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Abstract Graphs and Set Systems

We introduce basic concepts and notation related to graphs, posets, abstract
simplicial complexes, and matroids. In Section 2.1, we discuss graphs, di-
graphs, and hypergraphs. Section 2.2 is devoted to posets and lattices. We
proceed with abstract simplicial complexes in Section 2.3 and conclude the
chapter with some matroid theory in Section 2.4 and a few words about integer
partitions in Section 2.5.

Basic Notation

In the below definitions, n and k are nonnegative integers, x is a real number,
and S is a finite set.

|x| is the absolute value of x; |x| = x if x ≥ 0 and |x| = −x if x < 0.
�x� is the largest integer less than or equal to x, whereas �x� is the smallest
integer greater than or equal to x. For n ≥ 1 and every integer a, a mod n is
the unique integer b in the set {0, . . . , n− 1} such that (b− a)/n is a integer.

Q and R are the fields of rational and real numbers, respectively, whereas
Z is the ring of integers. Define Zn = Z/nZ; this is the ring of integers modulo
n. If n is a prime, then Zn is a field.

We denote the empty set by ∅. 2S is the family of all subsets of the set
S, including S itself and ∅. |S| is the cardinality (size) of the set S. Let

(
S
k

)

be the family of all subsets T of S satisfying |T | = k; clearly, |
(
S
k

)
| =

(|S|
k

)
.

SS denotes the symmetric group on the set S, i.e., the group of permutations
(bijections) π : S → S. Multiplication is defined by (ππ′)(x) = π(π′(x)).
Finally, we define [k, n] = {m ∈ Z : k ≤ m ≤ n} and [n] = [1, n] = {1, . . . , n}.

2.1 Graphs, Hypergraphs, and Digraphs

We present standard graph-theoretic concepts.
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2.1.1 Graphs

A (simple) graph G = (V,E) consists of a finite set V of vertices and a family
E of subsets of V of size two called edges ; E ⊆

(
V
2

)
. An edge should be thought

of as a line connecting the two vertices in it. A graph being simple means that
there is at most one edge between any two vertices; E is not a multiset. The
edge between the two vertices a and b is denoted as ab or {a, b}. Two vertices
a and b are adjacent in G if ab ∈ E.
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Fig. 2.1. The graph G = ([6], {16, 23, 25, 26, 34, 35, 45, 56}) to the left, the induced
subgraph G([5]) in the middle, and the complement of G to the right. We have
that NG(6) = {1, 2, 5} and degG(6) = 3. The vertex set {1, 2, 4} is a stable set in
G, whereas {2, 3, 5} is a clique. The edge set {16, 25, 34} forms a perfect matching
contained in G. We obtain a proper 3-coloring γ : [6] → [3] of G by defining γ−1(1) =
{1, 2, 4}, γ−1(2) = {3, 6}, and γ−1(3) = {5}.

For v ∈ V , the neighborhood of v is the set NG(v) = {w ∈ V \ {v} : vw ∈
E}. The degree of v is degG(v) = |NG(v)|. For W ⊆ V , define the induced
subgraph G(W ) of G on the vertex set W as the pair (W,E ∩

(
W
2

)
).

A matching on a vertex set V is a graph G = (V,E) such that each vertex
v ∈ V is adjacent to at most one other vertex in G. A matching is perfect if
each vertex is adjacent to exactly one other vertex.

A vertex set U in G is stable if no edge in G is a subset of U ; no two
vertices in U are adjacent. Some authors refer to stable sets as independent. A
vertex set W is a clique in G if

(
W
2

)
⊆ E; every two vertices in W are adjacent.

The complement of a graph G = (V,E) is the graph Ḡ = (V,
(
V
2

)
\ E). Note

that U is a clique in G if and only if U is an stable set in Ḡ.
A t-coloring of a graph G = (V, e) is a function γ : V → [t]. A coloring γ

is proper if γ(v) �= γ(w) whenever vw ∈ E. A graph G = (V,E) is t-colorable
if there is a proper t-coloring of G.

For n ≥ 1, Kn denotes the complete graph on n vertices containing all
(
n
2

)

possible edges. 2Kn is the family of all graphs on n vertices.
Some of the concepts introduced in this section are illustrated in Figure 2.1.

2.1.2 Paths, Components and Cycles

A path in a graph G = (V,E) is a sequence (ρ1, . . . , ρr) of not necessarily
distinct vertices from V such that ρiρi+1 ∈ E for 1 ≤ i ≤ r − 1. If ρ1, . . . , ρr
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are all distinct, then the path is simple. We obtain an equivalence relation
on V by letting v and w be equivalent if and only if there is a (simple) path
(ρ1, . . . , ρr) in G with ρ1 = v and ρr = w. The equivalence classes under
this relation are the connected components of G. We will typically identify
the connected components W1, . . . ,Wk with the corresponding induced sub-
graphs G(W1), . . . , G(Wk). A graph G is disconnected if G contains at least
two connected components; otherwise, G is connected. A vertex v is isolated
in G if the connected component containing v equals {v}.

A vertex set W in a graph G = (V,E) is a cut set if G(V \ W ) is discon-
nected. If W = {w}, then w is a cut point. For 1 ≤ k ≤ |V |, we say that G is
k-connected if G does not contain any cut set of size less than k. For example,
G being 1-connected means that G is connected.

A path (ρ1, . . . , ρr) in a graph G is a cycle if ρrρ1 ∈ G. The cycle is simple
if it is simple as a path. G contains a cycle if and only if G contains a simple
cycle. A forest is a cycle-free graph. A tree is a forest such that all non-isolated
vertices belong to the same connected component. A spanning tree is a tree
with one single connected component.

A simple path containing all vertices in a graph is a Hamiltonian path; a
simple cycle containing all vertices is a Hamiltonian cycle. A graph is Hamil-
tonian if it contains at least one Hamiltonian cycle and non-Hamiltonian
otherwise.

2.1.3 Bipartite Graphs

A graph G is bipartite if G is 2-colorable. Equivalently, the vertex set of G
is the disjoint union of two stable vertex sets U and W ; we say that (U,W )
is a bipartition of G and refer to U and W as the blocks of G. Note that
the blocks are not uniquely determined unless G is connected. For m,n ≥ 1,
Km,n denotes the complete bipartite graph on a vertex set U ∪ W such that
U ∩W = ∅, |U | = m, and |W | = n; this graph contains all mn possible edges
uw such that u ∈ U and w ∈ W .

2.1.4 Digraphs

A (simple and loopless) digraph D = (V,A) consists of a finite set V of vertices
and a set A of ordered pairs vw = (v, w) such that v �= w; A ⊆ V ×V \{(v, v) :
v ∈ V }. the elements in A are called directed edges. The edge vw is directed
from v to w; v is the tail and w is the head. For n ≥ 1, K→

n denotes the
complete digraph on n vertices containing all n(n − 1) possible edges.

2.1.5 Directed Paths and Cycles

A directed path in a digraph D is a sequence (ρ1, . . . , ρr) of not necessarily
distinct vertices in V such that ρiρi+1 ∈ A for 1 ≤ i ≤ r − 1. A directed path
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(ρ1, . . . , ρr) is a directed cycle if ρrρ1 ∈ A. In a simple directed path or cycle,
we require all vertices to be distinct. A directed Hamiltonian path is a simple
directed path containing all vertices; directed Hamiltonian cycles are defined
analogously. A digraph D is acyclic if D does not contain any directed cycles.
A digraph is Hamiltonian if it contains at least one directed Hamiltonian cycle
and non-Hamiltonian otherwise. A digraph D is strongly connected if every
pair of vertices in D are contained in a directed cycle; the cycle need not be
simple.

D is a directed forest if D is acyclic and each vertex is the head of at
most one edge.1 A directed tree is a directed forest such that all non-isolated
vertices belong to the same connected component. A spanning directed tree is
a directed tree with one single connected component. In such a tree, there is
a unique element – the root – that is not the head of any edge.

2.1.6 Hypergraphs

A (simple) hypergraph H = (V,E) consists of a finite set V of vertices and
a family E of nonempty subsets of V called edges. We denote the edge
{a1, a2, . . . , ar} as a1a2 . . . ar. For a set S of positive integers, H is an S-
hypergraph if |e| ∈ S for every e ∈ E. If H is an {r}-hypergraph (i.e., all edges
have the same size r), then H is r-uniform. For example, ordinary graphs are
2-uniform. For W ⊆ V , define the induced subhypergraph G(W ) of G with
respect to the vertex set W as the pair (W,E ∩ 2W ); only edges contained in
W remain.

2.1.7 General Terminology

Let G = (V,E) be a graph, hypergraph, or digraph. G is empty if E = ∅ and
nonempty otherwise. A vertex is covered in G if the vertex is contained in some
edge in G and uncovered otherwise. For hypergraphs, the terms “uncovered”
and “isolated” (see Section 2.1.2) are not equivalent. Specifically, if the only
edge in G containing a given vertex v is the singleton edge {v}, then v is
isolated but not uncovered. Whenever the underlying vertex set V is fixed, we
identify G with its set of edges; e ∈ G means that e ∈ E. For an edge e, we
will write G − e = (V,E \ {e}) and G + e = (V,E ∪ {e}). We let |G| denote
the size of the edge set of G. Whenever we refer to “the family of all graphs
on n vertices with a given property P”, we mean to first fix a vertex set V of
size n and then consider the family of all graphs G on the vertex set V with
property P .
1 Some authors prefer to define directed forests in terms of the dual requirement

that each vertex is the tail of at most one edge.
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2.2 Posets and Lattices

A finite partially ordered set or poset is a pair P = (X,≤), where X is a finite
set and ≤ is a binary relation on X satisfying the following conditions for all
x, y, z ∈ X:

• x ≤ x.
• If x ≤ y and y ≤ x, then x = y.
• If x ≤ y and y ≤ z, then x ≤ z.

An element x is an atom in P if y �≤ x whenever y �= x. Two elements x and y
form a covering relation in P if x < y (i.e., x ≤ y and x �= y) and no element
z in X satisfies x < z < y. The direct product of two posets P = (X,≤P ) and
Q = (Y,≤Q) is the poset P ×Q = (X × Y,≤P×Q), where (x, y) ≤P×Q (x′, y′)
if and only if x ≤P x′ and y ≤Q y′. An (order-preserving) poset map between
two posets P = (X,≤P ) and Q = (Y,≤Q) is a function f : X → Y such that
f(x) ≤Q f(y) whenever x ≤P y. We will often write f : P → Q.

A chain is a set {x1, . . . , xr} of elements in X such that x1 < x2 < · · · < xr.
A poset is ranked of rank d if every maximal chain has size d. The rank of an
element x is the size of a largest chain in which x is the maximal element. It
is often useful to introduce a minimal element 0̂ with rank 0 and a maximal
element 1̂ of rank d + 1. 0̂ is smaller and 1̂ is larger than all elements in X.

A finite lattice is a finite poset L = (X,≤L) such that the following hold:

• There are elements 0̂, 1̂ ∈ X such that 0̂ ≤L x and x ≤L 1̂ for all x ∈ X.
• Any two elements x, y ∈ X have a unique greatest lower bound. Thus

there exists an element z ≤L x, y such that w ≤L z whenever w ≤L x, y.

These conditions imply that any two elements have a unique least upper
bound. The proper part of a lattice L, denoted L, is the poset obtained by
removing the top element 1̂ and the bottom element 0̂ from L.

A partition of a finite set V is a family {U1, . . . , Uk} of nonempty sets such
that V is the disjoint union of U1, . . . , Uk. The partition lattice ΠV is the poset
of partitions of V ordered under refinement; {W1, . . . ,Wm} is a refinement of
– and hence smaller than – {U1, . . . , Uk} if every Wi is a subset of some Uj .
The partition lattice is indeed a lattice [133]. We write Πn = Π[n].

Unless otherwise specified, whenever a family ∆ of subsets of a set X is
referred to as a poset, the underlying order ≤ is given by set inclusion;

A ≤ B ⇐⇒ A ⊆ B.

2.3 Abstract Simplicial Complexes

We introduce set-theoretic concepts and notation related to abstract simplicial
complexes. Throughout the section, all sets and families are finite. Whenever
appropriate, we extend our definitions to arbitrary families of sets rather than
restricting to the special case of simplicial complexes.
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2.3.1 Basic Definitions

An (abstract) simplicial complex ∆ on a finite set X is a family of subsets
of X closed under deletion of elements. We refer to the singleton sets {x}
in ∆ as 0-cells or vertices. We do not require that {x} ∈ ∆ for all x ∈ X.
For the purposes of this book, we adopt the convention that the void complex
∅ is a simplicial complex. For geometric reasons, many authors refer to the
complex {∅}, which is different from the void complex, as the empty complex.
To avoid any confusion, we will consistently refer to any empty family ∅ as
“void” rather than “empty”. Members of a simplicial complex ∆ are called
faces. For a face σ and an element x ∈ X, we write σ − x = σ \ {x} and
σ + x = σ ∪ {x}. For two simplicial complexes ∆1 and ∆2, ∆1

∼= ∆2 means
that ∆1 and ∆2 are combinatorially equivalent. Assuming that X and Y are
the vertex sets of ∆1 and ∆2, respectively, this means that there exists a
bijection ϕ : X → Y such that σ ∈ ∆1 if and only if ϕ(σ) ∈ ∆2 for each set
σ ⊆ X. Note that the same symbol ∼= also denotes homeomorphism between
topological spaces. Whenever we use the symbol, it will be clear from context
how to interpret it. The simplicial complex generated by a family M of sets
is the complex of all subsets of sets in M, including M itself.

2.3.2 Dimension

Define the dimension of a set σ as |σ| − 1. One sometimes refers to a set of
dimension d as a d-face or d-cell. The dimension of a nonvoid family ∆ is the
maximum dimension among faces of ∆. The (reduced) Euler characteristic of
∆ is defined as the integer

χ̃(∆) =
∑

σ∈∆

(−1)dim σ.

For d ≥ −1, the d-skeleton of a family is the family of all sets of dimension at
most d. A family is pure if all maximal faces (with respect to inclusion) have
the same dimension. For a set σ, we refer to the family 2σ as the full simplex
on σ. Writing d = dim σ = |σ|−1, we say that 2σ is a d-simplex. Note that the
(−1)-simplex contains the empty set and nothing else. We sometimes refer to
the 0-simplex as a point. We obtain the boundary ∂2σ of the d-simplex 2σ by
removing the maximal face σ.

2.3.3 Collapses

A simplicial complex ∆ is obtained from another simplicial complex ∆′ via
an elementary collapse if ∆′ \ ∆ = {σ, τ} and σ � τ . This means that τ is
the only face in ∆′ properly containing σ. If ∆ can be obtained from ∆′ via a
sequence of elementary collapses, then ∆′ can be collapsed to ∆. If ∆′ is void
or can be collapsed to a 0-simplex {∅, {v}}, then ∆′ is collapsible (to a point).
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2.3.4 Joins, Cones, Suspensions, and Wedges

The join of two families ∆ and Γ (assumed to be defined on disjoint ground
sets) is the family ∆ ∗ Γ = {σ ∪ τ : σ ∈ ∆, τ ∈ Γ}. Note that ∆ ∗ ∅ = ∅ and
∆ ∗ {∅} = ∆. Let x be a 0-cell not in ∆. The cone Cone(∆) = Conex(∆) over
∆ with cone point x is the join of ∆ with the 0-simplex {∅, {x}}. Cones over
simplicial complexes are collapsible. Let y be another 0-cell not in ∆. The
suspension Susp(∆) = Suspx,y(∆) of ∆ with respect to the pair {x, y} is the
join of ∆ with {∅, {x}, {y}}. Note that Suspx,y(∆) = Conex(∆) ∪ Coney(∆).
We obtain the (one-point) wedge ∆∨ Γ of two simplicial complexes ∆ and Γ
with respect to 0-cells x ∈ ∆, y ∈ Γ by taking the disjoint union of ∆ and Γ
and then identifying x and y.

2.3.5 Alexander Duals

For a simplicial complex ∆ on a set X, the Alexander dual of ∆ with respect
to X is the simplicial complex ∆∗

X = {σ ⊆ X : X \ σ /∈ ∆}. If there is no
reference to any underlying set X, it is assumed that X is the set of 0-cells in
∆.

2.3.6 Links and Deletions

For a family ∆ of sets and a set σ, the link lk∆(σ) is the family of all τ ∈ ∆
such that τ ∩ σ = ∅ and τ ∪ σ ∈ ∆. The deletion del∆(σ) is the family of
all τ ∈ ∆ such that τ ∩ σ = ∅. We define the face-deletion fdel∆(σ) as the
family of all τ ∈ ∆ such that σ �⊆ τ . The link, deletion, and face-deletion of a
simplicial complex are all simplicial complexes.

2.3.7 Lifted Complexes

For the purposes of this book, a family Σ of sets is a lifted complex over a
set σ if Σ is of the form ∆ ∗ {σ}, where ∆ is a simplicial complex and σ is
a finite set disjoint from all sets in ∆. Any simplicial complex is also a lifted
complex; σ may be the empty set.

Given a lifted complex Σ and disjoint sets I and E, define

Σ(I, E) = {I} ∗ lkdelΣ(E)(I) = {τ ∈ Σ : I ⊆ τ, E ∩ τ = ∅}.

If Σ is a lifted complex over σ, then Σ(I, E) is a lifted complex over σ ∪ I.
Note that Σ(∅, E) = delΣ(E).

2.3.8 Order Complexes and Face Posets

The order complex ∆(P ) of a poset P = (X,≤) is the simplicial complex of all
chains in P ; a set A ⊆ X belongs to ∆(P ) if and only if a ≤ b or b ≤ a for all
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a, b ∈ A. Whenever we say that a poset P has a certain topological property
(e.g., a certain homotopy type), we mean that ∆(P ) has the property. The
face poset P (∆) of a simplicial complex ∆ is the poset of nonempty faces of ∆
ordered by inclusion. sd(∆) = ∆(P (∆)) is the (first) barycentric subdivision
of ∆.

2.3.9 Graph, Digraph, and Hypergraph Complexes and Properties

A graph complex on a finite vertex set V is a family Σ of simple graphs on
the vertex set V such that Σ is closed under deletion of edges; if G ∈ Σ and
e ∈ G, then G − e ∈ Σ. Identifying G = (V,E) ∈ Σ with the edge set E, we
may interpret Σ as a simplicial complex. Analogously, a digraph complex on
V is a family of simple and loopless digraphs on V closed under deletion of
edges, whereas a hypergraph complex on V is a family of simple hypergraphs
on V , again closed under deletion of edges. The restriction to simple graphs,
digraphs, and hypergraphs is for the purposes of this book.

For a graph complex Σ on a vertex set V and a graph G = (V,E), define
Σ(G) as the graph complex consisting of all graphs H in Σ such that H is
a subgraph of G. We refer to Σ(G) as the induced (graph) subcomplex of Σ.
We adopt the same terminology for digraph and hypergraph complexes.

We refer to a digraph complex ∆̂ as the trivial extension of a graph complex
∆ if the following holds:

• A digraph D is a maximal face of ∆̂ if and only if D equals {ab, ba : ab ∈ G}
for some maximal face G of ∆.

For example, the property of being a disconnected digraph is the trivial ex-
tension of the property of being a disconnected undirected graph.

A graph property is a family Σ of simple graphs on a finite vertex set
V such that Σ is closed under permutations of the vertex set V ; if σ :=
{a1b1, . . . , arbr} ∈ Σ and π ∈ SV , then

π(σ) := {π(a1)π(b1), . . . , π(ar)π(br)} ∈ Σ.

We refer to this action as the natural action of SV on ∆.
A digraph property is a family Σ of simple and loopless digraphs on a

finite vertex set V such that Σ is closed under permutations of the vertex set
V . Analogously, a hypergraph property is a family of hypergraphs, again on a
fixed vertex set, that is closed under permutations of the underlying vertex
set.

A graph, digraph, or hypergraph property Σ is monotone if Σ is closed
under deletion of edges. Equivalently, Σ is a simplicial complex.

2.4 Matroids

A finite matroid M is a pair (E,F), where E is a finite set and F = F(M) ⊆ 2E

is a nonvoid simplicial complex satisfying the following property:
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• If σ, τ ∈ F and |σ| < |τ |, then there is an element x ∈ τ \ σ such that
σ + x ∈ F.

F(M) is the independence complex or matroid complex of M. The sets in F(M)
are the independent sets in M. Note that F is a pure complex; all maximal
faces have the same size. Define the rank of M as this size. A basis is a maximal
independent set. A circuit is a minimal dependent set, i.e., a minimal nonface
of F(M).

For a subset τ of E, let M(τ) denote the pair (τ,F∩2τ ). This is a matroid,
and we refer to it as the induced submatroid of M on the set τ . Define the
rank ρM(τ) of τ as the rank of the matroid M(τ). A set τ is a flat in M if the
rank of τ + x exceeds the rank of τ for each x in E \ τ . If a flat τ has rank
ρ(E) − 1, then τ is a cocircuit in M.

For e ∈ E, M − e is the pair (E − e,delF(e)); M − e is the deletion of M
with respect to e. M/e is the pair (E − e, lkF(e)); M/e is the contraction of
M with respect to e. The rank function of M/e satisfies the identity

ρM/e(σ) = ρM(σ + e) − ρM({e}).

The dual of M is the matroid M∗ on the same ground set E with the
property that the rank function ρ∗ satisfies

ρ∗(σ) = |σ| + ρ(E \ σ) − ρ(E). (2.1)

Equivalently, σ is a basis of M∗ if and only if E \ σ is a basis of M.
We refer the reader to Oxley [105] or Welsh [147] for more information

about matroids.

2.4.1 Graphic Matroids

For a graph G = ([n], E), define Mn(G) to be the pair (E,Fn(G)), where
Fn(G) is the complex of forests contained in G. This is well-known to be a
matroid, and the rank function is given by ρ(H) = n − c(H), where c(H) is
the number of connected components in H. We refer to Mn(G) as the graphic
matroid on G. Write Mn = Mn(Kn).

Another matroid that we may associate to G is the (one-step) truncation
of Mn(G) obtained by redefining the rank function as ρ(H) = min{ρ(H), n−
2} = n − max{2, c(H)}. The independent sets in this matroid are exactly all
disconnected forests in G. One may pursue this construction further, consid-
ering the “k-step” truncation with rank function ρ(H) = n − max{k, c(H)},
but we will confine ourselves to the one-step construction.

For a digraph D, let Mn(D) be the matroid with the property that a set
of edges is independent if and only if there are no multiple edges or cycles
in the underlying undirected graph. The former condition means exactly that
{ij, ji} is not independent. We refer to Mn(D) as the digraphic matroid on
D. Write M→

n = Mn(K→
n ).
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2.5 Integer Partitions

For a sequence λ = (λ1, . . . , λr), define |λ| =
∑r

i=1 λi. Say that λ is a partition
of n if λ1 ≥ · · · ≥ λr ≥ 1 and |λ| = n; we write this as λ � n. By convention,
we set λi equal to 0 whenever i > r. One may interpret λ as the set {(i, j) :
1 ≤ j ≤ λi} of lattice points, where (i, j) is the lattice point in the ith row
and jth column. Write Dλ = {(i, i) : λi ≥ i}; this is the diagonal of λ. Points
(i, j) such that i < j are above the diagonal, whereas points (i, j) such that
i > j are below the diagonal.

Given two partitions λ and µ of n, we say that λ dominates µ if

k∑

i=1

λi ≥
k∑

i=1

µi

for all i ≥ 1. The conjugate λT of a partition λ = (λ1, . . . , λr) is the sequence
(µ1, . . . , µλ1) with the property that µj is the largest m such that λm ≥ j.
Equivalently, the length of the jth row in λT equals the length of the jth

column in λ for each j. λ is self-conjugate if λ = λT .


