
Preface to the Third Edition

It has been thirteen years since the appearance of the first edition of this book,
and nine years after the second. Meanwhile, chaotic (or nonlinear) dynamics
is established as an essential part of courses in physics and it still fascinates
students, scientists and even nonacademic people, in particular because of the
beauty of computer generated images appearing frequently in this field.

Quite generally, computers are an ideal tool for exploring and demonstrat-
ing the intricate features of chaotic dynamics. The programs in the previous
editions of this book have been designed to support such studies even for the
non-experienced users of personal computers. However, caused by the rapid
development of the computational world, these programs written in Turbo
Pascal appeared in an old-fashioned design compared to the up-to-date stan-
dard. Even more important, those programs would not properly operate under
recent versions of the Windows operating system. In addition, there is an in-
creasing use of Linux operating systems. Therefore, for the present edition,
all the programs have been entirely rewritten in C++ and, of course, revised
and polished. Two version of the program codes are supplied working under
Windows or Linux operating systems.

We have again corrected a few passage in the text of the book and added
some more recent developments in the field of chaotic dynamics. Finally a new
program treating the important class of two-dimensional discrete (‘kicked’)
systems has been added and described in Chap. 13.

Kaiserslautern, H. J. Korsch, H.-J. Jodl, and T. Hartmann
August 2007
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Nonlinear Dynamics and Deterministic Chaos

The aim of this chapter is to provide an introduction to the theory of nonlinear
systems. We assume that the reader has a background in classical dynamics
and a basic knowledge of differential equations, but most readers of this book
will only have a vague notion of chaotic dynamics. The computer experiments
in the following chapters will (hopefully) lead to a better understanding of
this new and exciting field. These chapters form the core of the book and are
written at a level suitable for advanced undergraduate students. An under-
standing and interpretation of the numerical results is, however, impossible
without a knowledge of the relevant theory.

The theory of dynamical systems is well-developed and a number of ex-
cellent textbooks [1]–[8], as well as collections of important original articles
[9]–[11], are available. The reader is invited to consult these references while
exploring nonlinear dynamics on the computer. The overview of the theory
of nonlinear dynamics presented in the following serves as a short survey, de-
scribing the basic phenomena and clarifying the notation used in the setup
and analysis of the computer experiments.

The first three sections introduce Deterministic Chaos and the special
cases of chaotic dynamics in Hamiltonian Systems and Dissipative Dynamical
Systems. It is hoped that the reader will gain a basic understanding on go-
ing through these sections. Many features, however, will become clearer only
later on in the context of the computational studies, which are linked to this
introductory chapter by ample cross-references.

The last section of this chapter, Special Topics, contains additional ma-
terial, which is useful for a more detailed understanding of certain aspects
of chaotic dynamics introduced in the subsequent chapters. This section can
(and should) be omitted in a first reading of the text.
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2.1 Deterministic Chaos

‘Deterministic chaos’ is a term used to denote the irregular behavior of dy-
namical systems arising from a strictly deterministic time evolution without
any source of noise or external stochasticity. This irregularity manifests itself
in an extremely sensitive dependence on the initial conditions, which pre-
cludes any long-term prediction of the dynamics. Most surprisingly, it turned
out that such chaotic behavior can already be found for systems with a very
low degree of freedom and it is, moreover, typical for most systems.

A dynamical system can be described simply as a system of N first-order
differential equations

dxi

dt
= fi(x1, . . . , xN , r) , i = 1, . . . , N , (2.1)

where the independent variable t can be read as time and the xi(t) are dy-
namical quantities whose time dependence is generated by (2.1), starting from
specified initial conditions xi(0) , i = 1, . . . , N . It should be noted that the
system (2.1) is autonomous because it is not explicitly t-dependent. The fi

are nonlinear functions of the xi and are characterized by the parameter(s) r.
The equations lead to chaotic motion, which develops and changes its char-
acteristics with varying control parameter(s) r. The assumption of an au-
tonomous system is not essential, because otherwise it can be converted into
an autonomous one by introducing the time t as an additional variable xN+1.
Examples of dynamical systems are the Hamiltonian equations of motion in
classical mechanics, the rate equations for chemical reactions or the evolution
equations in population dynamics.

A discrete dynamical system is an iterated mapping

xi(n + 1) = fi(x1(n), . . . , xN (n), r) , i = 1, . . . , N (2.2)

starting from an initial point xi(0) , i = 1, . . . , N . Such a discrete system may
appear quite naturally from the setup of the problem under consideration, or
it may be a reduction of the continuous system (2.1) in order to simplify the
analysis, as for example the Poincaré map described below.

Basically, one can make a distinction between conservative (e.g., mechan-
ical systems governed by Hamilton’s equations of motion) and dissipative
systems with ‘friction’. In the first case, volume elements in phase space are
conserved, whereas dissipative systems contract phase space elements. This
results in markedly different behavior.
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2.2 Hamiltonian Systems

In a so-called Hamiltonian system with N degrees of freedom, the dynamics
is derived from a Hamiltonian H(p, q, t) , where q = (q1, . . . , qN ) and p =
(p1, . . . , pN ) are the canonical coordinates and momenta. The Hamiltonian
equations of motion

ṗi = −∂H

∂qi
, q̇i =

∂H

∂pi
, i = 1, . . . , N (2.3)

generate trajectories p(t) , q(t) in 2N -dimensional phase space. In more global
terms, it is said that the Hamiltonian produces a flow in phase space. This
flow conserves the phase space volume

dp1 . . .dpN dq1 . . .dqN (2.4)

as well as the phase space ‘area’

dp · dq =
∑

i

dpidqi . (2.5)

2.2.1 Integrable and Ergodic Systems

In many cases, the Hamiltonian does not depend explicitly on time and the
energy E = H(p, q ) is conserved along the trajectory, i.e., it is a constant of
motion. A simple example of such a conservative system is the motion of a
particle with mass m in a potential V with Hamiltonian

H(p, q) =
p 2

2m
+ V (q ) . (2.6)

There may be more constants of motion, which can be a consequence
of obvious symmetries of the system. Well-known examples are translational
symmetry leading to conservation of the momentum or rotational symmetry
resulting in angular momentum conservation. In other cases, the (possibly
existing) constants of motion are far less obvious and it is a non-trivial problem
to find them or to prove their existence. It is, however, simple to show that
a given phase space function F (p, q) is a constant of motion. This can be
most elegantly done by writing the equation of motion for F in terms of the
Poisson bracket

{A,B} =
∑

i

(
∂A

∂pi

∂B

∂qi
− ∂B

∂pi

∂A

∂qi

)
(2.7)

between two arbitrary phase space functions A(p, q) and B(p, q) as

dF

dt
= {H,F} (2.8)
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Fig. 2.1. Two-dimensional torus in phase space: (a) Topologically different paths
γi. (b) A typical quasiperiodic trajectory. (c) Torus supporting periodic orbits.

(a simple example of these generalized equations comprises the canonical equa-
tions of motion (2.3)). Therefore, F is a constant of motion if the Poisson
bracket with H vanishes identically

{H,F} ≡ 0 , (2.9)

which can easily be checked for a given F .
The existence of a constant of motion severely restricts the dynamical pos-

sibilities of a trajectory (p(t), q(t)), because it must follow the (hyper)surface
F (p(t), q(t)) = constant. The motion is even more restricted if additional con-
stants of motion exist. In the extreme case, the dynamical equations can be
integrated in closed form. A system is said to be ‘integrable’ if N independent
constants of motion Fj exist:

Fj(p, q) = cj = constant , j = 1, . . . , N . (2.10)

One of the Fj can be the energy. In addition, the Fj must be ‘in involution’,
i.e., their pairwise Poisson brackets must vanish:

{Fj , Fk} =
∑

i

(
∂Fj

∂pi

∂Fk

∂qi
− ∂Fk

∂pi

∂Fj

∂qi

)
= 0 . (2.11)

In this case, it can be shown that the phase space trajectory is confined
to the surface of an N -dimensional manifold in 2N -dimensional phase space.
Furthermore, it can be shown that this surface has the topology of a torus.
The whole phase space is filled with such tori and the phase space flow is
therefore highly organized and regular.

For systems with two degrees of freedom as, for example, the motion of a
mass m in a two-dimensional potential V (x, y) with Hamiltonian

H(px, py, x, y) =
1

2m

(
p2

x + p2
y

)
+ V (x, y) , (2.12)

the solution of the equations of motion
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ṗx = −∂V

∂x
, ẋ =

px

m
(2.13)

ṗy = −∂V

∂y
, ẏ =

py

m
(2.14)

describes the time evolution of the system in four-dimensional phase space
(x, y, px, py). Because of energy conservation, the trajectory is restricted to
the three-dimensional manifold H(px, py, x, y) = E, the ‘energy surface’. For
an integrable system, because of (2.11), there exists a second integral of mo-
tion with vanishing Poisson bracket with the Hamiltonian H. To take a spe-
cific example, we can assume that the potential is rotationally symmetric,
V (x, y) = V (x2 + y2), with constant angular momentum L = xpy − ypx.

This restricts the trajectory to a two-dimensional submanifold of the en-
ergy surface, which has the topology of a torus, as illustrated in Fig. 2.1. Such
a torus is invariant under the equations of motion and is, therefore, referred to
as an ‘invariant torus’ . It should be stressed, however, that a two-dimensional
torus embedded in four-dimensional phase space can be bent and twisted in
a complicated manner, and that Fig. 2.1 is only a schematic illustration.

The torus topology can now be utilized in a theoretical analysis to intro-
duce new canonical coordinates and momenta, namely the so-called ‘action-
angle variables’ with actions I = (I1, I2) and angles ϕ = (ϕ1, ϕ2), allowing a
solution — an integration — of the equation of motion in closed form. The
actions are given by the phase integrals

Ii =
1
2π

∮
γi

pdq , i = 1, 2 , (2.15)

where γ1 and γ2 are two topologically different closed paths on the torus (see
Fig. 2.1(a)), as discussed in any textbook of analytical mechanics. Written
in action-angle variables, the Hamiltonian is simply given by H = H(I1, I2)
and — introducing the frequencies ωi = ∂H/∂Ii , i = 1, 2 — the equations of
motion simplify to

İ = 0 , ϕ̇ = ω , (2.16)

with the solution

I = constant ϕ(t) = ϕ(0) + ωt . (2.17)

The trajectory is quasiperiodic, characterized by the two frequencies ω1

and ω2, and, typically, it covers the entire torus in the long-time limit. For
the case of commensurable frequencies, i.e., frequencies whose ratio is rational,
the trajectory returns precisely to its starting point and the identical orbit is
traced out again: the trajectory is periodic (Fig. 2.1(c)). Moreover, the ratio-
nality condition is valid for the entire torus and all trajectories on this torus
are periodic with the same period. The frequencies vary, of course, in phase
space and therefore, typically, a dense, countable subset of the tori filling the
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phase space carry periodic trajectories. This picture can easily be extended
to the case of more than two degrees of freedom.

Integrable systems are rare. Until recently, however, such systems were
almost exclusively treated in textbooks on classical dynamics, as for in-
stance a forced or parametrically excited harmonic oscillator, a point mass in
a three-dimensional spherically symmetric potential, N -dimensional coupled
harmonic oscillators, etc. This led to the impression that the well-organized
behavior of integrable cases is typical for systems with few degrees of freedom.

As another extreme example we have ergodic systems. Here, almost every
trajectory approaches arbitrarily close to every energetically allowed point in
phase space, i.e., it fills the phase space. Ergodic systems have been discussed
in physics mainly in the context of a statistical description of systems with
many degrees of freedom, e.g., the N -particle gas in thermodynamics (N ∼
1023 ). Only in the last decades has it been realized that low dimensional
physical systems can be ergodic.

Ergodicity, however, does not guarantee the decay of correlations in the
long time limit, which is demanded for the so-called mixing systems. These
systems lose the memory of their history and show irregular (or ‘chaotic’)
behavior. A characteristic of such chaotic dynamics is an extreme sensitiv-
ity to initial conditions (exponential separation of neighboring trajectories),
which puts severe limitations on any forecast of the future fate of a particular
trajectory. This sensitivity is known as the ‘butterfly effect’: the state of the
system at time t can be entirely different even if the initial conditions are only
slightly changed, i.e., by a butterfly flapping its wings.

A quantitative measure of this exponential growth of deviations is given
by the Lyapunov exponent (see Sect. 2.4.3). The most chaotic systems are the
so-called K-systems. These are systems where nearby orbits separate exponen-
tially. Very few systems have been proven to be mixing, as are, for example,
the hard-sphere gas and the stadium billiard (see Chap. 3 ). A typical system
(for two and more degrees of freedom) shows an intricate mixture of regular
and irregular motion.

2.2.2 Poincaré Sections

In order to analyze complicated dynamics, one introduces a surface of section
in phase space and, instead of studying a complete trajectory, one monitors
only the points of its intersection with this surface. In this manner, we obtain
a discrete mapping — the Poincaré map — which maps an intersection
point onto the next one. As an illustrative example we again consider the
Hamiltonian (2.12) with two degrees of freedom and take a section through
phase space at, e.g., y = 0 for a given value of the energy E. Any point on this
surface of section with coordinates (x, px) uniquely determines an initial point
for a trajectory. Solving for py yields py = ±{2m(E − p2

x − V (x, 0)}1/2. The
value of py is uniquely determined by the coordinates (x, px) in the Poincaré
section if we fix the sign of py, following the convention of considering only
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Fig. 2.2. A Poincaré section reduces the dynamics to a discrete mapping.

those trajectories which intersect the surface in the positive y-direction py > 0.

The dynamics then reduces to the discrete two-dimensional Poincaré map-
ping

Sn = (pxn, xn) T−→ (pxn+1, xn+1) = Sn+1 , (2.18)

as illustrated in Fig. 2.2 . A simple proof shows that this map is area-
preserving. The set of all such intersection points

Tn(px0, x0) = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
n−times

(px0, x0) (2.19)

allows a much better insight into the dynamical behavior of the orbit as, for
example, the trajectory in coordinate space, and a synoptic picture of different
orbits quite easily provides an overview of the global properties of the phase
space flow.

Orbits with
T k(px0, x0) = (px0, x0) (2.20)

are called k-periodic. These fixed points of the mapping T k and their stability
properties (see Sects. 2.4.4 and 2.4.5) can play an important role in the or-
ganization of the phase space flow and the Poincaré map. It should be noted
that k-periodic orbits appear as a set of k discrete points in such a map. A
quasiperiodic trajectory fills a closed curve in the Poincaré section, which
is the intersection of the invariant torus covered by the trajectory and the
Poincaré section. For an integrable system at fixed energy E, the surface of
section is filled with a family of such ‘invariant curves’ , i.e., curves invari-
ant under the Poincaré map (2.18), as shown in Fig. 2.3. A countable subset
of these invariant curves is filled with orbits, which are periodic under the
Poincaré map.
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ω1

y = 0

Px

x
Fig. 2.3. A family of invariant tori in phase space appears as invariant curves in a
Poincaré section. A subset of these invariant curves is filled with periodic orbits.

Poincaré sections and mappings are used in most of the computer programs
described in the following chapters. In some cases, they arise directly from the
physics of the dynamical system, as for example the mapping between subse-
quent impacts in billiard systems (Chap. 3 and 4 ). Another kind of Poincaré
mapping appears for time-periodically driven systems (period T ), where the
state of the system is only observed at discrete times tn = nT , generating a
so-called stroboscopic mapping. Such a mapping is used in the studies of the
Duffing oscillator (Chap. 8 ) and the Chaos generator (Chap. 10 ).

2.2.3 The KAM Theorem

For an integrable system, the entire phase space is filled with invariant tori
and any trajectory will remain on the particular torus selected by the initial
conditions. The proof of the existence of these tori is, however, based on the
integrability of the system, i.e., the existence of N integrals of motion. It is
now of considerable interest to investigate the behavior of the system when
the integrals of motion are destroyed. This can be achieved by a small per-
turbation. To take an example, in a two-dimensional potential with rotational
symmetry, the symmetry can be disturbed by a superimposed field and the
angular momentum is no longer conserved. In this case, there is a priori no
confinement to a two-dimensional submanifold of phase space, and the tra-
jectory may explore all those parts of the phase space which are energetically
accessible. This is, however, not the case.

The transition from an integrable to a nonintegrable system is most clearly
analyzed in one of the most fundamental results in the theory of Hamiltonian
(conservative) systems: the celebrated theorem of Kolmogoroff, Arnold, and
Moser, which describes the influence of perturbations on an integrable system.
Here, we formulate this so-called ‘KAM theorem’ for two degrees of freedom.
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The KAM theorem assumes a perturbation of an integrable system H0 by
a term H1 :

H(p, q) = H0(p, q) + εH1(p, q) (2.21)

(the mathematical proof requires certain differentiability properties of H1).
The parameter ε measures the strength of the perturbation. The essence of the
KAM theorem is the surprising result that most of the invariant tori survive,
i.e., the tori still exist in the perturbed system, although slightly deformed,
and the trajectory still covers a two-dimensional subset of the phase space.
The stability of an invariant torus against perturbation depends on the degree
of non-periodicity of the motion on the torus, i.e., the irrationality of the ratio
of the two frequencies ω1 and ω2 (we will assume that ω1 is the smaller of the
frequencies).

Formulated more precisely, all invariant tori with∣∣∣∣ω1

ω2
− r

s

∣∣∣∣ > K(ε)
s5/2

(2.22)

for arbitrary coprime integer numbers r and s are preserved in the perturbed
system. The constant K(ε) depends only upon the perturbation strength ε,
and goes to zero for ε → 0.

Excluded from the stability criterion (2.22) are, in particular, tori with
rational frequency ratio carrying periodic trajectories. Moreover, around each
rational frequency ratio ω1/ω2 = r/s there exists a narrow region of width
K(ε)s−5/2, in which (2.22) is not satisfied. For increasing ‘irrationality’ of the
frequency ratio, i.e., larger denominator s in r/s, the region (2.22) guarantee-
ing preservation of the invariant tori decreases. Since the set of rational values
of ω1/ω2 in the interval [0, 1] is dense and for every rational frequency ratio
r/s an entire interval ∣∣∣∣ω1

ω2
− r

s

∣∣∣∣ ≤ K(ε)
s5/2

(2.23)

is excluded, one may conclude that (2.22) is practically never satisfied. This is,
however, not the case. Figure 2.4 illustrates the destroyed zones for the most
important r/s resonances, i.e., those with a small denominator ( s = 2, . . . , 7 ).
Here, the value of the constant K(ε) is chosen as 0.3. One observes that
the width of the destroyed zones decreases rapidly with increasing s. But,
nevertheless, there are infinitely many of them.
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Fig. 2.4. Destroyed zones of length K/s2.5 at rational frequency ratio r/s.



20 2 Nonlinear Dynamics and Deterministic Chaos

A simple estimate yields for the union of all these intervals (2.23)

∑
r<s

∣∣∣∣ω1

ω2
− r

s

∣∣∣∣ ≤∑
s

∑
r<s

K(ε)s−5/2

≤
∑

s

sK(ε)s−5/2 = K(ε)
∑

s

s−3/2 .

(2.24)

The last sum converges and, therefore, the sum over all intervals (2.23) goes
to zero for ε → 0, so that for a sufficiently weak perturbation the phase space
volume not filled with invariant curves can be made arbitrarily small.

The invariant tori in the zones excluded by the KAM condition are in most
cases destroyed. In the centers of the destroyed zone we have a torus with
rational frequency ratio and, hence, periodic motion. In a simplified picture,
one can imagine that, for such a periodic motion, the perturbation is also felt
periodically, so that initially small changes induced in the trajectories may in
time blow up, giving rise to large scale deviations. In addition to the rational
torus, an interval given approximately by (2.23) is also destroyed.

The characteristic scenario for the subsequent destruction of invariant tori
with increasing perturbation strength is discussed in more detail in Sect. 2.4.1.
Here, we only note that a torus filled with periodic orbits with frequency ratio
ω1/ω2 = r/s quite typically decays. A number of ν s stable and ν s ( ν ∈ IN )
unstable periodic orbits are, however, still existent, where the integer ν is often
equal to one (a periodic trajectory is called ‘stable’ if nearby trajectories
remain close to it for all times).

In a Poincaré section, these s-periodic trajectories which persist in the
perturbed system appear as stable or unstable fixed points of the iterated
Poincaré map Ts. The stability properties of such fixed points are studied in
Sect. 2.4.5, where the use of the terms ‘elliptic’ and ‘hyperbolic’ for stable and
unstable fixed points, respectively, is explained. The stable fixed points appear
as centers of elliptic stability islands, as shown schematically in Fig. 2.5. A
magnification of the neighborhood of such a fixed point appears to be almost
self-similar to the original Poincaré section. The fixed point is surrounded by
invariant curves, and between these invariant curves we find destroyed zones
with alternating elliptic and hyperbolic fixed points. Magnifying the elliptic
points again yields a similar picture. This process can be continued down to
arbitrarily small scales (see Sect. 2.4.1 for more details).

2.2.4 Homoclinic Points

The neighborhood of the hyperbolic (i.e., unstable) fixed points looks very
different and it is in this region that chaotic dynamics first develops. We
define the ‘stable manifold’ H+ of the hyperbolic fixed point (ph, xh) as the
set of points in the Poincaré section approaching the hyperbolic fixed point
after infinitely many iterations:
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Fig. 2.5. Intact invariant curves
and destroyed zones with chains of
alternating elliptic and hyperbolic
fixed points.

H+ = {(p, x)| lim
n→∞Tn(p, x) = (ph, xh)} . (2.25)

The ‘unstable manifold’ H− is the set of all points emanating from the fixed
point after an infinite number of iterations:

H− = {(p, x)| lim
n→∞T−n(p, x) = (ph, xh)} . (2.26)

This is illustrated in Fig. 2.6 .
One can convince oneself that the stable manifold H+ has no self-crossings,

because of the continuity of the map. The same is true for H−. There are,
however, crossings of H+ and H− and, moreover, these crossings occur gener-
ically. Such crossing points are called ‘homoclinic points’ if the two manifolds
belong to the same fixed point, or ‘heteroclinic points’ for a crossing of stable
and unstable manifolds of different fixed points.

Fig. 2.6. The stable and
unstable manifold H+ and
H− of a hyperbolic fixed
point (◦) intersect in a ho-
moclinic point H (•) gener-
ating a complex network of
loops.
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The future fate and past history of such a homoclinic point is quite in-
teresting. The continuity of the map implies that the iterates Tn(X) of a
neighborhood X of a homoclinic point must resemble the original set X,
which contains an interval of the manifolds H+ and H−. Therefore H+ and
H− must also cross in each of the iterates Tn(X), n = 1, 2, . . . , and we have
a series of infinitely many homoclinic points, which are mapped onto each
other and converge to the hyperbolic fixed point. Moreover, the map is area-
preserving and the area enclosed by the branches of H+ and H− between
two such homoclinic crossings is equal to the area enclosed by the branches
between the subsequent crossings. Unavoidably, this leads to the formation of
infinitely many thin loops as a consequence of the forbidden self-crossing of
the manifolds. As already stated by Henri Poincaré in 1892,

“The intersections form a kind of lattice, web or network with infinitely tight
loops; neither of the two curves (H+ and H−) must ever intersect itself but
it must bend in such a complex fashion that it intersects all the loops of
the network infinitely many times. One is struck by the complexity of this
figure which I am not even attempting to draw. Nothing can give us a better
idea of the complexity of the three body problem and of all the problems in
dynamics. . . ” (cited after Tabor [6, p.144] ).

It is in the neighborhood of the hyperbolic fixed points that chaotic dynam-
ics can first be observed. With increasing perturbation ε, the destroyed zones
grow, and the chaotic area-filling orbits in phase space increase. The ‘chaotic
sea’ is, initially, still enveloped by intact invariant tori. With increasing ε, a
growing number of invariant tori is destroyed, depending on the irrationality
of the frequency ratio.

The last surviving invariant tori are, in most cases, the so-called ‘no-
ble tori’ , whose frequency ratio is, in some sense, the most irrational (see
Sect. 2.4.2 for more details).

Finally, for large perturbation we find wide, extended chaotic regions. Only
small islands surrounded by invariant curves remain, which are embedded in
the chaotic sea. Sometimes, these islands ultimately disappear and the system
becomes ergodic, i.e., almost all trajectories get arbitrarily close to any point
on the energy surface.

2.3 Dissipative Dynamical Systems

An important feature of the Hamiltonian systems discussed in the preceding
section is the conservation of the volume element in phase space. For a dis-
sipative system, this volume element contracts and the trajectory approaches
a (lower-dimensional) subset of the phase space, an ‘attractor’ . Immediately,
the problem arises of characterizing the different types of attractors and de-
termining all coexisting attractors dependent on the parameters of the system
and the organization of their ‘basins of attraction’ in phase space, i.e., the set



2.3 Dissipative Dynamical Systems 23

of all initial conditions of trajectories converging in the long time limit to
a particular attractor, and the structural changes in the attractors when a
parameter of the system is varied, i.e., their bifurcation properties.

Let us discuss a few general features of dynamical systems formulated as
a system of autonomous differential equations

dx

dt
= v(x) , (2.27)

where x = (x1, . . . , xN ) is a vector in N -dimensional phase space, and v =
(v1, . . . , vN ) a vector field in phase space. For a given initial condition x0 =
x(t0), the differential equation (2.27) generates a flow x(t) = x(t,x0) in
phase space. A Poincaré map can be constructed on a surface of section, as
illustrated in Fig. 2.2 above, which reduces the dynamics to the study of a
discrete dissipative map.

The flow generated by (2.27) contracts the volume element

Δτ = Δx1 Δx2 · · ·ΔxN (2.28)

in phase space at a rate

1
Δτ

dΔτ

dt
= div v . (2.29)

For some important model systems, this rate is equal to a (negative) constant,
−γ, and the phase space volume elements shrink uniformly in phase space
according to Δτ ∼ e−γt. A well-known example of such a system is the forced
and damped harmonic oscillator or, more generally, the Duffing oscillator

ẍ + rẋ + ω0
2x + βx3 = f cos ωt , (2.30)

which is studied in detail in Chap. 8. For β = 0, we recover the driven harmonic
oscillator. This explicitly time-dependent second order differential equation
can be rewritten as

ẋ = v

v̇ = −rv − ω2
0x − βx3 + cos ωs (2.31)

ṡ = 1 ,

where the introduction of the auxiliary variable s removes the explicit time
dependence (note that integration of ṡ = 1 with s(0) = 0 yields s(t) = t ).
The phase space volume contracts at the constant rate

1
Δτ

dΔτ

dt
=

∂

∂x
v +

∂

∂v
(−rv) +

∂

∂s
1 = −r . (2.32)

There are other systems, where the contraction rate varies in phase space,
and one can introduce the long time average of the contraction rate along a
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trajectory. This is required to be negative for all initial conditions x0 for a
dissipative system.

For the case of a discrete map

xn+1 = f(xn) (2.33)

the N -dimensional phase space volume Δτ contracts per iteration by a factor∣∣∣∣ det
∂(f1 . . . fN )
∂(x1 . . . xN )

∣∣∣∣ , (2.34)

i.e., the Jacobian determinant of the mapping function. For the most famous
dissipative map, the one-dimensional logistic map xn+1 = 4r xn(1−xn) with
0 ≤ xn ≤ 1, 0 < r < 1 (see Chap. 9), the contraction per iteration is equal to
4r (1 − 2xn), which is x-dependent and smaller than unity.

2.3.1 Attractors

The attractors in dissipative systems are of special interest. Basically, one can
distinguish simple and strange attractors. Two types of simple attractors are
already familiar from the driven harmonic oscillator

ẍ + rẋ + ω0
2x = f cos ωt (2.35)

with r > 0. For the unforced case f = 0, any trajectory converges to the
stationary solution x = 0, a ‘limit point’ or ‘point attractor’ . For the driven
case, f �= 0, the function

x(t) = A cos(ωt − φ) (2.36)

— with an amplitude A = f{(ω0
2−ω2)2+(rω)2}−1/2 and a phase shift given

by φ = rω/(ω0
2−ω2) — is a periodic solution oscillating with the same period

as the external excitation. Any solution converges in the long time limit to
(2.36) as illustrated in Fig. 2.7. Such an attracting periodic solution is called
a ‘limit cycle’ .

For the harmonic oscillator there is only one limit cycle, but for nonlinear
systems as, for example, the Duffing oscillator (2.30), various limit cycles may
coexist. This is explored in more detail in Chap. 8. In addition, the period
of the limit cycle may be entirely determined by intrinsic properties of the
system, and not by any external driving function. Other simple attractors
are two-dimensional tori embedded in phase space and supporting a limiting
quasiperiodic oscillation characterized by two frequencies.

When a parameter of the systems is varied slowly, the attracting limit
points and limit cycles also change, while remaining structurally similar. At
certain critical values, however, they can undergo sudden changes, e.g., change
their character, split into pairs, disappear, etc. Such phenomena are called ‘bi-
furcations’ . A characteristic example is the so-called ‘Hopf bifurcation’ , where
a limit point changes into a limit cycle (see Sect. 2.4.6 for more details).
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Fig. 2.7. Attracting limit cycle
for the damped and driven har-
monic oscillator.

A ‘strange attractor’ is a limit set, which is much more complicated [12].
First, it is a fractal object, characterized by a noninteger, fractal dimension. A
strange attractor has self-similar properties, i.e., a magnification of a part of
it is similar to the whole set. Secondly, the dynamics on the strange attractor
is chaotic, and characterized by an extreme sensitivity to small changes in
the initial conditions. Nearby trajectories diverge exponentially, which can
be quantitatively measured by the ‘Lyapunov exponent’ , as described in more
detail in Sect. 2.4.3. Both the non-trivial geometry and the irregular dynamics
will be explored by means of computer experiments in the following chapters,
in Chap. 8 and Chap. 12 in particular.

The two characteristic features, namely ‘exponential divergence of neigh-
boring trajectories’ and ‘contraction of phase space’, seem to be incompatible
at first sight and, in fact, they can not simultaneously occur in two-dimensional
phase space. For N ≥ 3, however, such chaotic dissipative dynamics is possi-
ble. This can be understood using a simple model: a thin band of trajectories in
three-dimensional phase space is first stretched (exponential divergence) and
compressed (phase space contraction). It is then folded over and re-injected
into itself, as illustrated in Fig. 2.8. This process is then iterated. It should be

Fig. 2.8. Dissipative flow in
three-dimensional phase space
converging to a strange attrac-
tor.
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noted that phase space trajectories can not cross and that the limiting set of
this process will be a very complicated geometrical object.

The process of stretching and folding can be illustrated by the ‘Smale
horseshoe map’ [13]. The map consists of a stretching of a two-dimensional
square followed by a folding over into the shape of a horseshoe, as illustrated in
Fig. 2.9 . This defines a map of the square onto itself, which contracts the area
and separates nearby points. When this process is iterated, a very complex
set of points is generated. A vertical section through the square reveals that
the set consists of 2n disjoint segments after n iterations. Mathematically,
such a limiting set is called a ‘Cantor set’ , i.e., a compact, uncountable, and
totally disconnected set, a ‘fractal’ object, which can be characterized by a
non-integer dimension.

Fig. 2.9. Illustration of the Smale horseshoe map of a square, which consists of a
stretching and a compression of the area followed by a folding over. This process is
iterated.

2.3.2 Routes to Chaos

When the external parameters of a system are varied, the dynamical behavior
can change in character. In particular, it is of interest to study the transition
from a parameter region with regular dynamics to a chaotic regime. Several
characteristic routes of a system from regularity to chaos have been observed.
Such a route is called a ‘scenario’ .

An example is the ‘Poincaré scenario’ in Hamiltonian systems, which
is characterized by the consecutive destruction of invariant tori according to
their degree of ‘rationality’, as described in the preceding section. For dissipa-
tive systems other scenarios are known and, to some extent, understood, but
the full theory of the transition to chaos has still to be developed.
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strange

attractor

Fig. 2.10. The Ruelle-Takens-Newhouse scenario: bifurcation of attractors in phase
space.

The ‘period-doubling scenario’ consists of a sequence of period-doubling
bifurcations (see Sect. 2.4.6), where a stable periodic orbit becomes unstable,
while a stable orbit of period two is born, which bifurcates again into a four-
periodic orbit and so on. Finally, after an infinite number of such bifurcations,
the system becomes chaotic.

Another important route to chaos is the ‘Ruelle-Takens-Newhouse sce-
nario’ [14, 15], which is characterized by a sequence of three bifurcations,
as illustrated in Fig. 2.10. First, we find a point attractor, i.e., the system
approaches a stable equilibrium. For a critical parameter value, this point at-
tractor turns into a limit cycle (a Hopf bifurcation, as discussed in Sect. 2.4.6)
and the system oscillates periodically. After a further parameter change, this
periodic orbit loses its stability and bifurcates into a two-dimensional torus at-
tractor in phase space (see Fig. 2.10). The motion on the attractor is quasiperi-
odic, characterized by two frequencies related to the two different rotations
on the torus. When this torus-attractor is destabilized by a further parameter
change, it turns into a strange attractor.

Finally, a system can become chaotic via the ‘intermittency’ route, as
proposed by Manneville and Pomeau [16, 17]. Such intermittent behavior can
most easily be discussed in terms of one-dimensional maps (see Sect. 2.4.4). A
stable fixed point, i.e., a point attractor, and an unstable fixed point approach
each other when a parameter is varied. At a critical point they coalesce
and disappear. In this region the system shows characteristic intermittent
behavior, an almost regular and seemingly organized dynamics in the vicinity
of the destroyed fixed point interrupted by long intervals of irregular motion
(see Sects. 2.4.4 and 2.4.6 for more details).

2.4 Special Topics

In order to assist the reader in a somewhat deeper analysis of the computer
experiments, we present in this section some more specialized topics in non-
linear dynamics, which will be useful in many of the systems studied in the
following computer experiments. The material is, however, slightly more tech-
nical and the connection and relevance to chaotic dynamics is not directly
obvious. This section can be omitted at a first reading.
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2.4.1 The Poincaré-Birkhoff Theorem

According to the KAM theorem for Hamiltonian systems with two degrees
of freedom (see Sect. 2.2) invariant tori with a sufficiently irrational ratio of
the two basic frequencies ω1/ω2 remain invariant under a small perturbation
of the Hamiltonian. Tori with a rational frequency ratio are excluded by the
conditions of the KAM theorem and are, in most cases, destroyed.

Let us consider this rational case in more detail. For convenience, we con-
sider a two-dimensional mapping of the plane, which models, for example, a
Poincaré map of a two-dimensional Hamiltonian H0:

ρi+1 = ρi

θi+1 = θi + 2πα(ρi) ,
(2.37)

or simply (
ρi+1

θi+1

)
= T

(
ρi

θi

)
. (2.38)

The mapping T is called a ‘twist map’ , where the radial coordinate ρ and
the angular coordinate θ model action-angle variables, and α plays the role of
the frequency ratio. The mapping is area-preserving:∣∣∣∣∂(ρi+1, θi+1)

∂(ρi, θi)

∣∣∣∣ =
∣∣∣∣∣ 1 0

2π α′(ρi) 1

∣∣∣∣∣ = 1 (2.39)

( α′ = dα/dρ ). The dynamics of the twist map is simple. The radial coordinate
ρ is conserved and all points move along concentric circles, where the winding
number α varies with the radius. For circles with a rational α-value

α = r/s , (2.40)

all points are s-periodic, i.e., fixed points of Ts. If the twist map (2.37) is
perturbed as

ρi+1 = ρi + εf(ρi, θi)
θi+1 = θi + 2πα(ρi) + εg(ρi, θi) ,

(2.41)

where the (sufficiently well-behaved) functions f and g are chosen so that
the mapping (

ρi+1

θi+1

)
= Tε

(
ρi

θi

)
. (2.42)

is still area-preserving, the perturbed map Tε can again be considered as a
Poincaré map generated by a Hamiltonian H0+εH1. The KAM theorem then
guarantees that the invariant circles of T having a sufficiently irrational value
of α are slightly transformed invariant curves of Tε for small values of ε.
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The Poincaré-Birkhoff theorem [18] states that invariant circles with ratio-
nal values α = r/s (r and s are coprime integer numbers) consisting entirely
of fixed points of T are not completely destroyed. A number of 2ks points,
k ∈ IN, transform into fixed points of Ts

ε . Half of these fixed points are elliptic
and half are hyperbolic, forming an alternating chain (a short outline of the
proof can be found in Ref. [4] or [19]). The schematic illustration in Fig. 2.11
shows two destroyed invariant curves with α = 1/3 and 1/4 forming chains of
three and four elliptic and hyperbolic fixed points, respectively.

The vicinity of the hyperbolic fixed points show the complex irregular dy-
namics governed by the homoclinic tangle described in Sect. 2.2.4 above. Let
us now explore the neighborhood of the elliptic fixed points of the chain Ts

ε

in more detail. At first sight, these ‘small’ fixed points seem to be surrounded
by invariant curves. This is, however, an illusion. As before, the KAM and
Poincaré-Birkhoff theorems can now be applied to the ‘small’ elliptic fixed
points, showing that the seemingly invariant curves encircling them are also
broken up into alternating elliptic and hyperbolic fixed points for rational
rotation numbers. Figure 2.11 shows, for example, a magnification of such a
region. Repeating this process by again magnifying the magnified fixed points
reveals a fascinating self-similar structure of the phase space down to an ar-
bitrarily small scale, as illustrated in Fig. 2.11.

Fig. 2.11. Decay of invariant curves into chains of alternating elliptic and hyper-
bolic fixed points leading to a self-similar structure of the phase space.

2.4.2 Continued Fractions

The behavior of dynamical systems is, in many cases, sensitively dependent
on the number-theoretic character of the value of certain parameters. To take
an example, in the study of billiard systems in Chap. 3, an increasing defor-
mation of the regular circular billiard with quasiperiodic motion destroys an
increasing fraction of these regular orbits, depending on the irrationality of
the quasi-periodicity. The KAM theorem requires that a frequency ratio be
‘sufficiently irrational’. It is therefore necessary to gain some understanding
of the relationship between rational and real numbers.
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As is well known, a real number x can be arbitrarily closely approximated
by rational numbers r/s. Here and in the following, r and s are coprime
integers. The most familiar rational approximation is the decimal expansion,
e.g.

π = 3.141592654 . . . ≈ 3
1

,
31
10

,
314
100

, . . . . (2.43)

The quality of the decimal approximation is given by∣∣∣x − r

s

∣∣∣ < 1
s

(2.44)

and the approach is one-sided, i.e., the rational approximations are always
smaller or larger than x for x > 0 or x < 0, respectively.

Let us now discuss the continued fraction expansion of a real number x:

x = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

, (2.45)

(a0 ∈ ZZ , a1, a2, . . . ∈ IN). This expansion is unique and can easily be con-
structed for any x by taking a0 as the integer part of x, defining

x0 = x − a0 , a1 = [x−1
0 ] , (2.46)

where the Gauss bracket [ ] denotes the largest integer number less than or
equal to the real number inside. Iterating the construction (2.46)

xn = x−1
n−1 − an , an+1 = [x−1

n ] , n = 1, 2, . . . (2.47)

yields the series of the integers an.
The series of rational numbers obtained by cutting the continued fraction

expansion (2.45) at an defines a series of rational approximations

x ≈ r0

s0
,

r1

s1
, . . . ,

rn

sn
, . . . . (2.48)

Such a rn/sn is the best rational approximation of x, i.e., there is no rational
number with s < sn and ∣∣∣x − r

s

∣∣∣ < ∣∣∣x − rn

sn

∣∣∣ . (2.49)

A well-known example of such an approximation in terms of continued frac-
tions is the series

π ≈ 3
1

,
22
7

,
333
106

,
355
113

, . . . . (2.50)

It can be shown that the quality of the continued fraction approximation
is given by
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sn

∣∣∣ < 1
snsn−1

, (2.51)

which is much stronger than, for example, the quality of the simple decimal
approximation (2.43). In addition, the convergence is alternating, i.e., x lies
between two subsequent approximations.

From (2.45), we see that the convergence of the continued fraction ap-
proximation is better for larger values of the natural numbers an. The slowest
convergence is evidently found for a1 = a2 = · · · = 1, corresponding to

g∗ =
1

1 +
1

1 +
1

1 + · · ·

, (2.52)

which is least well approximated by the rational numbers. g∗ is the so-called
‘golden number’ , ‘golden mean’ , or ‘golden ratio’ . It is closely related to the
‘Fibonacci numbers’

{Fn} = {0, 1, 1, 2, 3, 5, 8, 13, . . . } , (2.53)

which are defined by the recursion Fn+1 = Fn + Fn−1 with F0 = 0, F1 = 1.
From the ratio

un =
Fn

Fn+1
=

Fn

Fn + Fn−1
=

1
1 + un−1

(2.54)

and u0 = 0 we recover by iteration the continued fraction expansion (2.52)
and, in addition,

g∗ = lim
n→∞un = lim

n→∞
1

1 + un−1
=

1
1 + g∗

. (2.55)

This yields the quadratic equation g∗(1 + g∗) = 1 having the solution

g∗ =
1
2

(√
5 − 1

)
= 0.61803 . . . , (2.56)

which is known as the ‘golden mean’ . This number can be considered as the
‘most irrational’ number in the interval [0, 1]. In fact, there is a whole class
of similar numbers, where the continued fraction expansion has the form

{a0, a1, . . . , 1, 1, 1, . . . } . (2.57)

Such numbers are called ‘noble numbers’ . The most important noble numbers
in the interval [0, 1] are those of the form

g∗k =
1

k + g∗
, k = 1, 2, . . . , (2.58)

with g∗1 = g∗, g2 = 1/(2 + g∗) = 1 − g∗ ≈ 0.38197 . . . .
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As an example, we consider the perturbed two-dimensional Hamiltonian
system discussed in Sect. 2.2.3, where the KAM theorem guarantees the
preservation of all invariant tori, whose frequency ratio satisfies∣∣∣∣ω1

ω2
− r

s

∣∣∣∣ > K(ε)
s5/2

, (2.59)

i.e., whose frequency ratio is sufficiently irrational. With increasing perturba-
tion these zones shrink to zero until finally all invariant tori are destroyed.
The last invariant tori are, in many cases, those whose frequency ratio equals
a noble number, the so-called ‘noble tori’ (compare, e.g., the numerical ex-
periment for the double pendulum in Sect. 5.4.3).

2.4.3 The Lyapunov Exponent

Chaotic dynamics is characterized by an exponential divergence of initially
close points. Let us first discuss the case of one-dimensional discrete maps of
an interval

xn+1 = f(xn) , x ∈ [0, 1] , (2.60)

which are studied numerically in Chap. 9. The so-called ‘Lyapunov exponent’
is a measure of the divergence of two orbits starting with slightly different
initial conditions x0 and x0 + Δx0. The distance after n iterations

Δxn = |fn(x0 + Δx0) − fn(x0)| (2.61)

increases exponentially for large n for a chaotic orbit according to

Δxn ≈ Δx0 eλLn . (2.62)

One can now relate the Lyapunov exponent analytically to the average
stretching along the orbit x0, x1 = f(x0), x2 = f(f(x0)), . . . ,xn = fn(x0) =
f(f(f . . . (x0) . . .)). From (2.61) and the chain rule of differentiation, we have

ln
Δxn

Δx0
≈ ln

∣∣∣∣fn(x0 + Δx0) − fn(x0)
Δx0

∣∣∣∣
≈ ln

∣∣∣∣dfn(x)
dx

∣∣∣∣ = ln
n−1∏
j=0

|f ′(xj)|

=
n−1∑
j=0

ln |f ′(xj)| ,

(2.63)

and finally

λL = lim
n→∞

1
n

ln
Δxn

Δx0
= lim

n→∞
1
n

n−1∑
j=0

ln |f ′(xj)| , (2.64)
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where the logarithm of the linearized map is averaged over the orbit x0,
x1,. . .xn−1.

Negative values of the Lyapunov exponent indicate stability, and positive
values chaotic evolution, where λL measures the speed of exponential diver-
gence of neighboring trajectories. At critical bifurcation points the Lyapunov
exponent is zero.

For an interpretation of the Lyapunov exponent, it is instructive to note its
relationship to the loss of information during the process of iteration. When
the interval [0, 1] is partitioned into N equal boxes, one needs ld N bits of
information (ld is the logarithm of base two) to localize the particular box
containing the point xj , i.e., one has to ask ld N ‘yes’ or ‘no’ questions on
average. After an iteration this box is stretched by a factor |f ′(xj)| and we
have an information loss

ΔI(xj) = −ld |f ′(xj)| (2.65)

regarding the position of the iterated point. The Lyapunov exponent can
therefore be interpreted as the average loss of information:

λL = − ln 2 lim
n→∞

1
n

n−1∑
j=0

ΔI(xj) = − ln 2 ΔI(xj) , (2.66)

where the factor ln 2 converts binary (‘bits’) to natural (‘nats’) units of in-
formation.

It is also of interest to express the Lyapunov exponent in terms of the
asymptotic density of points covered by the orbit x0, x1, x2, . . .

�(x) = lim
n→∞

1
n

n−1∑
j=0

δ(x − xj) , (2.67)

which is, by virtue of its construction, invariant under the mapping function
f(x). This ‘invariant density’ satisfies the integral equation

�(x) =
∫

dx′ �(x′) δ(x − f(x′)) (2.68)

and from (2.67) we directly find the identity

λL =
∫

dx �(x) ln |f ′(x)| . (2.69)

In view of (2.66), this expression strongly resembles the usual definition of
an (information theoretic) entropy, ln |f ′(x)|, averaged over the probability
distribution.

The above discussion of the Lyapunov exponent as a quantitative measure
of the average exponential separation of neighboring orbits can be extended to
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higher dimensional discrete mappings and to continuous flows. Let us discuss,
for example, a Hamiltonian system in 2N -dimensional phase space (p(t), q(t))
evolving from an initial point (p(t0), q(t0)). Let us denote this orbit as the
‘reference orbit’. We now follow a slightly displaced orbit, whose starting point
is shifted by a small amount (Δp(t0),Δq(t0)). The time evolution of the
separation from the reference orbit can be expressed in terms of the stability
matrix M(t, t0) connecting the distance in (Δp(t),Δq(t)) at time t with the
separation at time t0 :

(Δp(t),Δq(t)) = M(t, t0)(Δp(t0),Δq(t0)) . (2.70)

The Lyapunov exponent is defined as the long time limit

λL = lim
t→∞

ln ‖M(t, t0)‖
t − t0

, (2.71)

where ‖M‖ denotes a matrix norm. For a regular trajectory the separation
of neighboring trajectories grows as a (low) power of t, i.e., less than expo-
nentially, and the Lyapunov exponent is zero. A positive Lyapunov exponent
characterizes a chaotic trajectory. Typically, such a trajectory covers a cer-
tain phase space region and the Lyapunov exponent characterizes this region,
regardless of the initial condition.

In many practical problems, however, a computation of λL using this
equation is not practicable because of two problems: first, the exponential
growth (2.71) may lead to numerical errors and computer overflow. Second, it
can not hold for all times, simply because in many cases the accessible phase
space is bounded.

These problems can be overcome by using a repeated rescaling of the offset
from the reference trajectory (see Fig. 2.12). Starting at time t0 = 0 with a
displaced orbit at a distance

d0 = |(Δp(0),Δq(0))| (2.72)

from the reference orbit, we follow this orbit for a time interval τ , compute
the new distance

d1 = |(Δp(τ),Δq(τ))| , (2.73)

and start a new displaced trajectory at the rescaled initial point

(p(τ), q(τ)) +
d0

d1
(Δp(τ),Δq(τ)) . (2.74)

The trajectory is followed up to time t = 2τ , the new deviation

d2 = |(Δp(2τ),Δq(2τ))| , (2.75)

is computed, and a second rescaled trajectory is started. This process is con-
tinued, yielding a sequence of scaling factors d0, d1, d2, . . . from which the
Lyapunov exponent can be computed as
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to

to + τdo

d1

d2

to + 2τ

d0

d0

Fig. 2.12. Computation of the Lyapunov exponent by repeated rescaling of the
distance of a displaced trajectory from a reference orbit.

λL = lim
n→∞

1
nτ

n∑
n=1

ln
dn

d0
. (2.76)

2.4.4 Fixed Points of One-Dimensional Maps

The dynamics of one-dimensional mappings

xn+1 = f(xn, r) , (2.77)

where r is a parameter, may converge in the long-time limit to the fixed points

x∗ = f(x∗, r) . (2.78)

The stability of a fixed point x∗ can be obtained from linearization of the
map (2.77) in the vicinity of the fixed point:

xn+1 − x∗ = f ′(x∗, r) (xn − x∗) (2.79)

with f ′ = df/dx. This implies that deviations from the fixed point shrink for∣∣f ′(x∗, r)
∣∣ < 1 (stable fixed point) (2.80)

and magnify for ∣∣f ′(x∗, r)
∣∣ > 1 (unstable fixed point) . (2.81)

In the case
∣∣f ′(x∗, r)

∣∣ = 1 we have neutral stability.
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It is important to realize that this simple criterion also applies to the
stability of periodic k-cycles

x0, x1, . . . , xk = x0

with xn = f(xn−1, r). Each member of this k-cycle is a fixed point x∗ of the
k-times iterated map

x∗ = fk(x∗, r) = f(f(. . . f︸ ︷︷ ︸
k −times

(x∗, r) . . .)) (2.82)

and the chain rule for differentiation yields

∣∣∣∣dfk

dx

∣∣∣∣
x∗

=
k−1∏
n=0

|f ′(xn, r)|
{

< 1 stable fixed point

> 1 unstable fixed point
, (2.83)

for x∗ = xn , n = 0, . . . , k − 1.
It is evident from (2.83) that the slope of fk is identical for all k members

xn , n = 0, . . . , k−1 of the k-periodic orbit. Graphically, this means that the
function fk(x) becomes simultaneously tangential to the bisector y(x) = x
for the whole chain of fixed points when this orbit loses stability.

Let us look at the loss of stability of a fixed point x∗ = f(x∗, r) in more
detail. Increasing the parameter r from a stable region ( |f ′(x∗, r)| < 1 ) to an
unstable region ( |f ′(x∗, r)| > 1 ) crossing a critical value r1 with |f ′(x∗, r1)| =
1, the fixed point x∗ = x∗(r) becomes unstable at r = r1. We note that any
fixed point of f is also a fixed point of the iterated map f2 having the same
stability properties. However, at r = r1 a stable period-two orbit (x∗−, x∗+)
with

x∗− f−→ x∗+ f−→ x∗− , (2.84)

is born. Both points, x∗− and x∗+, are stable fixed points of the iterated map
f2, i.e., the slope of f2 is smaller than unity:∣∣∣∣df2

dx

∣∣∣∣
{x∗−}

=
∣∣∣∣df2

dx

∣∣∣∣
{x∗+}

=
∣∣f ′(x∗−, r)

∣∣ ∣∣f ′(x∗+, r)
∣∣ < 1 ,

(2.85)

provided that r is close enough to r1. This bifurcation of fixed points — a
so-called ‘pitchfork bifurcation’ — is illustrated in Figs. 2.13 and 2.14. It is
investigated numerically in Chap. 9 .

For increasing values of the parameter r, the fixed points of f2 can also lose
their stability at r2 and bifurcate again into period-four orbits (fixed points
of f4), and so on.
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Fig. 2.13. Pitchfork bifurcation: A stable period-one fixed point x∗ loses stability
at a critical value of the parameter r = r1, where the slope |f ′(x∗)| is unity, and a
pair of period-two fixed points x∗− and x∗+ is born.

r

x*-

x*

x*+

r1

Fig. 2.14. Pitchfork bifurcation: A sta-
ble period-one fixed point x∗ loses sta-
bility at a critical value of the parame-
ter r = r1 and a pair of period-two fixed
points x∗− and x∗+ is born. The dashed
curve marks the position of the unstable
fixed point x∗.

Another bifurcation of fixed points of one-dimensional maps can be ob-
served when the mapping function f(x, r) becomes tangential to the bisector
at a critical parameter value rc, as illustrated in Fig. 2.15. For, say, r > rc we
have two intersections with the bisector, x∗ = f(x∗, r), i.e., two fixed points
of the map. At the critical parameter, the slope of f is unity and therefore
one of the fixed points is stable (slope smaller than unity) and one is unstable
(slope larger than unity). In the limit r → rc the fixed points approach each
other. They coalesce at rc, and disappear for r > rc. This bifurcation is called
a ‘tangent bifurcation’ .

For r � rc there is a narrow channel between the mapping function and
the bisector. When the iterates enter this channel, it takes a large number
of iterations until the iterates are ejected from it again. During this process,
the behavior of the iterates is very regular, but outside the channel the iter-
ation may be irregular until the channel is re-entered. This behavior is called
‘intermittency’ [16, 17].
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r < rc r = rc r > rc

Fig. 2.15. Tangent bifurcation and intermittency: A stable (•) and an unstable
(◦) fixed point coalesce and disappear at a critical parameter value rc.

2.4.5 Fixed Points of Two-Dimensional Maps

Two-dimensional discrete maps

xn+1 = f(xn, yn)
yn+1 = g(xn, yn)

(2.86)

are important models for studying chaotic dynamics. A popular example is
the Mandelbrot map explored in detail in Chap. 11. Such maps constitute
interesting dynamical systems, which may be analyzed without any obvious
physical interpretation. They may appear in a direct way, modeling, e.g., pe-
riodically kicked systems (see Chap. 13), or they can appear as Poincaré maps
of higher dimensional flows. An example are Hamiltonian systems with two
degrees of freedom, whose dynamics in four-dimensional phase space is of-
ten reduced to the study of area-preserving two-dimensional Poincaré maps,
which form an important subclass of two-dimensional maps.

Dissipative Maps: The stability and bifurcation properties of two-dimen-
sional maps are much richer than in the one-dimensional case. Let us consider
a fixed point (x∗, y∗) of the map (2.86), so that

x∗ = f(x∗, y∗)

y∗ = g(x∗, y∗) .
(2.87)

We can investigate the stability properties at the fixed point by means of a
two-dimensional Taylor expansion

xn+1 ≈ f(x∗, y∗) +
∂f

∂x

∣∣∣∣∗ (xn − x∗) +
∂f

∂y

∣∣∣∣∗ (yn − y∗)

yn+1 ≈ g(x∗, y∗) +
∂g

∂x

∣∣∣∣∗ (xn − x∗) +
∂g

∂y

∣∣∣∣∗ (yn − y∗)

(2.88)

(here, a subscript ∗ denotes that the derivative is evaluated at the fixed point).
We rewrite the linearized map in matrix form as
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xn+1 − x∗
yn+1 − y∗

)(
∂f/∂x|∗ ∂f/∂y|∗
∂g/∂x|∗ ∂g/∂y|∗

)(
xn − x∗
yn − y∗

)
(2.89)

or, by introducing the deviation vector ξ with components ξx = x − x∗ and
ξy = y − y∗, as

ξn+1 = L ξn (2.90)

with

L =

(
∂f/∂x/|∗ ∂f/∂y/|∗
∂g/∂x/|∗ ∂g/∂y/|∗

)
=

∂(f, g)
∂(x, y)

∣∣∣∣∗ . (2.91)

The eigenvalues of the matrix L are given by

λ± = 1
2

{
TrL ±

√
(TrL)2 − 4 detL

}
(2.92)

(with TrL = L11−L22 and detL = L11L22−L12L21 ), which are interrelated
by

λ+ + λ− = TrL ,

λ+λ− = detL .
(2.93)

The eigenvalues therefore depend on two real valued parameters detL
and TrL, and the character of the fixed point can be conveniently related to
different regions in the (detL , TrL) -plane. This is discussed below.

There are two possibilities, as is obvious from (2.93): both eigenvalues
λ± can be real or complex conjugate. These two cases are separated by the
parabola

(TrL)2 = 4 detL (2.94)

in the (detL , TrL) -plane.
If both eigenvalues are inside the unit circle |λ±| < 1 the magnitude of

the difference vector contracts, the iterates of the linearized map converge to
ξ = 0, and the fixed point is stable. The stability region in the (detL , TrL) -
plane is a triangle bounded by the three straight-lines

TrL − detL = 1 , TrL + detL = −1 , and detL = 1 . (2.95)

When parameters of the system are varied so that one or two eigenvalues
cross the stability boundary λ = 1, characteristic bifurcations occur. One can
distinguish three possibilities, depending on the crossed boundary line of the
stability triangle:

(a) a so-called ‘divergence’ occurs on the line TrL − detL = 1,
(b) a ‘flip’ on the line TrL + detL = −1, and
(c) a ‘flutter’ or ‘Neimark bifurcation’ on the line detL = 1.
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Fig. 2.16. Stability of a two- dimensional map L. Crossing the boundary of the
stability triangle leads to characteristic bifurcations. In the convex region bounded
by the dashed line the eigenvalues are complex conjugate.

In the first two cases, (a) and (b), the eigenvalues are real and — because
of the inequality |λ+λ−| < 1 — only a single eigenvalue, e.g., λ+, can cross
the unit circle and the other eigenvalue, λ−, must be smaller than one in mag-
nitude. Therefore, the dynamics of the iterates is basically one-dimensional:
the iterates of the map first approach a line (contraction because of |λ−| < 1 )
and then converge along this line to the center ξ = 0 in the case of stabil-
ity, or diverge to infinity in the case of instability. The details depend on the
character of the crossing, λ = +1 for a linear divergence or λ = −1 for a
linear flip, as well as on the sign of the second eigenvalue.

For case (c) — a linear ‘flutter’ or ‘Neimark’ bifurcation — the behavior is
more involved. Here, a pair of complex conjugate eigenvalues crosses the unit
circle |λ±| = 1 simultaneously. The real part of the eigenvalues are identical
and two cases can be distinguished:
— For a crossing with a positive real part, the iterates spiral inward in the
stable region and outward in the case of instability. Exactly at the crossing
we have neutral stability and the iterates trace out an elliptic orbit.
— For a negative real part, the iterates spiral and oscillate simultaneously.
In addition, the behavior can be sensitively dependent on the phase of the
eigenvalues at the crossing point of the unit circle. A rational phase 2πr/s
leads to an s-periodic rotation (because of λs = 1 ) tracing out an elliptic



2.4 Special Topics 41

orbit, which slowly contracts (inside the stability region) or expands (outside
the stability region).

The interested reader can investigate these bifurcations numerically in
some of the computer experiments described below (most directly for the
two-dimensional maps studied in Chap. 11). More details about the theoreti-
cal description can be found in Ref. [3, Sect. 8.4] .

Area-Preserving Maps: In the remainder of this section we will discuss
the special case of Hamiltonian dynamics. Here, the phase space volume is
preserved, we find area-preserving maps and the linearized mapping (2.90) is
restricted by

detL = 1 . (2.96)

Therefore, the eigenvalues λ± of L must satisfy λ+λ− = 1 and the stability
properties depend on the value of TrL. Two cases can be distinguished:

(a) |TrL| > 2 : In this case the eigenvalues are real. Let us first assume
TrL > 2. We then have λ+ > λ− > 0 and the eigenvalues can be written as

λ± = e±γ , (2.97)

where γ is the ‘stability exponent’. The eigenvectors

L ξ± = λ±ξ± (2.98)

describe the unstable (ξ+) and stable (ξ−) directions of the fixed point. Iter-
ating a point which is initially on the ray in the unstable direction, the iterates
stay on this line, moving outward according to

ξn = Lnξ0 = enγξ0 . (2.99)

Iterates started in the stable direction finally converge to the fixed point. All
other points move on a branch of a hyperbola with asymptotes given by the
unstable and stable directions, as shown below, iterating finally to infinity in
the unstable direction, as illustrated in Fig. 2.17. Such an unstable fixed point
is therefore called a ‘hyperbolic fixed point’ .

For the case TrL < −2, the eigenvalues can be written as λ± = −e∓γ , and
the behavior is very similar except that the iterates alternate between both
branches of the hyperbola. This is a ‘hyperbolic fixed point with reflection’ .
(b) |TrL| < 2 : The eigenvalues are complex conjugate and of unit absolute
value. They are conveniently expressed as

λ± = e±iβ , (2.100)

where β is called the ‘stability angle’ . In terms of the complex eigenvectors
ξ±, any initial vector
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ξ0 = a+ξ+ + a−ξ− (2.101)

is mapped to
ξn = Lnξ0 = a+e+inβξ+ + a−e−inβξ− . (2.102)

These iterates are all restricted to an ellipse, which is rotated in the (x, y)-
plane (see below) and the fixed point is called an ‘elliptic fixed point’ , as
illustrated in Fig. 2.18. The fixed point is stable, and any point close to it
stays in its neighborhood.

It remains to show that the iterates of the map (2.90) with detL = 1
trace out a conic section. This can easily be seen by first observing that L is
symplectic, i.e., it satisfies the relation

Lt JL = J (2.103)

with

J =
(

0 −1
1 0

)
. (2.104)

Secondly, the set
ΣQ =

{
ξ | ξ t JL ξ = Q ∈ IR

}
(2.105)

is invariant under the map L. To show this, we take ξ ∈ ΣQ with image
ξ ′ = Lξ. We then have

ξ ′ t JL ξ ′ = ξ t Lt JLL ξ = ξ t JL ξ = Q , (2.106)

which shows that ξ ′ ∈ ΣQ. Finally, the set ΣQ is a quadratic form in the
variables x and y:

x

y ξ-

ξ+

Fig. 2.17. Mapping properties of a
hyperbolic fixed point of a two-dimen-
sional linear area-preserving map.
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y

x

2 01

* * *

Fig. 2.18. Mapping proper-
ties of an elliptic fixed point of
a two-dimensional linear area-
preserving map.

Q = ξ t JL ξ = (x, y)
(

0 −1
1 0

)(
L11 L12

L21 L22

)(
x
y

)

= L12 y2 + (L11 − L22) xy − L21 x2 . (2.107)

This determines a conic section. The reader can easily show that a rotation

D(χ) =
(

cos χ − sin χ
sinχ cos χ

)
(2.108)

with
tan 2χ =

L22 − L11

L12 + L21
(2.109)

and L′ = DtLD brings the conic section to the standard form

Q = L′
12y

′ 2 − L′
21x

′ 2 . (2.110)

Furthermore, we have

L′
12 − L′

21 = L12 − L21 and L′
12L

′
21 = (TrL/2)2 − 1 (2.111)

and one can again verify that an ellipse is obtained for |TrL| < 2 and a
hyperbola for |TrL| > 2.

It is sometimes more convenient to characterize the fixed point by the
quantity

R = (2 − TrL)/4 , (2.112)

the so-called ‘residue’ of the fixed point. The orbit is stable for 0 < R < 1
with the exception of the values R = 3/4 and R = 1/2. In the case of stability,
the points move on ellipses at a rate ν (rotations per period) with

R = sin2(β/2) = sin2(πν) . (2.113)

For R > 1 or R < 0, the orbit is unstable (hyperbolic or hyperbolic with
reflection, respectively).
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In the cases R = 0, 1, 3/4, 1/2, where the eigenvalues are low order roots
of unity (λk = 1 with k = 1, 2, 3, 4 ), the linearized map is not sufficient to
determine the stability of the fixed point (see [20]).

When a parameter of the (area-preserving) map is varied, the periodic
orbits, i.e., the fixed points of the map (2.86) or its iterates, may bifurcate
whenever the residue passes a value

Rl,m = sin2(πl/m) . (2.114)

A more detailed discussion of the bifurcation properties of area-preserving
maps can be found in the article by Green et al. [21].

2.4.6 Bifurcations

In many situations the structural properties of the dynamics are preserved
when parameters of the system are (slowly) varied. There are, however, im-
portant exceptions: a bifurcation describes a rapid change in the type of dy-
namics when parameters of the system cross a critical value. Here, we discuss
some important examples.

Pitchfork Bifurcation: Pitchfork bifurcation has been discussed above in the
context of one-dimensional maps x′ = f(x, r). Let us recall its basic prop-
erties: a period-one fixed point of the map becomes unstable when the slope
of the derivative |f ′(x, r)| passes through unity. At the same time, a pair of
stable fixed points of period two appears, as illustrated in Figs. 2.13 and 2.14
above.

Tangent Bifurcation. In a tangent bifurcation a stable and an unstable fixed
point approach each other and disappear into the complex plane. In the vicin-
ity of the bifurcation point the system still feels the influence of the previous
fixed points; they appear as ‘ghosts’, attracting the orbits for a while until
they are ejected again. This leads to so-called ‘intermittency’ , where an ir-
regular wandering of the orbit is interrupted at irregular intervals by regular
dynamics in the vicinity of the (disappeared) fixed points. As an example,
such behavior is discussed for one-dimensional maps in Sect. 2.4.4 (compare
also the numerical experiments in Chap. 9 ).

Hopf bifurcation: The Hopf bifurcation describes the transition from a
point attractor to a limit cycle [22]. It can be modeled by the differential
equations

dr

dt
= −(g + r2)r ,

dφ

dt
= ω (2.115)

in polar coordinates, which can be solved in closed form:

r2(t) =
g r2

0 e−2gt

r2
0 (1 − e−2gt) + g

, φ(t) = ωt (2.116)
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Fig. 2.19. Hopf bifurcation: A point attractor bifurcates into a limit cycle.

with r(0) = r0 and φ(0) = 0. The solution approaches a fixed point at r = 0
for g ≥ 0. When the parameter g is decreased to negative values, a limit cycle
of radius

√−g appears, which attracts all solutions from inside or outside
(see Fig. 2.19).

It is furthermore instructive to linearize the differential equations (2.115)
in Cartesian coordinates, yielding

d
dt

(
x
y

)
=
(−g −ω

ω −g

)(
x
y

)
. (2.117)

The eigenvalues of the matrix are λ± = −g ± iω. At the bifurcation point
g = 0, a pair of complex conjugate eigenvalues crosses the imaginary axis,
which is characteristic for a Hopf bifurcation. A numerical study of a Hopf
bifurcation can be found in the computer experiment in Sect. 12.3.2.
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10. P. Cvitanović, Universality in Chaos, Adam Hilger, Bristol, 1984
11. R. S. MacKay and J. D. Meiss, Hamiltonian Dynamical Systems, Adam Hilger,

Bristol, 1987
12. D. Ruelle, Strange attractors, Math. Intelligencer 2 (1980) 126, reprinted in: P.
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