
Preface

Negotiation mechanisms have been studied widely in the field of multi-agent
systems. They possess a variety of features that enable agents be negotiate
with each other even in open environments. However, mainly because of lim-
ited computational power, there are several assumptions that traditionally
limit the degree of openness. Recent studies have tended to focus on com-
pletely open and highly uncertain environments that apply agent systems to
the real world. For example, in emergency rescue domains, we cannot expect
to know when and where a fire starts and when humans are likely to be in-
jured. Also, in Internet auctions, there can be shill bids since there are many
unauthenticated participants. Nowadays, we can employ machines with large
computational power to compute an optimal way for agents to negotiate, even
in completely open and highly uncertain environments. For the practical use of
multi-agent systems in the real world, the reliability of each agent’s behavior
is essentially required. Concretely, agents must obtain the most appropriate
solution/solutions based on rational, robust, and secure negotiation among
multiple agents even if the environment is intractable. We solicit papers on
all aspects of such negotiation mechanisms in multi-agent systems, including
multi-issue negotiations, concurrent negotiations, strategy-proof mechanisms,
rational argumentation, auctions and voting, and so on. These issues are be-
ing explored by researchers from different communities in multi-agent sys-
tems. They are, for instance, being studied in agent negotiation, multi-issue
negotiations, auctions, mechanism design, electronic commerce, voting, se-
cure protocols, matchmaking and brokering, argumentation, and co-operation
mechanisms.
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1 Introduction

Multi-issue negotiation protocols have been studied very widely and represent
a promising field since most of negotiation problems in the real-world are
complex ones including multiple issues. In particular, in reality, issues are
constrained each other. This makes agents’ utilities nonlinear. Further, even in
collaborative situation, to get an agreement, agents need to act competitively
because of their self-interested nature.

For example, when two designers collaboratively design a new car, there are
multiple issues, e.g., color, engine, style, etc. They have preference over each
issue, and there are constraints between the issues as well. For example, if the
size of tires is large and the body style is R.V., then the size of the engine needs
to be larger than 2,500 cc. This kind of interdependency between issues is
ubiquitous in the real-world. The interdependency among issues makes agents’
utilities very complex. This complex utility eventually can not be modeled as
a simple linear utility function. We have to model such complex utility as
completely non-linear utility function. In addition, a constraint between the
style and the size of the engine can be different between designer’s companies.
Because these companies often hope to use their own parts for a new car, the
designers are now in a competitive situation. Agents thus need to compete to
get a desirable agreement over constraints as well as over issue values.

We propose an auction-based multiple-issue negotiation protocol among
nonlinear utility agents. In order to make the protocol scalable, we first employ
a sampling method for agents. By sampling its own utility space, an agent
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can reduce its search cost. Also, the simple sampling often fails to find better
solutions. Thus, in our protocol, agents adjust their sampled points firstly by
using a search technique. After that, agents submit bids. Since we assume a
huge utility space, if these bids are based on contract points, there could be too
much bids. Thus, in our model, agents make bids on a set of constraints among
issue values. This bid expression can drastically reduce the computational cost.
The mediator finds a combination of bids that maximizes social welfare. Our
experimental results show that our method can outperform the existing simple
methods in particular in the huge utility space that can be often found in
the real-world. Further, theoretically, our negotiation protocol can guarantee
to find the optimal point if the sampling rate is sufficiently small and the
threshold for selecting bids is 0.

There are a lot of previous works on multi-issue negotiation [1–6]. These
efforts differ from our work since our protocol is attacking against handle
completely nonlinear utilities. Most existing work also assumes that agents
are totally collaborative or have linear utility functions. Our work focuses
on mainly competitive agents and nonlinear utility functions. The details are
shown in Sect. 5.

The rest of the paper is organized as follows. First we describe a model of
nonlinear utility multi-issue negotiations. Here we define the nonlinear utility
function. Second we propose a bargaining protocol that achieves a desirable
solution in nonlinear utility multiple issue negotiations. Here, we propose an
auction based bargaining protocol and a heuristic method for speeding up the
protocol. Third we demonstrate the experimental results. Then, we compared
our work with the existing work to clarify the features of our method, and
concluding remarks are given in the final section.

2 A Negotiation Model Based on Nonlinear Utility

2.1 The Model

We consider the following situation with n agents who want to reach an agree-
ment. An agent is represented by ai ∈ N . There are m issues, sj ∈ S, for
negotiation. The number of issues represents the number of dimensions of the
utility space. For example, if there are 3 issues, the utility space becomes 3
dimensional spaces. An issue sj has a value, [0,X], i.e., sj ∈ [0,X]. There are l
constraints, ck ∈ C. A constraints represents a hyper dimensional solid among
multiple issues. Figure 1 shows an example of a constraint between issue 1 and
issue 2. This constraint has value of 55, and hold if the issue values for issue
1 are [3, 7] and the issue values for issue 2 are [4, 6].

A contract is represented by a vector s = (s1, . . . sm). Agent ai has value
vai

(ck, s) on a constraint ck with a contract s. vai
(ck, s) has a positive value if

constraint ck is satisfied on contract s. In the real-world, vai
(ck, s) varies very

much among different contacts and different constraints. This makes agent’s
utility space intractably nonlinear.
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Fig. 1. Example of a constraint

2.2 Nonlinear Utility

Figure 2 shows an example of a nonlinear utility space. There are 2 issues,
i.e., 2 dimensions and X = 100 for each issue. Also, there are 50 constraints
that related to 1 issue and 100 constraints that related to 2 issues. The utility
space is completely bumpy and there are many hills and valleys.

If we use a linear expression, agent’s utility is defined as follows: uai
(s) =∑

ck∈C vai
(ck, s). This expression looks linear. However, agent’s utility space

is nonlinear in the sense that the utility does not have a linear expression
against contract s. The interdependency among issues, which is represented
as a constraint ck, makes the utility space non-linear in terms of contracts.
This is because the utility of higher dimensional constraints that depend on
multiple issues can not be expressed by a linear function on a single issue.
This point differs very much from the other existing works in which any de-
pendency among issues are not assumed. Therefore, in our model, an utility
space has a totally bumpy shape, which can not be represented a usual func-
tional representation.

Another important point is that vai
(ck, s) can not be known from the other

agents. Even agent ai does not know the value when he calculates the value.
This means that in the model agents are situated under an uncertain envi-
ronment. Our protocol can be employed for such an uncertain environment.

On the contrary, there could be a simple nonlinear utility function that,
for example, can be defined as like ui = f(s1) ∗ g2(s2). This function is non-
linear. However, this kind of nonlinear function constructs a simple shape
utility space in which the optimal contract is a single or optimal contracts
can be easily calculated from utility functions and the contracts.

Finding an optimal contract for a single agent in the utility space such
as Fig. 2 is actually a multi objective optimization problem. Simulated an-
nealing and evolutionary algorithms have been developed in the AI field and
OR field for such optimization problem. However, we consider negotiation
among two or more agents. Agents do not want to reveal their preference very



28 Takayuki Ito et al.

Fig. 2. Example of nonlinear utility space for a single agent

much. Thus, we can not just employ such methods, i.e., simulated annealing
and evolutionary algorithms, because such methods assume to reveal such
preferences.

2.3 Finding Pareto Efficient Contracts

The objective function for our protocol can be described as follows:

arg max
s

∑

ai∈N

uai
(s) (1)

Namely, our protocol tries to find a contract point that maximizes social
welfare, i.e., the total utilities of agents. Such a contract point eventually
satisfies Pareto Efficiency.

If we use an exhaustive search, when there are M issues and X values for
each issue, the utility space becomes XM . This space is actually intractable
when the size M and the size X become large. Thus, in our protocol, we
propose to employ a sampling method for sampling such a huge utility space.
There can be a case in which sampling fails to get accurate contract points.
Thus we also propose to employ adjusting method for sampling. Namely, in
our protocol, after sampling some points, an agent conduct simple searches
from each point. This method perform very well for huge utility spaces.
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3 Auction-Based Negotiation Among Agents

Our auction-based negotiation protocol is defined by the following four steps.

Step 1: Sampling Each agent gets samples in its utility space. The sampling
rate α is defined by the protocol designer or the mediator. Figure 3 shows this
concept. If the sampling rate α is not adequate, it often fails to get adequate
contract points as sampling points.

Step 2: Adjusting Each agent adjusts samples by using a simulated an-
nealing method. This step helps to adjust the sampling point. Only sampling
often fails to get more feasible contracts without this step. From each sam-
pled contract point, an agent conducts a simulated annealing method. In fact,
this conducts multiple simulated annealing in the utility space. Also, this step
make it possible to increase the sampling rate at step 1. Figure 4 shows this
concept in ideal situation. By simulated annealing each sampling point may
move to its close optimal contract point.

Step 3: Bidding Each agent make bids. For each sampled contract points,
an agent valuates its utility. If the utility is larger than the threshold δ, then
he packs a set of constraints into a single bid. The bid value is the value of
the contract point which is a sum of values of constraints included in the bid.
The threshold δ is defined by the protocol designer or the mediator. Figure 5
shows this concept.

Step 4: Maximizing Social Welfare The mediator finds combinations of bids
that shares at least some of contract points (consistency) and maximize the
total value of the bids (maximization). In this step, the mediator can employ a
breadth-first search with branch cutting based on the above consistency. The
size of the search space of the mediator depends on the number of constraints.
The number of constraints can be much less than the number of the contract
points. Thus, this constraint-based finding mechanism for the mediator can

Contracts

Utility

Fig. 3. Sampling utility space
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Contracts
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Fig. 4. Adjusting sampled contract points
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Fig. 5. Making bids

reduce the computational cost very much compared with an exhaustive search.
Figure 6 shows this concept.

It is clear that we have the following proposition on the completeness.

Proposition 1 (Completeness). If the threshold δ is 0 and the sampling
rate α is 1, the proposed method can achieve the optimal point.

Proof. If the threshold δ is 0, then the agent submits all possible bids on the
sampled contract points. If the sampling rate α is 1, then the agent searches
all possible contracts. Therefore, if δ = 0 and α = 1, then the agent submits
all possible bids on the all possible contracts. Thus, the mediator searches all
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Fig. 6. Maximizing social welfare

possible combinations of the submitted bids that maximizes social welfare,
i.e., the sum of utilities among agents. This process is exactly same as an
exhaustive search in which the mediator searches the contract points that
maximizes the sum of utilities among agents.

In fact, the completeness and the computational cost are a trade-off rela-
tion. Thus, we have to carefully adjust the threshold and the sampling rate
based on the figure of utility spaces.

4 Preliminary Experiments

4.1 Setting

We conducted several experimentations to show the effectiveness and scala-
bility of our approach.

We compared our approach with the other several approaches. Concretely,
we constructed two search methods and three negotiation methods. The two
search methods include an exhaustive search and a simulated annealing search.
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The three negotiation methods include the local search-based negotiation, the
negotiation method with simple sampling, and the negotiation method with
SA-sampling.

The search methods basically find Pareto efficient points in order to eval-
uate our proposed methods. The exhaustive search method tries to search all
possible contracts. The simulated annealing search method employs a simu-
lated annealing search [7] in which the initial temperature is 50.0, decreasing
the temperature 1/50 for each step, and stop if the temperature reaches at 0.
The initial contract point is randomly selected. The important point is that
the search methods have the entire utility spaces that aggregates all utilities
among agents. On the contrary, the negotiation methods do not assume to
have such an entire information since we assume agents reveal their informa-
tion as less as possible.

The local search-based negotiation in the negotiation methods employs a
local search mediator who starts from a random contract point. Then, the local
search mediator randomly select a next candidate point from its neighbors. If
all agents can agree to move to the next candidate point, then the mediator
moves to the next point. Each agent makes an agreement if the next contract
has higher value than the previously accepted agreement for him/her. This
method obviously tend to stuck into local optimal points. The negotiation
method with simple sampling is the negotiation method that does not use the
step 2, in which sampling points are adjusted by simulated annealing. This
method often fails to find adequate sampling points. The negotiation method
with SA-sampling is the method we proposed in the previous section.

Out negotiation methods has a lot of parameters. In this experiments, we
aim to show the scalability of our negotiation method with SA-sampling with
respect to efficiency. Thus we set the parameters as follows:

• Number of agents: 3.
• Number of issues: 1 to 10.
• Number of constraints for each dimension: 5. This means that the number

of the constraints that related on 1 issues is 5, 2 issues is 5, . . . , and 10
issues is 5.

• The domain of the issue value is [0, 10].
• The maximum value for a constraint is 100.
• The maximum range for feasible issue value is 7. This means that there

may be a constraints that is hold under the issue values from 3 to 10.
• The sampling rate for negotiation methods: 10. This mean that for one

dimension the method samples a single point. This is fairly large sampling
rate since the maximum issue value is 10.

• The threshold for making bids in the negotiation methods: 100.

This parameter setting is one of many possibilities. For example, to show
the scalability of the negotiation method with SA-sampling, we can set the
sampling rate and the threshold more carefully.
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4.2 Results

Figure 7 shows the actual social welfare when varying the number of issues.
As you can see in the figure, the exhaustive search terminated after 7 is-
sues because of its high computational cost. The negotiation method with
SA-sampling outperforms the other negotiation methods. Further, interest-
ingly, even the negotiation method with SA-sampling does not have the entire
information of all agents’ utility space, this method outperforms SA search
method when the number of issues is large. This is more clear in Fig. 8.

In Fig. 8, we show the optimality rate compared with simulated annealing
as an efficiency criterion. The exhaustive search should be such a criterion.
However, the exhaustive search can not be employed in the huge utility spaces.

Impressively, when the number of issues is larger than 4, the negotia-
tion method with SA-sampling outperform the simulated annealing search.
The reason can be described as follows: When the utility space is huge, the
simulated annealing search often fails into local optimal. However, since the
negotiation method with SA-sampling can have several points to start with,
the risk to lose optimal points is lower than a single simulated annealer even
if the single simulate annealer has the global search space among agents.

In the utility space is small, the negotiation method with SA-sampling
is lower than the centerized simulated annealing. Actually, we could expect
this fact. When the utility space is small, both methods can find optimal
points. However, the negotiation method does not know the entire optimality.
In the other words, in the negotiation method, although each agent can get
the private optimal point by each simulated annealing-based sampling, such
the private optimal points does not necessarily the global optimal points.

Fig. 7. Result 1: Social welfare
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Fig. 8. Result 2: Efficiency compared with simulated annealing

Fig. 9. Result 3: CPU time

Figure 9 shows the computational efficiency for each method. The exhaus-
tive search is obviously worst. Simulated annealing search, local search-based
negotiation and the negotiation without SA-sampling are computationally ef-
ficient. In terms of the negotiation with SA-sampling, when the number of
issues is larger than 9, it needs a significant computational cost. This is be-
cause the number of bids are drastically increased in the parameters we set in
this experiment. We are considering the two future directions. One is to tune
the parameters. For example, if we set the threshold for identifying bids to a
value that depends on the number of issues, it may have good results in terms
of the computational cost. The other is to add the algorithm that can select
more feasible bids.
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5 Related Work

There are a lot of previous work on multi-issue negotiation [1–6]. These efforts
differ from our work since our protocol is attacking against handle completely
nonlinear utilities. We can find several previous efforts focus on nonlinear
utilities.

Klein et al. [8] proposed an agent negotiation method for nonlinear utility
models. A mediator agent effectively manages negotiation between two agents
so that they reach a Pareto optimal agreement point. Our work originally
inspired by this work. The difference is that we employ auction style method
so that two or more agents can participate in our negotiation model.

Ito et al. [9] proposed a simple negotiation method for multi-issue negoti-
ation and extend it for nonlinear utility domain. The protocol is based on a
combinatorial auction protocol. However, it did not show sufficient result on
nonlinear utility domain.

Lin et al. [10] proposed bilateral multi-issue negotiations for nonlinear
utility models. They explored a range of protocols based on mutation and
selection with binary contracts. (1) Multiple text proposal exchange: Each
agent maintains a population of contracts, and proposes several of them at
once, optionally annotated with that agent’s preference information. At each
step, one updates one’s own population by selecting from the result of recom-
bining the other agents’ counter proposals with one’s current population. Each
agent keeps trying to increase contract utility, so it is a multiple negotiation
text protocol rather a concession protocol. (2) Mediated multiple text nego-
tiation: a mediator starts by generating a random set of possible contracts.
Each agent identifies the subset it prefers. These subsets are recombined and
mutated, forming a new set of candidates that the agents selects from. At
some point, the agents rank order their preferred subsets, and the highest
match represents the final agreement. The paper does not describe what kind
of utility functions are used, nor does it present any experimental analyses. It
is therefore unclear whether this strategy enables sufficient exploration of the
strategy space to find win-win solutions with multi-optimal utility functions.
But the idea does seem interesting.

The followings efforts focus on linear utility models.
Fatima et al. [11] proposed an agenda-based framework for multi-issue

negotiation. They discussed mainly how to decide the order that issues should
be negotiated in, which impacts efficiency and fairness. Issues are independent.
The difference is that we employ auction methods and discuss the extension
to nonlinear utility cases.

Jonker et al. [12–14] propose an agent architecture for multi-issue negoti-
ation. However, they use a linear utility (weighted sum) model.

Luo et al. [15] proposed that proposal exchange approach wherein tradeoffs
as well as concessions are used to seek a Pareto-optimal solution. Contracts are
represented using (gradually tightening) fuzzy constraints so they represent a
subspace rather than a single point. They model negotiation as a distributed
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constraint optimization problem with self-interested agents. Agents exchange
proposals, relaxing their constraints over time, until there is an agreement.
Preferences are modeled as prioritized fuzzy constraints (over one or more
issues) are so they can be partially satisfied. Since they do allow one to express
preferences over multiple attributes (e.g., cheap and distant is preferred over
expensive and close) this does produce a multi-optimum utility function. They
claim their algorithm is provably optimal, but do not discuss computational
complexity and provide only a single small-scale example. The main difference
is that we model multiple issues negotiation as generalized CSP, and assume
competitive agents.

In Barbuceanu and Lo [16], a contract is defined as a goal tree, with a set
of on/off labels for each goal (this defines the contract). A goal may represent,
for example, the desire that an attribute value be within a given range. There
are constraints that describe what patterns of on/off labels are allowable, as
well as utility functions that describe, for each agent, what the utility of a
given goal tree labeling is. This is essentially a binary-valued contract, except
that the goal tree structure imposes some additional internal consistency con-
straints on what goals can be on or off (e.g., if a goal is on, so are all of its’
subgoals; also, for disjunctive branches, only one of the subgoals can be on
at a time). The total utility of a contract (they call it a set of on/off goal
labels) is the sum of the utilities for each goal. They use a constraint solver
algorithm to find the contracts that maximize the goal utilities plus satisfy as
many constraints as possible, producing a multiple optimal utility function.
It appears that all constraints are viewed as equally important. They claimed
that their method is scalable. But very small example is shown and no the-
oretical analysis was shown. The main difference is that we employ auction
method for resolving conflicts among competitive agents.

In Ito and Shintani [17, 18], a persuasion protocol was proposed. In the
paper, people’s preferences over multiple issues are quantified as a weighted
hierarchy, using the Analytic Hierarchy Process (AHP). The weighted hier-
archy involves problem issues and solution candidates. Each issue and solu-
tion candidate has a weighted values. In addition, by utilizing human’s fuzzy
weights, a software agent can change its preference when another agent per-
suades it to. Agents are not totally competitive in this study.

Distributed constraint satisfaction problem (DisCSP) [19] is a constraint
satisfaction problem with distributed agents. DisCSP has not been assuming
that agents are cooperative or competitive. However, in the DisCSP litera-
ture, the main results assume agents are cooperative [20, 21]. The difference
is that we assume a generalized CSP among competitive agents, and give a
negotiation protocol for that situation.

6 Conclusions and Future Work

Multi-issue negotiation protocols have been studied very widely. However,
there have been very few work that focus on nonlinear utility spaces. In
this paper, we assumed agents have nonlinear utility spaces. We proposed
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an auction-based multiple-issue negotiation protocol among nonlinear utility
agents. Our negotiation protocol employs several techniques, i.e., adjusting
sampling,auction-based maximization of social welfare. Our experimental re-
sults show that our method can outperform the existing simple methods in
particular in the huge utility space that can be often found in the real world.
Further, theoretically, our negotiation protocol can guarantee the complete-
ness if some conditions are satisfied.

Interestingly, the exhaustive search often fails and cannot terminate if the
utility space becomes huge. Also, when the utility space becomes huge and the
number of constraints is not large, then the simulated annealing search often
drop into local optimal. Even such cases our proposed method, the negotiation
method with SA-sampling, can find approximately optimal points (we can not
validate the points are optimal because the exhaustive search does not work
in such a huge utility space).

In terms of future work, we push to scale up our method. If we increase
the threshold for identifying bids, this reduces the number of bids and thus
the winner determination computational cost decreases. We may also be able
to take fewer samples, with hotter annealing at each sample point, since we
expect fewer peaks if the threshold is high. However, increasing the threshold
increases the risk of non-optimal outcomes since peaks that would belong to
a Pareto-optimal negotiation outcome may be missed. So there is a computa-
tional cost/optimality tradeoff to be explored, which is affected by sampling
rate, annealing temperature, and bid threshold. The next step is to clarify
this tradeoff by tuning and sophisticating the negotiation method.

References

1. Wang, L.M., Huang, H.K., Chai, Y.M.: A learning-based multistage negotiation
model. In: In Proceedings of International Conference on Machine Learning and
Cybernetics. (2004) 140–145

2. Zhang, N., Zhang, S., Wang, L., Yang, J., Xu, Z.: Offer group generation
and delayed processing in multi-issue negotiation. In: In Proceedings of IEEE/
WIC/ACM International Conference on Web Intelligence (WI 2004). (2004)
702–705

3. Rocha, A.P., Oliveira, E.: Adaptive multi-issue negotiation protocol for elec-
tronic commerce. In: In Proceedings of the Fifth International Conference on the
Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM
2000). (2000)

4. Soh, L.K., Li, X.: Adaptive, confidence-based multiagent negotiation strategy.
In: In Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS2004). (2004)

5. Fatima, S., Wooldridge, M., Jennings, N.R.: Optimal negotiation of multiple
issues in incomplete information settings. In: In Proceedings of Autonomous
Agents and Multi-Agent Systems (AAMAS2004). (2004)



38 Takayuki Ito et al.

6. Lau, R.Y.K.: Towards genetically optimised multi-agent multi-issue negotia-
tions. In: In Proceedings of the 38th Annual Hawaii International Conference
on System Sciences (HICSS05). (2005)

7. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice
Hall, Englewood Cliffs, NJ (2002)

8. Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Negotiating complex contracts.
Group Decision and Negotiation 12(2) (2003) 58–73

9. Ito, T., Klien, M.: A multi-issue negotiation protocol among competitive agents
and its extension to a nonlinear utility negotiation protocol. In: In Proceedings
of the 5th International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS06). (2006) (to appear)

10. Lin, R.J., Chou, S.T.: Bilateral multi-issue negotiations in a dynamic environ-
ment. In: In Proceedings of the AAMAS Workshop on Agent Mediated Elec-
tronic Commerce (AMEC V). (2003)

11. Fatima, S.S., Wooldridge, M., Jennings, N.R.: An agenda-based framework for
multi-issue negotiation. Artificial Intelligence 152 (2004) 1–45

12. Jonker, C.M., Jan T.: An agent architecture for multi-attribute negotiation. In:
In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI2001). (2001) 1195–1202

13. Jonker, C.M., Robu, V.: Automated multi-attribute negotiation with efficient
use of incomplete prefenrece information. In: In Proceedings of the Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent Systems (AA-
MAS2004). (2004)

14. Tibor Bosse, C.M.J.: Human vs. computer behaviour in multi-issue negotiation.
In: In Proceedings of 1st International Workshop on Rational, Robust, and
Secure Negotiations in Multi-Agent Systems (RRS2005). (2005)

15. Luo, X., Jennings, N.R., Shadbolt, N., fung Leung, H., man Lee, J.H.:
A fuzzy constraint based model for bilateral, multi-issue negotiations in semi-
competitive environments. Artificial Intelligence 148 (2003) 53–102

16. Barbuceanu, M., Lo, W.K.: Multi-attribute utility theoretic negotiation for elec-
tronic commerce. In: In Proceedings of the International Workshop on Agent-
mediated Electronic Commerce (AMEC2000). (2000)

17. Ito, T., Shintani, T.: Persuasion among agents: An approach to implementing
a group decision support system based on multi-agent negotiation. In: In Pro-
ceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI97). (1997) 592–597

18. Shintani, T., Ito, T.: An architecture for multi-agent negotiation using private
preferences in a meeting scheduler. In: In Proceedings of the 5th Pacific Rim
International Conferences on Artificial Intelligence (PRICAI’98) (Lecture Notes
in Artificial Intelligence 1531, PRICAI’98: Topics in Artificial Intelligence, Hing-
Yan Lee and Hiroshi Motoda (Eds.), Springer). (1998) 47–58

19. Yokoo, M.: Distributed Constraint Satisfaction. Springer, Berlin Heidelberg New
York (2001)

20. Yokoo, M., Sakurai, Y., Matsubara, S.: Robust combinatorial auction protocol
against false-name bids. Artificial Intelligence 130(2) (2001) 167–181

21. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: Adopt: Asynchronous distrib-
uted constraint optimization with quality guarantees. Artificial Intelligence 161
(2005) 149–180


