements, remains valid if the symbols

\;�; and Ø

are interchanged with

[;�; and X;

respectively (and if the equality and complementation are left unchanged).
If E and F are sets, the set of all those points of E that do not belong to F is

called the difference of E and F. This is denoted by

E� F:

If E � F; the difference E� F is called proper. Clearly,

E� F ¼ E \ F:

The symmetric difference of E and F, in symbols

E � F;
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is defined by

E � F ¼ ðE� FÞ [ ðF� EÞ:

Let fE1;E2; . . .g (or fEng, briefly) be a sequence of sets. The set of all those

points ofX that belong to En for infinitely many values of n is called the superior

limit of fEng, and is denoted by

lim sup
n

En or lim
n

En;

the set of all points ofX that belong to En for all but a finite number of values of
n is called the inferior limit of fEng, and denoted by

lim infEn
n

or lim
n

En:

Proposition 2.3.

lim sup
n

En ¼ \
1

n¼1
[
1

i¼n
Ei;

lim inf
n

En ¼ [
1

n¼1
\
1

i¼n
Ei:

Example 2.7. Let X ¼ fa; bg and let a set sequence fEng be defined as follows:

En ¼
fag if n is even
fbg if n is odd.

�
Then, lim supn En ¼ X and lim infn En ¼ Ø:

Example 2.8. Let X ¼ ð�1; 1Þ and let a set sequence fEng be defined as

follows: E1 ¼ ½0; 1Þ; E2 ¼ ½0; 1=2Þ; E3 ¼ ½1=2; 1Þ; E4 ¼ ½0; 1=4Þ; E5 ¼ ½1=4;
1=2Þ; E6 ¼ ½1=2; 3=4Þ; E7 ¼ ½3=4; 1Þ; E8 ¼ ½0; 1=8Þ; . . . : Then, lim supn En ¼
½0; 1Þ and lim infn En ¼ Ø:

Proposition 2.4. lim infn En � lim supn En:
If

lim sup
n

En ¼ lim inf
n

En

we use the notation

lim
n

En

for this set and say that the limit of fEng exists and that this set is the limit of
fEng. Sometimes we write En ! E when limn En ¼ E:
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Example 2.9. Let X ¼ f1; 2; . . .g and let fEng be a set sequence in which

En ¼ fng; n ¼ 1; 2; . . .. Then, we have

lim sup
n

En ¼ lim inf
n

En ¼ Ø:

Hence, the limit of fEng exists, and limn En ¼ Ø.
We say that fEng is increasing if

En � Enþ1; 8n ¼ 1; 2; . . . ;

and fEng is decreasing if

En � Enþ1; 8n ¼ 1; 2; . . . :

Both increasing and decreasing sequences are called monotone.

Proposition 2.5. For any monotone sequence fEng; limn En exists and equals

[
n

En or
\
n

En

according as fEng is increasing or decreasing, respectively.

Usually, we write En % E when fEng is increasing and limn En ¼ E, whereas

we write En & E when fEng is decreasing and limn En ¼ E.

Example 2.10. Let X ¼ ð�1;1Þ. If fEng is a set sequence in which

En ¼ ½1=n; 1�; n ¼ 1; 2; . . ., then fEng is increasing, and En %
S

n En ¼ ð0; 1�. If
fFng is a set sequence in which Fn ¼ ð�ð1þ 1=nÞ; 1þ 1=nÞ; n ¼ 1; 2; . . ., then
fFng is decreasing, and Fn &

T
n Fn ¼ ½�1; 1�:

The discussion of monotone sequences fEng can be generalized to families of

sets fEtjt 2 Tg, where T is an interval (finite or infinite) of real numbers. If for

any t; t0 2 T;Et � Et0 whenever t � t0, then fEtg is increasing, and

lim
t!t0�

Et ¼
[

t< t0;t2T
Et;

lim
t!t0þ

Et ¼
\

t>t0;t2T
Et;

if for any t; t0 2 T;Et � Et0 whenever t � t0, then fEtg is decreasing, and

lim
t!t0�

Et ¼
\

t< t0;t2T
Et;

lim
t!t0þ

Et ¼
[

t>t0;t2T
Et;
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where symbols limt!t0� and limt!t0þ denote the left limit at t0 and the right limit

at t0, respectively.
The following proposition gives the correspondence between the operations

of sets and the operations of characteristic functions of sets.

Proposition 2.6.

(1) �
E
¼ sup

t2T
�

Et
; where E ¼ [

t2T
Et;

in particular,

�
E[F ¼ maxð�

E
; �

F
Þ;

(2) �
E
¼ inf

t2T
�

Et
; where E ¼ \

t2T
E

t
;

in particular,

�
E\F
¼ minð�

E
; �

F
Þ;

(3) �
E
¼ 1� �

E
;

(4) �
E�F ¼ �E

�minð�
E
; �

F
Þ ¼ minð�

E
; 1� �

F
Þ ¼ maxð0; �

E
� �

F
Þ;

(5) �
E�F
¼ �

E
� �

F
j j;

(6) �
lim sup

n
En
¼ lim sup

n
�

En
;

�
lim inf

n
En
¼ lim inf

n
�

En
;

and if limn En exists, then

�
limn En

¼ lim
n
�

En
:

2.1.3 Classes of Sets

Definition 2.1. The class of all subsets of X is called the power set of X, and is

denoted by

PðXÞ:

Definition 2.2. A nonempty class R is called a ring, iff 8E;F 2 R;

E [ F 2 R and E� F 2 R:

In other words, a ring is a nonempty class that is closed under the formation

of unions and differences. Because of the associativity of the set union a ring is

also closed under the formation of finite unions.
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Proposition 2.7. The empty set Ø belongs to every ring.

Theorem 2.1. Any ring is closed under the formation of symmetric differences and

intersections; and, conversely, a nonempty class that is closed under the formation

of symmetric differences and intersections is a ring.

Proof. From

E�F ¼ ðE� F Þ [ ðF� E Þ

and

E \ F ¼ ðE [ F Þ � ðE�F Þ;

we obtain the first conclusion. The converse conclusion issues from

E [ F ¼ ðE�F Þ � ðF \ F Þ

and

E� F ¼ ðE�F Þ \ E: &

Theorem 2.2.A nonempty class that is closed under the formation of intersections,

proper differences, and disjoint unions is a ring.

Proof. The conclusion follows from

E�F ¼ ½E� ðE \ FÞ� [ ½F� ðE \ FÞ�

and Theorem 2.1. &

Example 2.11. The class of all finite subsets of X is a ring.

Example 2.12. Let X be the real line, that is

X ¼ ð�1;1Þ ¼ fxj �15x51g:

The class of all finite unions of bounded, left closed, and right open intervals,

that is, the class of all sets which have the form

[n
i¼1
fxj �1 < ai � x < bi51g;

is a ring.

Definition 2.3. A nonempty class R is called an algebra iff

(1) 8E;F 2 R;

E [ F 2 R;
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(2) 8E 2 R;

E 2 R:

In other words, an algebra is a nonempty class that is closed under the

formation of unions and complements. Obviously, in this definition, ‘‘[’’ can
be replaced by ‘‘\’’.

Theorem 2.3. An algebra is a ring containing X and, conversely, a ring that

contains X is an algebra.

Proof. Let R be an algebra. Since

E� F ¼ E \ F ¼ ðE [ FÞ;

and, if E 2 R, then

X ¼ E [ E 2 R;

we have the first part of the theorem. Conversely, if R is a ring containing X,

then 8E 2 R,

E ¼ X� E 2 R;

and the second part follows. &

Example 2.13. The class of all finite sets and their complements is an algebra.
The property described by this example can be generalized into the following

proposition.

Proposition 2.8. If R is a ring, then R [ fEjE 2 Rg is an algebra.

Definition 2.4. A nonempty class S is called a semiring iff

(1) 8E; F 2 S;

E \ F 2 S;

(2) 8E; F 2 S satisfying E � F; there exists a finite class fC0;C1; . . . ;Cng of
sets in S, such that

E ¼ C0 � C1 � . . . � Cn ¼ F

and

Di ¼ Ci � Ci�1 2 S for i ¼ 1; 2; . . . ; n:

Every ring is a semiring, and the empty set belongs to any semiring.
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Example 2.14. The class consisting of all singletons of X and the empty set is a

semiring.

Example 2.15. Let X be the real line. The class of all bounded, left closed, and

right open intervals is a semiring.

Definition 2.5. A nonempty class F is called a �-ring iff

(1) 8E; F 2 F;

E� F 2 F;

(2) 8Ei 2 F; i ¼ 1; 2; . . . ;

[1
i¼1

Ei 2 F:

Any �-ring is a ring which is closed under the formation of countable unions.

Proposition 2.9. Any �-ring is closed under the formation of countable intersec-

tions; and, therefore, if F is a �-ring and a set sequence fEng � F, then

lim sup
n

En 2 F and lim inf
n

En 2 F:

Example 2.16. The class of all countable sets is a �-ring.

Definition 2.6. A �-algebra (or say, �-field) is a �-ring that contains X.

Example 2.17. The class of all countable sets and their complements is a

�-algebra.

Proposition 2.10. If F is a �-ring, then F [ fEjE 2 Fg is a �-algebra.

Definition 2.7. A nonempty class M is called a monotone class iff, for every

monotone sequence fEng �M, we have

lim
n

En 2M:

Proposition 2.11. Any �-ring is a monotone class.

Proposition 2.12. If a ring is also a monotone class, then it is a �-ring.

Example 2.18. LetX be the real line. The class of all intervals (the empty set and

singletons may be regarded as intervals: Ø ¼ ða; a�; fag ¼ ½a; a�Þ is a monotone

class.

Definition 2.8.A nonempty class Fp is called a plump class iff 8fEtjt 2 Tg � Fp;

[
t

t 2 Fp and
\
t

Et 2 Fp;

where T is an arbitrary index set.
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Proposition 2.13. Any plump class is a monotone class.

Example 2.19. Let X be the unit closed interval [0,1]. The class of all sets that

have the form [0, a), or the form [0, a], where a 2 ½0; 1�, is a plump class.
The relations among the above-mentioned concepts of classes are illustrated

in Fig. 2.1.

Proposition 2.14. Let E be a fixed set. IfC is a �-ring (respectively, ring, semiring,

monotone class, plump class), then so is C \ E:

Theorem 2.4. Let C be a class. There exists a unique ring R0 such that it is the

smallest ring including C; that is,

R0 � C

and for any ring R,

R � C) R � R0:

R0 is called the ring generated by C and is denoted by R(C).

Fig. 2.1 The ordering of classes of sets
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Proof. P(X) is a ring includingC. The intersection of all rings includingC is also

a ring including C, and it is the desired ring R0. The uniqueness is evident. &

In the same way, we can also give the concepts of �-ring, monotone class, and

plump class generated by C, and use F(C), M(C), and FpðCÞ to denote them,

respectively.

Example 2.20. Let X be an infinite set. If C is the class of all singletons, then

R(C) is the class of all finite sets, and F(C) is the class of all countable sets.

Example 2.21. Let X be the real line. If C is the class of all finite open intervals,

then M(C) is the class of all intervals, and FpðCÞ ¼ PðXÞ.

Proposition 2.15. If C1 � C2; then KðC1Þ � KðC2Þ; where K may be taken as R,

F, M, or Fp.

Theorem 2.5. Let S be a semiring. Then, R(S) is the class of all finite, disjoint

unions of sets in S.

Proof. Denote the class of all finite, disjoint unions of sets in S by R0: Clearly,

R0 � S:

What follows is a proof that R0 is a ring.

(1) R0 is closed under the formation of intersections: 8E; F 2 R0 with

E ¼
[n
i¼1

Ei and F ¼
[m
j¼1

Fj;

where fE1; . . . ;Eng and fF1; . . . ;Fmg are disjoint classes of sets in S, we have

E \ F ¼
[n
i¼1

[m
j¼1

Ei \ Fj

and, moreover, we know that

fEj \ Fjji ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;mg

is a disjoint class. Since S is closed under the formation of intersections,

Ei \ Fj 2 S for any i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m:

Hence, we have

E \ F 2 R0:
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(2) R0 is closed under the formation of proper differences: For any E and F
given in (1), if F � E; the difference E – F may be expressed by a finite,
disjoint union of sets having the form

Ei �
[m
j¼1

Fj:

Each Ei �
Sm
j¼1

Fj may also be expressed by a finite, disjoint union of the sets in S.

Thus, we have

E� F 2 R0:

(3) It is evident that R0 is closed under the formation of disjoint unions. By
Theorem 2.2, we know that R0 is a ring.

Finally, since R is closed under the formation of finite unions, if R is a ring

containing S, it should contain every finite union of sets in S. Hence, R � R0:
This completes the proof. &

Theorem 2.6. FðSÞ ¼ FðRðSÞÞ:

Proof. On the one hand, since S � RðSÞ; by Proposition 2.15, we have

FðSÞ � FðRðSÞÞ:

On the other hand, since FðSÞ � S and F(S) is a ring, we have FðSÞ � RðSÞ:
Furthermore, since F(S) is a �-ring, we have

FðSÞ � FðRðSÞÞ:

Consequently, we have

FðSÞ ¼ FðRðSÞÞ: &

Example 2.22. Let X be the real line and let S be the semiring given in

Example 2.15. Then F(S) is called the Borel field on the real line, and it is

usually denoted by B. The sets in B are called Borel sets. We have seen the

process of constructing R(S) from S by Theorem 2.5, and R(S) is just the ring

given in Example 2.12. But the process for constructing B from R(S) is quite

complex. B is also the �-ring generated by the class of all open intervals, by the

class of all closed intervals, by the class of all left open and right closed intervals,

by the class of all left closed and right open intervals, or by the class of all

intervals, respectively.
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Theorem 2.7. If C is a class, then

FpðCÞ ¼
[
t2T

\
s2St

ESjES 2 C;St and T are arbitrary index sets

( )
:

Proof. Denote the right part of this equality by E.

(1) E � C because St and T may be taken as singletons.
(2) By an application of the associativity of the set union, we know that E is

closed under the formation of arbitrary unions.
(3) Because an arbitrary intersection of arbitrary unions of sets in a classCmay

be expressed by an arbitrary union of arbitrary intersections of sets in that
class C, and because arbitrary intersections are associative, E is closed
under the formation of arbitrary intersections.

Thus,E is a plump class includingC and, therefore,E � FpðCÞ:Conversely, any
plump class including C includes E; hence, FpðCÞ � E: Consequently,

FpðCÞ ¼ E: &

Theorem 2.8. For any class C and any set A,

FðCÞ \ A ¼ FðC \ AÞ:

Similar conclusions about rings, monotone classes, and plump classes are true, as

well.

Proof.

(1) FðCÞ \ A is a �-ring and includes C \ A; so

FðCÞ \ A � FðC \ AÞ :

(2) Let

E ¼ fEjE \ A 2 FðC \ AÞ;E 2 FðCÞg:

E is a �-ring, and E � C: So E � FðCÞ; that is, 8E 2 FðCÞ;

E \ A 2 FðC \ AÞ:

This shows that

FðCÞ \ A � FðC \ AÞ:
Consequently,

FðCÞ \ A ¼ FðC \ AÞ:
The rest may be proved in the same way. &
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Example 2.23. Let B be the Borel field on the real line. B \ ½0; 1� is called the

Borel field on the unit interval. It is the �-ring generated by the class of all

intervals in [0, 1].

Theorem 2.9. If R is a ring, then

MðRÞ ¼ FðRÞ:

Proof. From Proposition 2.11, we know that F(R) is a monotone class. Since

FðRÞ � R; we have

FðRÞ �MðRÞ:

If M(R) is a �-ring, then we have

MðRÞ � FðRÞ;

and, therefore, the proof would be complete.
To complete the proof, we need to prove thatM(R) is a �-ring. For any set F,

letK(F) be the class of all those sets E for which E – F, F – E, and E [ F are all in

M(R). It is easy to see, by the symmetry of the positions of E and F in the

definition of K(F), that

E 2 KðFÞ , F 2 KðE Þ:

If fEng is a monotone sequence of sets in K(F), then we have

lim
n

En � F ¼ lim
n
ðEn � FÞ 2 MðRÞ;

F� lim
n

En ¼ lim
n
ðF� EnÞ 2 MðRÞ;

F [ lim
n

En ¼ lim
n
ðF [ EnÞ 2 MðRÞ;

that is, limn En 2 KðFÞ: So, if K(F) is not empty, then it is a monotone class.

8F 2 R; if E 2 R; then E 2 KðFÞ; that is, R � KðF Þ: It follows that

MðRÞ � KðFÞ; 8F 2 R:

Hence, 8E 2 MðRÞ; 8F 2 R; we have E 2 KðF Þ; therefore, by symmetry,

F 2 KðEÞ; that is,

R � KðEÞ;

for anyE 2MðRÞ. Noting again that K(E) is a monotone class, we have

MðRÞ � KðEÞ; 8E 2 MðRÞ:
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This shows thatM(R) is a ring. From Proposition 2.12, we know thatM(R) is a
�-ring. &

Corollary 2.1. Amonotone class including a ring includes the �-ring generated by
this ring.

2.1.4 Atoms and Holes

Let C be an arbitrary nonempty class of subsets of X.

Definition 2.9.For any point x 2 X, the set
T
fEjx 2 E 2 Cg is called the atom

of C at x, and denoted by A(x/C). If there is no confusion, it will be called the
atom at x, or atom for short, and denoted byA(x). The class of all atoms ofC is
denoted by A [C], that is,

A½C� ¼ fAðx=CÞjx 2 Xg:

Clearly, for every x 2 X; x 2 AðxÞ. So, every atom is nonempty.
When

S
C 6¼ X, then Aðx=CÞ ¼ X for any x =2

S
C. Thus, if we write

A�½C� ¼ fAðx=CÞjx 2
[

Cg;

then we have

A½C� � A�½C� � fXg:

Proposition 2.16. If x 2 E 2 C, then AðxÞ � E:

Example 2.24. Let X ¼ fa; b; cg;C ¼ fA;B;Cg; where A ¼ fag; B ¼ fa; bg;
C ¼ fb; cg. Then, A, {b}, and C are atoms. That is, A ¼ AðaÞ; fbg ¼ AðbÞ;
C ¼ AðcÞ. From this example, we can see that it is not necessary that all sets inC
be atoms of C, and that all atoms of C belong to C. But, if C is closed under the
formation of arbitrary intersections, then we have

A½C� � C;

that is, in this case, 8AðxÞ;

AðxÞ ¼
\
fEjx 2 E 2 Cg 2 C:

Example 2.25. If C=P(X), then A½C� ¼ ffxgjx 2 Xg:

Proposition 2.17.
S
A�½C� ¼

S
C:

Theorem 2.10.Any set inCmay be expressed by a union of atoms ofC; moreover,
any intersection of sets in C may be expressed by a union of atoms of C.

26 2 Preliminaries



Proof. It is sufficient to prove the second conclusion.
Let fEtjt 2 Tg be a family of sets in C. We have

\
t2T

Et ¼
[

AðxÞjx 2
\
t2T

Et

( )

In fact, on the one hand, by Proposition 2.16, for any x 2
T

t2T Et; and any

t 2 T,

AðxÞ � Et:

So, for any x 2
T

t2T Et;

AðxÞ �
\
t2T

Et;

and it follows that

[
AðxÞjx 2

\
t2T

Et

( )
�

\
t2T

Et:

On the other hand, since x 2 AðxÞ; we have

\
t2T

Et ¼ xjx 2
\
t2T

Et

( )
�
[

AðxÞjx 2
\
t2T

Et

( )
:

The proof is thus complete. &

Theorem 2.11. Any intersection of atoms may be expressed by a union of atoms.

Proof. Since any atom of C is an intersection of sets in C, by Theorem 2.10 and

the associativity of intersections, we obtain the conclusion. &

Example 2.26. LetX ¼ fa; b; c; dg; C ¼ fA;B;C;Dg;whereA ¼ fa; c; dg; B ¼
fb; c; dg; C ¼ fcg; D ¼ fdg:Then,AðaÞ ¼ A; AðbÞ ¼ B; AðcÞ ¼ C; AðdÞ ¼ D:
We have

AðaÞ \ AðbÞ ¼ AðcÞ [ AðdÞ:

Theorem 2.12. If A0 2 A½C�; x 2 A0; then AðxÞ � A0

Proof. Let

A0 ¼ Aðx0Þ ¼
\
fEjx0 2 E 2 Cg ¼

\
t2T

Et;
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where Et 2 C;T is an index set. Since x 2 A0, we have x 2 Et for all t 2 T.

Therefore, by Proposition 2.16, AðxÞ � Et for all t 2 T. Consequently, we have

AðxÞ � A0: &

Theorem 2.13. Aðx=CÞ ¼ Aðx=A½C�Þ for any x 2 X, and A½C� ¼ A½A½C��:

Proof. 8x 2 X; if x 2 B for some B 2 A½C�, we have, by Theorem 2.12,

Aðx=CÞ � B;

and, therefore,

Aðx=CÞ �
\
fBjx 2 B 2 A½C�g:

Reviewing x 2 Aðx=CÞ 2 A½C�, we have

Aðx=CÞ �
\
fBjx 2 B 2 A½C�g:

Thus,

Aðx=CÞ ¼
\
fBjx 2 B 2 A½C�g ¼ Aðx=A½C�Þ:

Consequently, we have

A½C� ¼ A½A½C��: &

Theorem 2.14. A½C [ A½C�� ¼ A½C�:

Proof. 8x 2 X,

Aðx=C [ A½C�Þ ¼
\
fEjx 2 E 2 C [ A½C�g

¼
\
fEjx 2 E 2 CgÞ \ ð

\
fEjx 2 E 2 A½C�g

� �
¼ Aðx=CÞ \ Aðx=A½C�Þ ¼ Aðx=CÞ

:

Thus,

A½C [ A½C�� ¼ A½C�: &

Theorem 2.15. If C0 ¼ f
S

t2T EtjEt 2 C; t 2 T; T is an arbitrary index setg;
then A½C0� ¼ A½C�:
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Proof.
S
C0 ¼

S
C : 8x 2

S
C; by absorption, we have

Aðx=C0Þ ¼
\
fE j x 2 E 2 C0g

¼
[ [

t2T
Et

�����x 2
[

t2TEt;Et 2 C; t 2 T;T is an arbitrary set

( )

¼
\
fE j x 2 E 2 Cg ¼ Aðx=CÞ

:

Thus, we have

A½C0� ¼ A½C�: &

Theorem 2.16. If C is closed under the formation of difference, then A�½C� is a
partition of

S
C (Definition 2.18).

Proof. Since
S
A�½C� ¼

S
C, we only need to prove that the different atoms in

A�½C� must be disjoint, that is, 8AðxÞ;AðyÞ 2 A�½C�,

AðxÞ 6¼ AðyÞ ) AðxÞ \ AðyÞ ¼ Ø:

If both x 2 AðyÞ and y 2 AðxÞ, then, by Theorem 2.12, we have

AðxÞ ¼ AðyÞ. So, when AðxÞ 6¼ AðyÞ, we can suppose x =2 AðyÞ without any
loss of generality. In this case, if there exists z 2 AðxÞ \ AðyÞ, we have the result
that, from x =2 AðyÞ and z 2 AðyÞ, there exists E 2 C such that x =2 E, but

z 2 E. Thus, if we take F 2 C, satisfying x 2 F and set G ¼ F� E, then

x 2 G 2 C, but z =2 G: This contradicts the fact that z 2 AðxÞ. Therefore, we
have AðxÞ \ AðyÞ ¼ Ø. &

Corollary 2.2. If F is an algebra, then A[F] is a partition of X.

The following theorem provides an expression of FpðCÞ by the atoms of C.

Theorem 2.17. FpðCÞ ¼ f
S

t2T AtjAt 2 A½C�;T is an arbitrary index setg:

Proof. By Theorem 2.7, Theorem 2.10, and the associativity of set unions, the

conclusion immediately follows. &

Theorem 2.18. A½FpðCÞ� ¼ A½C�.

Proof. It follows directly from Theorems 2.13, 2.15, and 2.17. &

Theorem 2.19. FpðCÞ ¼ FpðA½C�Þ.

Proof. From the definition of the atom and Theorem 2.10, the equality is easily

obtained. &

A concept of AU-class is interrelated closely with the concept of the atom.
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Definition 2.10. The AU-class is a nonempty class C with anticlosedness under

the formation of unions, that is, 8C0 � C,

[
C0 2 C)

[
C0 2 C0:

By the convention for operations of union and intersection (introduced in

Section 2.1.2), if C0 is an empty class, then
S
C0 ¼ Ø. Hence, if Ø 2 C, and C is

an AU-class, it should follow that Ø 2 C0. This is a contradiction. So, no AU-

class contains the empty set Ø.

Proposition 2.18. If C is an AU-class, then all nonempty subclasses of C are

AU-classes as well.

Theorem 2.20. A[C] is an AU-class.

Proof. Let fAðxÞjx 2 Dg be a family of atoms of C. Denote

B ¼
[
fAðxÞjx 2 Dg ¼

[
x2D

AðxÞ:

If B 2 A½C�, then 9x0 2 B such that B ¼ Aðx0Þ. From x0 2
S

x2D AðxÞ; we
have x0 2 Aðx00Þ for some x00 2 D. By applying Theorem 2.12, it follows that

Aðx00Þ � Aðx0Þ ¼ B:

The inverse inclusion relation is evident. Consequently, we have

B ¼ Aðx00Þ 2 fAðxÞjx 2 D �
[

Cg:

This shows that A½C� is an AU-class. &

In general, if C is an AU-class, a set in C may not be an atom of C.

Example 2.27.X andC are given as in Example 2.24. It is easy to verify thatC is

an AU-class, but B is not an atom of C.
However, we have the following property.

Theorem 2.21. Let C be an AU-class. If C � A½C�; then we have

C ¼ A½C�:

Proof. If C 6¼ A½C�; then there exists a nonempty set E 2 C; but E =2A½C�. By
Theorem 2.10 there exists a family of atoms fAtj t 2 Tg such that E ¼

S
t2T At:

Since C is an AU-class, 9t0 2 T such that E ¼ At0 2 A½C�. This contradicts
E =2A½C�: &

A dual concept to the ‘‘atom’’ is the ‘‘hole.’’
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Definition 2.11. Let Ĉ ¼ fEjE 2 Cg: For any point x 2 X, the set

[
fEjx 2 E 2 Ĉg

is called the hole ofC at x, denoted byH(x/C), orH(x) for short. The class of all
holes of C is denoted by H[C].

We can also write

Hðx=CÞ ¼
[
fEjx =2 E 2 Cg:

It is evident that, for any x 2 X; x =2Hðx=CÞ: So, X is not a hole.
The relation between hole and atom is given in the following proposition.

Proposition 2.19. Hðx=CÞ ¼ Aðx=ĈÞ:

Example 2.28. We use X and C given in Example 2.24. In this case, A ¼ fb; cg
¼ C;B ¼ fcg; C ¼ fag ¼ A: Consequently, HðaÞ ¼ C; HðbÞ ¼ A; HðcÞ ¼ B.

Example 2.29. If C ¼ PðXÞ, then H½C� ¼ ffxgjx 2 Xg:

Definition 2.12. The AI-class is a nonempty class C with anticlosedness under
the formation of intersections, that is, 8C0 � C;

\
C0 2 C)

\
C0 2 C0:

All properties of the AU-class can be easily converted into analogous proper-
ties of the AI-class by replacing atoms with holes [Liu and Wang 1985, 1987].

2.1.5 S-Compact Space

LetC be a nonempty class of subsets ofX. Usually, we also use the term ‘‘space’’
to mean (X, C). Especially, when C is a �-algebra (or �-ring), denoted by F, we
call (X, F) a measurable space, and the sets in F are called measurable sets. We
say (X, C) or (X, F) is to be finite, countable, or uncountable if X is finite,
countable, or uncountable, respectively.

Definition 2.13. (X,C) is said to be S-precompact iff for any sequence of sets inC
there exists some convergent subsequence, that is, 8fEng � C; 9fEnig � fEng
such that,

lim sup
i

Eni ¼ lim inf
i

Eni ;

(X, C) is said to be S-compact iff it is S-precompact and the limit of the above-
mentioned subsequence belongs to C, that is, 8fEng � C; 9fEnig � fEng such
that limi Eni exists and

lim
i
Eni 2 C:

Obviously, any S-precompact measurable space is S-compact.
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Example 2.30. Any finite space is S-compact. In fact, if (X, C) is a finite space,
thenC is finite too. So, from any sequence of sets inC, we can always pick out a
subsequence in which all sets are identical; therefore, this subsequence con-
verges to the same set as that in the subsequence.

From the above example we can also see that, although X is not finite, (X,C)
is S-compact so long as C is finite.

Example 2.31. IfC is a nest (or, say, a chain; in this case it is fully ordered by the
inclusion relation between sets), then (X, C) is S-precompact. To show this, it is
sufficient to prove the following lemma.

Lemma 2.1. If C is an infinite nest, then there exists a monotone subsequence of
sets in C.

Proof. According to the order given by the inclusion relation, if there exists
D � C that does not have the greatest element, then we can pick out an
increasing sequence of elements (that is, sets) in D (and therefore, in C). Other-
wise, any subset ofC has its greatest element. Thus, we take the greatest element
of C as E1, the greatest element of C� fE1g as E2, the greatest element
of C� fE1;E2g as E3; . . . . Finally, we obtain a decreasing subsequence fEng
of C. &

In the following, we give an example of the non-S-precompact space, in
which the universe of discourse X is an uncountable set.

Example 2.32. Let X0 be a set that contains at least two points,
X ¼ X1 � X2 � . . .� Xn � . . . be an infinite-dimensional product space, where
Xi ¼ X0; i ¼ 1; 2; . . . , and C ¼ PðXÞ. Take a 2 X0 arbitrarily and denote

An ¼ X1 � X2 � . . .� Xn�1 � fag � Xnþ1 � . . . :

An is an nth dimensional cylinder set based on fag. Then, for such a set sequence
fAng there exists no subsequence that is convergent. In fact, for any given
subsequence fAnig � fAng, we take b 2 X0 � fag arbitrarily, and set

xk ¼
a if k ¼ n2i; i ¼ 1; 2; . . .

b else.

�

Denote x ¼ ðx1; x2; . . .Þ; then x 2 An2i ; but x =2An2i�1 ; i ¼ 1; 2; . . . :
So,

x 2 lim sup
i

Ani ;

but

x lim inf
i

Ani :
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That is, the subsequence fAnig does not converge. Therefore, (X, C) is not
S-precompact.

For a countable space we have an affirmative conclusion.

Theorem 2.22. If X is countable, then (X, C) is S-precompact.

Proof. Denote X ¼ fx1; x2; . . .g. Any subset E of X corresponds uniquely to a
binary number

bðEÞ ¼ 1b� ð1=2Þ þ 2b� ð1=2Þ2 þ . . .þ nb� ð1=2Þn þ . . .

¼ 0:1b2b . . . nb . . .

in [0,1], where

ib ¼
1 if xi 2 E

0 if xi =2 E:

�

We should note that such a correspondence is not one to one; for example, fx1g
corresponds to 0.1, fx1g corresponds to 0.0111. . . , but 0.1 = 0.0111. . . .

For an arbitrarily given set sequence fEng � C; fEng corresponds to a num-
ber sequence fbng � ½0; 1� with En 7!bn. Since fbng is bounded, there exists a
convergent subsequence fbnig. If all bni ; i ¼ 1; 2; . . . , are constant, then the
conclusion of this theorem is obviously true. Otherwise, we can suppose, with
no loss of generality, that fbnig is strictly decreasing, and bni ! b 2 ½0; 1�. If we
adopt the restriction that b is represented by a binary number with infinitely
many zeros after its decimal point, then b corresponds uniquely to a set E by the
converse of the above-mentioned correspondence. It is not difficult to see that E
must be an infinite set. Arbitrarily fixing a bit jb of b, we have jbni ¼ j b when i is
large enough. That is to say, there exist at most finitely many sets in fEnig that
do not contain xj when xj 2 E; and there exist at most finitely many sets in
fEnig that contain xj when xj 2 E. This shows that xj 2 lim infi Eni when
xj 2 E and xj 2 lim infi Eni ¼ lim supi Eni when xj 2 E, namely,

lim inf
i

Eni � E and lim sup
i

Eni � E:

The latter implies that

lim sup
i

Eni � E:

So,

lim sup
i

Eni � E � lim inf
i

Eni :

This means that limi Eni exists.
Thus, we have proved that (X, C) is S-precompact. &

If we consider a measurable space (X, F) withX 2 F, then, by Theorem 2.16,
A[F] is a partition ofX. The quotient space ðXA;FAÞ induced byA[F] from (X, F)
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(Definition 2.19) is called the reduced space of (X, F). FA and F are isomorphic.

So, we can get a further theorem as follows.

Theorem 2.23. If the reduced space of (X, F) is countable, then (X, F) is
S-compact.

Proof. The conclusion of this theorem follows from Theorem 2.22 and the fact
that the S-precompact measurable space is S-compact. &

Theorem 2.24. If F is a �-algebra containing only countably many sets (that is, F is
a countable class), then (X, F) is S-compact.

Proof. Since F is a countable class of sets and F is closed under the formation of
countable intersections, every atom Aðx= F Þ 2 F : So, A[F] is a countable

class, too. This shows that the reduced space ðXA;FAÞ of (X, F) is countable.
Therefore, by Theorem 2.23, (X, F) is S-compact. &

2.1.6 Relations, Posets, and Lattices

Definition 2.14. Let E and F be nonempty sets. A relation R from E to F is a
subset of E� F. If ða; bÞ 2 R, we say ‘‘a is related to b’’ and write aRb; if

ða; bÞ =2R, we say ‘‘a is not related to b’’ and write aR=b. In the special case

when R � E� E, we use ‘‘on E’’ instead of ‘‘from E to E.’’

Example 2.33. Let X ¼ fa; b; cg;E ¼ fa; bg; and B ¼ f0; 1g. The characteristic
function �

E
of E is a relation (denoted by RE) from X to B. We have

aRE1; bRE1; cRE0; aR=E0; bR=E0; cR=E1:

Example 2.34. Let X ¼ ð�1;1Þ: The symbol < with the common meaning
‘‘less than’’ is a relation onX, and it is a subset ofX� X : R ¼ fðx; yÞjx5yg. We

have, for example ð1; 2Þ 2 R; ð�5; 5Þ 2 R; ð2; 1Þ =2 R; and ð1; 1Þ =2 R.

Example 2.35. Let X be a nonempty set. The inclusion of sets � is a relation on

P(X); that is, fðE;FÞjE � Fg is a subset of PðXÞ � PðXÞ.

Example 2.36.LetE be any nonempty set. The identity relation onE, denoted by

�E, is the set of all pairs in E� E with equal elements:

�E ¼ fða; aÞja 2 Eg:

Example 2.37. Let X ¼ f0; 1; 2; . . .g. We can define a relation R3 on X as

follows: aR3b iff a ¼ b (mod 3); that is, a and b have the same remainder
when they are divided by 3.

Definition 2.15. Let R be a relation from E to F. The inverse of R, denoted by
R�1, is the relation from F to E which consists of those ordered pairs (b, a) for

which aRb; that is R�1 ¼ fðb; aÞjða; bÞ 2 Rg.
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It is easy to see that

aRb, bR�1a

and, therefore, we have the following proposition.

Proposition 2.20. ðR�1Þ�1 ¼ R:

Example 2.38. Let R be the relation given in Example 2.34. Its inverse,

R�1 ¼ fðx; yÞjy5xg ¼ fðx; yÞjx4yg, has the meaning ‘‘greater than’’ and is

denoted by the symbol >.

Definition 2.16. A relation R on a set E is called:

(a) reflexive iff aRa for each a 2 E;
(b) symmetric iff aRb implies bRa for any a; b 2 E;
(c) transitive iff aRb and bRc implies aRc for any a; b; c 2 E.

Definition 2.17. A relation R on a set E is called an equivalence relation iff R is

reflexive, symmetric, and transitive.

Example 2.39. The identity relation �, as defined in Example 2.36, is reflexive,

symmetric, and transitive; hence, it is an equivalence relation.

Example 2.40. The relation defined in Example 2.34 (‘‘less than,’’ <) is neither
reflexive nor symmetric, but it is transitive.

Example 2.41. Let X ¼ ð�1;1Þ. The relation described by the phrase ‘‘less

than or equal to,’’ which is usually denoted by the symbol �, is reflexive and

transitive but it is not symmetric.

Example 2.42. The relation R3 defined in Example 2.37 is reflexive, symmetric,

and transitive; consequently, it is an equivalence relation.

Definition 2.18. A disjoint class fE1;E2; . . . ;Eng of nonempty subsets of E is

called a partition of E iff
S n

i¼1Ei ¼ E:

Example 2.43. Let X ¼ fa; b; c; d; e; f; gg, and let

(1) A1 ¼ fa; c; eg;A2 ¼ fbg;A3 ¼ fd; gg
(2) B1 ¼ fa; e; gg;B2 ¼ fc; dg;B3 ¼ fb; e; fg
(3) C1 ¼ fa; b; e; gg;C2 ¼ fcg;C3 ¼ fd; fg
(4) D1 ¼ X
(5) E1 ¼ fag;E2 ¼ fbg;E3 ¼ fcg;E4 ¼ fdg;E5 ¼ feg;E6 ¼ ffg;E7 ¼ fgg.

Then, classes fC1;C2;C3g; fD1g; and fE1;E2;E3;E4;E5;E6;E7g are partitions
of X, but fA1;A2;A3g and fB1;B2;B3g are not.

Example 2.44. Let X ¼ ½0;1Þ. The class f½n� 1; nÞjn ¼ 1; 2; . . .g is a partition

of X.
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Definition 2.19. Let R be an equivalence relation on E. For each x 2 E, the set

½x� ¼ fyjxRyg is called an equivalence class of E (in fact, it is a subset of E). The

class of all equivalence classes of E induced by R, denoted by E/R, is called the

quotient of E by R, that is, E=R ¼ f½x�jx 2 Eg.

Proposition 2.21. Let R be an equivalence relation on a set E. Then

½x� ¼ ½y� , xRy

for any x; y 2 E, and E/R is a partition of E.

Example 2.45.For the relationR3 defined in Example 2.37, the quotientX=R3 is

formed by the following three distinct equivalence classes:

E0 ¼ f0; 3; 6; 9; . . .g

E1 ¼ f1; 4; 7; 10; . . .g

E2 ¼ f2; 5; 8; 11; . . .g

fE0;E1;E2g is a partition of X ¼ f0; 1; 2; . . .g.

Definition 2.20. A relation R on set E is called antisymmetric iff aRb and bRa

imply a ¼ b for any a; b 2 E.

Example 2.46. The relations given in Example 2.34, 2.35, and 2.41 are

antisymmetric.

Definition 2.21. Let R be a relation on a set E. If R is reflexive, antisymmetric,

and transitive, then R is called a partial ordering on E, and (E, R) is called a

partially ordered set (or, poset).

Example 2.47. Referring to Example 2.35, the pair ðPðXÞ;�Þ is a partially

ordered set.

Example 2.48. Referring to Example 2.41, the pair ðX;�Þ is a partially ordered

set.

Example 2.49. Let F be the set of all generalized real-valued functions on

ð�1;1Þ. We define a relation � on F as follows: f � g iff fðxÞ � gðxÞ for all
x 2 ð�1;1Þ. The relation� is a partial ordering on F and, therefore, ðF;�Þ is
a partially ordered set.

From now on we use ðP;�Þ to denote a partially ordered set.

Definition 2.22.Let ðP;�Þ be a partially ordered set and letE � P. An element a

in P is called an upper bound of E iff x � a for all x 2 E. An upper bound a of E

is called the least upper bound of E (or supremum of E) iff a � b for any upper

bound b ofE. The least upper bound ofE is denoted by supE or_E. An element

a inP is called a lower bound ofE iff a � x for all x 2 E. A lower bound a ofE is
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called the greatest lower bound of E (or infimum of E) iff b � a for any lower
bound b of E. The greatest lower bound of E is denoted by inf E or ^ E.

When E consists of only two elements, say x and y, we may write x _ y
instead of _ fx; yg and x ^ y instead of ^ fx; yg.

Proposition 2.22. If the least upper bound (or the greatest lower bound) of a set
E � P exists, then it is unique.

Definition 2.23. A partially ordered set ðP;�Þ is called an upper semilattice (or
lower semilattice) iff x _ y (or x ^ y, respectively) exists for any x; y 2 P: ðP;�Þ.
is called a lattice iff it is both upper semilattice and lower semilattice.

Example 2.50. The partially ordered set ðPðXÞ;�Þ is a lattice. For any sets
E;F � X;E [ F ¼ supfE;Fg and E \ F ¼ inffE;Fg.

Definition 2.24. A partially ordered set ðP;�Þ is called a fully ordered set or a
chain iff either x � y or y � x for any x; y 2 P.

Example 2.51. The partially ordered set ðX;�Þ of Example 2.41 is a fully
ordered set.

Example 2.52. The partially ordered set ðF;�Þ, of Example 2.49 is not a fully
ordered set.

Example 2.53. The partially ordered set ðPðXÞ;�Þ is not a fully ordered set if X
consists of more than one point.

The fully ordered set ðð�1;1Þ;�Þ has many convenient properties. One of
them, which is often used in this text, is expressed by the following proposition.

Proposition 2.23. Let E be a set of real numbers. If E has an upper bound (or a
lower bound), then sup E (or inf E) exists; furthermore, for any given " > 0, there
exists x ¼ xð"Þ 2 E such that sup E � xþ " ðor x� " � infE; respectively).

2.2 Classical Measures

Let X be a nonempty set, C be a nonempty class of subsets of X, and
� : C! ½0; 1� be a nonnegative, extended real valued set function defined onC.

Definition 2.25.A set E in C is called the null set (with respect to �) iff �ðEÞ ¼ 0:

Definition 2.26. � is additive iff

�ðE [ FÞ ¼ �ðEÞ þ �ðFÞ

whenever

E 2 C;F 2 C;E [ F 2 C; and ;E \ F ¼ Ø:
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Definition 2.27. � is finitely additive iff

�
[n
i¼1

Ei

 !
¼
Xn
i¼1

�ðEiÞ

for any finite, disjoint class fE1;E2; . . . ;Eng of sets inCwhose union is also inC.

Definition 2.28. � is countably additive iff

�
[1
i¼1

Ei

 !
¼
X1
i¼1

�ðEiÞ

for any disjoint sequence fEng of sets in C whose union is also in C.

Definition 2.29. � is subtractive iff

E 2 C;F 2 C;E � F;F� E 2 C; and �ðEÞ51

imply

�ðF� EÞ ¼ �ðFÞ � �ðEÞ:

Theorem 2.25. If � is additive, then it is subtractive.

Definition 2.30. � is called a measure on C iff it is countably additive and there

exists E 2 C such that �ðEÞ51.

Example 2.54. If �ðEÞ ¼ 0; 8E 2 C; then � is a measure on C.

Example 2.55.LetC contain at least one finite set. If �ðEÞ ¼ jEj; 8E 2 C;where
jEj is the number of those points that belong to E, then � is a measure on C.

Theorem 2.26. If � is a measure on C and Ø 2 C; then �ðØÞ ¼ 0. Moreover, � is

finitely additive.

Definition 2.31. Let � be a measure on C. A set E in C is said to have a finite

measure iff �ðEÞ51;E is said to have a �-finite measure iff there exists a

sequence fEng of sets in C such that

E �
[1
n¼1

En and �ðEnÞ51; n ¼ 1; 2; . . . :

� is finite (or �-finite) on C iff every �ðEÞ is finite (or �-finite, respectively) for
every E 2 C.
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Definition 2.32. Let � be a measure on C. � is complete iff

E 2 C;F � E; and �ðEÞ ¼ 0

imply

F 2 C:

In other words, a measure onC is complete if and only if any subset of a null set

belongs to C.

Definition 2.33. � is monotone iff

E 2 C;F 2 C; and;E � F

imply

�ðEÞ � �ðFÞ:

In the following, we take a semiring S, a ring R, and a �-ring F, respectively,
as the class C, and � is always a nonnegative, extended real-valued set function

on this class.

Theorem 2.27. Let S be a semiring. If � is additive on S, then it is finitely additive

and monotone.

Definition 2.34. � is subadditive iff

�ðEÞ � �ðE1Þ þ �ðE2Þ

whenever

E 2 C; E1 2 C; E2 2 C; and E ¼ E1 [ E2:

Definition 2.35. � is finitely subadditive iff

�ðEÞ �
Xn
i¼1

�ðEiÞ

for any finite class fE1;E2; . . . ;Eng of sets in C such that E ¼
Sn

i¼1 Ei 2 C:

Definition 3.36. � is countably subadditive iff

�ðEÞ �
X1
i¼1

�ðEiÞ

for any sequence {Ei} of sets in C such that E ¼
S1

i¼1 Ei 2 C:

Theorem 2.28. If � is countably subadditive and �ðØÞ ¼ 0, then � is finitely

subadditive.
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Definition 2.37. Let E 2 C. � is continuous from below at E iff

fEng � C; E1 � E2 � . . . ; and limn En ¼ E

imply

lim
n
�ðEnÞ ¼ �ðEÞ;

� is continuous from above at E iff

fEng � C; E1 � E2 � . . . ; �ðE1Þ51;

and

lim
n

En ¼ E

imply

lim
n
�ðEnÞ ¼ �ðEÞ:

� is continuous from below (on C) iff it is continuous from below at every set

inC; � is continuous from above (onC) iff it is continuous from above at every set

in C; � is continuous iff it is both continuous from below and continuous from

above.

Theorem 2.29. If � is a measure on a semiring S, then � is countably subadditive

and continuous.

Definition 2.38. LetC1 andC2 be classes of subsets ofX;C1 � C2, and �1 and �2
be set functions on C1 and C2, respectively. �2 is called an extension of �1 iff

�1ðEÞ ¼ �2ðEÞ whenever E 2 C1.
Let S be a semiring,R(S) be the ring generated by S. Since any set inR(S) can

be expressed by a disjoint finite union of sets in S, we have the following

extension theorem for a measure on S.

Theorem 2.30. If � is a measure on S, then there is a unique measure � on R(S)

such that � is an extension of �. If � is finite or �-finite, then so is �.
The extension of � (on S) may also be denoted by � [on R(S)] without any

confusion.

Example 2.56. Let X ¼ ð�1;1Þ. S ¼ f½a; bÞj �15a � b51g is a semiring.

Define a set function � on S by

�ð½a; bÞÞ ¼ b� a:
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� is countably additive, and, therefore, � is a finite measure on S. � can be

extended to a finite measure on R(S), the class of all finite, disjoint unions of

bounded, left closed, and right open intervals. More generally, if g is a finite,

increasing, and left continuous real-valued function of a real variable, then

�gð½a; bÞÞ ¼ gðbÞ � gðaÞ; 8½a; bÞ 2 S

determines a finite measure �g on S, and it can be extended onto R(S).

Example 2.57. Let the ring R consist of all finite subsets of X and f be an

extended real-valued, nonnegative function on X. If we define � by

�ðfx1; x2; . . . ; xngÞ ¼
Xn
i¼1

fðxiÞ for any fx1; x2; . . . ; xmg 2 R and �ðØÞ ¼ 0;

then � is a measure onR. In fact, the class S consisting of all singletons ofX and

the empty set Ø is a semiring. If we define � on S by

�ðfxgÞ ¼ fðxÞ for any x 2 X and �ðØÞ ¼ 0;

then � is a measure on S, and the above-mentioned measure � on R is just the

extension of this measure on S.

Theorem 2.31. If � is a measure on a ring R, then it is continuous.

Theorem 2.32.Let � be additive on a ringR and �ðØÞ ¼ 0. If � is either continuous
from below, or continuous from above at the empty set Ø and finite, then it is

�-additive on R.
It should be noted that, on a semiring, an analogous conclusion of Theorem

2.32 is not true.

Example 2.58. Let X ¼ fxj0 � x � 1; x is a rational numberg; S ¼ ffxja � x

� b; x is a rational numberg j0�a � b � 1; a and b are rational numbersg.
If we define � on S by

�ðfxja � x � b; x is a rational numbergÞ ¼ b� a;

then � is finitely additive and continuous, but it is not countably additive.

Definition 2.39. A nonempty class C is hereditary iff

F 2 C

whenever

E 2 C and F � E:
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A hereditary class is a �-ring if and only if it is closed under the formation of
countable unions.

Example 2.59. The classes given in Examples 2.11, 2.14, and 2.16 are hereditary,
and the last one is a hereditary �-ring.

The hereditary �-ring generated by a class C, i.e., the smallest hereditary
�-ring containing C, is denoted by H�ðCÞ

Theorem 2.33. H�ðCÞ is the class of all sets that can be covered by countably many
sets in C.

Example 2.60. Let X ¼ ð�1;1Þ and C be the class of all bounded intervals
in X. Then H�ðCÞ ¼ PðXÞ.

If C is a nonempty class closed under the formation of countable unions,
then H�ðCÞ is just the class of all sets that are subsets of some set in C.

Definition 2.40. Let H� be a hereditary �-ring, �	 be an extended, real-valued,
nonnegative set function onH�. �

	 is called an outer measure iff it is monotone,
countably subadditive, and such that �	ðØÞ ¼ 0.

The same terminology concerning finiteness, �-finiteness, and extension is
used for outer measures as for measures.

Example 2.61. Let X be a finite set and X� X be a product space. PðX� XÞ is a
hereditary �-ring. Define �	 on PðX� XÞ by

�	ðEÞ ¼ jProjðEÞj; 8E 2 PðX� XÞ;

where ProjðEÞ ¼ fxjðx; yÞ 2 Eg. Then �	 is a finite outer measure on
PðX� XÞ.

Theorem 2.34. If � is a measure on a ring R, then the set function �	 on H�ðRÞ
defined by

�	ðEÞ ¼ inf
X1
n¼1

�ðEnÞjEn 2 R; n ¼ 1; 2; . . . ;E �
[1
n¼1

En

( )

is an extension of � to an outer measure on H�ðRÞ; if � is �-finite, then so is �	.
This outer measure �	 is called the outer measure induced by the measure �.

Definition 2.41. Let �	 be an outer measure on a hereditary �-ring H�. A set
E 2 H� is �

	-measurable iff

�	ðAÞ ¼ �	ðA \ EÞ þ �	ðA \ EÞ; 8A 2 H�:

Theorem 2.35. If �	 is an outer measure on a hereditary �-ring H� and if F is the
class of all �	 -measurable sets, then F is a �-ring, and the set function � defined for
every E 2 F by �ðEÞ ¼ �	ðEÞ is a complete measure on F:

This measure � is called the measure induced by the outer measure �	.
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Theorem 2.36. Let � be a measure on a ring R, �	 be the outer measure induced
by �. Then every set in R is �	-measurable, and therefore FðRÞ � F

Theorem 2.37. If � is a �-finite measure on a ring R, then so is the measure � on
F(R), and � is the unique extension of � on R to F(R).

Theorem 2.38. If � is a measure on a �-ring F,

F0 ¼ fE�NjE 2 F; N � F for some F 2 F with �ðFÞ ¼ 0g;

then F0 is a �-ring, and set function �0 defined for every E 2 F by �0ðE�NÞ ¼
�ðEÞ is a complete measure on F0.

This measure �0 is called the completion of �.

Theorem 2.39. If � is a �-finite measure on a ring R, then F0= F, and �0 is just
identical with �

Theorem 2.40. If � is a �-finite measure on a ringR, then for every " > 0 and every
set E 2 FðRÞ that has finite measure there exists a set E0 2 R such that

�ðE � E0Þ � ":

Example 2.62. In Example 2.56, a finite measure � on R(S) satisfying
�ð½a; bÞÞ ¼ b� a for any ½a� bÞ 2 S ¼ f½a; bÞj �15a � b51g is obtained.
This measure � can be extended uniquely to a �-finite measure on a �-ring
B ¼ FðRðSÞÞ ¼ FðSÞ, the class of all Borel sets (this class is also a �-field,
so-called Borel field on the real line). The complete measure � on B is called a
Lebesgue measure (the incomplete measure � on B is usually called a Lebesgue
measure as well), and the sets in B are called Lebesgue measurable sets of the
real line. More generally, if g is a finite, increasing, and left continuous real-
valued function of a real variable, the measure �g on R(S) obtained in Example
2.56 can be extended uniquely to a complete measure �g on a �-field Fg contain-
ing the Borel field, and the measure �g is called a Lebesgue-Stieltjes measure
induced by g. In particular, if g is a probability distribution function, then g can
uniquely determine a probability measure on the Borel field B on the real line.
At last, it should be noted that not all subsets of X ¼ ð�1; 1Þ are Lebesgue
measurable.

2.3 Fuzzy Sets

Let X be a nonempty set considered as the universe of discourse. A standard
fuzzy set in X (that is, in fact, a standard fuzzy subset of X) is characterized by a
membership functionm : X! ½0; 1�. A standard fuzzy set is called normalized if

sup
x2X

mðxÞ ¼ 1:
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We use the same symbols, capital lettersA, B, C, . . . , to denote both standard
fuzzy sets and ordinary (crisp) sets in classical set theory.Membership functions
of standard fuzzy sets A, B, C, . . . , are denoted bymA;mB;mC; . . . . IfA denotes
a standard fuzzy set, thenmAðxÞ is called the grade of membership of x inA. The
class of all standard fuzzy sets is denoted by ~P(X). Since any ordinary set E in
P(X) can be defined by its characteristic function �E : X! f0; 1g, it is a special
standard fuzzy set and, therefore, PðXÞ � ~PðXÞ. In this book, only standard
fuzzy sets are considered, and we refer to them from now on as, simply,
fuzzy sets.

Definition 2.42. If mAðxÞ � mBðxÞ for any x 2 X, we say that fuzzy set A is
included in fuzzy set B, and we write A � B or, equivalently, B � A. If A � B
and B � A, we say that A and B are equal (or, A equals B), which we write as
A ¼ B.

Definition 2.43. Let A and B be fuzzy sets. The standard union of A and B,
A [ B, is defined by

mA[BðxÞ ¼ mAðxÞ _mBðxÞ; 8x 2 X;

where _ denotes the maximum operator.

Definition 2.44.LetA and B be fuzzy sets. The standard intersection ofA and B,
A \ B, is defined by

mA\BðxÞ ¼ mAðxÞ ^mBðxÞ; 8x 2 X;

where ^ denotes the minimum operator.
Similar to the way operations on ordinary sets are treated, we can generalize

the standard union and the standard intersection for an arbitrary class of fuzzy
sets: If fAtjt 2 Tg is a class of fuzzy sets, where T is an arbitrary index set, then
[t2TAt is the fuzzy set havingmembership function supt2T mAt

ðxÞ; x 2 X; and
\t2TAt is the fuzzy set having membership function inft2T mAt

ðxÞ; x 2 X:

Definition 2.45. Let A be a fuzzy set. The standard complement of A, A, is
defined by

mAðxÞ ¼ 1�mAðxÞ; 8x 2 X:

Two or more of the three basic operations can also be combined. For
example, the difference A – B of fuzzy sets A and B can be expressed as A \ B,
so that

mA�BðxÞ ¼ min½mAðxÞ; 1�mBðxÞ�

for all x 2 X. Since only standard operations on fuzzy sets are used in this
book, we omit from now on the adjective ‘‘standard’’ if there is no confusion.
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Example 2.63. Let X ¼ fa; b; cg and let fuzzy sets A, B, and C be defined by the

following membership functions

mAðxÞ ¼
0:4 if x ¼ a

0:7 if x ¼ b

0 if x ¼ c;

8<
:

mBðxÞ ¼
0:6 if x ¼ a

1 if x ¼ b

0:2 if x ¼ c;

8<
:

mCðxÞ ¼
0:1 if x ¼ a

0 if x ¼ b

1 if x ¼ c:

8<
:

Then, A � B;

mA[CðxÞ ¼
0:4 if x ¼ a

0:7 if x ¼ b

1 if x ¼ c;

8<
:

mA\CðxÞ ¼
0:1 if x ¼ a

0 if x ¼ b

0 if x ¼ c;

8<
:

and

mBðxÞ ¼
0:4 if x ¼ a

0 if x ¼ b

0:8 if x ¼ c:

8<
:

Example 2.64. Fuzzy sets can be used to represent fuzzy concepts. Let X be a

reasonable age interval of human beings: [0, 100]. Assume that the concept of

‘‘young’’ is represented by a fuzzy set Y whose membership function is

mYðxÞ ¼
1 if x � 25

ð40� xÞ=15 if 25 5 x 5 40

0 if x 
 40

8<
:

and the concept of ‘‘old’’ is represented by a fuzzy set O whose membership

function is
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mOðxÞ ¼
0 if x � 50

ðx� 50Þ=15 if 505 x565

1 if x 
 65:

8<
:

Then, the grade of membership of 28 years of age in Y is 0.8while that of 45

years of age in O is 0. Consider now the complement of Y and O whose

membership functions are

mYðxÞ ¼
0 if x � 25

ðx� 25Þ=15 if 255 x5 40

1 if x 
 40;

8<
:

and

mOðxÞ ¼
1 if x � 50

ð65� xÞ=15 if 505x565

0 if x 
 65:

8<
:

These fuzzy sets represent the concepts of ‘‘not young’’ and ‘‘not old,’’ respec-

tively. Fuzzy set Y \O whose membership function is

mY\OðxÞ ¼

0 if x � 25

ðx� 25Þ=15 if 255x540

1 if 40 � x � 50

ð65� xÞ=15 if 505x565

0 if x 
 65;

8>>>>><
>>>>>:

represents the concept of ‘‘neither young nor old,’’ that is, ‘‘middle-aged’’

(Fig. 2.2a–2.2e). Furthermore, we have O � Y that is, ‘‘old’’ implies ‘‘not

young.’’

Theorem 2.41. The standard operations of union, intersection, and complement of

fuzzy sets have the following properties, where St and T are index sets:

Involution: A ¼ A

Commutativity: A [ B ¼ B [ A
A \ B ¼ B \ A

Associativity:
S
t2T

S
s2St

As

 !
¼

S
s2[t2TSt

As

T
t2T

T
s2St

As

 !
¼

T
s2[t2TSt

As
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Distributivity: B \
S
t2T

At

� �
¼
S
t2T
ðB \ AtÞ

B [
T
t2T

At

� �
¼
T
t2T
ðB [ AtÞ

Idempotence: A [ A ¼ A

A \ A ¼ A

Absorption: A [ ðA \ BÞ ¼ A

A \ ðA [ BÞ ¼ A

Absorption by X and Ø: A [ X ¼ X

A \Ø ¼ Ø

Fig. 2.2 Membership functions of fuzzy sets defined on the interval [0,100] and representing
linguistic terms pertaining to age of human beings
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Identity: A [Ø ¼ A

A \ X ¼ A

De Morgan’s laws:
S
t2T

At ¼
T
t2T

At

T
t2T

At ¼
S
t2T

At

In comparison with crisp set operations (see Proposition 2.2), the law of

contradiction and the law of excluded middle are not true for fuzzy sets. This is

illustrated by the following example.

Example 2.65.X andA are given in Example 2.63. The complementA ofA has a

membership function

mAðxÞ ¼
0:6 if x ¼ a

0:3 if x ¼ b

1 if x ¼ c:

8<
:

We have

mA\AðxÞ ¼
0:4 if x ¼ a

0:3 if x ¼ b

0 if x ¼ c

8><
>:

6¼ mØðxÞ:

Similarly,

mA[AðxÞ ¼
0:6 if x ¼ a

0:7 if x ¼ b

1 if x ¼ c

8><
>:

6¼ mXðxÞ:

Definition 2.46. Let A 2 ~PðXÞ. The (crisp) set fxjmAðxÞ > 0g is called the

support of A, and denoted by supp A.

Definition 2.47. Let A 2 ~PðXÞ. For any � 2 ½0; 1�, the (crisp) sets fxjmAðxÞ 

�g and fxjmAðxÞ > �g are called the �-cut and the strong �-cut ofA, denoted by
A� and A�þ, respectively.

Obviously, bothA� andA�þ are nonincreasing with respect to�. Clearly, the
classes fA�j� 2 ½0; 1�g and fA�þj� 2 ½0; 1�g are nested.

Example 2.66. The fuzzy set Y is as given in Example 2.64. We have

Y0:2 ¼ ½0; 37� and Y0:6 ¼ ½0; 31�:
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Theorem 2.42. Let fAtjt 2 Tg � ~PðXÞ. Then, for any � 2 ½0; 1�;

[
t2T

At

 !
�þ

¼
[
t2T
ðAtÞ�þ

and

\
t2T

At

 !
�

¼
\
t2T
ðAtÞ�:

Theorem 2.43. Let A 2 ~PðXÞ. Then

A� ¼ ðAð1��ÞþÞ:

If we use a symbol � � E to denote the fuzzy set whose membership function is

mðxÞ ¼
� if x 2 E

0 if x =2E

�

for any � 2 ½0; 1� and any crisp set E 2 PðXÞ, then each fuzzy set can be fully
characterized by its �-cuts, as expressed by the following theorem.

Theorem 2.44. (Decomposition Theorem). For any A 2 ~PðXÞ;

A ¼
[

�2 ½0;1�
� � A�:

Definition 2.48. LetX ¼ ð�1;1Þ. A normalized fuzzy setA 2 ~PðXÞ is called a

fuzzy number if A� is a finite closed interval for each � 2 ð0; 1�:

Definition 2.49.A rectangular fuzzy number is a fuzzy number with membership

function having a form as

mðxÞ ¼ 1 if x 2 ½al; ar�
0 otherwise;

�

where al; ar 2 R with al � ar.
A rectangular fuzzy number is identified with the corresponding vector

hal; ari and is an interval number, essentially. Any crisp real number a can be
regarded as a special rectangular fuzzy number with al ¼ ar ¼ a.

Definition 2.50. A triangular fuzzy number is a fuzzy number with membership
function
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mðxÞ ¼

1 if x ¼ a0
x� al
a0 � al

if x 2 ½al; a0Þ
x� ar
a0 � ar

if x 2 ða0; ar�

0 otherwise;

8>>>>><
>>>>>:

where al; a0; ar 2 R, with al � a0 � ar.
A triangular fuzzy number is identified with the corresponding vector

hal; a0; ari. A triangular fuzzy number is called symmetric if a0 � al ¼ ar � a0.

Any crisp real number a can be regarded as a special triangular fuzzy number

with al ¼ a0 ¼ ar ¼ a.

Example 2.67. Let X ¼ ð�1; 1Þ. Fuzzy sets A and B with

mAðxÞ ¼
0 if x5 6 or x4 12

ðx� 6Þ=3 if 6 � x � 9

ð12� xÞ=3 if 9 5 x � 12;

8><
>:

mBðxÞ ¼
0 if x5 2 or x 4 4

x� 2 if 2 � x � 3

4� x if 3 5 x � 4

8<
:

are triangular fuzzy numbers (Fig. 2.3).

Definition 2.51.A trapezoidal fuzzy number is a fuzzy number with membership

function

Fig. 2.3 Membership
functions of triangular
fuzzy numbers A and B
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mðxÞ ¼

1 if x ¼ ½ab; ac�
x� al
ab � al

if x 2 ½al; abÞ
x� ar
ac � ar

if x 2 ðac; ar�

0 otherwise;

8>>>>>><
>>>>>>:

where al; ab; ac; ar 2 R, with al � ab � ac � ar.
A trapezoidal fuzzy number is identified with the corresponding vector

hal; ab; ac; ari. A trapezoidal fuzzy number is called symmetric if

ab � al ¼ ar � ac. Any rectangular fuzzy number hal; arican be regarded as a

special trapezoidal fuzzy number with al ¼ ab and ac ¼ ar. Similarly, any trian-

gular fuzzy number hal; a0; ari can be regarded as a special trapezoidal fuzzy

number with ab ¼ ac ¼ a0. Of course, any crisp real number a can be regarded

as a special trapezoidal fuzzy number with al ¼ ab ¼ ac ¼ ar ¼ a.

Example 2.68. Fuzzy sets Y, M, and O discussed in Examples 2.64 are trape-

zoidal fuzzy numbers.

Definition 2.52. Let X ¼ ð�1; 1Þ. A fuzzy set A 2 ~PðXÞ is called convex, if

for any x1; x2; x3 2 X;

mAðx2Þ 
 mAðx1Þ ^mAðx3Þ

where x1 � x2 � x3.

Theorem 2.45. Any fuzzy number is a convex fuzzy subset of ð�1;1Þ; and its

membership function is upper semicontinuous.
The following extension principle introduced by Zadeh [1975] is a useful tool

for extending nonfuzzy mathematical concepts to fuzzy sets (to fuzzify classical

mathematical concepts).

Extension Principle. Let X1;X2; . . . ;Xn; and Y be nonempty (crisp) sets,

X ¼ X1 � X2 � � � � � Xn be the product set ofX1;X2 . . . ;Xn; and f be a mapping

fromX toY. Then, for any given n fuzzy setsAi 2 ~PðXiÞ; i ¼ 1; 2; . . . ; n;we can
induce a fuzzy set B 2 ~PðYÞ through f such that

mBðyÞ ¼ sup
y¼f ðx1;x2;...;xnÞ

min½mA1
ðx1Þ;mA2

ðx2Þ; . . . ;mAn
ðxnÞ�;

where we use the convention that

sup
x2Ø
fxjx 2 ½0;1�g ¼ 0

when f�1ðyÞ ¼ Ø:
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As a special case, if 	 is a binary operator on points in the universe of

discourse X, then, by using the extension principle, we can obtain a binary

operator 	 (we use the same symbol) on fuzzy sets in ~P(X):

mA 	BðzÞ ¼ sup
x 	 y¼z

½mAðxÞ ^mBðyÞ�; 8z 2 X;

where A;B 2 ~PðXÞ.
Now, we can use the extension principle to define addition, subtraction,

multiplication, and division operations on fuzzy numbers, which are general-

izations of the corresponding operations on real numbers.

Definition 2.53. Let A and B be fuzzy numbers. Then Aþ B, A� B;A � B and

A/B are defined by

mAþBðzÞ ¼ sup
xþy¼z

½mAðxÞ ^mBðyÞ�;

mA�BðzÞ ¼ sup
x�y¼z

½mAðxÞ ^mBðyÞ�;

mA�BðzÞ ¼ sup
x�y¼z
½mAðxÞ ^mBðyÞ�;

and

mA=BðzÞ ¼ sup
x=y¼z;y 6¼0

½mAðxÞ ^mBðyÞ� ðwhen 0 =2 supp BÞ

for any z 2 X, respectively.

Example 2.69.Fuzzy numbersA andB are given in Example 2.67. Then we have

mAþBðxÞ ¼
0 if x5 8 or x416

ðx� 8Þ=4 if 8 � x � 12

ð16� xÞ=4 if 125x � 16

8><
>:

(Fig. 2.4), and

mA�BðxÞ ¼
0 if x5 2 or x410

ðx� 2Þ=4 if 2 � x � 16

ð10� xÞ=4 if 6 5x � 10

8><
>:

(Fig. 2.5). Viewing the real number 3 as a fuzzy number, we have A ¼ 3 � B and

B ¼ A=3.
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Definition 2.54. A fuzzy partition of X is a class of nonempty fuzzy sets defined

on X, fAiji 2 Ig, such that

X
i2 I

mAi
ðxÞ ¼ 1

for all x 2 X.
Clearly, any fuzzy set on X and its standard complement is a fuzzy partition

of X. The three fuzzy sets that represent the concepts of young, old, and middle-

aged in Example 2.64 form a fuzzy partition of the interval [0, 100].

Notes

2.1. The basic knowledge on sets and classes can be found in numerous books,
including the classic book byHalmos [1950]. For a complete and up-to-date
coverage of classical set theory, we recommend the book by Jech [2003].

Fig. 2.5 Membership
function of A–B

Fig. 2.4 Membership
function of A þ B
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2.2. The concepts of S-precompact and S-compact were introduced by Wang
[1990b].

2.3. The concept of �-algebra can be generalized to fuzzy �-field, which is a class
of fuzzy sets. This issue is discussed by Qiao [1990], as well as in Chapter 14.

2.4. Basic concepts of classical measure theory are introduced in Section 2.2
following the terminology and notation employed in the classic book on
classical measure theory by Halmos [1950].

2.5. Standard fuzzy sets as well as standard operations on fuzzy sets were
introduced in the seminal paper by Zadeh [1965]. Several other types of
fuzzy sets were introduced later [Klir, 2006], but they are not considered in
this book. Set theoretic operations on fuzzy sets are not unique. Intersec-
tions and unions of standard fuzzy sets are mathematically captured by
operations known as triangular norms and conorms (or t-norms and t-
conorms) [Klement et al., 2000, Klir and Yuan, 1995]. Complements of
standard fuzzy sets are captured by monotone nonincreasing functions
c : ½0; 1� ! ½0; 1� such that cð0Þ ¼ 1 and cð1Þ ¼ 0 [Klir and Yuan, 1995].
The standard intersection and union operations are the only cutworthy
operations among the t-norms and t-conorms, which means that they are
preserved in �-cuts for all � 2 ð0; 1� in the classical sense. That is,
ðA \ BÞ� ¼ A� \ B�andðA [ BÞ� ¼ A� [ B�. No complements of fuzzy
sets are cutworthy [Klir and Yuan, 1995].

2.6. In addition to operations of intersection, union, and complementation on
fuzzy sets, it is perfectly meaningful to employ also averaging operations on
fuzzy sets [Klir and Yuan, 1995].

2.7. For the sake of simplicity, we restrict in this book to triangular fuzzy
numbers. A more general concept of a fuzzy number (sometimes called a
fuzzy interval) involves nonlinear functions and its �-cut for � ¼ 1might
be an interval of real numbers [Klir and Yuan, 1995].

2.8. Arithmetic operations on fuzzy numbers introduced in Definition 2.53
form a basis for the so-called standard fuzzy arithmetic, which is based
on the assumption that there are no constraints among the fuzzy numbers
involved. If this assumption is not warranted, the constraints must be
taken into account. Principles of constrained fuzzy arithmetic are discussed
in [Klir, 1997, 2006; Klir and Pan, 1998].

2.9. The literature on fuzzy set theory has been rapidly growing, especially
during the last twenty years or so. Two important handbooks, edited by
Ruspini et al. [1998] and Dubois and Prade [2000], are recommended as
convenient sources of information on virtually any aspect of fuzzy set
theory. From among the growing number of textbooks on fuzzy set theory,
any of the following general textbooks is recommended for further study:
[Klir and Yuan, 1995a], [Lin and Lee, 1996], [Nguyen and Walker, 1997],
[Pedrycz and Gomide, 1998], and Zimmermann [1996]. Another valuable
resource is the following pair of books that contain classical papers on
fuzzy set theory by Lotfi A. Zadeh, the founder of fuzzy set theory: [Yager
et al., 1987] and [Klir and Yuan, 1996].
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Exercises

2.1. Let X ¼ ð�1; 1Þ. Explain the following sets and classes in natural
language:

(a) fXj0 � x � 1g;
(b) fXjx50g;
(c) ffxgjx 2 Xg;
(d) fEjE � Xg:

2.2. Let X1 ¼ X2 ¼ ð�1;1Þ;X ¼ X1 � X2. Use shading to indicate the
following sets on the Euclidean plane:

(a) fðx1; x2Þjx1 þ x241g;
(b) fðx1; x2Þjx21 � x2g;
(c) fðx1; x2Þjx245g.

2.3. Prove the following equalities:

(a) ðE� GÞ \ ðF� GÞ ¼ ðE \ FÞ � G;
(b) ðE� FÞ � G ¼ E� ðF [ GÞ;
(c) E� ðF� GÞ ¼ ðE� FÞ [ ðE \ GÞ;
(d) ðE� FÞ \ ðG�HÞ ¼ ðE \ GÞ � ðF [HÞ:

2.4. Prove the following equalities:

(a) E�F ¼ F�E;
(b) E� ðF�GÞ ¼ ðE�FÞ�G;
(c) E \ ðF�GÞ ¼ ðE \ FÞ�ðE \ GÞ:

2.5. Prove that lim supn En ¼ lim infn En:
2.6. Indicate the superior limit and the inferior limit of the set sequence fEng

where En is given as follows:

(a) En ¼ ðn; nþ 3=2Þ;
(b) En ¼ ½an; bn� with an ¼ minð0; ð�2ÞnÞ; bn ¼ max ð0; ð�2ÞnÞ;
(c) En ¼ fn; nþ 1; . . .g;
(d) En ¼ fxjnx is a natural numberg;
(e) En ¼ ½1=n; n�.

2.7. Which set sequence in Exercise 2.6 is monotone and for which does the
limit exist?

2.8. Prove:

lim
n
ðE [ FnÞ ¼ E [ lim

n
Fn;

lim
n
ðE� FnÞ ¼ E� lim

n
Fn:

2.9. Prove Proposition 2.6 (4), (5), and (6).
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2.10. Let X ¼ ð�1; 1Þ � ð�1; 1Þ ¼ fðx; yÞj �15x51;�15y51g.
Prove that the class of all sets that have the form

fðx; yÞj �15a1 � x5b151;�15a2 � y5b251g

is a semiring.

2.11. Prove Proposition 2.11.
2.12. Is a monotone class closed under the formation of limit operations of set

sequence? Why or why not?
2.13. Prove that

FpðCÞ ¼
\
t2T

[
s2St

EsjEs 2 C;St and T are arbitrary index sets

( )

2.14. Categorize the class C given in the following descriptions as either a ring,
semiring, algebra, �-ring, �-algebra, monotone class, or a plump class:

(a) X ¼ ð�1;1Þ;C is the class of all bounded, left open, and right
closed intervals

(b) X ¼ f1; 2; . . .g;C ¼ ffn; nþ 1; . . .gjn ¼ 1; 2; . . .g [ fØg
(c) X is a nonempty set,E is a nonempty subset ofX,C ¼ fFjE � F � Xg
(d) X is a nonempty set, E is a nonempty subset of X;E 6¼ X;

C ¼ fFjF � Eg
(e) X is a nonempty set, E is a nonempty subset of X, C ¼ fEg.

2.15 What are the rings (algebras, �-rings, �-algebras, monotone classes, plump
classes, respectively) generated by the classes C given in Exercise 2.14?

2.16. Indicate what A [C] is for each of the following classes C:

(a) X ¼ f1; 2; 3; 4; 5g; C ¼ fA;B;C;D;Eg; whereA ¼ f1; 2; 3g;
B ¼ f1; 2; 4g; C ¼ f1g;D ¼ f2; 4g; E ¼ Ø

(b) X ¼ f1; 2; 3; 4; 5g;C ¼ fA;B;C;D;Eg; whereA ¼ f1; 2; 3g;
B ¼ f1; 2; 4g; C ¼ f1g;D ¼ f1; 5g;E ¼ f4; 5g

(c) X ¼ f1; 2; 3; 4; 5g; C ¼ fA;B;C;D;Eg; whereA ¼ f1; 2; 3g;
B ¼ f1; 2; 4g;C ¼ f1g;D ¼ f1; 5g;E ¼ f1; 2g

(d) X ¼ f1;2;3;4; 5g; C ¼ fA;B;C;D;Eg; whereA ¼ f4; 5g; B ¼ f3; 5g;
C ¼ f2; 3; 4; 5g;D ¼ f2; 3; 4g;E ¼ f3; 4; 5g

(e) X ¼ ð�1;1Þ;C ¼ fØ;B;B;Xg;where B ¼ ½0;1Þ
(f) X ¼ ð�1;1Þ;C is the class of all open intervals in X
(g) X ¼ ð�1;1Þ;C is the class of all closed intervals in X
(h) X ¼ ð�1;1Þ; C ¼ fAnj n ¼ 1; 2; . . .g; whereAn¼½1� 1=n; n�; n ¼

1; 2; . . . .
(i) X ¼ f1; 2; . . .g; C ¼ fAnj n ¼ 1; 2; . . .g; where An ¼ fn; nþ 1; . . .g;

n ¼ 1; 2; . . . .
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2.17. In Exercise 2.16, which classes are closed under the formation of arbitrary
intersections? Verify that A½C� � C for these classes C.

2.18. In Exercise 2.16, which classes are AU-classes? Referring to Exercise 2.17,
observe that Theorem 2.21 is applicable in some of these cases.

2.19. Prove that

Aðx=C1 [ C2Þ ¼ Aðx=C1Þ \ Aðx=C2Þ for any x 2 X:

May we regard Theorem 2.14 as a special case of this statement?

2.20 Prove that if

C0 ¼
\
t2T

EtjEt 2 C; t 2 T;T is an arbitrary index sets

( )
;

then A½C0� ¼ ½C�: Can you find a class larger than C0 for which this result

still holds?

2.21. Determine the classH½C� based upon each of the classes given in Exercise
2.16.

2.22. Prove that any set inCmay be expressed by an intersection of the holes of
C, moreover, prove that any union of sets in C may be expressed by an
intersection of the holes of C.

2.23. Use one of the classes given in Exercise 2.16 to verify the conclusion given
in Exercise 2.21.

2.24. Prove that

FpðCÞ ¼
\
t2T

HtjHt 2 H½C�;T is an arbitrary index set

( )
:

2.25. Prove that if C is closed under the formation of unions then H½C� � C.
2.26. In Exercise 2.16, which classes are closed under the formation of unions?

Verify that ½H½C� � C for these classes.
2.27. Prove that if C is an AI-class then X =2 C:
2.28. Let C be an AI-class. Prove that if C � H½C� then C ¼ H½C�:
2.29. In Exercise 2.16, which classes are AI-classes? Referring also to Exercise

2.26, verify, for some class(es)C, the statement suggested in Exercise 2.28.
2.30. Let X be the set of all integers and C ¼ PðXÞ: Is ðX;CÞ S-compact?

Take En ¼ fxj0 � ð�1Þn x � n; x 2 Xg; n ¼ 1; 2; . . . . Can you find a con-

vergent subsequence of fEng?

2.31. Prove that, if (X, C) is S-precompact and A � X; then ðA;C \ AÞ is
S-precompact.
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2.32. Prove that if (X, C) is S-precompact and C0 � C; then ðX;C0Þ is
S-precompact.

2.33. Let X ¼ f1; 2; 3; 4g. Consider the following relation on X:
R1 ¼ fð1; 1Þ; ð1; 3Þg
R2 ¼ fð2; 2Þ; ð3; 2Þ; ð4; 1Þg
R3 ¼ fð1; 4Þ; ð2; 3Þg
R4 ¼ fð1; 1Þ; ð4; 4Þg
R5 ¼ fð1; 1Þ; ð2; 2Þ; ð3; 3Þ; ð4; 4Þ; ð1; 4Þg
R6 ¼ fð1; 2Þ; ð2; 1Þ; ð2; 3Þ; ð1; 3Þ; ð3; 1Þg
R7 ¼ X� X
R8 ¼ Ø:

Determine whether or not each relation is

(a) reflexive
(b) symmetric
(c) transitive.

2.34. Let X ¼ ð�1;1Þ and ffi be the relation on X� X defined by

ðx1; y1Þ ffi ðx2; y2Þ iff x1 � y1 ¼ x2 � y2:

(a) Prove that ffi is an equivalence relation.
(b) Find the equivalence class of (2,1).
(c) Find the quotient X/ffi.

2.35. Let R be a relation on X. Prove that R � � iff R is both symmetric and
antisymmetric.

2.36. Let X ¼ f0; 1; 2; . . .g: A relation � on X� X is defined as follows:

ðx1; y1Þ � ðx2; y2Þ iff x1 � x2 and y1 � y2:

Prove that ðX� X;�Þ is a lattice. Show that by replacingX� Xwith the
two-dimensional Euclidean space ð�1; 1Þ � ð�1; 1Þ we still obtain
a lattice.

2.37. Let X ¼ ½0; 1� and let C consist of Ø;X;A ¼ ½0; 0:25Þ; B ¼ ½0; 0:5Þ; C ¼
½0; 0:75Þ; and D ¼ ½0:25; 0:75Þ: Consider a set function � defined on C as
follows: �ðØÞ ¼ 0; �ðAÞ ¼ 2; �ðBÞ ¼ 2; �ðCÞ ¼ 4; �ðDÞ ¼ 2; �ðXÞ ¼ 4:

(a) Show that � is additive on C.
(b) Can � be extended to an additive function on the ring generated byC?

2.38. Assuming that a set function � is finitely additive on a ring R, show that

�ðA [ BÞ ¼ �ðAÞ þ �ðBÞ � �ðA \ BÞ

for all A;B 2 R:
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2.39. Let X ¼ fx1; x2; x3g: � is a set function defined for all singleton of X
with �ðfxigÞ ¼ 2�i; i ¼ 1; 2; 3: Extend � to be a measure on the power set
of X.

2.40. Let (X, F) be a measurable space, � be a measure on F. Show that

�
[n
i¼1

Ei

 !
¼

X
I�f1;...;ng;I6¼Ø

ð�1ÞjIjþ1�
\
i2 I

Ei

 !

and

�
\n
i¼1

Ei

 !
¼

X
I�f1;...;ng;I 6¼Ø

ð�1ÞjIjþ1�
[
i2 I

Ei

 !
;

where fE1;E2; . . . ;Eng is a finite subclass of F.

2.41 Prove Theorem 2.28.
2.42. Prove Theorem 2.31.
2.43. Let (X, F) be a measurable space, and let � be a measure on F. For any

A � X, define set function �0 by �0ðAÞ ¼ inff�ðEÞjA � E � Xg:

Does �0 coincide with �0 on F? Furthermore, is � a measure on P(X)? If

yes, prove it; if not, construct a counterexample.

2.44. Consider the fuzzy sets A, B, and C defined on the set (interval)
X ¼ ½0; 10� by the following membership functions:

mAðxÞ ¼
x2 when x 2 [0,1]

ð2� xÞ2 when x 2 (1,2]

0 otherwise

8<
:

mBðxÞ ¼
x� 2 when x 2 [2, 3]

4� x when x 2 (3, 4]

0 otherwise

8<
:

mCðxÞ ¼ maxf0; 2ðx� 3Þ � ðx� 3Þ2g:

Determine:

(a) plots of the given membership functions and those representing
standard complements of A;B; and C, and C;

(b) the standard intersection and standard union of B and C;
(c) the �-cut representations of A, B, and C.

2.45. Viewing fuzzy sets A, B, C in Exercise 2.44 as fuzzy numbers on R,
determine:
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(a) Aþ Bþ C
(b) A� B� C
(c) ABþ C and AB� C
(d) BC=A:

2.46. Show that under the standard operations fuzzy sets do not satisfy the law
of excluded middle and the law of contradiction.

2.47. Show that under the standard operations fuzzy sets satisfy DeMorgan’s
laws.

2.48. Considering arithmetic operations on triangular fuzzy numbers, show
that their:

(a) additions and subtractions are again triangular fuzzy numbers;
(b) multiplications and divisions may not be triangular fuzzy numbers.

2.49. Show that for any pair of fuzzy sets A and B on X, the concepts of set
inclusion, standard intersection, and standard union are cutworthy (see
Note 2.5).

2.50. Prove Theorem 2.42, which states that the operation of standard inter-
section and standard union on fuzzy sets are cutworthy and strong
cutworthy, respectively.

2.51. Prove Theorem 2.43, which demonstrates that the standard complement
of fuzzy sets is not cutworthy.

2.52. Explain why averaging operations are meaningful for fuzzy sets (even
when they degenerate to crisp sets), while they are not meaningful for
classical sets.
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