
Chapter 0

Basic Concepts

The finite element method provides a formalism for generating discrete (fi-
nite) algorithms for approximating the solutions of differential equations.
It should be thought of as a black box into which one puts the differential
equation (boundary value problem) and out of which pops an algorithm for
approximating the corresponding solutions. Such a task could conceivably
be done automatically by a computer, but it necessitates an amount of
mathematical skill that today still requires human involvement. The pur-
pose of this book is to help people become adept at working the magic
of this black box. The book does not focus on how to turn the resulting
algorithms into computer codes, but this topic is being pursued by several
groups. In particular, the FEniCS project (on the web at fenics.org) utilizes
the mathematical structure of the finite element method to automate the
generation of finite element codes.

In this chapter, we present a microcosm of a large fraction of the book,
restricted to one-dimensional problems. We leave many loose ends, most of
which will be tied up in the theory of Sobolev spaces to be presented in
the subsequent chapter. These loose ends should provide motivation and
guidance for the study of those spaces.

0.1 Weak Formulation of Boundary Value Problems

Consider the two-point boundary value problem

(0.1.1)
−d2u

dx2
= f in (0, 1)

u(0) = 0, u′(1) = 0.

If u is the solution and v is any (sufficiently regular) function such that
v(0) = 0, then integration by parts yields
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(0.1.2)
(f, v) : =

∫ 1

0

f(x)v(x)dx =
∫ 1

0

−u′′(x)v(x)dx

=
∫ 1

0

u′(x)v′(x)dx =: a(u, v).

Let us define (formally, for the moment, since the notion of derivative to
be used has not been made precise)

V = {v ∈ L2(0, 1): a(v, v) < ∞ and v(0) = 0}.

Then we can say that the solution u to (0.1.1) is characterized by

(0.1.3) u ∈ V such that a(u, v) = (f, v) ∀v ∈ V,

which is called the variational or weak formulation of (0.1.1).
The relationship (0.1.3) is called “variational” because the function v

is allowed to vary arbitrarily. It may seem somewhat unusual at first; later
we will see that it has a natural interpretation in the setting of Hilbert
spaces. (A Hilbert space is a vector space whose topology is defined using
an inner-product.) One example of a Hilbert space is L2(0, 1) with inner-
product (·, ·). Although it is by no means obvious, we will also see that the
space V may be viewed as a Hilbert space with inner-product a(·, ·), which
was defined in (0.1.2).

One critical question we have not yet dealt with is what sort of deriva-
tive is to be used in the definition of the bilinear form a(·, ·). Should this be
the classical derivative

u′(x) = lim
h→0

u(x + h) − u(x)
h

?

Or should the “almost everywhere” definition valid for functions of bounded
variation (BV) be used? We leave this point hanging for the moment and
hope this sort of question motivates you to study the following chapter
on Sobolev spaces. Of course, the central issue is that (0.1.3) still embodies
the original problem (0.1.1). The following theorem verifies this under some
simplifying assumptions.

(0.1.4) Theorem. Suppose f ∈ C 0([0, 1]) and u ∈ C 2([0, 1]) satisfy (0.1.3).
Then u solves (0.1.1).

Proof. Let v ∈ V ∩ C 1([0, 1]). Then integration by parts gives

(0.1.5) (f, v) = a(u, v) =
∫ 1

0

(−u′′)vdx + u′(1)v(1).

Thus,
(
f − (−u′′), v

)
= 0 for all v ∈ V ∩ C 1([0, 1]) such that v(1) = 0. Let

w = f + u′′ ∈ C 0([0, 1]). If w �≡ 0, then w(x) is of one sign in some interval
[x0, x1] ⊂ [0, 1], with x0 < x1 (continuity). Choose v(x) = (x−x0)2(x−x1)2
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in [x0, x1] and v ≡ 0 outside [x0, x1]. But then (w, v) �= 0, which is a
contradiction. Thus, −u′′ = f . Now apply (0.1.5) with v(x) = x to find
u′(1) = 0. Of course, u ∈ V implies u(0) = 0, so u solves (0.1.1). �	

(0.1.6) Remark. The boundary condition u(0) = 0 is called essential as it
appears in the variational formulation explicitly, i.e., in the definition of V .
This type of boundary condition also frequently goes by the proper name
“Dirichlet.” The boundary condition u′(1) = 0 is called natural because it is
incorporated implicitly. This type of boundary condition is often referred to
by the name “Neumann.” We summarize the different kinds of boundary
conditions encountered so far, together with their various names in the
following table:

Table 0.1. Naming conventions for two types of boundary conditions

Boundary Condition Variational Name Proper Name
u(x) = 0 essential Dirichlet
u′(x) = 0 natural Neumann

The assumptions f ∈ C 0([0, 1]) and u ∈ C 2([0, 1]) in the theorem
allow (0.1.1) to be interpreted in the usual sense. However, we will see
other ways in which to interpret (0.1.1), and indeed the theorem says that
the formulation (0.1.3) is a way to interpret it that is valid with much less
restrictive assumptions on f . For this reason, (0.1.3) is also called a weak
formulation of (0.1.1).

0.2 Ritz-Galerkin Approximation

Let S ⊂ V be any (finite dimensional) subspace. Let us consider (0.1.3)
with V replaced by S, namely

(0.2.1) uS ∈ S such that a(uS , v) = (f, v) ∀v ∈ S.

It is remarkable that a discrete scheme for approximating (0.1.1) can be
defined so easily. This is only one powerful aspect of the Ritz-Galerkin
method. However, we first must see that (0.2.1) does indeed define an ob-
ject. In the process we will indicate how (0.2.1) represents a (square, finite)
system of equations for uS . These will be done in the following theorem
and its proof.

(0.2.2) Theorem. Given f ∈ L2(0, 1), (0.2.1) has a unique solution.

Proof. Let us write (0.2.1) in terms of a basis {φi : 1 ≤ i ≤ n} of S. Let
uS =

∑n
j=1 Ujφj ; let Kij = a(φj , φi), Fi = (f, φi) for i, j = 1, ..., n. Set
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U = (Uj),K = (Kij) and F = (Fi). Then (0.2.1) is equivalent to solving
the (square) matrix equation

(0.2.3) KU = F.

For a square system such as (0.2.3) we know that uniqueness is equivalent
to existence, as this is a finite dimensional system. Nonuniqueness would
imply that there is a nonzero V such that KV = 0. Write v =

∑
Vjφj and

note that the equivalence of (0.2.1) and (0.2.3) implies that a(v, φj) = 0
for all j. Multiplying this by Vj and summing over j yields 0 = a(v, v) =∫ 1

0
(v′)2(x) dx, from which we conclude that v′ ≡ 0. Thus, v is constant,

and, since v ∈ S ⊂ V implies v(0) = 0, we must have v ≡ 0. Since {φi : 1 ≤
i ≤ n} is a basis of S, this means that V = 0. Thus, the solution to (0.2.3)
must be unique (and hence must exist). Therefore, the solution uS to (0.2.1)
must also exist and be unique. �	

(0.2.4) Remark. Two subtle points are hidden in the “proof” of Theorem
(0.2.2). Why is it that “thus v is constant”? And, moreover, why does v ∈ V
really imply v(0) = 0 (even though it is in the definition, i.e., why does
the definition make sense)? The first question should worry those familiar
with the Cantor function whose derivative is zero almost everywhere, but is
certainly not constant (it also vanishes at the left of the interval in typical
constructions). Thus, something about our definition of V must rule out
such functions as members. V is an example of a Sobolev space, and we
will see that such problems do not occur in these spaces. It is clear that
functions such as the Cantor function should be ruled out (in a systematic
way) as candidate solutions for differential equations since it would be a
nontrivial solution to the o.d.e. u′ = 0 with initial condition u(0) = 0.

(0.2.5) Remark. The matrix K is often referred to as the stiffness matrix,
a name coming from corresponding matrices in the context of structural
problems. It is clearly symmetric, since the energy inner-product a(·, ·) is
symmetric. It is also positive definite, since

n∑
i,j=1

kijvivj = a(v, v) where v =
n∑

j=1

vjφj .

Clearly, a(v, v) ≥ 0 for all (vj) and a(v, v) = 0 was already “shown” to
imply v ≡ 0 in the proof of Theorem 0.2.3.

0.3 Error Estimates

Let us begin by observing the fundamental orthogonality relation between
u and uS . Subtracting (0.2.1) from (0.1.3) implies

(0.3.1) a(u − uS , w) = 0 ∀w ∈ S.
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Equation (0.3.1) and its subsequent variations are the key to the suc-
cess of all Ritz-Galerkin/finite-element methods. Now define

‖v‖E =
√

a(v, v)

for all v ∈ V , the energy norm. A critical relationship between the energy
norm and inner-product is Schwarz’ inequality:

(0.3.2) |a(v, w)| ≤ ‖v‖E ‖w‖E ∀v, w ∈ V.

This inequality is a cornerstone of Hilbert space theory and will be discussed
at length in Sect. 2.1. Then, for any v ∈ S,

‖u − uS‖2
E = a(u − uS , u − uS)

= a(u − uS , u − v) + a(u − uS , v − uS)
= a(u − uS , u − v) (from 0.3.1 with w = v − uS)
≤ ‖u − uS‖E ‖u − v‖E (from 0.3.2).

If ‖u−uS‖E �= 0, we can divide by it to obtain ‖u − uS‖E ≤ ‖u − v‖E ,
for any v ∈ S. If ‖u−uS‖E = 0, this inequality is trivial. Taking the infimum
over v ∈ S yields

‖u − uS‖E ≤ inf{‖u − v‖E : v ∈ S}.

Since uS ∈ S, we have

inf {‖u − v‖E : v ∈ S} ≤ ‖u − uS‖E .

Therefore,
‖u − uS‖E = inf {‖u − v‖E : v ∈ S} .

Moreover, there is an element (uS) for which the infimum is attained, and
we indicate this by replacing “infimum” with “minimum.” Thus, we have
proved the following.

(0.3.3) Theorem. ‖u − uS‖E = min {‖u − v‖E : v ∈ S}.

This is the basic error estimate for the Ritz-Galerkin method, and it
says that the error is optimal in the energy norm. We will use this later to
derive more concrete estimates for the error based on constructing approx-
imations to u in S for particular choices of S. Now we consider the error in
another norm.

Define ‖v‖ = (v, v)
1
2 = (

∫ 1

0
v(x)2dx)

1
2 , the L2(0, 1)-norm. We wish to

consider the size of the error u−uS in this norm. You might guess that the
L2(0, 1)-norm is weaker than the energy norm, as the latter is the L2(0, 1)-
norm of the derivative (this is the case, on V , although it is not completely
obvious and makes use of the essential boundary condition incorporated in
V ). Thus, the error in the L2(0, 1)-norm will be at least comparable with the
error measured in the energy norm. In fact, we will find it is considerably
smaller.
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To estimate ‖u − uS‖, we use what is known as a “duality” argument.
Let w be the solution of

−w′′ = u − uS on [0, 1] with w(0) = w′(1) = 0.

Integrating by parts, we find

‖u − uS‖2 = (u − uS , u − uS)
= (u − uS ,−w′′)
= a(u − uS , w) (since (u − uS)(0) = w′(1) = 0)
= a(u − uS , w − v) (from 0.3.1)

for all v ∈ S. Thus, Schwarz’ inequality (0.3.2) implies that

‖u − uS‖ ≤ ‖u − uS‖E ‖w − v‖E /‖u − uS‖
= ‖u − uS‖E ‖w − v‖E /‖w′′‖.

We may now take the infimum over v ∈ S to get

‖u − uS‖ ≤ ‖u − uS‖E inf
v∈S

‖w − v‖E /‖w′′‖.

Thus, we see that the L2-norm of the error can be much smaller than the
energy norm, provided that w can be approximated well by some function
in S. It is reasonable to assume that we can take v ∈ S close to w, which
we formalize in the following approximation assumption:

(0.3.4) inf
v∈S

‖w − v‖E ≤ ε‖w′′‖.

Of course, we envisage that this holds with ε being a small number. Apply-
ing (0.3.4) yields

‖u − uS‖ ≤ ε ‖u − uS‖E ,

and applying (0.3.4) again, with w replaced by u, and using Theorem 0.3.3
gives

‖u − uS‖E ≤ ε‖u′′‖.
Combining these estimates, and recalling (0.1.1), yields

(0.3.5) Theorem. Assumption (0.3.4) implies that

‖u − uS‖ ≤ ε ‖u − uS‖E ≤ ε2‖u′′‖ = ε2‖f‖.

The point of course is that ‖u − uS‖E is of order ε whereas ‖u − uS‖
is of order ε2. We now consider a family of spaces S for which ε may be
made arbitrarily small.
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0.4 Piecewise Polynomial Spaces – The Finite Element
Method

Let 0 = x0 < x1 < ... < xn = 1 be a partition of [0, 1], and let S be the
linear space of functions v such that

i) v ∈ C 0([0, 1])
ii) v|[xi−1,xi] is a linear polynomial, i = 1, ..., n, and
iii) v(0) = 0.

We will see later that S ⊂ V . For each i = 1, .., n define φi by the require-
ment that φi(xj) = δij = the Kronecker delta, as shown in Fig. 0.1.

i0 1x i

Fig. 0.1. piecewise linear basis function φi

(0.4.1) Lemma. {φi : 1 ≤ i ≤ n} is a basis for S.

(0.4.2) Remark. {φi} is called a nodal basis for S, and {v(xi)} are the nodal
values of a function v. (The points {xi} are called the nodes.)

Proof. The set {φi} is linearly independent since
∑n

i=1 ciφi(xj) = 0 implies
cj = 0. To see that it spans S, consider the following:

(0.4.3) Definition. Given v ∈ C 0([0, 1]), the interpolant vI ∈ S of v is
determined by vI : =

∑n
i=1 v(xi)φi.

Clearly, the set {φi} spans S if the following is true.

(0.4.4) Lemma. v ∈ S ⇒ v = vI .

Proof. v − vI is linear on each [xi−1, xi] and zero at the endpoints, hence
must be identically zero. �	

We will now prove the following approximation theorem for the interpolant.

(0.4.5) Theorem. Let h = max1≤i≤n

(
xi − xi−1

)
. Then

‖u − uI‖E ≤ Ch‖u′′‖
for all u ∈ V , where C is independent of h and u.
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Proof. Recalling the definitions of the two norms, it is clearly sufficient to
prove the estimate piecewise, i.e., that∫ xj

xj−1

(u − uI)
′ (x)2 dx ≤ c (xj − xj−1)

2
∫ xj

xj−1

u′′(x)2 dx

as the stated result follows by summing over j, with C =
√

c. Let e = u−uI

denote the error; since uI is a linear polynomial on the interval [xj−1, xj ],
the above is equivalent to∫ xj

xj−1

e′(x)2 dx ≤ c (xj − xj−1)
2
∫ xj

xj−1

e′′(x)2 dx.

Changing variables by an affine mapping of the interval [xj−1, xj ] to the
interval [0, 1], we see that this is equivalent to showing

∫ 1

0

ẽ′(x̃)2 dx̃ ≤ c

∫ 1

0

ẽ′′(x̃)2 dx̃,

where x = xj−1 + x̃ (xj − xj−1) and

ẽ(x̃) = e (xj−1 + x̃ (xj − xj−1)) .

Note that we have arrived at an equivalent estimate that does not involve
the mesh size at all. The technique of reducing a mesh-length dependent
estimate to a mesh-independent one in this way is called a homogeneity
argument (or scaling argument) and will be used frequently in Chapter 4
and thereafter.

The verification of the latter estimate is a simple calculus exercise. Let
w = ẽ to simplify the notation, and write x for x̃. Note that w vanishes at
both ends of the interval (the interpolation error is zero at all nodes). By
Rolle’s Theorem, w′(ξ) = 0 for some ξ satisfying 0 < ξ < 1. Thus,

w′(y) =
∫ y

ξ

w′′(x) dx.

By Schwarz’ inequality,

(0.4.6)

|w′(y)| =
∣∣∣∣
∫ y

ξ

w′′(x) dx

∣∣∣∣
=

∣∣∣∣
∫ y

ξ

1 · w′′(x) dx

∣∣∣∣

≤
∣∣∣∣
∫ y

ξ

1 dx

∣∣∣∣
1/2

·
∣∣∣∣
∫ y

ξ

w′′(x)2 dx

∣∣∣∣
1/2

= |y − ξ|1/2

∣∣∣∣
∫ y

ξ

w′′(x)2 dx

∣∣∣∣
1/2

≤ |y − ξ|1/2

(∫ 1

0

w′′(x)2 dx

)1/2

.
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Squaring and integrating with respect to y completes the verification, with

c = sup
0<ξ<1

∫ 1

0

|y − ξ| dy =
1
2
. �	

(0.4.7) Corollary. ‖u − uS‖ + Ch ‖u − uS‖E ≤ 2 (Ch)2 ‖u′′‖.
Proof. Theorem 0.4.5 implies that the approximation assumption (0.3.4)
holds with ε = Ch. �	

(0.4.8) Remark. The interpolant defines a linear operator I:C 0([0, 1]) → S
where Iv = vI . Lemma 0.4.4 says that I is a projection (i.e., I2 = I). The
estimate (0.4.6) for w′ in the proof of (0.4.5) is an example of Sobolev’s
inequality, in which the pointwise values of a function can be estimated in
terms of integrated quantities involving its derivatives. Estimates of this
type will be considered at length in Chapter 1.

0.5 Relationship to Difference Methods

The stiffness matrix K as defined in (0.2.3), using the basis {φi} described
above, can be interpreted as a difference operator. Let hi = xi−xi−1. Then
the matrix entries Kij = a(φi, φj) can be easily calculated to be

(0.5.1) Kii = h−1
i + h−1

i+1,Ki,i+1 = Ki+1,i = −h−1
i+1 (i = 1, ..., n − 1)

and Knn = h−1
n with the rest of the entries of K being zero. Similarly, the

entries of F can be approximated if f is sufficiently smooth:

(0.5.2) (f, φi) =
1
2
(hi + hi+1)(f(xi) + O(h))

where h = max hi. (This follows easily from Taylor’s Theorem since the
integral of φi is (hi + hi+1)/2. Note that the error is not O(h2) unless
1 − (hi/hi+1) = O(h).) Thus, the i − th equation of KU = F (for 1 ≤ i ≤
n − 1) can be written as

(0.5.3)
−2

hi + hi+1

[
Ui+1 − Ui

hi+1
− Ui − Ui−1

hi

]
=

2(f, φi)
hi + hi+1

= f(xi) + O(h).

The difference operator on the left side of this equation can also be seen
to be an O(h) accurate approximation to the differential operator −d2/dx2

(and not O(h2) accurate in the usual sense unless 1−hi/hi+1 = O(h).) For
a uniform mesh, the equations reduce to the familiar difference equations
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(0.5.4) −Ui+1 − 2Ui + Ui−1

h2
= f(xi) + O(h2)

which are well known to be second-order accurate. However, for a general
mesh (e.g., hi = h for i even and hi = h/2 for i odd), we know from Corol-
lary 0.4.7 that the answer is still second-order accurate (in L2(0, 1) at least,
but it will also be proved to be so in the maximum norm in Sect. 0.7), even
though the difference equations are formally only consistent to first order.
This phenomenon has been studied in detail by Spijker (Spijker 1971), and
related work has recently been done by (Kreiss, et.al. 1986). See exercises
0.x.11 through 0.x.15 for more details.

We will take this opportunity to philosophize about some power-
ful characteristics of the finite element formalism for generating discrete
schemes for approximating the solutions to differential equations. Being
based on the variational formulation of boundary value problems, it is quite
systematic, handling different boundary conditions with ease; one simply re-
places infinite dimensional spaces with finite dimensional subspaces. What
results, as in (0.5.3), is the same as a finite difference equation, in keeping
with the dictum that different numerical methods are usually more similar
than they are distinct. However, we were able to derive very quickly the
convergence properties of the finite element method. Finally, the notation
for the discrete scheme is quite compact in the finite element formulation.
This could be utilized to make coding the algorithm much more efficient if
only the appropriate computer language and compiler were available. This
latter characteristic of the finite element method is one that has not yet
been exploited extensively, but an initial attempt has been made in the sys-
tem fec (Bagheri, Scott & Zhang 1992). (One could also argue that finite
element practitioners have already taken advantage of this by developing
their own “languages” through extensive software libraries of their own, but
this applies equally well to the finite-difference practitioners.)

0.6 Computer Implementation of Finite Element
Methods

One key to the success of the finite element method, as developed in engi-
neering practice, was the systematic way that computer codes could be im-
plemented. One important step in this process is the assembly of the inner-
product a(u, v) by summing its constituent parts over each sub-interval, or
element, which are computed separately. This is facilitated through the use
of a numbering scheme called the global-to-local index. This index, i(e, j),
relates the local node number, j, on a particular element, e, to its position
in the global data structure. In our one-dimensional example with piecewise
linear functions, this index is particularly simple: the “elements” are based
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on the intervals Ie := [xe−1, xe] where e is an integer in the range 1, . . . , n
and

i(e, j) := e + j − 1 for e = 1, . . . , n and j = 0, 1.

That is, for each element there are two nodal parameters of interest, one
corresponding to the left end of the interval (j = 0) and one at the right
(j = 1). Their relationship is represented by the mapping i(e, j).

We may write the interpolant of a continuous function for the space of
all piecewise linear functions (no boundary conditions imposed) via

(0.6.1) fI :=
∑

e

1∑
j=0

f(xi(e,j))φe
j

where
{
φe

j : j = 0, 1
}

denotes the set of basis functions for linear functions
on the single interval Ie = [xe−1, xe]:

φe
j(x) = φj ((x − xe−1)/(xe − xe−1))

where

φ0(x) :=
{

1 − x x ∈ [0, 1]
0 otherwise

and φ1(x) :=
{

x x ∈ [0, 1]
0 otherwise.

Note that we have related all of the “local” basis functions φe
j to a fixed set

of basis functions on a “reference” element, [0, 1], via an affine mapping of
[0, 1] to [xe−1, xe]. (By definition, the local basis functions, φe

j , are extended
by zero outside the interval Ie.)

The expression (0.6.1) for the interpolant shows (cf. Lemma 0.4.4) that
any piecewise linear function f (no boundary conditions imposed) can be
written in the form

(0.6.2) f :=
∑

e

1∑
j=0

fi(e,j)φ
e
j

where fi = f(xi) for all i. In particular, the cardinality of the image of
the index mapping i(e, j) is the dimension of the space of piecewise linear
functions. Note that the expression (0.6.2) represents f incorrectly at the
nodal points, but this has no effect on the evaluation of multilinear forms
involving integrals of f .

The bilinear forms defined in (0.1.2) can be easily evaluated (assem-
bled) using this representation as well. For example,

a(v, w) =
∑

e

ae(v, w)

where the “local” bilinear form is defined (and evaluated) via
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ae(v, w) :=
∫

Ie

v′w′ dx

= (xe − xe−1)
−1

∫ 1

0

(
Σjvi(e,j)φj

)′ (
Σjwi(e,j)φj

)′
dx

= (xe − xe−1)
−1

(
vi(e,0)

vi(e,1)

)t

K
(

wi(e,0)

wi(e,1)

)
.

Here, the local stiffness matrix, K, is given by

Ki,j :=
∫ 1

0

φ′
i−1φ

′
j−1 dx for i, j = 1, 2.

Note that we have identified the space of piecewise linear functions, v, with
the vector space of values, (vi), at the nodes. The subspace, S, of piecewise
linear functions that vanish at x = 0, defined in Sect. 0.4, can be identified
with the subspace {(vi) : v0 = 0}. Including v0 in the data structure (with
a value of zero) makes the assembly of bilinear forms equally easy in the
presence of boundary conditions.

0.7 Local Estimates

We wish to derive estimates for the error, u−uS , in the pointwise sense. As
in the case for the L2-norm, we begin by writing the error that we wish to
bound in terms of the energy bilinear form applied to u−uS and some other
function. In this case, this other function is the so-called Green’s function
for the problem (0.1.1), which in this case is simply

gx(t) :=
{

t t < x
x otherwise

where x is any point in [0, 1]. Integration by parts shows that

v(x) = a(v, gx) ∀v ∈ V

since g′′x is identically zero on either side of x. Therefore,

(u − uS)(x) = a(u − uS , gx)
= a(u − uS , gx − v) ∀v ∈ S.

One conclusion is that, if S is the space of piecewise linear functions defined
on a partition {xi : i = 1, . . . , n} as in Sect. 0.4, then

(u − uS)(xi) = 0 ∀i = 1, . . . , n

since gxi
∈ S in this case. Thus, we conclude that uS = uI , and a variant

of Theorem 0.4.5 yields
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(0.7.1) ‖u − uI‖max ≤ Ch2‖u′′‖max.

(Recall that ‖f‖max = max0≤x≤1 |f(x)|.) Combining the above estimates,
we have proved the following.

(0.7.2) Theorem. Let uS be determined by (0.2.1) using the space of piece-
wise linear functions defined in Sect. 0.4. Then

‖u − uS‖max ≤ Ch2‖u′′‖max.

Local estimates for higher-dimensional problems are much more diffi-
cult to derive, but the use of the Green’s function is similar. However, the
local character of the singularity of the one-dimensional Green’s function
disappears, and the distributed nature of the higher-dimensional Green’s
function requires techniques that are illustrated in the next section.

0.8 Adaptive Approximation

In many cases, the solution to a differential equation is rapidly varying only
in restricted regions. For such problems, it makes sense to adapt the mesh to
match the variation in the solution. The difference in approximation power
between a mesh chosen to solve general problems versus one adapted to a
particular one can be substantial. We present a particularly simple approx-
imation problem here to illustrate this effect. For more complex results, see
(DeVore, Howard & Micchelli 1989).

Let us consider the problem of approximating functions of one variable
whose derivatives are integrable. This is an even weaker condition than what
we used in section 0.3, and we wish to consider approximation in a stronger
norm, the maximum norm. We consider approximation by the space S∆ of
piecewise constant functions on a partition

(0.8.1) ∆ = {x0, x1, . . . , xn : 0 = x0 < x1 < · · · < xn = 1} .

In this case, we will say that size(∆) = n. It is not hard to see that the best
result of the form

(0.8.2) inf
v∈S∆

‖u − v‖max ≤ Cn−p

∫ 1

0

|u′(x)| dx

to hold for all u (with a fixed mesh) is to have p = 0. Indeed, whatever the
mesh, we can let u go from zero at x0 to one at x1 (and stay at one the
rest of the interval). This particular u has

∫ 1

0
|u′(x)| dx = 1 and yet

inf
v∈S∆

‖u − v‖max =
1
2
.
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Of course, writing u as the integral of u′ (cf. (0.4.6)) allows us to prove
(0.8.2) with C = 1 and p = 0, simply by taking v ≡ 0.

On the other hand, suppose that we fix a particular u and ask that
(0.8.2) hold for some partition ∆ as in (0.8.1). That is, what if we are
allowed to choose ∆ based on properties of u? To be more precise, we are
making the distinction between a statement that ∀u ∃∆ such that (0.8.2)
holds versus our earlier statement that, given ∆, (0.8.2) holds ∀u.

To see that there is a better estimate possible with an adaptively chosen
mesh, suppose that we have a u such that

∫ 1

0
|u′(x)| dx = 1. The function

(0.8.3) φ(x) =
∫ x

0

|u′(t)| dt

vanishes at x = 0 and is a non-decreasing function. Moreover, φ(1) = 1, so
there must be a points xi where φ(xi) = i/n and such that xi < xi+1 for all
i. If by chance we have xn < 1 in this process, we set xn = 1. One property
of this partition is that

(0.8.4)
∫ xi

xi−1

|u′(t)| dt = φ(xi) − φ(xi−1) =
1
n

for all i = 1, . . . , n.
To approximate u on the interval [xi−1, xi] we use the constant ci =

u(xi−1). Then for x ∈ [xi−1, xi]

(0.8.3) |u(x) − ci| =

∣∣∣∣∣
∫ x

xi−1

u′(t) dt

∣∣∣∣∣ ≤
∫ xi

xi−1

|u′(t)| dt =
1
n

proving that (0.8.2) holds for all n with p = 1 and C = 1, at least when∫ 1

0
|u′(x)| dx = 1. In the general case, simply divide everything in (0.8.2)

by
∫ 1

0
|u′(x)| dx.

Again to get the quantifiers right, let us define the approximation quo-
tient

(0.8.5) Q(u,∆) = inf
v∈S∆

‖u − v‖max

/ ∫ 1

0

|u′(x)| dx

for a given u such that 0 <
∫ 1

0
|u′(x)| dx < ∞ and a given partition ∆.

Then the first result we proved is that

(0.8.6) ∀∆ ∃u such that Q(u,∆) ≥ 1
2

and yet in the second result we constructed a ∆ to prove that

(0.8.7) ∀u ∃∆ with size(∆) = n such that Q(u,∆) ≤ 1
n

.
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These results indicate what a dramatic difference in approximation power
there can be in using a fixed mesh versus a mesh adapted to a particular
function.

0.9 Weighted Norm Estimates

Suppose h(x) is a function that measures the local mesh size near the
point x. In particular, we will assume that h is a piecewise linear function
satisfying

h(xj) = hj + hj+1

where hj = xj − xj−1 (and we set hn+1 = hn and h0 = h1). Note that for
all j = 1, . . . , n

(0.9.1) h(x) ≥ hj ∀x ∈ [xj−1, xj ],

since this holds at each endpoint of the interval and h is linear between
them.

We begin by deriving a basic estimate analogous to (0.4.5). From its
proof and (0.9.1), we have

‖u − uI‖2
E =

n∑
i=1

∫ xi

xi−1

(u − uI)
′ (x)2 dx

≤ 1
2

n∑
i=1

h2
i

∫ xi

xi−1

u′′(x)2 dx

≤ 1
2

n∑
i=1

∫ xi

xi−1

h(x)2u′′(x)2 dx

=
1
2
‖hu′′‖2

.

Therefore,

(0.9.2) ‖u − uS‖E ≤ 1√
2
‖hu′′‖.

We next derive an L2 estimate analogous to the first inequality in
Theorem 0.3.5. Choosing w as was done in the proof of that result, we find

‖u − uS‖2 = a(u − uS , w)

where w solves the boundary value problem (0.1.1) with u − uS as right-
hand-side. For simplicity of notation, let e := u − uS . Using the orthogo-
nality relation (0.3.1) and Schwarz’ inequality, we find
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a(e, w) = a(e, w − wI)

=
∫ 1

0

h(u − uS)′(w − wI)′/h dx

≤
(∫ 1

0

(h(u − uS)′)2 dx

)1/2 (∫ 1

0

((w − wI)′/h)2 dx

)1/2

.

From the results of Sect. 0.4 we have∫ 1

0

((w − wI)′(x)/h(x))2 dx =
n∑

i=1

∫ xi

xi−1

((w − wI)′(x)/h(x))2 dx

≤
n∑

i=1

h−2
i

∫ xi

xi−1

(w − wI)
′ (x)2 dx

≤
n∑

i=1

1
2

∫ xi

xi−1

w′′ (x)2 dx.

Combining the previous inequalities, we have

(0.9.3) a(e, w) ≤ ‖he′‖
(

n∑
i=1

1
2

∫ xi

xi−1

w′′ (x)2 dx

)1/2

.

Recalling that −w′′ = e, we find

‖e‖2 = a(e, w)

≤ 1√
2
‖he′‖

(
n∑

i=1

∫ xi

xi−1

e (x)2 dx

)1/2

=
1√
2
‖he′‖ ‖e‖.

Dividing by ‖e‖ and recalling that e = u − uS , we have proved

(0.9.4) ‖u − uS‖ ≤ 1√
2

(∫ 1

0

(h(u − uS)′)2 dx

)1/2

.

This says that the L2 error can always be estimated in terms of a weighted
integral of the squared derivative error, where the weight is given by the
mesh function (0.9.1). Now we proceed to estimate the “weighted energy”
norm on the right hand side of (0.9.4).

Let us write e := u − uS for simplicity. Then first observe that
∫ 1

0

(h(u − uS)′)2 dx = ‖he′‖2 = a(e, h2e) −
∫ 1

0

2hh′ee′ dx

simply by expanding the expression a(e, h2e). We will begin to make the
assumption that h′ is small, i.e., that the mesh does not change rapidly (for
a uniform mesh, h′ ≡ 0). This will allow us to neglect the term
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∫ 1

0

2hh′ee′ dx

in comparison with the other terms in the preceding equation. To do so, we
will make frequent use of the arithmetic-geometric mean inequality, which
is nothing more than the simple observation that, for any real numbers a
and b,

ab ≤ 1
2

(
a2 + b2

)

(just observe that 0 ≤ (a−b)2 = −2ab+a2+b2). A slightly more complicated
version of the inequality comes by writing

ab = (εa)(b/ε) ≤ 1
2

(
(εa)2 + (b/ε)2

)
.

Writing δ in place of ε2, we find

(0.9.5) ab ≤ δ

2
a2 +

1
2δ

b2

for any δ > 0.
Let M := ‖h′‖max. Then Schwarz’ inequality and the arithmetic-

geometric mean inequality imply
∣∣∣∣
∫ 1

0

2hh′ee′ dx

∣∣∣∣ ≤ 2M

∫ 1

0

|hee′| dx

≤ 2M‖he′‖ ‖e‖
≤ M

(
‖he′‖2 + ‖e‖2

)
.

Therefore,

‖he′‖2 ≤ a(e, h2e) + M
(
‖he′‖2 + ‖e‖2

)

and hence,

(1 − M)‖he′‖2 ≤ a(e, h2e) + M‖e‖2
.

We now estimate the term a(e, h2e). Let w := h2e. From (0.9.3) and
the arithmetic-geometric mean inequality,

a(e, h2e) = a(e, w)

≤ 1√
2
‖he′‖

(
n∑

i=1

∫ xi

xi−1

(w′′)2 dx

)1/2

≤ 1 − M

2
‖he′‖2 +

1
4(1 − M)

n∑
i=1

∫ xi

xi−1

(w′′)2 dx

which, combined with the previous estimate, implies that
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1 − M

2
‖he′‖2 ≤ 1

4(1 − M)

n∑
i=1

∫ xi

xi−1

(w′′)2 dx + M‖e‖2
.

Expanding, we have (on each interval (xi−1, xi) separately)

w′′ = h2e′′ + 4hh′e′ + 2 (h′)2 e

since h′′ ≡ 0. Expanding again, and using the arithmetic-geometric mean
inequality, we find

(w′′)2 ≤h4 (e′′)2 + 16M2 (he′)2 + 4M4e2

+ 8Mh3|e′′||e′| + 4M2h2|e′′||e| + 16M3h|e′||e|
≤7h4 (e′′)2 + 28M2 (he′)2 + 14M4e2.

Integrating, we find

1 − M

2
‖he′‖2 ≤ 1

4(1 − M)

n∑
i=1

∫ xi

xi−1

7h4 (e′′)2 dx

+
7M2

1 − M
‖he′‖2 +

(
M +

7M4

2(1 − M)

)
‖e‖2

,

which implies
(

1 − M

2
− 7M2

1 − M

)
‖he′‖2 ≤ 1

4(1 − M)

n∑
i=1

∫ xi

xi−1

7h4 (e′′)2 dx

+
(

M +
7M4

2(1 − M)

)
‖e‖2

.

Letting c1 =
(

1−M
2 − 7M2

1−M

)−1

and recalling that e′′ = u′′, we have

‖he′‖2 ≤ 7c1

4(1 − M)

∥∥h2u′′∥∥2
+ c1

(
M +

7M4

2(1 − M)

)
‖e‖2

provided that

M <
1

1 +
√

14
.

Combining with estimate (0.9.4), we find that
(

2 − c1

(
M +

7M4

2(1 − M)

))
‖u − uS‖2 ≤ 7c1

4(1 − M)

∥∥h2u′′∥∥2
.

Finally, we assume that M is sufficiently small so that

2 − c1

(
M +

7M4

2(1 − M)

)
> 0
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(observe that c1 → 2 as M → 0), and we conclude that

(0.9.6) ‖u − uS‖2 ≤ C(M)
∥∥h2u′′∥∥2

where C(M) → 7/4 as M → 0.
We summarize the above results in the following theorem.

(0.9.7) Theorem. Without any restrictions on the mesh, we have

‖u − uS‖E ≤ 1√
2
‖hu′′‖

and
‖u − uS‖ ≤ 1√

2
‖h(u − uS)′‖.

Provided that the mesh-size variation, M := ‖h′‖max, is sufficiently small,
there is a constant, C, depending on M but otherwise independent of the
mesh, such that

‖u − uS‖ ≤ C
∥∥h2u′′∥∥.

The condition that the derivative of h be small is easy to interpret.
From its definition,

h′|(xi−1,xi) =
hi+1 − hi−1

hi
= ri+1 −

1
ri

,

where ri is the ratio of lengths of adjacent mesh intervals, ri = hi/hi−1.
Thus, |h′| is small whenever these ratios are sufficiently close to one. How-
ever, this does not preclude strong mesh gradings, e.g., a geometrically
graded mesh, xi = eδ(i−n) for δ sufficiently small.

0.x Exercises

0.x.1 Verify the expressions (0.5.1) for the “stiffness” matrix K for piece-
wise linear functions. If f is piecewise linear, i.e.,

f(x) =
n∑

i=1

fiφi(x)

determine the matrix M (called the “mass” matrix) such that

KU = MF.

0.x.2 Give weak formulations of modifications of the two-point boundary-
value problem (0.1.1) where
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a) the o. d. e. is −u′′ + u = f instead of −u′′ = f and/or
b) the boundary conditions are u(0) = u(1) = 0.

0.x.3 Explain what is wrong in both the variational setting and the clas-
sical setting for the problem

−u′′ = f with u′(0) = u′(1) = 0.

That is, explain in both contexts why this problem is not well-posed.

0.x.4 Show that piecewise quadratics have a nodal basis consisting of val-
ues at the nodes xi together with the midpoints 1

2 (xi + xi+1). Cal-
culate the stiffness matrix for these elements.

0.x.5 Verify (0.5.2).

0.x.6 Under the same assumptions as in Theorem 0.4.5, prove that

‖u − uI‖ ≤ Ch2‖u′′‖.

(Hint: use a homogeneity argument as in the proof of Theorem 0.4.5.
Using the notation of that proof, show further that

∫ 1

0

w(x)2 dx ≤ c̃

∫ 1

0

w′(x)2 dx,

by utilizing the fact that w(0) = 0. How small can you make c̃ if
you use both w(0) = 0 and w(1) = 0?)

0.x.7 Using only Theorems 0.3.5 and 0.4.5, prove that

inf
v∈S

‖u − v‖ ≤ Ch2‖u′′‖.

Exercise 0.x.6 also would imply this result independently. Compare
the different constants, C, derived with the different approaches.

0.x.8 Prove that (0.1.1) has a solution u ∈ C2([0, 1]) provided f ∈
C0([0, 1]). (Hint: write

u(x) =
∫ x

0

(∫ 1

s

f(t) dt

)
ds

and verify the equations.)

0.x.9 Let V denote the space, and a(·, ·) the bilinear form, defined in
Sect. 0.1. Prove the following coercivity result

‖v‖2 + ‖v′‖2 ≤ Ca(v, v) ∀v ∈ V.

Give a value for C. (Hint: see the hint in exercise 0.x.6. For simplic-
ity, restrict the result to v ∈ V ∩ C1(0, 1).)
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0.x.10 Let V denote the space, and a(·, ·) the bilinear form, defined in
Sect. 0.1. Prove the following version of Sobolev’s inequality:

‖v‖2
max ≤ Ca(v, v) ∀v ∈ V.

Give a value for C. (Hint: see the hint in exercise 0.x.6. For simplic-
ity, restrict the result to v ∈ V ∩ C1(0, 1).)

0.x.11 Consider the difference method represented by (0.5.3), namely

−2
hi + hi+1

(
Ui+1 − Ui

hi+1
− Ui − Ui−1

hi

)
= f(xi).

Prove ũS :=
∑

Uiφi satisfies the following modification to (0.2.1):

a(ũS , v) = Q(fv) ∀v ∈ S

where a(·, ·) is the bilinear form defined in Sect. 0.1, S consists of
piecewise linears as defined in Sect. 0.4 and Q denotes the quadra-
ture approximation based on the trapezoidal rule

Q(w) :=
n∑

i=0

hi + hi+1

2
w(xi).

Here φi, xi and hi are as defined in Sect. 0.4; we further define
h0 = hn+1 = 0 for simplicity of notation.

0.x.12 Let Q be defined as in exercise 0.x.11. Prove that
∣∣∣∣Q(w) −

∫ 1

0

w(x) dx

∣∣∣∣ ≤ Ch2
n∑

i=1

∫ xi

xi−1

|w′′(x)| dx.

(Hint: observe that the trapezoidal rule is exact for piecewise linears
and refer to the hint in exercise 0.x.6.)

0.x.13 Let uS solve (0.2.1) where S consists of piecewise linears as defined
in Sect. 0.4 and let ũS be as in exercise 0.x.11. Prove that

|a(uS − ũS , v)| ≤ Ch2 (‖f ′‖ + ‖f ′′‖) (‖v‖ + ‖v′‖) ∀v ∈ S.

(Hint: apply exercise 0.x.12 and Schwarz’ inequality.)

0.x.14 Let uS and ũS be as in exercise 0.x.13. Prove that

‖uS − ũS‖E ≤ Ch2 (‖f ′‖ + ‖f ′′‖) .

(Hint: apply exercise 0.x.13, pick v = uS − ũS and apply exercise
0.x.9.)

0.x.15 Let ũS be as in exercise 0.x.11 and let u solve (0.1.1). Prove that
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‖u − ũS‖max ≤ Ch2 (‖f‖max + ‖f ′‖ + ‖f ′′‖) .

(Hint: apply exercise 0.x.14 and Theorem 0.7.2.)

0.x.16 Give weak formulation of modifications of the two-point boundary-
value problem (0.1.1) where the boundary conditions are u(0) = 0
and u′(1) = λ. (Hint: show that a(u, v) = F (v) where F is the
linear functional F (v) = λ v(1).)
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