
Preface

We organized this CIME Course with the aim to bring together a group of top
leaders on the fields of calculus of variations and nonlinear partial differential
equations. The list of speakers and the titles of lectures have been the following:

- Luigi Ambrosio, Transport equation and Cauchy problem for non-smooth
vector fields.

- Luis A. Caffarelli, Homogenization methods for non divergence equations.
- Michael Crandall, The infinity-Laplace equation and elements of the cal-

culus of variations in L-infinity.
- Gianni Dal Maso, Rate-independent evolution problems in elasto-plasticity:

a variational approach.
- Lawrence C. Evans, Weak KAM theory and partial differential equations.
- Nicola Fusco, Geometrical aspects of symmetrization.

In the original list of invited speakers the name of Pierre Louis Lions was
also included, but he, at the very last moment, could not participate.

The Course, just looking at the number of participants (more than 140, one
of the largest in the history of the CIME courses), was a great success; most of
them were young researchers, some others were well known mathematicians,
experts in the field. The high level of the Course is clearly proved by the
quality of notes that the speakers presented for this Springer Lecture Notes.

We also invited Elvira Mascolo, the CIME scientific secretary, to write in
the present book an overview of the history of CIME (which she presented at
Cetraro) with special emphasis in calculus of variations and partial differential
equations.

Most of the speakers are among the world leaders in the field of viscos-
ity solutions of partial differential equations, in particular nonlinear pde’s of
implicit type. Our choice has not been random; in fact we and other mathe-
maticians have recently pointed out a theory of almost everywhere solutions
of pde’s of implicit type, which is an approach to solve nonlinear systems of
pde’s. Thus this Course has been an opportunity to bring together experts of
viscosity solutions and to see some recent developments in the field.
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We briefly describe here the articles presented in this Lecture Notes.
Starting from the lecture by Luigi Ambrosio, where the author studies

the well-posedness of the Cauchy problem for the homogeneous conservative
continuity equation

d

dt
µt + Dx · (bµt) = 0 , (t, x) ∈ I × R

d

and for the transport equation

d

dt
wt + b · ∇wt = ct ,

where b(t, x) = bt(x) is a given time-dependent vector field in R
d. The inter-

esting case is when bt(·) is not necessarily Lipschitz and has, for instance, a
Sobolev or BV regularity. Vector fields with this “low” regularity show up, for
instance, in several PDE’s describing the motion of fluids, and in the theory
of conservation laws.

The lecture of Luis Caffarelli gave rise to a joint paper with Luis Silvestre;
we quote from their introduction:

“When we look at a differential equation in a very irregular media (com-
posite material, mixed solutions, etc.) from very close, we may see a very
complicated problem. However, if we look from far away we may not see the
details and the problem may look simpler. The study of this effect in partial
differential equations is known as homogenization. The effect of the inhomo-
geneities oscillating at small scales is often not a simple average and may
be hard to predict: a geodesic in an irregular medium will try to avoid the
bad areas, the roughness of a surface may affect in nontrivial way the shapes
of drops laying on it, etc... The purpose of these notes is to discuss three
problems in homogenization and their interplay.

In the first problem, we consider the homogenization of a free boundary
problem. We study the shape of a drop lying on a rough surface. We discuss
in what case the homogenization limit converges to a perfectly round drop.
It is taken mostly from the joint work with Antoine Mellet (see the precise
references in the article by Caffarelli and Silvestre in this lecture notes). The
second problem concerns the construction of plane like solutions to the mini-
mal surface equation in periodic media. This is related to homogenization of
minimal surfaces. The details can be found in the joint paper with Rafael de
la Llave. The third problem concerns existence of homogenization limits for
solutions to fully nonlinear equations in ergodic random media. It is mainly
based on the joint paper with Panagiotis Souganidis and Lihe Wang.

We will try to point out the main techniques and the common aspects.
The focus has been set to the basic ideas. The main purpose is to make this
advanced topics as readable as possible.”

Michael Crandall presents in his lecture an outline of the theory of the
archetypal L∞ variational problem in the calculus of variations. Namely, given
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an open U ⊂ R
n and b ∈ C(∂U), find u ∈ C(U ) which agrees with the

boundary function b on ∂U and minimizes

F∞(u, U) := ‖|Du|‖L∞(U)

among all such functions. Here |Du| is the Euclidean length of the gradient Du
of u. He is also interested in the “Lipschitz constant” functional as well: if K
is any subset of R

n and u : K → R, its least Lipschitz constant is denoted by

Lip (u, K) := inf {L ∈ R : |u (x) − u (y)| ≤ L |x − y| , ∀x, y ∈ K} .

One has F∞(u, U) = Lip (u, U) if U is convex, but equality does not hold in
general.

The author shows that a function which is absolutely minimizing for Lip
is also absolutely minimizing for F∞ and conversely. It turns out that the
absolutely minimizing functions for Lip and F∞ are precisely the viscosity
solutions of the famous partial differential equation

∆∞u =
n∑

i,j=1

uxiuxj uxixj = 0 .

The operator ∆∞ is called the “∞-Laplacian” and “viscosity solutions” of
the above equation are said to be ∞−harmonic.

In his lecture Lawrence C. Evans introduces some new PDE methods de-
veloped over the past 6 years in so-called “weak KAM theory”, a subject
pioneered by J. Mather and A. Fathi. Succinctly put, the goal of this subject
is the employing of dynamical systems, variational and PDE methods to find
“integrable structures” within general Hamiltonian dynamics. Main references
(see the precise references in the article by Evans in this lecture notes) are
Fathi’s forthcoming book and an article by Evans and Gomes.

Nicola Fusco in his lecture presented in this book considers two model
functionals: the perimeter of a set E in R

n and the Dirichlet integral of a
scalar function u. It is well known that on replacing E or u by its Steiner
symmetral or its spherical symmetrization, respectively, both these quantities
decrease. This fact is classical when E is a smooth open set and u is a C1

function. On approximating a set of finite perimeter with smooth open sets
or a Sobolev function by C1 functions, these inequalities can be extended by
lower semicontinuity to the general setting. However, an approximation argu-
ment gives no information about the equality case. Thus, if one is interested
in understanding when equality occurs, one has to carry on a deeper analy-
sis, based on fine properties of sets of finite perimeter and Sobolev functions.
Briefly, this is the subject of Fusco’s lecture.

Finally, as an appendix to this CIME Lecture Notes, as we said Elvira
Mascolo, the CIME scientific secretary, wrote an interesting overview of the
history of CIME having in mind in particular calculus of variations and PDES.



VIII Preface

We are pleased to express our appreciation to the speakers for their excel-
lent lectures and to the participants for contributing to the success of the Sum-
mer School. We had at Cetraro an interesting, rich, nice, friendly atmosphere,
created by the speakers, the participants and by the CIME organizers; also
for this reason we like to thank the Scientific Committee of CIME, and in
particular Pietro Zecca (CIME Director) and Elvira Mascolo (CIME Secre-
tary). We also thank Carla Dionisi, Irene Benedetti and Francesco Mugelli,
who took care of the day to day organization with great efficiency.

Bernard Dacorogna and Paolo Marcellini
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1 Introduction

When we look at a differential equation in a very irregular media (composite
material, mixed solutions, etc.) from very close, we may see a very compli-
cated problem. However, if we look from far away we may not see the details
and the problem may look simpler. The study of this effect in partial differen-
tial equations is known as homogenization. The effect of the inhomogeneities
oscillating at small scales is often not a simple average and may be hard to
predict: a geodesic in an irregular medium will try to avoid the bad areas, the
roughness of a surface may affect in nontrivial way the shapes of drops laying
on it, etc. . .

The purpose of these notes is to discuss three problems in homogenization
and their interplay.

In the first problem, we consider the homogenization of a free boundary
problem. We study the shape of a drop lying on a rough surface. We discuss
in what case the homogenization limit converges to a perfectly round drop. It
is taken mostly from the joint work with Antoine Mellet [5].

The second problem concerns the construction of plane like solutions to the
minimal surface equation in periodic media. This is related to homogenization
of minimal surfaces. The details can be found in the joint paper with Rafael
de la Llave [2].

The third problem concerns existence of homogenization limits for solu-
tions to fully nonlinear equations in ergodic random media. It is mainly based
on the joint paper with Panagiotis Souganidis and Lihe Wang [7].

We will try to point out the main techniques and the common aspects.
The focus has been set to the basic ideas. The main purpose is to make this
advanced topics as readable as possible. In every case, the original papers are
referenced.
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2 Homogenization of a Free Boundary Problem:
Capillary Drops

The shape of a drop lying on a surface tries to minimize its energy for a given
volume. The energy has a term proportional to the capillary area A between
the water and the air, another term related to the contact area W between the
drop and the surface, and a third term related to the gravitational potential
energy.

Energy = σA − σβW + Γ Gravitational Energy

For the time being, we will neglect the effect of gravity (Γ = 0) and
consider σ = 1.

Drop
Area: A

wet surface: W

Volume: V The shape minimizes
Energy := A − βW + Grav.
for given volume V

Fig. 1. A drop lying on a plane surface

The surface of the drop that is not in contact with the floor will have a
constant mean curvature. We can see this perturbing its shape in a way that
we preserve volume. If we add a bit of volume around a point and we subtract
the same amount around another point, we obtain another admissible shape
and so the corresponding area must increase. This implies that the mean
curvature at both points must coincide.

�
�
�
�
�
�
�
�

a volume preserving perturbation

Fig. 2. Suitable perturbations show that the free surface has a constant mean
curvature

The parameter β is a real number between −1 and 1 that depends on
the surface and is the relative adhesion coefficient between the fluid and the
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surface. Its effect on the shape of the drop is to prescribe the contact angle at
the free boundary: cos γ = β.

γ
cos γ = β

Fig. 3. The contact angle depends on β

A value β > 0 will cause the shape of the drop to expand trying to span a
larger wet surface. When β < 0 (hydrophobic surface) on the other hand, the
wet surface will tend to shrink. In the limit case β = 1 the wet surface would
try to cover the whole plane, whereas for β = −1, the optimal shape would
be a sphere that does not touch the floor at all.

β > 0 β = 0 β < 0

Fig. 4. Different shapes depending on the value of β

Under these conditions, it can be shown that there is a minimizer for the
energy, and the shape of the corresponding drop is given by a sphere cap. The
case we are interested however is when the drop rests on an irregular surface.
Namely, we will consider a variable β(x), oscillating fast and bounded so that
|β(x)| ≤ λ < 1. To capture the effect of a very oscillating adhesion coefficient,
we fix a periodic function β and consider β(x/ε) for a small ε. The energy is
then given by

Jε = A −
∫

wet surface

β
(x

ε

)
dx (1)

Our purpose is to study the existence and regularity for a given ε > 0 of
a shape that minimizes the energy. And we want to understand the way it
behaves as ε → 0. We will see that the absolute minimizers of Jε converge
uniformly to a spherical cap that corresponds to the minimizer of

J0 = A − 〈β〉W
where 〈β〉 =

∫
� β dx is the average of β.
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However, the same conclusion cannot be taken for other critical points of
Jε. In general, the shapes of drops will not achieve an absolute minimizer.
Any local minimum of Jε would be a stable shape for a drop. The limits of
these other solutions behave in a way that is harder to predict and many
interesting phenomena can be observed. The most spectacular effect is the
hysteresis: the contact angle depends on how the drop was formed. If the
drop was formed by advancing the liquid, the final contact angle is greater
than 〈β〉. If the equilibrium was achieved by receding the liquid (like in a
process of evaporation), the angle obtained is less than 〈β〉.

The existence of a minimizer for each ε can be done in a very classical way
in the framework of sets of finite perimeter. We will study some regularity
properties of the minimizers. First we will show that the surface of the drop
separates volume in a more or less balanced way. Secondly, we will see that
the boundary of the contact set has a finite n − 1 Hausdorff measure. Then
we will use those estimates together with a stability result to show that the
minimizers of Jε converge to spherical caps as ε → 0. To conclude this part,
we will discuss the phenomena of Hysteresis.

2.1 Existence of a Minimizer

In order to prove existence, we have to work in the framework of boundaries
of sets of finite perimeter.

Roughly, a set of finite perimeter Ω is the limit of polyhedra, Ωk, of finite
area, i.e.

|Ω∆Ωk| → 0

and Area(∂Ωk) ≤ C for all k.
Sets of finite perimeter are defined up to sets of measure zero. We normalize

E so that

0 <
∣∣Ē ∩ Br(x)

∣∣ < |Br(x)| for all x ∈ E and r > 0

There is a well established theory for such sets. The classical reference is
[13].

We will consider a set E ⊂ R
n × [0,+∞) that represents the shape of the

drop. We denote (x, z) an arbitrary point with x ∈ R
n and z ∈ [0,+∞). Our

energy functional reads

Jε(E) = Area(∂E ∩ {z > 0}) −
∫

z=0

β
(x

ε

)
χE dx (2)

(In the following, we will omit the ε in Jε unless it is necessary to stress it
out).

The theory of finite perimeter set provides the necessary compactness re-
sults to show existence of a minimizer, as long as we restrict E to be a subset
of a bounded set ΓRT := {|x| < R, z < T}. Of course, we must take R and
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T large enough so that we can fit at least one set E of volume V inside. To
obtain an unrestricted minimizer of (2), we must prove that for R and T
large enough, there is one corresponding minimizer ERT that does not touch
the boundary of ΓRT . Since β is periodic, it is enough to show that ERT re-
mains bounded independently of R and T . If the diameter of ERT is less than
R/2, we can translate it an integer multiple of ε inside of ΓRT to obtain an
unrestricted minimizer. The detailed proof can be found in [5]

2.2 Positive Density Lemmas

The first regularity results we obtain for minimizers are related to the nonde-
generate way the surface of the drop separates volume. All the proofs of these
lemmas follow the same idea. An ordinary differential equation is constructed
that exploits the nonlinearity of the isoperimetric inequality.

But before, we will make a few simple observations. Let E be a minimizer
for a volume V0, and let A be its free perimeter (A = Area(∂E ∩ {z > 0})).
Above every point on the wet surface E ∩ {z = 0}, there must be a point in
the free surface: ∂E. Then

A ≥
∫

z=0

χE dx ≥ 1
λ

∣∣∣∣
∫

z=0

β
(x

ε

)
dx

∣∣∣∣

And therefore
(1 − λ)A ≤ J(E)

From the isoperimetric inequality we have A ≥ wn+1V
n

n+1
0 . Since a sphere

B with volume V0 that does not touch the floor {z = 0} is an admissible set,
we also have:

(1 − λ)A ≤ J(E) ≤ J(B) = wn+1V
n

n+1
0

And thus we have both estimates:

c0V
n

n+1
0 ≤ A ≤ C1V

n
n+1

0

Now we want to compare the minimum energy for two different volumes.

min
volume=V0

J ≤ min
volume=V0+δ

J ≤ min
volume=V0

J + C1V
− 1

n+1
0 δ (3)

The first inequality can be obtained simply taking the minimizer for
volume = V0 + δ and chopping a piece at the top of volume δ. Thus we
obtain an admissible set of volume V0 for which the energy J decreased.

For the second inequality, we consider the set E with volume V0 that
minimizes J and take a vertical dilation Et = {(x, t) : (x, (1 + t)−1z) ∈ E}.
Then for t = δ/V0, Et is an admissible set of volume V0 + δ. The contact
surface did not change, so its only difference in the energy is given by the free
surface. Let A be the free perimeter of E, then the perimeter of Et is less than
(1 + t)A, so their respective energies differ at most by tA. Then
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min
volume=V0+δ

J − min
volume=V0

J ≤ tA

≤ δ

V0
c1V

n
n+1

0

≤ c1V
− 1

n+1
0 δ

The first lemma we want to prove is actually a classical result in minimal
surfaces adapted to this case. We will come back to this lemma again when
we study plane like minimal surfaces in periodic media in the second part of
these notes.

Before starting with the lemmas it is worth to point out an elementary
fact of calculus that will come handy. If we have a nonnegative function u such
that u′ ≥ cu

n+1
n then u is a nondecreasing function that can stay equal to zero

for any amount of time. But if t0 = sup{t : u(t) = 0}, then u(t) ≥ c(t − t0)n

for any t > t0.

Lemma 2.1. Let (x0, z0) ∈ ∂E with z0 > 0. There exists a universal constant
c such that for all r < z0 we have

|Br(x0, z0) ∩ E| ≥ crn+1

|Br(x0, z0) \ E| ≥ crn+1

Proof. We define

U1(r) = |Br(x0, z0) \ E| S1(r) = Area(∂Br(x0, z0) \ E)

U2(r) = |Br(x0, z0) ∩ E| S2(r) = Area(∂Br(x0, z0) ∩ E)

A(r) = Area(Br ∩ ∂E)

U1

U2

S2

S1

A

By estimating J(E ∪ Br) and J(E \ Br) and using (3), we can compare
S1 and S2 to A.

J(E ∪ Br) ≥ min
volume=V0+U1

J ≥ J(E)

J(E) + S1 − A ≥ J(E)

S1 − A ≥ 0
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We also know by the isoperimetrical inequality that U
n

n+1
1 ≤ C(A + S1).

If we combine this with the above inequality we obtain

U
n

n+1
1 ≤ CS1

But now we observe that S1(r) = U ′
1(r), so we obtain the ODE: U ′

1(r) ≥
cU

n
n+1
1 . Moreover, we know U1(0) = 0 and U1(r) > 0 for any r > 0. This

implies the result of the lemma.
For U2, a similar argument is done using the other inequality in (3).

With almost the same proof, we can also obtain a similar lemma for (x0, z0)
in the boundary of the wet surface E ∩ {z = 0}.
Lemma 2.2. Given x0 ∈ R

n, let Γrt = {(x, z) : |x − x0| ≤ r ∧ 0 ≤ z ≤ t}.
There exist two universal constants c0, c1 > 0 such that for any minimizer

E of J with volume V0 such that

{(x, t) : |x − x0| ≤ r0} ⊂ E (resp. ⊂ CE)
∃z ∈ (0, t) such that (x, z) ∈ ∂E

then
|CE ∩ Γrt| ≥ c0r

n+1 (resp. |E ∩ Γrt| ≥ c0r
n+1)

for all r < r0 (resp. for all r < r0 such that |E ∩ Γrt| ≤ c1V0).

Remark. When we say {(x, t) : |x − x0| ≤ r} ⊂ E, we actually mean that
the trace of E on {(x, t) : |x − x0| ≤ r} is constant 1. Sets of finite perimeter
have a well defined trace in L1.

{(x, t) : |x − x0| ≤ r}

Ec ∩ Γrt

x0
r

t
or

{(x, t) : |x − x0| ≤ r}
E ∩ Γrt

t

x0
r

Fig. 5. Lemma 2.2

Proof. We proceed in a similar fashion as in the proof of Lemma 2.1. Let

U(r) = |Γrt \ E|
S(r) = Area(∂Γrt \ E)

A(r) = Area(Γrt ∩ ∂E)

W (r) = Area({z = 0} ∩ Γrt \ E) =
∫

z=0∧|x−x0|<r

(1 − χE) dx
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w(r) =
∫

z=0∧|x−x0|<r

β
(x

ε

)
(1 − χE) dx

δ
A

Γr

2r
W

U

S

Since above any point in the wet surface, there is a point in ∂E ∩ Γrt,
W ≤ A. Therefore, also |w| ≤ λA.

By comparing J(E) with J(E ∪ Γrt), we get

J(E) ≤ J(E ∪ Γr)

J(E) ≤ J(E) + S(r) − A(r) + w(r)

0 ≤ S(r) − A(r) + w(r)

0 ≤ S(r) − (1 − λ)A(r)

By the isoperimetric inequality we know that

U
n

n+1 ≤ c(A + S + W )

Combining the above inequalities we obtain:

U
n

n+1 ≤ C S(r)

And we observe that S(r) = U ′(r) to obtain the nonlinear ODE: U ′(r) ≥
cU

n
n+1 . Moreover, U(0) = 0 and U(r) > 0 for any r > 0, then U(r) > crn+1.
This proves the first case of the lemma. The other case follows almost in

the same way but exchanging E and CE. Since in that case we have to use
the other inequality in (3), we must use that |R ∩ Γrt| ≤ c1V0 to control the
extra term.

Corollary 2.1. If (x0, 0) ∈ ∂E, then
∣∣E ∩ B+

r (x0, 0)
∣∣ ≥ c rn+1

∣∣CE ∩ B+
r (x0, 0)

∣∣ ≥ c rn+1

for every r such that |E ∩ B+
r (x0, 0)| ≤ c1V0.

Proof. The set B+
r/2(x0, 0) \ {z < δ0r/2} is either completely contained in E

or CE, or the set B+
r/2(x0, 0) \ {z < δ0r/2} ∩ ∂E is not empty.
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Either there is a point of ∂E here
or this region.is completely contained
in either E or Ec

In the first case, we apply Lemma 2.2 to obtain that both
∣∣B+

r (x0, 0) ∩ E
∣∣ ≥ crn+1

∣∣B+
r (x0, 0) \ E

∣∣ ≥ crn+1

In the second case, there is a (x0, z0) ∈ B+
r/2(x0, 0) \ {z < δ0r/2} ∩ ∂E,

then we use 2.1 for a ball centered at (x0, z0) with radius r/4 to obtain also
∣∣B+

r (x0, 0) ∩ E
∣∣ ≥ crn+1

∣∣B+
r (x0, 0) \ E

∣∣ ≥ crn+1

Corollary 2.2. If (x0, 0) ∈ ∂E, then

Area(∂E ∩ B+
r (x0, 0)) ≥ c rn

for every r such that |E ∩ B+
r (x0, 0)| ≤ c1V0.

Proof. This is a consequence of Corollary 2.1 combined with the isoperimetric
inequality.

2.3 Measure of the Free Boundary

Our goal now is to show that the boundary of the wet surface ∂(E ∩{z = 0})
in R

n has a finite n − 1 Hausdorff measure. We will do it by estimating the
area of the drop close to it.

Now we will estimate the area of the drop that is close to the floor, and
then we will obtain an estimate on the n − 1 Hausdorff measure of the free
boundary by a covering argument using the previous lemma.

Lemma 2.3. There exists a constant C such that

Area(∂E ∩ {0 < z < t}) ≤ CV
n−1
n+1 t

Proof. We will cut from E all the points for which z < t and lower it to touch
the floor again. We call F the set that we obtain (i.e. F = {(x, z) : (x, z + t) ∈
E}).
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E
F

t

Since E is bounded, |F | ≤ |E| − Ct, and thanks to (3) we have J(E) ≤
J(F ) + Ct. Moreover

J(E)−J(F ) = Area(∂E∩{0 < z < t})−
∫

z=0

β
(x

ε

)
(χE(x, 0)−χF (x, 0)) dx

Et

Over each point where E differs at level
z = 0 and z = t, there must be a piece of ∂E.

But if x belongs to the difference between E ∩ {z = 0} and E ∩ {z = t},
then there must be a z ∈ (0, t) such that (x, z) ∈ ∂E. Therefore

∫

z=0

|χE(x, 0) − χF (x, 0)| dx ≤ Area(∂E ∩ {0 < z < t})

Thus we obtain

min(1, 1 − λ)Area(∂E ∩ {0 < z < t}) ≤ CV
n−1
n+1 t

which concludes the proof.

We are now ready to establish the n − 1 Hausdorff estimate on the free
boundary.

Theorem 2.1. The contact line ∂(E ∩ {z = 0}) in R
n has finite n− 1 Haus-

dorff measure and

Hn−1
n+1 (∂(E ∩ {z = 0})) ≤ CV

n−1
n+1

Proof. We consider a covering of ∂(E ∩ {z = 0}) with balls of radius r and
finite overlapping.

From Lemma 2.2, in each ball there is at least crn

area. But by Lemma 2.3, the total area does not
exceed CV

n−1
n+1 r. Thus, the number of balls cannot

exceed CV
n−1
n+1 r−(n−1). Which proves the result.
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2.4 Limit as ε → 0

The n− 1 Hausdorff estimate of the free boundary will help us prove that the
minimizers E converge uniformly to a spherical cap as ε → 0.

Let 〈β〉 be the average of β in the unit cube: 〈β〉 =
∫
�

Q1
β dx and

J0(E) = Area(∂E ∩ {z > 0}) + 〈β〉Area(E ∩ {z = 0}) (4)

As it was mentioned before, the minimizer of J0 from all the sets with a
given volume V is a spherical cap B+

ρ such that
∣∣B+

ρ

∣∣ = V and the cosine of
its contact angle is 〈β〉.

Let us check how different J(E) and J0(E) are. Their only difference is in
the term related to the wet surface. Recall that β

(
x
ε

)
is periodic in cubes of

size ε. For every such cube that is completely contained inside the wet surface
of E it is the same to integrate β

(
x
ε

)
or to integrate the average of β. The

difference of J(E) and J0(E) is then given only by the cells that intersect the
boundary of (E ∩ {z = 0}).

But according the the n − 1 Hausdorff estimate of the free boundary, the
number of such cells cannot exceed CV

n−1
n+1 ε1−n. Since the volume of each cell

is εn we deduce:
|J0(E) − J(E)| ≤ CλV

n−1
n+1 ε

The same conclusion can be taken for B+
ρ :

∣∣J0(B+
ρ ) − J(B+

ρ )
∣∣ ≤ CλV

n−1
n+1 ε

And noticing that J(E) ≤ J(B+
ρ ) and J0(B+

ρ ) ≤ J0(E) we obtain

∣∣J0(E) − J0(B+
ρ )

∣∣ ≤ CλV
n−1
n+1 ε

The convergence of E to B+
ρ is then a consequence of the following stability

theorem whose proof we omit.

Fig. 6. In the inner cubes, it is the same to integrate β(x/ε) or its average. The dif-
ference between J0 and J is concentrated in the cells that intersect the free boundary
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Theorem 2.2. Let E ⊂ BR × [0, R) such that J0(E) ≤ J0(B+
ρ ) + δ. Then

there exists a universal α > 0 and a constant C (depending on R) such that
∣∣E
B+

ρ

∣∣ ≤ Cδα

Since E is bounded, this stability theorem tells us that
∣∣E
B+

ρ

∣∣ becomes
smaller and smaller as ε → 0. To obtain uniform convergence we have to use
the regularity properties of E. By Lemma 2.1 or 2.2, if there was one point of
∂E far from ∂B+

ρ , then there would be a fixed amount of volume of E
B+
ρ

around it, arriving to a contradiction. We state the theorem:

Theorem 2.3. Given any η > 0, for ε small enough

B+
(1−η)ρ ⊂ E ⊂ B+

(1+η)ρ

2.5 Hysteresis

Although when we consider absolute minimizers of Jε there are no surprises
in the homogenization limit, in reality this behavior is almost never observed.
When a drop is formed, its shape does not necessarily achieve an absolute
minimum of the energy, but it stabilizes in any local minimum of Jε. That is
why to fully understand the possible shapes of drops lying on a rough surface,
we must study the limits as ε → 0 of all the critical points of Jε.

Let us see a simplified equation in 1 dimension. Let u be the solution of
the following free boundary problem:

u

γ

tan γ = β

u ≥ 0 in [0, 1]

u(0) = 0

u(1) = 1

u′′(x) = 0 if u(x) > 0

du

dx+
= β

(x

ε

)
for x ∈ ∂{u > 0}

This problem comes from minimizing the functional

J(u) =
∫ 1

0

|u′|2 + β
(x

ε

)2

χu>0 dx

If β is constant, it is clear that there is only one solution, because only
one line from (1, 1) hits the x axis with an angle γ = arctanβ. However, if β
oscillates, there must be several solutions that correspond to several critical
points of Jε. There will be a solution hitting the x axis at the point x0 as long
as 1

1−x0
= β

(
x0
ε

)
. For a small ε this may happen at many points, as we can

see in Figure 7.
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several posible slopes

Absolute minimizer

Minimal solution

Maximal solution

1
1−x0

β(x/ε)

Fig. 7. Different solutions for a nonconstant β

Moreover, the set of possible slopes for the solutions gets more and more
dense in the interval [minβ,max β] as ε gets small. As ε → 0, we can get a
sequence of solutions converging to a segment with any slope in that interval.

This example shows that the situation is not so simple. When we go back
to our problem of the drop in more than one dimension, the expected possible
slopes as ε → 0 must be in the interval [arccos maxβ, arccos min β]. Exactly
what they are depends on the particular geometry of the problem. If for
example β depends only on one variable, let us say x1, then when the free
boundary aligns with the direction of x1 we would expect to obtain a whole
range of admissible slopes as in the 1D case. Let us sketch a proof in this
case that there is a sequence of critical points of the functional that do not
converge to a sphere cap as ε → 0. We will construct a couple of barriers, and
then find solutions that stay below them.

Suppose that β depends on only one variable and it is not constant. As
we have shown in the previous section, the absolute minimizers converge to
a sphere cap B+

ρ as ε → 0. Let S(x1) be a function that touches B+
ρ at one

end point x1 = −R, but has a steeper slope at that point. Let us choose this
slope S′(−R) = tan α such that cos α < max β, we can do this from the extra
room that we have since β is not constant. Now let us continue S(x1) from
that point first with a constant curvature larger than the curvature of B+

ρ ,
and then continued as linear. Since S starts off with a steeper slope than B+

ρ ,
we can make S so that S > B+

ρ for x1 > −R. Now we translate S a tiny bit
in the direction of x1 to obtain S1 so that S1 ≤ B+

ρ only in the set where S1

has a positive curvature that is larger than the one of B+
ρ . We construct a

similar function S2 in the other side of B+
ρ . See Figure 8.
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S1

S

S2

γ α

Fig. 8. Barrier functions

We will see that we can find a sequence of solutions for ε → 0 that remains
under S1 and S2. For suitable choices of ε, cos α < β(−R) and also cos α <
β(R). For such ε, we minimize the energy Jε constrained to remain below S1

and S2. In other words, we minimize Jε from all the sets E subsets of

D = {(x1, x
′) : −R ≤ x1 ≤ R ∧ z ≤ S1(x1) ∧ z ≤ S2(x1)}

If E is the constrained minimizer, it will be a critical point (unconstrained)
of Jε as long as it does not touch the graphs of S1 or S2. Since only a tiny
bit of B+

ρ is outside of D, Jε(E) will not differ from J(B+
ρ ) much when ε is

small. We can then apply the stability result of section 2.4 to deduce that
∂E remains in a neighborhood of ∂B+

ρ . The curvature of ∂E will be constant
where it is a free surface, and no larger than that value where it touches the
boundary of D. Since ∂E is close to ∂B+

ρ everywhere, the curvature of the
free part of ∂E cannot be very different from the curvature of ∂B+

ρ . Therefore
E cannot touch S1 or S2 in the part where these barriers are curved. The part
where these barriers are straight is too far away from B+

ρ , so E cannot reach
that part either. It is only left to check the boundary x1 = ±R and z = 0.
But the contact angle of S1 is smaller than arccos β(x1) at those points, and
then E cannot reach those points either. Thus, E must be a free minimizer.
Since we can do this for ε arbitrarily small, when ε → 0 we obtain limits of
the homogenization problem that cannot be the sphere cap B+

ρ because they
are trapped in a narrower strip {−R + δ ≤ x1 ≤ R + δ}.

The absolute minimizer.

Another stable solution.

Fig. 9. Different drops can be formed on irregular surfaces
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Other geometries may produce different variations. It is hard to predict
what can be expected.

We may ask at this point what is then the shape that we will observe in
a real physical drop. The answer is that it depends on how it was formed.
If the equilibrium was reached after an expansion, then we can expect to see
the largest possible contact angle. If on the other hand, the equilibrium was
obtained after for example evaporation, then we can expect to see the least
possible contact angle.

An interesting case is the drop lying on an inclined surface. If we consider
gravity, there is no absolute minimizer for the energy, because we can slide
down the drop all the way down and make the energy tend to −∞. However,
we see drops sitting on inclined surfaces all the time. The reason is that they
stabilize in critical points for the energy. On the side that points down, we
can see a larger contact angle than the one in the other side. This effect would
not be possible in a ideal perfectly smooth surface.

2.6 References

The equations of capillarity can be found in [12]. The case of constant β is
studied in [G].

The proof of Theorem 2.2, as well as the existence of a minimizer for each
ε and a comprehensive development of the topic can be found in [5].

Lemma 2.2 is not as in [5]. There a different approach is taken that also
leads to Corollaries 2.1 and 2.2. This modification was suggested by several
people.

The phenomena of Hysteresis, and in particular the case of the drop on an
inclined surface is discussed in [6]. Previous references for hysteresis are [17],
[16] and [15].

Related methods are used for the problem of flame propagation in periodic
media [3], [4].

3 The Construction of Plane Like Solutions to Periodic
Minimal Surface Equations

The second homogenization problem that we would like to discuss is related
to minimal surfaces in a periodic medium.

In two dimensions, minimal surfaces are just geodesics. Suppose we are
given a differential of length a(x,ν) in R

2, and given two points x, y we want
to find the curve joining them with the minimum possible length. In other
words, we want to minimize

d(x, y) = inf L(γ) =
∫

γ

a(z,σ) ds

among all curves γ joining x to y.
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Here s is the usual differential of length and σ the unit tangent vector. We
consider a function a(x, σ) that is strictly positive (0 < λ ≤ a(x, σ) ≤ Λ) and,
to avoid the formation of Young measures (that is: oscillatory zig-zags) when
trying to construct geodesics, it must satisfy

|v|a
(

x,
v

|v|
)

is a strictly convex cone.

We assume that a is periodic in unit cubes. By that we mean that a is
invariant under integer translations, i.e. a(x + h, σ) = a(x, σ) for any vector
h with integer coordinates. Let us also assume that a is smooth although
this property is not needed. Due to the periodicity, at large distances d(x, y)
becomes almost translation invariant, since for any vector z there is a vector
z̃ with integer coordinates such that |z − z̃| ≤

√
n

2 and

|d(x + z, y + z) − d(x, y)| = |d(x + z, y + z) − d(x + z̃, y + z̃)|
≤ √

n Λ

Another way of saying the same thing is to look at the geodesics from very
far away, that is to rescale the medium by a very small ε,

aε(x,σ) = a
(x

ε
,σ

)
.

The distance becomes almost translation invariant

|dε(x, y) − dε(x + z, y + z)| ≤ ε
√

n Λ

and as ε goes to zero we obtain an effective norm ‖x‖ = limε→0 dε(x, 0).

x

y

y + z
y + z̃

x + z
x + z̃

Fig. 10. The distance is almost translation invariant

The question we are interested to study is the following: given any line

L = {λσ, λ ∈ R}
Can we construct a global geodesic S that stays at a finite distance from L?
That is S remains trapped in a strip, around L whose width depends only on
λ,Λ.



Issues in Homogenization for Problems with Non Divergence Structure 59

A

B

Fig. 11. Line like geodesic

The answer is yes in 2D (Morse) and no in 3D (Hevlund). An inspec-
tion of Hevlund counterexample shows that, unlike classical homogenization,
where diffusion processes tend to average the medium, geodesics try to beat
the medium by choosing specific paths, and leaving bad areas untouched.

In the 80’s Moser suggested that in R
n, unlike geodesics, minimal hyper-

surfaces should be forced to average the medium, and given any plane π, it
should be possible to construct plane like minimal surfaces for the periodic
medium.

More precisely given a differential of area form, we would like to consider
surfaces S that locally minimize

Fig. 12. Hevlund Counterexample: It costs one to travel inside narrow pipes, a
large K outside. Then, the best strategy is to jump only once from pipe to pipe,
i.e., the effective norm is ‖x‖ = |x| + |y| + |z|

A∗(S) =
∫

S

a(x, ν) dA

where dA is the usual differential of area, ν the normal vector to A, and a, as
before satisfies,
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i. 0 < λ ≤ a(x, ν) ≤ Λ
ii. |v|a(x, v/|v|) is a strictly convex cone.
iii. a is periodic in x.

These conditions for a, translate in the following properties of A∗.

i. λArea(S) ≤ A∗(S) ≤ ΛArea(S).
ii. A∗(S) = A∗(τzS), for any translation τz with integer coordinates.

By a local minimizer of A∗, we mean a surface S such that if another
surface S1 coincides with S everywhere but in a bounded set B, then A∗(S ∩
B) ≤ A∗(S1 ∩ B).

Fig. 13. Plane-like minimal surface in a periodic medium (for instance a medium
with a periodic Riemman metric)

The main theorem is the following:

Theorem 3.1. There exists a universal constant M(λ,Λ, n) such that: for
any unit vector ν0 there exists an A∗ local area minimizer S contained in the
strip πM = {x : |〈x, ν0〉| < M}.

A first attempt to construct such local area minimizer is to look at surfaces
that are obtained by adding a periodic perturbation to the plane π = {x :
〈x, ν0〉 = 0}. This will be possible if π has a rational slope, or equivalently
that π can be generated by a set of n − 1 vectors e1, . . . , en−1 with integer
coordinates. The advantage of this case is that a translation in the direction
of each ej fixes π as well as the metric, so we can expect that we can find
a local A∗ minimizer that is also fixed by the same set of translations. If we
can prove Theorem 3.1 in this context and the constant M does not depend
on the vectors e1, . . . , en−1 but only on λ, Λ and dimension, then the general
case (irrational slope) follows by a limiting process.

We will work in the framework of boundaries of sets of locally finite peri-
meter.

A set of locally finite perimeter Ω is a set such that for any ball B, B ∩Ω
has a finite perimeter (as in the first part of these notes, see [13]) For such sets,
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differential of area of ∂Ω, and unit normal vectors are well defined, under our
hypothesis A∗ makes sense and is lower semicontinuous under convergence in
measure for sets.

Main Steps of the Proof

We will consider the family of sets D such that Ω ∈ D if Ω is a set of
locally finite perimeter, τej

(Ω) = Ω for every j (where τej
(Ω) := Ω + ej), and

π−
M = {x : 〈x, ν0〉 ≥ −M} ⊂ Ω ⊂ π+

M = {x : 〈x, ν0〉 ≤ M}
And within D, we will consider those sets Ω0 that are local A∗-minimizers

among sets Ω ∈ D. Since we are in the context of periodic perturbations of a
plane, a local A∗-minimizer is simply a minimizer of A∗ of the portion of ∂Ω
inside the fundamental cube given by all the points of the form λ1e1 + · · · +
λn−1en−1 + λnν0 where λj ∈ [0, 1] for j = 1, . . . , n − 1 and λn ∈ [−M,M ].

Of course, such an Ω0 is not a free local minimizer since whenever ∂Ω0

touches the boundary of π− or π+ we are not free to perturb it outwards.
Our objective is to show that if M is large enough S0 = ∂Ω0 does not see

this restriction. In other words, Ω0 would be a local A∗-minimizer not only
among the sets in D but also among all sets of locally finite perimeter.

The main ingredients are:

a) A positive density property
b) An area estimate for ∂Ω

�
�
�

�
�
�

��������

������

����
M

Ω

Fig. 14. Restricted Minimizer

c) Minimizers are ordered

Lemma 3.1 (Positive density). There are two universal constants c0, C1

> 0 such that a minimizer ∂Ω0 of A∗ satisfies

c0r
n ≤ |Ω0 ∩ Br(x0)|

|Br| ≤ C1r
n

for any x0 ∈ ∂Ω0.
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Proof. This lemma is actually the same as Lemma 2.1 in a slightly different
context. The only difference is that instead of (3), we must use now that ∂Ω0

is a minimal surface. We include the proof here for completeness.
We define

U1(r) = |Br(x0, z0) \ Ω0| S1(r) = Area(∂Br(x0, z0) \ Ω0)

U2(r) = |Br(x0, z0) ∩ Ω0| S2(r) = Area(∂Br(x0, z0) ∩ Ω0)

A(r) = Area(Br ∩ ∂Ω0)

U1

U2

S2

S1

A

Since ∂Ω0 is a minimal surface,

A(r) ≤ 1
λ

A∗(Br ∩ ∂Ω0) ≤ 1
λ

A∗(∂Br(x0, z0) \ Ω0) ≤ Λ

λ
S1(r)

Similarly A(r) ≤ Λ
λ S2(r).

We also know by the isoperimetrical inequality that U
n

n+1
1 ≤ C(A + S1).

If we combine this with the above inequality we obtain

U
n

n+1
1 ≤ CS1

But now we observe that S1(r) = U ′
1(r), so we obtain the ODE: U ′

1(r) ≥
cU

n
n+1
1 . Moreover, we know U1(0) = 0 and U1(r) > 0 for any r > 0. This

implies the result of the lemma.
In the same way, we obtain the result for U2.

Lemma 3.2. There are two universal constants c0, C1 > 0 such that a mini-
mizer ∂Ω0 of A∗ satisfies

c0R
n−1 ≤ Hn−1(∂Ω0 ∩ BR) ≤ C1R

n−1

for large values of R.

Proof. Notice that the set Ω1 = {x : 〈x, ν〉 < 0} is an admissible set in
D. Then A∗(∂Ω0 ∩ fundamental cube) ≤ A∗(∂Ω1 ∩ fundamental cube). Be-
sides, Area(∂Ω1∩fundamental cube) ≤ Area(∂Ω0∩fundamental cube). Thus,
Area(∂Ω0 ∩ BR) and Area(∂Ω1 ∩ BR) are comparable when R is large.



Issues in Homogenization for Problems with Non Divergence Structure 63

This would be the same as the result of the lemma if it was true that
the area of the boundary of a set of finite perimeter coincides with its n − 1
Hausdorff measure. Unfortunately, that is not always true. In general we can
say that the n− 1 Hausdorff measure is only greater or equal to the area. But
in this case we can compare them thanks to Lemma 3.1. If we take a finite
overlapping covering with balls of radius r centered at ∂Ω0 ∩ BR, by Lemma
3.1 plus the isoperimetric inequality, the surface of ∂Ω0 inside each ball cannot
be less than c0r

n−1. Then, there cannot be more than CRn−1/rn−1 such balls,
and the Hausdorff estimate follows.

Lemma 3.3. Minimizers are ordered, that is if Ω0 and Ω1 are minimizers,
then so are Ω0 ∪ Ω1 and Ω0 ∩ Ω1.

Proof. ∂Ω0 ∪ ∂Ω1 = ∂(Ω0 ∪ Ω1) ∪ ∂(Ω0 ∩ Ω1) and thus if we add the areas
(A∗) inside the fundamental cube of ∂Ω0 and ∂Ω1, it is the same as adding
the corresponding ones for ∂(Ω0 ∩Ω1) and ∂(Ω0 ∪Ω1). But since Ω0 and Ω1

are A∗ area minimizers, necessarily all those areas are the same and then both
Ω0 ∪ Ω1 and Ω0 ∩ Ω1 must be minimizers too.

Using Lemma 3.3, we can construct the smallest minimizer Ω in D by
taking the intersection of all minimizers in D. We point out the similarity
with Perron’s method.

Ω recuperates an important property, the Birkhoff property: If τz is an
integer translation with 〈z, ν0〉 ≤ 0 (resp. ≥ 0) then

τz(Ω) ⊂ Ω (resp. ⊃ Ω)

Indeed τz(Ω) ∩ Ω and τz(Ω) ∪ Ω are minimizers respectively for τz(πM ) and
πM , while Ω and τz(Ω) are the actual smallest minimizers.

�
�
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�

��

An integer translation

Ω

Fig. 15. Birkhoff Property. Integer translations send τz(Ω) inside Ω or Ω inside
τz(Ω) depending on whether 〈z, ν0〉 ≤ 0 or 〈z, ν0〉 ≥ 0

Lemma 3.2 tells us that for large balls BR(0), the number N of disjoint
unit cubes intersecting ∂Ω0 must be of order N ∼ C1R

n−1 independently
of M . Since the strip πM ∩ BR has roughly MRn−1 cubes, many cubes in
πM ∩ BR must be contained in Ω0 or CΩ0.
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Combining the above properties we see the following:

i) There are many clean cubes that do not intersect ∂Ω, and thus they are
contained in either Ω or its complement. Moreover, there are many such
cubes that are not too close to the boundary of πM .

ii) Any integer translation τz(Q) of a cube Q ⊂ Ω with 〈z, ν0〉 ≤ 0 is contained
in Ω. Conversely for a cube Q ⊂ CΩ, if 〈z, ν0〉 ≥ 0 then τz(Q) ⊂ CΩ.
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cube completely

Ω outside Ω

Fig. 16. If one cube is outside of Ω, then any cube whose center is above the dotted
line is outside of Ω

From i), we can find a clean cube Q that is not too close to the boundary
of πM . If this cube Q is contained in Ω and M is large, then the union of all
the translations τz(Q) for z with integer coordinates and 〈z, ν0〉 ≤ 0 covers a
strip around the bottom of πM (see Figure 16 upside down). But then we have
a thick clean strip, which means that we could translate Ω a unit distance
down and still have a local minimizer, which would contradict the fact that
Ω is the minimum of them.

Therefore, we must be able to find a clean cube contained in CΩ. Arguing
as above, this implies that there is a complete clean strip around the top of
πM (like in Figure 16). Thus, we are free to perturb upwards. Moreover, we
can lift the whole set Ω by an integer amount and obtain another minimizer
that does not touch the boundary of πM , and then Ω is a free minimizer.

In this way we prove the theorem when π has a rational slope. Since M
depends only on λ, Λ and dimension, we approximate a general π by planes
with rational slopes and prove the theorem by taking the limit of the respective
minimizers (or a subsequence of them).

3.1 References

The content of this part is based on the joint paper with Rafael de la Llave [2].
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The problem had been proposed by Moser in another C.I.M.E. course
[M1] (See also [M2], [18]). The interest of constructing line like geodesics was
related to foliating the torus with them or at least laminate it.

4 Existence of Homogenization Limits for Fully
Nonlinear Equations

Let us start the third part of these notes with a review on the definitions of
fully nonlinear elliptic equations.

A second order fully nonlinear equation is given by an expression of the
form

F (D2u,Du, u, x) = 0 (5)

for a general nonlinear function F : R
n×n ×R

n ×R×R
n → R. For simplicity,

we will consider equations that do not depend on Du or u. So they have the
form

F (D2u, x) = 0 (6)

The equation (6) is said to be elliptic when F (M +N,x) ≥ F (M,x) every
time N is a positive definite matrix. Moreover, (6) is said to be uniformly
elliptic when we have λ |N | ≤ F (M +N,x)−F (M,x) ≤ Λ |N | for two positive
constants 0 < λ ≤ Λ and where |N | denotes the norm of the matrix N . The
simplest example of a uniformly elliptic equation is the laplacian, for which
F (M,x) = tr M .

Existence, uniqueness and regularity theory for uniformly elliptic equations
is a well developed subjet. It is studied in the framework of viscosity solutions
that is a concept that was first introduced by Crandall and Lions for Hamilton
Jacobi equations. We will consider only uniformly elliptic equations thoughout
this section.

A continuous function u is said to be a viscosity subsolution of (6) in an
open set Ω, and we write F (D2u, x) ≥ 0, when each time a second order
polynomial P touches u from above at a point x0 ∈ Ω (i.e. P (x0) = u(x0)
and P (x) > u(x) for x in a neighborhood of x0), then F (D2P (x0), x0) ≥ 0.
Respectively, u is a supersolution (F (D2u, x) ≤ 0) if every time P touches u
from below at x0 then F (D2P (x0), x0) ≤ 0. For the general theory of viscosity
solutions see [8] or [1].

In the same way as for subharmonic and superharmonic functions, sub- and
supersolutions of uniformly elliptic equations satisfy the comparison principle:
if u and v are respectively a sub- and supersolution of an equation like (6)
and u ≤ v on the boundary of a bounded domain Ω, then also u ≤ v in the
interior of Ω.

Suppose now that we have a family of uniformly elliptic equations (with the
same λ and Λ) that do not depend on x (are translation invariant): Fj(D2u) =
0 for j = 1, . . . , k. Let us suppose that at every point in space we choose one of
these equations with some probability. To fix ideas, let us divide R

n into unit
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cubes with integer corners and in each cube we pick one of these equations
at random with some given probability. The equation that we obtain for the
whole space will change on each cube, it will not look homogeneous, it will
not be translation invariant, and it will strongly depend on the random choice
at every cube. However if we look at the equation from far away, somehow
the differences from point to point should average out and we should obtain
a translation invariant equation.

From close, we see black and white squares From far, we just see gray

In each white square we have F2(D2u) = 0
In each black square we have F1(D2u) = 0

Fig. 17. A chessboard like configuration

Let (S, µ) be the probability space of all the possible configuration. For
each ω ∈ S we have an x-dependent equation

F (D2u, x,w) = 0

What we would expect is that if we consider solutions uε
ω of the equation

(with same given boundary values)

F (D2uε
ω,

x

ε
, w) = 0 (7)

with probability 1, they would converge to solutions u0 of a translation in-
variant (constant coefficients) equation

F (D2u0) = 0

thus, in this limiting process that corresponds to looking at the medium from
far away, the differences from point to point should dissapear. An moreover,
it should lead to the same uniform equation for almost all ω.

Our purpose is to prove the existence of this limiting equation.
The appropriate setting for the idea of mixed media that from far away

looks homogeneous is ergodic theory. Out assumptions are:
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1. For each ω in the probability space S, µ we have a uniformly elliptic equa-
tion

F (D2u, x, ω) = 0

defined in all R
n.

2. Translating the equation in any direction z with integer coordinates is the
same as shifting the configuration ω, i.e.

F (M,x − z, ω) = F (M,x, τz(ω))

and we ask this transformation ω �→ τz(ω) to preserve probability.
3. Ergodicity assumption: For any set S ⊂ S of positive measure, the union

of all the integer translations of S covers almost all S

µ

(
⋃

z∈Zn

τz(S)

)
= 1

Under these conditions, we obtain the following theorem:

Theorem 4.1. There exists an homogenization limit equation

F̃ (D2u0) = 0

to which solutions of the problem (7) converge almost surely.

4.1 Main Ideas of the Proof

When we have a translation invariant equation F (D2u) = 0, if u is a solution
of such equation, that means that for each point x, the matrix D2u(x) lies
on the zero level set {M ∈ R

n×n : F (M) = 0}. We can describe the equation
completely if we are able to classify all quadratic polynomials P as solutions,
subsolutions or supersolutions, because that would tell us for what matrices
M , F (M) is equal, greater or less than zero.

Let us choose a polynomial P0 in a large cube QR and let us compare
P0 + t |x|2 with the solution of

F (D2u, x, ω) = 0 in QR

u = P0 + t |x|2 in ∂QR

If t is very large, P0 + t |x|2 will be a subsolution of the equation and thus
P0 + t |x|2 ≤ u in QR. Equally, if λ is very negative then P0 + t |x|2 ≥ u in
QR. For some intermediate values of t, P0 + t |x|2 and u cross each other, so
for these values it is not so clear at this point if P0 + t |x|2 is going to be a
sub or supersolution of the homogenization limit equation.
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Let us forget about the term t |x|2 for a moment. Given a quadratic poly-
nomial P =

∑
ij Mijxixj , we want to solve the equation

F (D2uε,
x

ε
, w) = 0 in Q1

uε = P on ∂Q1

(8)

for a unit cube Q1. Subsolutions of our homogenized equations are those poly-
nomials for which uε tends to lie above P as ε → 0. Similarly, supersolutions
are those for which uε tends to be below P . If the polynomial P is borderline
between these two behaviors, then it would be a solution of the homogeniza-
tion limit equation.

It is important to notice that we can either think of the problem at scale ε
in a unit cube (with uε) or we can keep unit scale and consider a large cube.
To look at the equation (8) for ε → 0 is equivalent to keep the same scale
and consider larger cubes. Indeed, if we consider u(x) = 1

ε2 uε(εx), then for
R = ε−1, we have

F (D2u, x,w) = 0 in QR

u = P in ∂QR

(9)

For a cube QR of side R. It is convenient to choose R to be integer, in order
to fit an integer number of whole unit cubes in QR. Now instead of taking
ε → 0, we can take R → +∞. We will be switching between these two points
of view constantly.

Let v be the solution of the corresponding obstacle problem. The function
v is the least supersolution of the equation (9) such that v ≥ P :

F (D2v, x, w) ≤ 0 in QR

v = P in ∂QR

v ≥ P in QR

F (D2v, x, w) = 0 in the set {v > P}

(10)

v

u

P

Fig. 18. The polynomial P , the free solution u and the least supersolution above
the polynomial v
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We also call vε = ε2v(x/ε), the solution of the obstacle problem at scale ε.
Let ρ be the measure of the contact set {v = P} in QR:

ρ(QR) = |{v = P}|

The value of ρ controls the difference between u and v. A small value of
ρ means that v touches P at very few points, and thus it is almost a free
solution. The idea is that if ρ remains small compared to |QR| as R → +∞,
then P would be a subsolution of the homogenized equation. A large value of
ρ means that v touches P in many points. If ρ

|QR| → 1 as R → ∞, that would
mean that P is a supersolution. Moreover, we will show that every time ρ

|QR|
converges to a positive value, then uε → P .

The first thing we must prove is that ρ
|QR| indeed converges to some value

as R → +∞ (or ε → 0). Notice that ρ
|QR| is the measure of the contact set at

scale ε: |{vε = P}|.
In this problem, what plays the role of the Birkhoff property is a subad-

ditivity condition for ρ, as the following lemma says.

Lemma 4.1. If a cube Q is the disjoint union of a sequence of cubes Qj, then

ρ(Q) ≤
∑

j

ρ(Qj)

Proof. Let v be the solution of the obstacle problem in the cube Q that
coincides with P on ∂Q. Let vj be the corresponding ones for the cubes Qj .
Since v ≥ P in Q, v ≥ vj on ∂Qj . Then by comparison principle v ≥ vj in Qj .
Therefore the contact set {x ∈ Q : v(x) = P (x)} is contained in the union of
the contact sets {x ∈ Qj : vj(x) = P (x)}, and the lemma follows.

This subadditivity condition plus the ergodicity condition and

ρ(QR(x − z), ω) = ρ(QR(x), τz(ω)

Q1 = Q2 ∪ Q3

P

Q2

vQ2
vQ1

Q1

Q

vQ

Fig. 19. Pay attention to the contact sets: ρ is subadditive
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are the conditions for a subadditive ergodic theorem (which can be found in
[9]) that says that as R go to infinity ρ(QR(x0)

|QR(x0)| converges to a constant h0 with
probability 1. We will characterize polynomials P as sub- or supersolutions
according to whether h0 = 0 or h0 > 0.

Lemma 4.2. If h0 = 0, then

lim inf
ε→0

uε ≥ P

Proof. Using the Alexandrov-Backelman-Pucci inequality (See for example
[1]), we can obtain a precise estimate of vε − uε depending on ρ:

sup
QR

vε − uε ≤ CRρ1/n

where C is a universal constant.

v

u

P

Fig. 20. If the contact set if small, then u and v are close

If h0 = 0, as ε goes to zero we have:

uε(x) ≥ vε (x) − Cερ1/n

≥ vε (x) − C

(
ρ

|QR|
)1/n

≥ P − o(1)

Then, as ε → 0, uε tends to be above P , and we finish the proof of the lemma.

The last lemma suggests that P is a subsolution of the homogenization
limit equation if h0 = 0. Now we will consider the case h0 > 0. In order to
show that in that case uε tends to be below P , we have to use that vε separates
from P by a universal quadratic speed depending only on the ellipticity of the
equation.
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Quadratic upper bound

P

v

Fig. 21. Quadratic separation

The quadratic separation from the contact set is a general characteristic
of the obstacle problem. What it means is that if vε(x0) = P (x0), then

vε(x) − P (x) ≤ C |x − x0|2

for a constant C depending only on λ, Λ and dimension.
The quadratic separation in this problem plays the role of the positive

density in the previous ones.

Lemma 4.3. If h0 > 0, then

lim sup
ε→0

uε ≤ P

Proof. We will show that the contact set {vε = P} spreads all over the unit
cube. Then, using the quadratic separation we show that vε → P as ε → 0.

We want to show that if we split the unit cube in m smaller cubes of
equal size, for any value of m, then for ε small enough there is a piece of the
contact set in each small cube. We know that the measure of the contact set
|{x ∈ Q1 : vε(x) = P (x)}| converges to h0 > 0. The unit cube Q1 is split into
m smaller cubes. Let Q be any of these cubes, we have vε ≥ P on ∂Q, so vε is a
supersolution of the corresponding obstacle problem in Q and |{x∈Q:vε=P (x)}|

|Q|
cannot converge to any value larger than h0 as ε → 0. If in some cube the
contact set is empty {x ∈ Q : vε(x) = P (x)} = ∅, then, since the whole
contact set covers a proportion h0 of the measure of the unit cube, there
must be one of the smaller cubes where the contact set covers more than h0

times the measure of this cube (at least for a sequence εk → 0). And that is a
contradiction, which means that the contact set {vε = P} must spread all over.

But if {vε = P} spreads all over the unit cube, then vε converges
to P uniformly due to the universal quadratic separation. Since vε ≥ uε,
lim supε→0 uε ≤ P .

So, now we have a way to classify every polynomial as subsolution to
the homogenization limit equation (F̃ (D2P ) ≥ 0) if h0 = 0 or supersolution
(F̃ (D2P ) ≤ 0) if h0 > 0. There is still a little bit of ambiguity because a
polynomial could be both things at a time (if it is precisely a solution). That
is easily solved by considering P0 + t |x|2 for small values of t. We say that P0
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{v = P}

Fig. 22. Each small cube must contain about the same amount of contact set when
ε << 1

is a sub or supersolution if we can check it for P0 + t |x|2 for arbitrarily small
values of t.

In this way we are able to completely characterize the zero level set of F̃ .
Moreover, if we want to construct the complete function F̃ , then we have

to identify all its level sets, not only the zero level set. To do that we just
consider the problem:

F (D2uε,
x

ε
, w) − t = 0

to describe the level set F̃ (M) = t. And we recover F̃ completely.
Now, based on our construction of F̃ , it is easy to show that for any

boundary data, problem (7) will converge with probability 1 to a function u0

that satisfies comparison with polynomials in the right way to be a viscosity
solution of F̃ (D2u0) = 0. We finish with the theorem:

Theorem 4.2. Let uε be the solutions to

F (D2uε,
x

ε
, w) = 0 in Ω

uε = g in ∂Ω

(11)

for a domain Ω and a continuous function g on ∂Ω. Then as ε → 0, almost
surely uε converge uniformly to a function u that solves

F̃ (D2u) = 0 in Ω

u = g in ∂Ω
(12)

Proof. Due to the uniform ellipticity of F , the functions uε are uniformly
continuous, and therefore by Arzela-Ascoli there is a subsequence uεk that
converges uniformly to a continuous function u.

Let us suppose that a quadratic polynomial P touches u from above at a
point x0. Then we can lower P a little bit by subtracting a small constant δ1
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such that P (x0) < u(x0) and P (x) > u(x) for x in the boundary of a small
cube Qδ2(x0) centered at x0.

Since uεk converge to u uniformly, the same property holds for them.
Namely, for large enough k

P (x0) ≤ uεk(x0) − δ1

P (x) > uεk(x) for x ∈ ∂Qδ2(x0)

Let wk be the solutions to

F (D2wk,
x

ε
, w) = 0 in Qδ2(x0)

wk = P in ∂Qδ2(x0)
(13)

By comparison principle, wk ≤ uεk , then wk(x0) ≤ P (x0)− δ1 for large k.
So, we can apply Lemma 4.3 to obtain that the value of h0 corresponding to
P cannot be positive. Then F̃ (D2P ) ≥ 0.

In a similar way, we can show that if a quadratic polynomial touches u
from below then it must be a supersolution of F̃ .

Therefore u must be a viscosity solution of (12). Since (12) has a unique
solution, all the convergent subsequences of uε must converge to the same
limit. Thus the whole sequence uε converges uniformly to u.

4.2 References

This part in homogenization is based on the joint work with Panagiotis
Souganidis and Lihe Wang [7], where actually a more complete theorem is
proved. The fact that equations that depend on ∇u are considered in that
paper adds some extra complications.

Some of the ideas have their roots in the work of Dal Maso and Modica
([9] and [10]) for the variational case.

Periodic homogenization for second order elliptic equations was considered
in [11].
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