
Preface

This book developed out of my year-long course on asymptotic theory at
Purdue University. To some extent, the topics coincide with what I cover in
that course. There are already a number of well-known books on asymp-
totics. This book is quite different. It covers more topics in one source than
are available in any other single book on asymptotic theory. Numerous topics
covered in this book are available in the literature in a scattered manner,
and they are brought together under one umbrella in this book. Asymptotic
theory is a central unifying theme in probability and statistics. My main
goal in writing this book is to give its readers a feel for the incredible scope
and reach of asymptotics. I have tried to write this book in a way that is
accessible and to make the reader appreciate the beauty of theory and the
insights that only theory can provide.

Essentially every theorem in the book comes with at least one reference,
preceding or following the statement of the theorem. In addition, I have pro-
vided a separate theorem-by-theorem reference as an entry on its own in the
front of the book to make it extremely convenient for the reader to find a
proof that was not provided in the text. Also particularly worth mentioning
is a collection of nearly 300 practically useful inequalities that I have col-
lected together from numerous sources. This is appended at the very end
of the book. Almost every inequality in this collection comes with at least
one reference. I have often preferred to cite a book rather than an original
publication for these inequalities, particularly if the book contained many
of the inequalities that I present. I also emphasize in this book conceptual
discussion of issues, working out many examples and providing a good col-
lection of unusual exercises. Another feature of this book is the guidance to
the literature for someone who wishes to dig deeper into the topic of a partic-
ular chapter. I have tried to make the chapter-by-chapter bibliographies both
modern and representative. The book has 574 exercises and 293 worked-out
examples. I have marked the more nonroutine exercises with an asterisk.
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I hope that this book is useful as a graduate text, for independent reading,
and as a general and nearly encyclopedic research reference on asymptotic
theory. It should be possible to design graduate-level courses using this book
with emphasis on parametric methods or nonparametric methods, on classic
topics or more current topics, on frequentist topics or Bayesian topics, or
even on probability theory. For the benefit of instructors, I have provided rec-
ommended chapters for ten different one-semester courses, with emphasis
on different themes. I hope that this provides some useful guidance toward
designing courses based on this book.

Because the book covers a very broad range of topics, I do not have a
uniform answer for what background I assume for a reader of this book.
For most chapters, a knowledge of advanced calculus and linear algebra is
enough to enable the reader to follow the material. However, some chapters
require some use of measure theory and advanced analysis and some expo-
sure to stochastic processes. One course on statistical theory at the level of
Bickel and Doksum (cited in Chapter 3 of this volume) or Casella and Berger
(1990) and one on probability at the level of Hoel, Port, and Stone (1971)
or Durrett (1994) are certainly needed to follow the discussion in this book.
Chapter 1 is essentially a review of somewhat more advanced probability
should one need it. The more advanced chapters in this book can be much
better appreciated if one has had courses on the two books of Erich Lehmann
(Lehmann and Casella (cited in Chapter 16), Lehmann and Romano (cited
in Chapter 24)) and a course based on Breiman (1992), Durrett (2004) or
Billingsley (see Chapter 1).

My greatest thanks are due to Peter Hall for being an inspirational and car-
ing advisor, reader, and intellectual filter over the last several years as I was
writing drafts of this book. Peter has deeply influenced my understanding,
appreciation, and taste for probability and statistics, and I have felt grateful
that I have had access to him at all times and with unlimited patience. I have
received much more from Peter than I could wish or expect. I could not
have written this book without Peter’s exemplary warmth and mentorship.
However, all mistakes and ambiguities in the book are exclusively my re-
sponsibility. I would love to know of all serious mistakes that a reader finds
in this book, and there must be mistakes in a book of this length.

I also want to express my very special thanks to John Marden and Larry
Wasserman for repeatedly offering their friendly and thoughtful suggestions
on various decisions I had to make on this book. I want to mention the gener-
ous help and support from Erich Lehmann, Peter Bickel, Rabi Bhattacharya,
and Jon Wellner on specific chapters in the book. Numerous colleagues, and
in particular C. R. Rao, Arup Bose, Persi Diaconis, Joe Eaton, Jianqing Fan,
Iain Johnstone, T. Krishnan, Bruce Lindsay, Wei-Liem Loh, Peter McCul-
lagh, Dimitris Politis, B. V. Rao, Bob Serfling, J. Sethuraman, Kesar Singh,
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and Michael Woodroofe, made helpful comments on parts of earlier drafts
of the book. Chun Han, Martina Muehlbach, and Surya Tokdar helped me
graciously with putting together TeX files of the chapers. John Kimmel and
Jeffrey Taub at Springer were extremely helpful and professional, and I en-
joyed working with them very much. I will work with John and Jeff at any
time with pleasure. Several anonymous referees did unbelievably helpful and
constructive readings of many parts of the book. The Springer series editors
gave me gracious input whenever needed. The copyeditor Hal Henglein and
the typesetters – Integra India of Springer did a magnificent job. I am im-
mensely thankful to all of them. I am also thankful to Purdue University for
providing me with computing and secretarial assistance. Doug and Cheryl
Crabill, in particular, assisted me numerous times with a smile.

I was an impressionable fifteen-year-old when I entered the Indian Sta-
tistical Institute (ISI) as a first-year student. I had heard that statisticians do
boring calculations with large numbers using clumsy calculating machines.
Dev Basu entered the lecture room on my first day at the ISI and instantly
changed my perception of statistics. No one I met could explain so effort-
lessly the study of randomness and how to use what we learn about it to
make useful conclusions. There was not one person at the ISI who didn’t
regard him as an incomparable role model, a personification of scholarship,
and an angelic personality. I am fortunate that I had him as my foremost
teacher. I am grateful to C. R. Rao for the golden days of the ISI and for
making all of us feel that even as students we were equals in his eyes.

At a personal level, I am profoundly grateful to Jenifer Brown for the
uniqueness and constancy of her treasured support, counsel, well wishes, and
endearing camaraderie for many years, all of which have enriched me at my
most difficult times and have helped me become a better human being. I will
always remain much indebted to Jenifer for the positive, encouraging, and
crystallizing influence she has been at all times. I have considered Jenifer to
be an impeccable role model.

I am also thankful to Supriyo and Anuradha Datta, Julie Marshburn,
Teena Seele, Gail Hytner, Norma Lucas, Deb Green, Tanya Winder, Hira
Koul, Rajeeva Karandikar, Wei-Liem Loh, Dimitris Politis, and Larry Shepp
for their loyalty, friendship and warmth. Jim and Ann Berger, Herman Ru-
bin, B.V. Rao, T. Krishnan, Larry Brown, Len Haff, Jianqing Fan, and Bill
Strawderman have mentored, supported and cared for me for more than a
decade. I appreciate all of them. But most of all, I appreciate the love and
warmth of my family. I dedicate this book to the cherished memories of my
father, and to my mother on her eightieth birthday.

Anirban DasGupta
Purdue University, West Lafayette, IN



Chapter 12
Invariance Principles

The previous chapters discuss the asymptotic behavior of the sequence of
partial sums Sn = ∑n

i=1 Xi , n ≥ 1, for an iid sequence X1, X2, · · · , under
suitable moment conditions. In particular, we have described limit distribu-
tions and laws of large numbers for centered and normalized versions of Sn .
The sequence of partial sums is clearly a natural thing to consider, given
that sample means are so natural in statistics and probability. The central
limit theorem says that as long as some moment conditions are satisfied, at
any particular large value of n, Sn acts like a normally distributed random
variable. In other words, the population from which the Xi came does not
matter. The delta theorem says that we can do even better. We can even iden-
tify the limit distributions of functions, h(Sn), and this is nice because there
are problems in which the right statistic is not Sn itself but some suitable
function h(Sn).

Now, the sequence Sn is obviously a discrete-time stochastic process.
We can think of a continuous-time stochastic process suitably devised, say
Sn(t), on the interval [0, 1] such that, for any n, members of the discrete
sequence S1√

n
, S2√

n
, · · · , Sn√

n
, are the values of that continuous-time process at

the discrete times t = 1
n ,

2
n , · · · , n

n = 1. One can ask, what is the asymptotic
behavior of this sequence of continuous-time stochastic processes? And just
as in the case of the discrete-time stochastic process Sn , one can look at
functionals h(Sn(t)) of these continuous-time stochastic processes. There
are numerous problems in which it is precisely some suitable functional
h(Sn(t)) that is the appropriate sequence of statistics. The problems in which
a functional of such a type is the appropriate statistic arise in estimation, test-
ing, model selection, goodness of fit, regression, and many other common
statistical contexts. The invariance principle says the remarkable thing that,
once again, under limited moment conditions, the continuous-time process
Sn(t) will act like a suitable continuous-time Gaussian process, say W (t),
and any nice enough functional h(Sn(t)) will act like the same functional of
the limiting Gaussian process W (t). The original F from which the data Xi
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152 12 Invariance Principles

came is once again not going to matter. The form of the result is always the
same. So, if we can identify that limiting Gaussian process W (t), and if we
know how to deal with the distribution of h(W (t)), then we have obtained
the asymptotic behavior of our statistics h(Sn(t)) all at one stroke. It is a
profoundly useful fact in the asymptotic theory of probability that all of this
is indeed a reality. This chapter deals with such invariance principles and
their concrete applications in important problems.

We recommend Billingsley (1968), Hall and Heyde (1980), and Csörgo
and Révész (1981) for detailed and technical treatments, Erdös and Kac
(1946), Donsker (1951), Komlós, Major, and Tusnady (1975, 1976),
Major (1978), Whitt (1980), and Csörgo (1984) for invariance principles
for the partial sum process, Mandrekar and Rao (1989) for more general
symmetric statistics, Csörgo (1984), Dudley (1984), Shorack and Well-
ner (1986), Wellner (1992), Csörgo and Horváth (1993), and Giné (1996)
for comprehensive treatments of empirical processes and their invariance
principles, Heyde (1981), Pyke (1984), and Csörgo (2002) for lucid reviews,
Philipp (1979), Dudley and Philipp (1983), Révész (1976), Einmahl (1987),
and Massart (1989) for the multidimensional case, and Billingsley (1956),
Jain, Jogdeo, and Stout (1975), McLeish (1974, 1975), Philip and Stout
(1975), Hall (1977), Sen (1978), and Merlevéde, Peligrad, and Utev (2006)
for treatments and reviews of various dependent cases. Other references are
given within the specific sections.

12.1 Motivating Examples

Although we only talked about a continuous-time process Sn(t) that suitably
interpolates the partial sums S1, S2, · · · , another continuous-time process of
immense practical utility is the so-called empirical process. The empirical
process Fn(t) counts the proportion of sample observations among the first n
that are less than or equal to a given t . We will discuss it in a little more detail
shortly. But first we give a collection of examples of functionals h(Sn(t)) or
h(Fn(t)) that arise naturally as test statistics in important testing problems
or in the theory of probability. Their exact finite sample distributions being
clumsy or even impossible to write, it becomes necessary to consider their
asymptotic behavior. And, here is where an invariance principle of some
appropriate type comes into play and settles the asymptotics in an elegant
and crisp way.

Here are a small number of examples of such functionals that arise in
statistics and probability.
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Example 1 Dn = sup−∞<t<∞ |Fn(t) − F0(t)|, where F0 is a given CDF
on R.
Example 2 Cn = ∫∞

−∞(Fn(t) − F0(t))2d F0(t).
Example 3 Mn = sup0≤t≤1 Sn(t).
Example 4 
n = 1

n #{k : Sk > 0} = λ(t : Sn(t) > 0), where λ denotes
Lebesgue measure (restricted to [0, 1]).

Dn and Cn arise as common test statistics in goodness-of-fit problems;
we will study them in greater detail in Chapter 26. Mn and 
n arise in the
theory of random walks as the maximum fortune of a fixed player up to
time n and as the proportion of times that she has been ahead. There are
numerous such examples of statistics that can be regarded as functionals
of either a partial sum process or an empirical process, and typically they
satisfy some appropriate continuity property from which point an invariance
principle takes over and settles the asymptotics.

12.2 Two Relevant Gaussian Processes

We remarked earlier that Sn(t) will asymptotically act like a suitable Gaus-
sian process. So does the empirical process Fn(t). These two limiting Gaus-
sian processes are closely related and happen to be the Brownian motion and
the Brownian bridge, also known as the Wiener process and the tied-down
Wiener process. For purposes of completeness, we give the definition and
mention some fundamental properties of these two processes.

Definition 12.1 A stochastic process W (t) defined on a probability space
(�,A, P), t ∈ [0,∞) is called a Wiener process or the Brownian motion
starting at zero if:

(i) W (0) = 0 with probability 1;
(ii) for 0 ≤ s < t < ∞, W (t) − W (s) ∼ N (0, t − s);

(iii) given 0 ≤ t0 < t1 < · · · < tk < ∞, the random variables
W (t j+1) − W (t j ), 0 ≤ j ≤ k − 1 are mutually independent; and

(iv) the sample paths of W (.) are almost all continuous (i.e., except for a
set of sample points of probability 0), as a function of t, W (t, ω) is a
continuous function.

Definition 12.2 Let W (t) be a Wiener process on [0, 1]. The process B(t) =
W (t) − tW (1) is called a Brownian bridge on [0, 1].
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The proofs of the invariance principle theorems exploit key properties of
the Brownian motion and the Brownian bridge. The properties that are the
most useful toward this are sample path properties and some distributional
results for relevant functionals of these two processes. The most fundamen-
tal properties are given in the next theorem. These are also of paramount
importance and major historical value in their own right. There is no single
source where all of these properties are available or proved. Most of them
can be seen in Durrett (1996) and Csörgo (2002).

Theorem 12.1 (Important Properties of the Brownian Motion) Let W (t)
and B(t) denote, respectively, a Brownian motion on [0,∞) starting at zero
and a Brownian bridge on [0, 1]. Then,

(a) cov(W (s), W (t)) = min(s, t); cov(B(s), B(t)) = min(s, t) − st.

(b) Karhunen-Loeve Expansion If Z1, Z2, · · · is an infinite sequence of
iid N (0, 1) random variables, then W (t) defined as W (t) = √

2
∑∞

m=1

sin([m− 1
2 ]π t)

[m− 1
2 ]π

Zm is a Brownian motion starting at zero and B(t) defined as

B(t) = √
2
∑∞

m=1
sin(mπ t)

mπ
Zm is a Brownian bridge on [0, 1].

(c) Scale and Time Change 1√
c
W (ct), c > 0, tW ( 1

t ) are also each Brown-
ian motions on [0,∞).

(d) W (t) is a Markov process and W (t), W 2(t) − t, eθW (t)− θ2 t
2 , θ ∈ R, are

each martingales.

(e) Unbounded Variations On any nondegenerate finite interval, W (t) is
almost surely of unbounded total variation.

(f) Rough Paths Almost surely, sample paths of W (t) are nowhere differ-
entiable, but the paths are Holder continuous of order α for all α < 1

2 .

(g) Almost surely, there does not exist any t0 such that t0 is a point of in-
crease of W (t) in the usual sense of analysis.

(h) Behavior Near Zero Almost surely, on any interval (0, t0), t0 > 0, W (t)
has infinitely many zeros.

(i) Zero Set and Cantor Property The set of all zeros of W (t) is almost
surely a closed, uncountable set of Lebesgue measure zero without any
isolated points.

(j) Strong Markov Property If τ is a stopping time (w.r.t. the W (t) pro-
cess), then W (t + τ ) − W (τ ) is also a Brownian motion on [0,∞).

(k) As t → ∞, W (t)
t → 0 with probability 1.
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(l) LIL Almost surely, lim supt↓0
W (t)√

2t log log(1/t)
= 1, and

lim inft↓0
W (t)√

2t log log(1/t)
= −1.

(m) Almost surely, lim supt→∞
W (t)√

2t log log t
= 1, and lim inft→∞ W (t)√

2t log log t
=

−1.

(n) Order of Increments Almost surely, for any given c > 0,

lim
T→∞

sup
0≤t≤T−c log T

|W (t + c log T ) − W (t)|
c log T

=
√

2

c

and

lim
T→∞

sup
t≥0,t+1≤T

|W (t + 1) − W (t)|
√

2 log T
= 1.

(o) Domination Near Zero If r (t) ∈ C[0, 1] (the class of real continuous
functions on [0, 1]) and is such that inf r (t) > 0, r (t) is increasing and
r(t)√

t
is decreasing in some neighborhood of t = 0, then P(|W (t)| <

r (t)∀t ∈ [0, t0] for some t0) = 1 iff
∫ 1

0 t−3/2r (t)e−r2(t)/(2t) < ∞.

(p) Maxima and Reflection Principle P(sup0<s≤t W (s) ≥ x) = 2P(W (t)
≥ x).

(q) First Arcsine Law Let T be the point of maxima of W (t) on [0, 1].
Then T is almost surely unique, and P(T ≤ t) = 2

π
arcsin(

√
t).

(r) Last Zero and the Second Arcsine Law Let L = sup{t ∈ [0, 1] :
W (t) = 0}. Then P(L ≤ t) = 2

π
arcsin(

√
t).

(s) Reflected Brownian Motion Let X (t) = sup0≤s≤t |W (s)|. Then P(X (t)
≤ x) = 2�( x√

t
) − 1, x > 0.

(t) Loops and Self-Crossings Given d ≥ 2, let W1(t), · · · , Wd (t) be in-
dependent Brownian motions starting at zero, and let W d (t) = (W1(t),
· · · , Wd (t)), called a d-dimensional Brownian motion. Then, for d = 2,
for any given finite k ≥ 2 and any nondegenerate time interval, almost
surely there exist times t1, · · · , tk such that W d (t1) = · · · = W d (tk);
for d = 3, given any nondegenerate time interval, almost surely there
exist times t1, t2 such that W d (t1) = W d (t2) (called double points or
self-crossings); for d > 3, W d (t) has, almost surely, no double points.

(u) Exit Time from Spheres Let W d be a d-dimensional Brownian mo-
tion, B the d-dimensional open unit sphere centered at the origin, and
τ = inf{t > 0 : W d (t) /∈ B}. For a bounded function f : Rd → R,
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E [ f (W (τ ))] = ∫
�B

1
||x ||d f (x)d S(x), where S is the normalized surface

measure on the boundary of B.

(v) Recurrence and Transience Let W d be a d-dimensional Brownian mo-
tion. W d is recurrent for d = 1, 2 and transient for d ≥ 3.

12.3 The Erdös-Kac Invariance Principle

Although the invariance principle for partial sums of iid random variables is
usually credited to Donsker (Donsker (1951)), Erdös and Kac (1946) con-
tained the basic idea behind the invariance principle and also worked out
the asymptotic distribution of a number of key and interesting functionals
h(Sn(t)). We provide a glimpse into the Erdös-Kac results in this section.
Erdös and Kac describe their method of proof as follows:

“The proofs of all these theorems follow the same pattern. It is first proved
that the limiting distribution exists and is independent of the distribution of
the Xi ’s; then the distribution of the Xi ’s is chosen conveniently so that the
limiting distribution can be calculated explicitly. This simple principle has,
to the best of our knowledge, never been used before.”

Theorem 12.2 Let X1, X2, · · · be an infinite iid sequence of zero-mean ran-
dom variables such that Sn√

n admits the central limit theorem. Then,

lim
n→∞ P(n−1/2 max

1≤k≤n
Sk ≤ x) = G1(x), x ≥ 0,

lim
n→∞ P(n−1/2 max

1≤k≤n
|Sk| ≤ x) = G2(x), x ≥ 0,

lim
n→∞ P

(

n−2
n∑

k=1

S2
k ≤ x

)

= G3(x), x ≥ 0,

lim
n→∞ P

(

n−3/2
n∑

k=1

|Sk | ≤ x

)

= G4(x), x ≥ 0,

lim
n→∞ P

(
1

n

n∑

k=1

ISk>0 ≤ x

)

= 2

π
arcsin(

√
x), 0 ≤ x ≤ 1,
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where

G1(x) = 2�(x) − 1,

G2(x) = 4

π

∞∑

m=0

(−1)m

2m + 1
e−(2m+1)2π2/(8x2),

and formulas for G3 and the Laplace transform of G4 are provided in Erdös
and Kac (1946) (they involve complicated integral representations).

Remark. It is quite interesting that for existence of a limiting distribution of
the sum of squares of the partial sums, a fourth moment of the Xi ’s is not
at all necessary, and in fact all that is needed is that the distribution F from
which the Xi arise be in the domain of attraction of the normal. In particular,
existence of a variance is already enough. We will see this phenomenon
reemerge in the next section.

12.4 Invariance Principles, Donsker’s Theorem,
and the KMT Construction

Donsker (1951) provided the full generalization of the Erdös-Kac tech-
nique by providing explicit embeddings of the discrete sequence Sk√

n
, k =

1, 2, · · · , n into a continuous-time stochastic process Sn(t) and by establish-
ing the limiting distribution of a general continuous functional h(Sn(t)). In
order to achieve this, it is necessary to use a continuous mapping theorem
for metric spaces, as consideration of Euclidean spaces is no longer enough.
It is also useful to exploit a property of the Brownian motion known as the
Skorohod embedding theorem. We first describe this necessary background
material.

Define C[0, 1] the class of all continuous real-valued functions on [0, 1]
and D[0, 1] the class of all real-valued functions on [0, 1] that are right con-
tinuous and have a left limit at every point in [0, 1].

Given two functions f,g in either C[0,1] or D[0,1], let ρ( f,g)=sup0≤t≤1|
f (t) − g(t)| denote the supremum distance between f and g. We will refer
to ρ as the uniform metric. Both C[0, 1] and D[0, 1] are (complete) metric
spaces with respect to the uniform metric ρ. Two common embeddings of
the discrete sequence Sk√

n
, k = 1, 2, · · · , n into a continuous-time process

are the following:

Sn,1(t) = 1√
n

[S[nt] + {nt}X[nt]+1]
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and

Sn,2(t) = 1√
n

S[nt],

0 ≤ t ≤ 1. Here, [.] denotes the integer part and {.} the fractional part of a
positive real.

The first one simply continuously interpolates between the values Sk√
n by

drawing straight lines, but the second one is only right continuous, with
jumps at the points t = k

n , k = 1, 2, · · · , n. For certain specific applications,
the second embedding is more useful. It is because of these jump disconti-
nuities that Donsker needed to consider weak convergence in D[0, 1]. It did
lead to some additional technical complexities.

The main idea from this point on is not difficult. One can produce a ver-
sion of Sn(t), say S̃n(t), such that S̃n(t) is close to a sequence of Wiener pro-
cesses Wn(t). Since S̃n(t) ≈ Wn(t), if h(.) is a continuous functional with re-
spect to the uniform metric, then one can expect that h(S̃n(t)) ≈ h(Wn(t)) =
h(W (t)) in distribution. S̃n(t) being a version of Sn(t), h(Sn(t)) = h(S̃n(t)) in
distribution, and so h(Sn(t)) should be close to the fixed Brownian functional
h(W (t)) in distribution, which is the question we wanted to answer.

The results leading to Donsker’s theorem are presented below; we recom-
mend Csörgo (2003) for further details on Theorems 12.3–12.5 below.

Theorem 12.3 (Skorohod Embedding) Given n ≥ 1, iid random variables
X1, · · · , Xn, E (X1) = 0,Var(X1) = 1, there exists a common probability
space on which one can define a Wiener process W (t) starting at zero and a
triangular array of nonnegative random variables {τ1,n, · · · , τn,n}, iid under
each given n such that

(a) τn,n
L= τ1,1,

(b) E (τ1,1) = 1,

(c)

{
S1√

n
, · · · , Sn√

n

}
L=
{

W
(τ1,n

n

)
, · · · , W

(
τ1,n + · · · + τn,n

n

)}

.

Remark. Much more general versions of the Skorohod embedding theorem
are known. See, for example, Oblój (2004). The version above suffices for
the following weak invariance principle for partial sum processes.



12.4 Invariance Principles, Donsker’s Theorem, and the KMT Construction 159

Theorem 12.4 Let Sn(t) = Sn,1(t) or Sn,2(t) as defined above. Then there
exists a common probability space on which one can define a Wiener pro-
cess W (t) starting at zero and a sequence of processes {S̃n(t)}, n ≥ 1, such
that

(a) for each n, Sn(t) and S̃n(t) are identically distributed as processes;

(b) sup0≤t≤1 |S̃n(t) − W (t)| P⇒ 0.

This leads to the famous Donsker theorem. We state a version that is
slightly less general than the original result in order to avoid discussion of
the so-called Wiener measure.

Theorem 12.5 (Donsker) Let h be a continuous functional with respect to
the uniform metric ρ on C[0, 1] or D[0, 1] and let Sn(t) be defined as either

Sn,1(t) or Sn,2(t). Then h(Sn(t))
L⇒ h(W (t)) as n → ∞.

Example 12.1 The five examples worked out by Erdös and Kac now fol-
low from Donsker’s theorem by considering the following functionals, each
of which is continuous (with the exception of h5, even which is con-
tinuous at almost all f ∈ C[0, 1]) with respect to the uniform metric
on C[0, 1]: h1( f ) = sup0≤t≤1 f (t); h2( f ) = sup0≤t≤1 | f (t)|; h3( f ) =
∫ 1

0 f 2(t)dt ; h4( f ) = ∫ 1
0 | f (t)|dt ; h5( f ) = λ{t ∈ [0, 1] : f (t) > 0}, where λ

denotes Lebesgue measure. Note that the formulas for the CDF of the lim-
iting distribution are always a separate calculation and do not follow from
Donsker’s theorem.

Example 12.2 Consider the functional h( f ) = ∫ 1
0 f m(t)dt , where m ≥ 1

is an integer. Because [0, 1] is a compact interval, it is easy to verify that
h is a continuous functional on C[0, 1] with respect to the uniform met-
ric. Indeed, it follows simply from the algebraic identity |xm − ym| =
|x − y||xm−1 + xm−2 y + · · · + ym−1|. On the other hand, by direct inte-
gration of the polygonal curve Sn,1(t), it follows from Donsker’s theorem

that n−1−m/2
∑n

k=1 Sm
k

L⇒ ∫ 1
0 W m(t)dt . At first glance, it seems surprising

that a nondegenerate limit distribution for partial sums of Sm
k can exist with

only two moments (and even that is not necessary).
Other examples and classic theory on distributions of functionals of W (t)

can be seen in Cameron and Martin (1945), Kac (1951), Durrett (1996), and
Fitzsimmons and Pitman (1999).

Contrary to the weak invariance principle described above, there are also
strong invariance principles, which, roughly speaking, say that the partial
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sum process is close to a Brownian motion with probability 1. However,
the exact statements need careful description, and the best available results
need a fair amount of extra assumptions, as well as sophisticated methods
of proof. Furthermore, somewhat paradoxically, the strong invariance prin-
ciples may not lead to the desired weak convergence results unless enough
assumptions have been made so that a good enough almost sure bound on
the deviation between the two processes can be established. The first strong
invariance principle for partial sums was obtained in Strassen (1964). Since
then, a lot of literature has developed, including for the multidimensional
case. Good sources for information are Strassen (1967), Komlós, Major, and
Tusnady (1976), Major (1978), and Einmahl (1987). We present two results
on strong approximations of partial sums below. The results may be seen in
Csörgo (1984) and Heyde (1981).

Theorem 12.6 (Strassen) Given iid random variables X1, X2, · · · with
E (X1) = 0,Var(X1) = 1, there exists a common probability space on which
one can define a Wiener process W (t) and iid random variables Y1,Y2, · · ·
such that

(a)

{

Sn =
n∑

i=1

Xi , n ≥ 1

}
L=
{

S̃n =
n∑

i=1

Yi , n ≥ 1

}

,

(b) sup
0≤t≤1

|S̃[nt] − W (nt)|
√

n log log n
→ 0,

almost surely, as n → ∞.

Remark. The
√

n log log n bound cannot be improved in general without
further assumptions on the distribution of the Xi ’s. The next theorem says
that if we assume finiteness of more than two moments of the Xi ’s, or even
better the moment-generating function itself, then the error can be made
sufficiently small to allow the weak convergence result to be derived directly
from the strong invariance principle itself. The improved rate under the ex-
istence of the mgf is the famous KMT construction due to Komlós, Major,
and Tusnady (1976).

Theorem 12.7 Given iid random variables X1, X2, · · · with E (X1) = 0,
Var(X1) = 1, E (|X1|2+δ) < ∞, for some δ > 0, Theorem 12.6 holds
with n1/(2+δ) in place of

√
n log log n. If E (X4

1) < ∞, the result holds with
(n log log n)1/4

√
log n in place of

√
n log log n. If the mgf E (et X1) < ∞ in
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some neighborhood of zero, then the O(log n) rate holds, almost surely, in
place of o(

√
n log log n).

12.5 Invariance Principle for Empirical Processes

Of our four motivating examples, the statistics Dn and Cn are not func-
tionals of a partial sum process; they are functionals of the empirical pro-
cess. If weak and strong invariance principles akin to the case of partial
sum processes were available for the empirical process, clearly that would
be tremendously helpful in settling the questions of useful asymptotics of
Dn,Cn , and more generally nice functionals of the empirical process. It turns
out that there are indeed such invariance principles for the empirical process.
Although new and significant developments are still taking place, a large
part of this literature is classic, dating back to at least Kolmogorov (1933)
and Smirnov (1944). In this section, we provide a brief description of some
major results on this and give applications. The topic is also discussed with
applications in the context of goodness-of-fit tests in Chapter 26.

To describe the weak and strong approximations of the empirical pro-
cess, we first need some notation and definitions. Given a sequence of
iid U [0, 1] random variables U1,U2, · · · , we define the uniform empiri-
cal process as Gn(t) = 1

n

∑n
i=1 IUi≤t and the normalized uniform empir-

ical process αn(t) = √
n(Gn(t) − t), n ≥ 1, 0 ≤ t ≤ 1. For an iid

sequence X1, X2, · · · distributed as a general F , the empirical process is
defined as Fn(x) = 1

n

∑n
i=1 IXi≤x . The normalized empirical process is

βn(x) = √
n(Fn(x) − F (x)),−∞ < x < ∞.

The weak invariance principle is very similar to that for partial sum pro-
cesses and is given below; see Dudley (1984) for further details.

Theorem 12.8 Given a sequence of iid random variables X1, X2, · · · ∼ F
and h a continuous functional on D(−∞,∞) with respect to the uniform

metric, h(βn(.))
L⇒ h(BF (.)), where BF (.) is a centered Gaussian process

with covariance kernel

cov(BF (x), BF (y)) = F (x ∧ y) − F (x)F (y).

An important consequence of this result is the asymptotic distribution of
Dn , an extremely common statistic in the goodness-of-fit literature, which
we will revisit in Chapter 26.
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Example 12.3 Since the functional h( f ) = supx | f (x)| satisfies the con-
tinuity assumption under the uniform metric, it follows that Dn =
supx |βn(x)| L⇒ supx |BF (x)|, which is equal to the supremum of the abso-
lute value of a Brownian bridge (on [0, 1]) in distribution. This distribution
was calculated in closed form by Kolmogorov (1933) and is a classic result.
Kolmogorov found the CDF of the supremum of the absolute value of a
Brownian bridge to be H (z) = 1 −∑∞

k=−∞(−1)k−1e−2k2z2
, from which the

quantiles of the limiting distribution of Dn can be (numerically) computed.
Similar to partial sum processes, there are strong invariance principles for

empirical processes as well. Some of the first ideas and results were due
to Brillinger (1969) and Kiefer (1972). Given a sequence of independent
Brownian bridges Bn(t), n ≥ 1, 0 ≤ t ≤ 1, a Kiefer process (with two
time parameters, namely n and t) is defined as K (n, t) = ∑n

i=1 Bi(t). The
better-known strong approximations for the empirical process are not the
initial ones; we present one of the modern strong approximations below.
See Komlós, Major, and Tusnady (1975) for the method of proof, which is
different from the original Skorohod embedding technique.

Theorem 12.9 Given iid random variables X1, X2, · · · ∼ F , let βn(x) =√
n(Fn(x) −F (x))

L= αn(F (x)). Then, there exists a probability space
on which one can define a Kiefer process K (n, F (x)), Brownian bridges
Bn(t), n ≥ 1, and β̃n(x), n ≥ 1, such that

(a) {β̃n(x), n ≥ 1} L= {βn(x), n ≥ 1};
(b) sup−∞<x<∞ |β̃n(x)−n−1/2 K (n, F (x))| = O(n−1/2(log n)2) almost surely;

(c) for suitable constants C1,C2, λ,

P(sup1≤k≤n,−∞<x<∞ |
√

kβ̃k(x) − K (k, F (x))| > C1(log n)2 + z log n)

≤ C2e−λz

for any z and any n;

(d) for suitable constants C1,C2, λ,

P(sup−∞<x<∞ |β̃n(x) − Bn(F (x))| > n−1/2(C1 log n + z)) ≤ C2e−λz

for any z and any n;

(e) sup−∞<x<∞ |β̃n(x) − Bn(F (x))| = O(n−1/2 log n) almost surely.

Remark. No additional improvement in the rate in part (e) is possible. Mul-
tidimensional versions are available in many places; a recent reference is
Massart (1989).

We now give an application of the result above.
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Example 12.4 We have noted that the general (normalized) empirical pro-
cess has the property that sup−∞<x<∞ |βn(x)| converges in law to a distri-
bution with CDF H (z) = 1 −∑∞

k=−∞(−1)k−1e−2k2z2
as n → ∞. The key

point is that this is the CDF of the absolute value of a Brownian bridge. We
can combine this fact with part (c) of Theorem 12.9 to produce guaranteed
coverage confidence bands for the CDF F (.) at any given n. The form of this
nonparametric confidence band is Fn(x)± δ√

n
, where δ is to be chosen appro-

priately. If r (n) = (C1+ελ−1)n−1/2 log n, then we need H (δ−r (n))−C2n−ε

to be greater than or equal to the nominal coverage 1 − α. To execute this,
we need values for the constants C1,C2, λ; they may be taken to be 100, 10,
and 1

50 , respectively (see Csörgo and Hall (1984)). However, these values are
not sharp enough to produce useful (or even nontrivial) confidence bands at
moderate values of n. But the coverage property is exact; i.e., there is no
need to say that the coverage is approximately 1 − α for large n.

12.6 Extensions of Donsker’s Principle
and Vapnik-Chervonenkis Classes

As we have seen, an important consequence of the weak invariance princi-
ple is the derivation of the limiting distribution of Dn = √

n sup−∞<x<∞
|Fn(x) − F (x)| for a continuous CDF F and the empirical CDF Fn(x).
If we let F = {I−∞,x : x ∈ R}, then the Kolmogorov-Smirnov result

says that
√

n sup f ∈F (E Pn f − E P f )
L⇒ sup0≤t≤1 |B(t)|, Pn, P being the

probability measures corresponding to Fn, F , and B(t) being a Brown-
ian bridge. Extensions of this involve studying the asymptotic behavior of
sup f ∈F (E Pn f − E P f ) for much more general classes of functions F and
the range space of the random variables Xi ; they need not be R, or Rd for
some finite d . Examples of asymptotic behavior include derivation of laws
of large numbers and central limit theorems.

There are numerous applications of these extensions. To give just one
motivating example, suppose X1, X2, · · · , Xn are d-dimensional iid random
vectors from some P and we want to test the null hypothesis that P = P0

(specified). Then, a natural statistic to assess the truth of the hypothesis is
Tn = supC∈C |Pn(C) − P0(C)| for a suitable class of sets C. Now, if C is too
rich (for example, if it is the class of all measurable sets), then clearly there
cannot be any meaningful asymptotics if P0 is absolutely continuous. On
the other hand, if C is too small, then the statistic cannot be good enough for
detecting departures from the null hypothesis. So these extensions study the
question of what kinds of families C or function classes F allow meaningful
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asymptotics and also result in good and commonsense tests or estimators. In
some sense, the topic is a study in the art of the possible.

The technical tools required for such generalizations are extremely so-
phisticated and have led to striking new discoveries and mathematical ad-
vances in the theory of empirical processes. Along with these advances have
come numerous new and useful statistical and probabilistic applications. The
literature is huge; we strongly recommend Wellner (1992), Giné (1996),
Pollard (1989), and Giné and Zinn (1984) for comprehensive reviews and
sources for major theorems and additional references; specific references to
some results are given later. We limit ourselves to a short description of a
few key results and tools.

12.7 Glivenko-Cantelli Theorem for VC Classes

We first discuss plausibility of strong laws more general than the well-
known Glivenko-Cantelli theorem, which asserts that in the one-dimensional
iid case supx |Fn(x) − F (x)| a.s.→ 0. We need a concept of combinatorial
richness of a class of sets C that will allow us to make statements like
supC∈C |Pn(C) − P(C)| a.s.→ 0. A class of sets for which this property holds
is called a Glivenko-Cantelli class. A useful such concept is the Vapnik-
Chervonenkis dimension of a class of sets. Meaningful asymptotics will ex-
ist for classes of sets that have a finite Vapnik-Chervonenkis dimension. It
is therefore critical to know what it means and what are good examples of
classes of sets with a finite Vapnik-Chervonenkis dimension. A basic treat-
ment of this is given next.

Definition 12.3 Let A ⊂ S be a fixed set and C a class of subsets of S. A is
said to be shattered by C if every subset U of A is the intersection of A with
some member C of C (i.e., {A ∩ C : C ∈ C} = P(A), where P(A) denotes
the power set of A).

Sometimes the phenomenon is colloquially described as every subset of
A is picked up by some member of C.

Definition 12.4 The Vapnik-Chervonenkis (VC) dimension of C is the size
of the largest set A that can be shattered by C.

Although this is already fine as a definition, a more formal definition is
given by using the concept of shattering coefficients.

Definition 12.5 For n ≥ 1, the nth shattering coefficient of C is defined to be

S(n, C) = maxx1,x2,··· ,xn∈S Card{{x1, x2, · · · , xn} ∩ C : C ∈ C}.
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That is, S(n, C) is the largest possible number of subsets of some (wisely
chosen) set of n points that can be formed by intersecting the set with mem-
bers of C. Clearly, for any n, S(n, C) ≤ 2n.

Here is an algebraic definition of the VC dimension of a class of sets.

Definition 12.6 The VC dimension of C equals V C(C) = min{n : S(n, C)
< 2n} − 1 = max{n : S(n, C) = 2n}.

Definition 12.7 C is called a Vapnik-Chervonenkis (VC) class if V C(C)
< ∞.

The following remarkable result is known as Sauer’s lemma (Sauer
(1972)).

Proposition 12.1 Either S(n, C) = 2n∀n or ∀n, S(n, C) ≤∑VC(C)
i=0

(n
i

)
.

Remark. Sauer’s lemma says that either a class of sets has infinite VC di-
mension or its shattering coefficients grow polynomially. A few other impor-
tant and useful properties of the shattering coefficients are listed below; most
of them are derived easily. These properties are useful for generating new
classes of VC sets from known ones by using various Boolean operations.

Theorem 12.10 The shattering coefficients S(n, C) of a class of sets C
satisfy

(a) S(m, C) < 2m for some m ⇒ S(n, C) < 2n ∀n > m;

(b) S(n, C) ≤ (n + 1)V C(C)∀n ≥ 1;

(c) S(n, Cc) = S(n, C), where Cc is the class of complements of members
of C;

(d) S(n,B ∩ C) ≤ S(n,B)S(n, C), where the ∩ notation means the class of
sets formed by intersecting members of B with those of C;

(e) S(n,B ⊗ C) ≤ S(n,B)S(n, C), where the ⊗ notation means the class of
sets formed by taking Cartesian products of members ofB and those of C;

(f) S(m + n, C) ≤ S(m, C)S(n, C).

See Vapnik and Chervonenkis (1971) and Sauer (1972) for many of the
parts in this theorem. Now we give a few quick examples.

Example 12.5 Let C be the class of all left unbounded closed intervals on
the real line; i.e., C = {(−∞, x] : x ∈ R}. To illustrate the general formula,
suppose n = 2. What is S(n, C)? Clearly, if we pick up the larger one among
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x1, x2, we will pick up the smaller one, too. Or we may pick up none of
them or just the smaller one. So we can pick up three distinct subsets from
the power set of {x1, x2}. The same argument shows that the general formula
for the shattering coefficients is S(n, C) = n + 1. Consequently, this is a VC
class with VC dimension one.

Example 12.6 Although topologically there are just as many left unbounded
intervals on the real line as there are arbitrary intervals, in the VC index they
act differently. This is interesting. Thus, let C = {(a, b) : a ≤ b ∈ R}.
Then it is easy to establish the formula S(n, C) = 1 + (n+1

2

)
. For n = 2,

this is equal to 4, which is also 22. Consequently, this is a VC class with VC
dimension two.

Example 12.7 The previous example says that, on R, the class of all convex
sets is a VC class. However, this is far from being true, even in two dimen-
sions. Indeed, if we let C be just the class of convex polygons in the plane,
it is clear geometrically that for any n, C can shatter n points. So, convex
polygons in R2 have an infinite VC dimension.

More examples of exact values of VC dimensions are given in the chap-
ter exercises. For actual applications of these ideas to concrete extensions
of Donsker’s principles, it is extremely useful to know what other natural
classes of sets in various spaces are VC classes. The various parts of the fol-
lowing result are available in Vapnik and Chervonenkis (1971) and Dudley
(1978, 1979).

Theorem 12.11 Each of the following classes of sets is a VC class:

(a) southwest quadrants of Rd (i.e., the class of all sets of the form
∏d

i=1
(−∞, xi ]);

(b) closed half-spaces of Rd ;

(c) closed balls of Rd ;

(d) closed rectangles of Rd ;

(e) C = {{x ∈ Rd : g(x) ≥ 0} : g ∈ G}, where G is a finite-dimensional
vector space of real-valued functions defined on Rd .

We can now state a general version of the familiar Glivenko-Cantelli the-
orem. However, to appreciate the probabilistic utility of the combinatorial
concept of shattering coefficients, it is useful to see also a famous theorem
of Vapnik and Chervonenkis (1971) on Euclidean spaces, which we also
provide.
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Theorem 12.12 Let X1, X2, · · · iid∼ P , a probability measure on Rd for
some finite d . Given any class of (measurable) sets C, for n ≥ 1, ε >

0, P(supC |Pn(C) − P(C)| > ε) ≤ 8E [Card{{X1, X2, · · · , Xn} ∩ C : C ∈
C}]e−nε2/32 ≤ 8S(n, C)e−nε2/32.

Remark. This theorem implies that for classes of sets that are of the right
complexity as measured by the VC dimension, the empirical measure con-
verges to the true measure at an essentially exponential rate. This is a so-
phisticated generalization of the one-dimensional DKW inequality. The im-
proved bound of the theorem is harder to implement because it involves
computation of a hard expectation with respect to a sample of n observations
from the underlying P . It would usually not be possible to find this expecta-
tion, although simulating the quantity Card{{X1, X2, · · · , Xn} ∩C : C ∈ C}
is an interesting exercise.

The general theorem is given next; see Giné (1996).

Theorem 12.13 Let P be a probability measure on a general measurable

space S and let X1, X2, · · · iid∼ P . Let Pn denote the sequence of empirical
measures and let C be a VC class of sets in S. Then, under suitable measur-
ability conditions, supC∈C |Pn(C) − P(C)| a.s.→ 0 as n → ∞.

12.8 CLTs for Empirical Measures and Applications

This result gives us hope for establishing CLTs for suitably normalized
versions of supC∈C |Pn(C) − P(C)| in general spaces and with general VC
classes of sets. It is useful to think of this as an analog of the one-dimensional
Kolmogorov-Smirnov statistic for real-valued random variables, namely
supx |Fn(x) − F (x)|. Invariance principles allowed us to conclude that the
limiting distribution is related to a Brownian bridge with real numbers in
[0, 1] as the time parameter. Now, however, the setup is much more abstract.
The space is not a Euclidean space, and the time parameter is a set or a
function. So the formulation and description of the appropriate CLTs is more
involved, and although suitable Gaussian processes will still emerge as the
relevant processes that determine the asymptotics, they are not Brownian
bridges, and they even depend on the underlying P from which we are sam-
pling. Some of the most profound advances in the theory of statistics and
probability in the twentieth century took place around this problem, result-
ing along the way in deep mathematical developments and completely new
tools. A short description of this is provided next.
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12.8.1 Notation and Formulation

First, we give some notation and definitions. The notation (Pn−P)( f ) would
mean

∫
f d Pn−

∫
f d P . Here, f is supposed to belong to some suitable class

of functions F . For example, F could be the class of indicator functions of
the members C of a class of sets C. In that case, (Pn − P)( f ) would simply
mean Pn(C)−P(C); we have just talked about strong laws for their suprema
as C varies over C. That is a uniformity result. Likewise, we will now need
certain uniformity assumptions on the class of functions F . We assume that

(a) sup f ∈F | f (s)| := F (s) < ∞∀s ∈ S

(measurability of F is clearly not obvious but is being ignored here) and

(b) F ∈ L2(P).

In the case of real-valued random variables and for the problem of conver-
gence of the process Fn(x)−F (x), the corresponding functions, as we noted
before, are indicator functions of (−∞, x), which are uniformly bounded
functions. Now the time parameter has become a function itself, and we will
need to talk about uniformly bounded functionals of functions; we will use
the notation

l∞(F ) = {h : F → R : sup f ∈F |h( f )| < ∞}.

Furthermore, we will refer to sup f ∈F |h( f )| as the uniform norm and denote
it as ||h||∞,F .

The two other notions we need to define are those of convergence of the
process (Pn − P)( f ) (on normalization) and of a limiting Gaussian process
that will play the role of a Brownian bridge in these general circumstances.

The Gaussian process, which we will denote as BP( f ), will continue to
have continuous sample paths, as was the case for the ordinary Brownian
bridge, but now with the time parameter being a function and continuity
being with respect to ρP( f, g) =

√
E P( f (X ) − g(X ))2. BP has mean zero,

and the covariance kernel cov(BP( f ), BP(g)) = P( f g) − P( f )P(g) :=
E P( f (X )g(X )) − E P( f (X )) E P(g(X )). Note that due to our assumption
that F ∈ L2(P), the covariance kernel is well defined. Trajectories of our
Gaussian process BP are therefore members of l∞(F ), also (uniformly) con-
tinuous with respect to the norm ρP we have defined above.

Finally, as in the Portmanteau theorem in Chapter 1, convergence of the
process

√
n(Pn − P)( f ) to BP( f ) would mean that expectation of any func-

tional H of
√

n(Pn − P)( f ) will converge to the expectation of H (BP( f )),
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H being a bounded and continuous functional defined on l∞(F ) and taking
values in R. We remind the reader that continuity on l∞(F ) is with respect
to the uniform norm we have already defined there. A class of functions F
for which this central limit property holds is called a P-Donsker class; if the
property holds for every probability measure P on S, it is called a universal
Donsker class.

12.8.2 Entropy Bounds and Specific CLTs

We can now state what sorts of assumptions on our class of functions F
will ensure that convergence occurs (i.e., a CLT holds) and what are some
good applications of such CLTs. There are multiple sets of assumptions on
the class of functions that ensure a CLT. Here we describe only two, one of
which relates to the concept of VC classes and the second related to metric
entropy and packing numbers. Since we are already familiar with the concept
of VC classes, we first state a CLT based on a VC assumption of a suitable
class of sets.

Definition 12.8 A family F of functions f on a (measurable) space S is
called a VC-subgraph if the class of subgraphs of f ∈ F is a VC class of
sets, where the subgraph of f is defined to be C f = {(x, y), x ∈ S, y ∈ R :
0 ≤ y ≤ f (x) or f (x) ≤ y ≤ 0}.

Theorem 12.14 Given X1, X2, · · · iid∼ P , a probability measure on a mea-
surable space S, and a family of functions F on S such that F (s) :=
sup f ∈F | f (s)| ∈ L2(P),

√
n(Pn − P)( f )

L⇒ BP( f ) if F is a VC-subgraph
family of functions.

An important application of this theorem is the following result.

Corollary 12.1 Under the other assumptions made in Theorem 12.14,√
n(Pn − P)( f )

L⇒ BP( f ) if F is a finite-dimensional space of functions or
if F = {IC : C ∈ C}, where C is any VC class of sets.

Theorem 12.14 beautifully connects the scope of a Glivenko-Cantelli the-
orem to that of a CLT via the same VC concept, modulo the extra qual-
ification that F ∈ L2(P). One can see more about this key theorem in
Alexander (1984, 1987) and Giné (1996).

A pretty and useful statistical application of the result above is the follow-
ing example on extension (due to Beran and Millar (1986)) of the familiar
Kolmogorov-Smirnov test for goodness of fit to general spaces.
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Example 12.8 Let X1, X2, · · · be iid observations from P on some space
S, and consider testing the null hypothesis H0 : P = P0 (specified).
The natural Kolmogorov-Smirnov type test statistic for this problem is
Tn = √

n supC∈C |Pn(C) − P0(C)| for a judiciously chosen family of (mea-
surable) sets C. Theorem 12.14 implies that Tn converges under the null in
distribution to the supremum of the absolute value of the Gaussian process
|BP0( f )|, the sup being taken over all f = IC ,C ∈ C, a VC class of subsets
of S. In principle, therefore, the null hypothesis can be tested by using this
Kolmogorov-Smirnov type statistic. Note, however, that the limiting Gaus-
sian process depends on P0. Evaluation of the critical points of the limiting
distribution of Tn under the null needs more work; see Giné (1996) for more
discussion and references on this computational issue.

The second CLT we will present requires the concepts of metric entropy
and bracketing numbers, which we introduce next.

Definition 12.9 Let F∗ be a space of real-valued functions defined on some
space S, and suppose F∗ is equipped with a norm ||.||. Let F be a specific
subcollection of F∗. The covering number of F is defined to be the smallest
number of balls B(g, ε) = {h : ||h − g|| < ε} needed to cover F , where
ε > 0 is arbitrary but fixed, g ∈ F∗, and ||g|| < ∞.

The covering number of F is denoted as N (ε,F , ||.||). log N (ε,F , ||.||)
is called the entropy without bracketing of F .

Definition 12.10 In the same setup as in the previous definition, a bracket
is the set of functions sandwiched between two given functions l, u (i.e., a
bracket is the set { f : l(s) ≤ f (s) ≤ u(s)∀s ∈ S}). It is denoted as [l, u].

Definition 12.11 The bracketing number of F is defined to be the smallest
number of brackets [l, u] needed to cover F under the restriction ||l − u|| <
ε wi th ε > 0 an arbitrary but fixed number.

The bracketing nnumber of F is denoted as N[](ε,F , ||.||). log N[]

(ε,F , ||.||) is called the entropy with bracketing of F .
Clearly, the smaller the radius of the balls or the width of the brackets,

the greater the number of balls or brackets necessary to cover the function
class F . The important thing is to pin down qualitatively the rate at which
the entropy (with or without bracketing) is going to ∞ for a given F . It turns
out, as we shall see, that for many interesting and useful classes of functions
F , this rate would be of the order of (− log ε), and this will, by virtue of
some theorems to be given below, ensure that the class F is P-Donsker.
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Theorem 12.15 Assume that F ∈ L2(P). Then, F is P-Donsker if either

∫ ∞

0

√
log N[](ε,F , ||.|| = L2(P))dε < ∞

or
∫ ∞

0
sup

Q
(
√

log N (ε||F ||2,Q,F , ||.|| = L2(Q)))dε < ∞,

where Q denotes a general probability measure on S.
We have previously seen that if F is a VC-subgraph, then it is P-Donsker.

It turns out that this result follows from Theorem 12.15 on the integrability
of supQ

√
log N . What one needs is the following upper bound on the en-

tropy without bracketing of a VC-subgraph class. See van der Vaart and
Wellner (1996) for its proof.

Proposition 12.2 Given a VC-subgraph class F , for any probability mea-
sure Q and any r ≥ 1, for all 0 < ε < 1, N (ε||F ||r,Q,F , ||.|| = Lr (Q)) ≤
C( 1

ε
)rVC(C), where the constant C depends only on VC(C), C being the sub-

graph class of F .

Here are some additional good applications of the entropy results.

Example 12.9 As mentioned above, the key to the applicability of the en-
tropy theorems is a good upper bound on the rate of growth of the entropy
numbers of the class. Such bounds have been worked out for many intu-
itively interesting classes. The bounds are sometimes sharp in the sense that
lower bounds can also be obtained that grow at the same rate as the upper
bounds. In nearly every case mentioned in this example, the derivation of
the upper bound is completely nontrivial. A very good reference is van der
Vaart and Wellner (1996), particularly Chapter 2.7 there.

Uniformly Bounded Monotone Functions on R
For this function class F , log N[](ε,F , ||.|| = L2(P)) ≤ K

ε
, where K is a

universal constant independent of P , and so this class is in fact universal
P-Donsker.

Uniformly Bounded Lipschitz Functions on Bounded Intervals in R
Let F be the class of real-valued functions on a bounded interval I in
R that are uniformly bounded by a universal constant and are uniformly
Lipschitz of some order α > 1

2 (i.e., | f (x) − f (y)| ≤ M|x − y|α) uni-
formly in x, y and for some finite universal constant M . For this class,
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log N[](ε,F , ||.|| = L2(P)) ≤ K ( 1
ε
)1/α, where K depends only on the length

of I, M , and α, and so this class is also universal P-Donsker.

Compact Convex Subsets of a Fixed Compact Set in Rd

Suppose S is a compact set in Rd for some finite d , and let C be the class
of all compact convex subsets of S. For any absolutely continuous P , this
class satisfies log N[](ε, C, ||.|| = L2(P)) ≤ K ( 1

ε
)d−1, where K depends on

S, P , and d . Here it is meant that the function class is the set of indicators
of the members of C. Thus, for d = 2,F is P-Donsker for any absolutely
continuous P .

A common implication of all of these applications of the entropy theo-
rems is that, in the corresponding setups, asymptotic goodness-of-fit tests
can be constructed by using these function classes.

12.9 Dependent Sequences: Martingales, Mixing,
and Short-Range Dependence

Central limit theorems for certain types of dependent sequences were de-
scribed in Chapters 9 and 10. The progression to a weak and then strong
invariance principles for most of those processes was achieved by the mid-
1970s; some key references are Billingsley (1956), Philip and Stout (1975),
Hall (1977), and Andrews and Pollard (1994). McLeish (1975) unified much
of the work by introducing what he called mixingales. Depending on the
nature of the dependence, the norming constant for an invariance princi-
ple for the partial sum process can be

√
n, or something more complicated

involving suitable moments of |Sn |. Merlevéde, Peligrad, and Utev (2006)
have provided a modern review, including the latest technical innovations.
We provide a brief treatment of a few classic results in this section.

Theorem 12.16 Let {Xk}k≥0 be a stationary process with mean zero and
finite variance. Assume the condition

∞∑

n=1

[E (S2
n |X0)]1/2

n3/2
< ∞.

Let Sn(t) = Sn,1(t), 0 ≤ t ≤ 1. Then there exists a common probability
space on which one can define a Wiener process W (t) starting at zero and a
sequence of processes {Ŝn(t)}, n ≥ 1, such that

(a) {Ŝn(t), n ≥ 1} L= {Sn(t), n ≥ 1};
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(b) Ŝn(t)
L⇒ ηW (t), where η is a nonnegative random variable (on the same

probability space) with E (η2) = limn→∞
E(S2

n )
n .

Remark. The random variable η can in fact be explicitly characterized; see
Merlevéde, Peligrad, and Utev (2006). If {Xk}k≥0 is also ergodic, then η is a
trivial random variable and η2 = E (X2

0) + 2
∑

k>0 E (Xk X0).
Theorem 12.16 already applies to a broad variety of time series used in

practice, although generalizations with norming different from
√

n in the
definition of Sn(t) are available. To give specific applications of this theorem,
we need some definitions. In particular, we need the definition of the concept
of a mixing sequence, introduced in Rosenblatt (1956).

Definition 12.12 Given a process {Xk}k≥0 (not necessarily stationary), let
α( j, n) = sup{|P(A∩ B)− P(A)P(B)|, A ∈ σ (Xk, k ≤ j ), B ∈ σ (Xk, k ≥
j + n)}. {Xk}k≥0 is called strongly mixing if α(n) := sup j α( j, n) → 0 as
n → ∞.

Definition 12.13 Given a process {Xk}k≥0 (not necessarily stationary), let
ρ( j, n) = sup{ρ( f, g) : f ∈ L2(σ (Xk , k ≤ j )), g ∈ L2(σ (Xk, k ≥ j + n))},
where ρ( f, g) denotes the correlation between f and g. {Xk}k≥0 is called
ρ-mixing if ρ(n) := sup j ρ( j, n) → 0 as n → ∞.

Definition 12.14 {Xk}k≥0 is called a short-range dependent one-sided linear
process if Xk =∑

i≥0 ai Zk−i , where {Zk}−∞<k<∞ is a martingale difference
sequence and

∑∞
i=0 |ai | < ∞.

The general inequality 4α( j, n) ≤ ρ( j, n) is true, so that ρ-mixing im-
plies strong mixing. For stationary Gaussian processes, the two concepts
are equivalent. Many other concepts of mixing-type asymptotic indepen-
dence are known. Among them is the concept of φ-mixing, which says
that P(B|A) and P(B) should be uniformly close together in the sense of
a small difference when A and B are events separated by a large lag. We
will not discuss the other types of mixing here. A good general reference
is Doukhan (1994). More specifically, for invariance principles for mixing
empirical processes and the rates of convergence, two good references are
Yu (1994) and Arcones and Yu (1994). Here is a result that gives good
applications of Theorem 12.16 above; the assumptions of zero mean and
finite variance are implicit below. We have not stated parts of Theorem 12.17
below under the best currently known conditions in order to avoid possibly
hard-to-verify assumptions. Merlevéde, Peligrad, and Utev (2006) can be
consulted for the best conditions or references to the best conditions.
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Theorem 12.17 (a) If {Xk} is stationary and strongly mixing satisfying

E (X4
0) < ∞;

∞∑

n=1

[α(2n)]1/4 < ∞; Var(Sn) → ∞; E (Sn)4 = O(Var(Sn))2,

then Theorem 12.16 holds.

(b) If {Xk} is stationary and ρ-mixing satisfying
∑∞

n=1 ρ(2n) < ∞, then
Theorem 12.16 holds.

(c) If {Xk} is a stationary and short-range dependent one-sided linear pro-
cess, then Theorem 12.16 holds.

Example 12.10 Numerous examples of common processes with various
mixing properties are known; a very recent reference is Bradley (2005). For
example, obviously, a stationary m-dependent process for any finite m is
strongly mixing and also ρ-mixing.

The mixing properties of Markov chains are intriguing. For example, the
remarkable fact that if α(n) < 1

4 for some n ≥ 1 then a strictly stationary
ergodic aperiodic chain with state space R is strongly mixing is attributed
in Bradley (2005) to be implicitly proved in Rosenblatt (1972). Likewise,
if ρ(n) < 1 for some n ≥ 1, then even without stationarity, the chain is
ρ-mixing, and ρ(n) → 0 at an exponential rate. If the state space is
countable, then the conditions on the chain can be relaxed; see, again,
Bradley (2005). A stationary autoregressive process of some finite order p is
strongly mixing under quite mild conditions. If the roots of the characteristic
polynomial of the process are all inside the unit circle and the errors are iid
with a finite mean and have a density, then the process is strongly mixing.
See Chanda (1974), Whithers (1981), and Athreya and Pantula (1986); use-
ful information is also given in Koul (1977) and Gastwirth and Rubin (1975).

Central limit theorems for martingales were described in Chapter 9. We
commented there that martingale central limit theorems can be obtained with
random or nonrandom norming; which one holds depends on exactly what
assumptions one makes. Likewise, invariance principles for martingales (or,
more generally, martingale arrays) have been obtained under various sets of
conditions. One possibility is to assume a kind of Lindeberg condition; alter-
natively, one can assume suitable growth conditions in terms of L p norms;
see Brown (1971), McLeish (1974), and Hall (1977). Here we report pre-
sumably the first invariance principle obtained for martingale sequences by
assuming a Lindeberg type condition; see Brown (1971). These are not the
weakest conditions under which an invariance principle obtains; the other
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references above give more general theorems under somewhat weaker con-
ditions.

We follow the notation in Brown (1971). Let {Sn,Fn}n≥1 be a martingale
and let Xn = Sn − Sn−1, n ≥ 1, with S0 = 0. Let E j−1(.) denote conditional
expectation given F j−1. Define

σ 2
n = En−1(X2

n); V 2
n =

n∑

j=1

σ 2
j ; s2

n = E (S2
n)(= E (V 2

n )).

Consider the piecewise linear function ξn(t) on [0, 1] that joins the discrete
set of points (s2

k /s2
n, Sk/sn), 0 ≤ k ≤ n. Thus,

ξn(t) = s−1
n [Sk + Xk+1(ts2

n − s2
k )/(s2

k+1 − s2
k )], s2

k ≤ ts2
n ≤ s2

k+1,

0 ≤ k ≤ n. The invariance principle addresses the question of weak conver-
gence of the process ξn(t) as an element of C[0, 1].

Assume the following:

(1) V 2
n /s2

n
P⇒ 1,

(2) s−2
n

n∑

j=1

E [X2
j I|X j |≥εsn ] = op(1).

Condition (2) is the Lindeberg condition for Martingales. The following re-
sult is proved in Brown (1971).

Theorem 12.18 Under conditions (1) and (2) stated above, the assertion of
Donsker’s theorem holds.

12.10 Weighted Empirical Processes and Approximations

Recently, there has been a growth in interest in studying weighted empir-
ical processes due to their use in modern multiple testing problems. We
will see the actual uses in Chapter 34. It turns out that asymptotic behavior
of weighted empirical processes is surprisingly subtle. The subtlety comes
from mutual interaction of the tail of a Wiener process and that of the weight-
ing function. For example, since the normalized uniform empirical process
αn(t) = √

n(Gn(t) − t) behaves like a Brownian bridge asymptotically, one
might hope that for a strictly positive function δ(t), αn(t)

δ(t) may behave asymp-

totically like the weighted Brownian bridge B(t)
δ(t) on [0, 1]. This is not true
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for some natural choices of the weighting function δ(t); even more, it fails
because of the tail behaviors. If we truncated the interval [0, 1] at suitable
rates, the intuition would in fact work. The weighting functions δ(t) that do
admit an invariance principle have no simple descriptions. Characterizing
them requires using deep tail properties of the Wiener sample paths. Because
of the extremely high current interest in weighted empirical processes in the
multiple testing literature, we give a short description of the asymptotics and
invariance principles for them. We consider the case of the uniform empir-
ical process, as the general case can be reduced to it by a time change. We
recommend Csörgo and Horváth (1993) for the topic of this section.

First we need some notation. The operators that we define below are re-
lated to what are called lower and upper functions of Wiener processes; see
Section 12.2 in this chapter for some information on what the link is.

Let

F0,1 = {δ : infε<t<1−εδ(t) > 0 ∀ 0 < ε <
1

2
, δ ↑ near 0, δ ↓ near 1}

I (c, δ) =
∫ 1

0

1

t(1 − t)
e−cδ2(t)/[t(1−t)]dt

E (c, δ) =
∫ 1

0

δ(t)

[t(1 − t)]3/2
e−cδ2(t)/[t(1−t)]dt.

Whether αn(t)
δ(t) is uniformly asymptotically close to a correspondingly weighted

Brownian bridge is determined by the two operators I, E . Here is a complete
characterization; see Csörgo (2002) for Theorems 12.19–12.21.

Theorem 12.19 Let δ ∈ F0,1 and let αn(t) be the normalized uniform
empirical process αn(t) = √

n(Gn(t) − t), t ∈ [0, 1]. Then, there ex-
ists a sequence of Brownian bridges Bn(t) (on the same space) such that
supt∈(0,1)

|αn(t)−Bn(t)|
δ(t) = op(1) if and only if

I (c, δ) < ∞∀ c > 0

or

E (c, δ) < ∞∀ c > 0, lim
t→0

δ(t)/
√

t = lim
t→1

δ(t)/
√

1 − t = ∞.



12.10 Weighted Empirical Processes and Approximations 177

Example 12.11 A natural choice for the weighting function is δ(t) =√
t(1 − t); after all, the pointwise variance of αn(t) is t(1 − t). Clearly√
t(1 − t) ∈ F0,1. But, as is obvious, for no c > 0, I (c, δ) is finite. Thus,
αn(t)√
t(1−t)

cannot be uniformly asymptotically approximated in probability by
any sequence of the correspondingly weighted Brownian bridges over the
whole unit interval. The tails create the problem. In fact, for any sequence
of Brownian bridges whatsoever,

P

(

supt∈(0,1)
|αn(t) − Bn(t)|√

t(1 − t)
= ∞

)

= 1.

If we truncate the tails, we can control the maximum weighted deviation.
The next result makes it precise.

Theorem 12.20 For any u > 0 and any 0 < ν ≤ 1
2 , there exist Brownian

bridges Bn(t) such that

n1/2−ν supt∈[ u
n ,1− u

n ]
|αn(t) − Bn(t)|

[t(1 − t)]ν
= Op(1),

while, for 0 < ν < 1
2 ,

n1/2−ν supt∈(0,1)
|αn(t) − Bn(t)|

[t(1 − t)]ν
= Op(1).

Furthermore, the bounds cannot be made op(1).
Note that we should not expect convergence in law of αn(t)√

t(1−t)
to B(t)√

t(1−t)
because of the failure to have a uniform op(1) bound on the maximum
deviation, as we just saw. The question arises as to when we can ensure
a weak convergence result. The answer is essentially already contained in
Theorem 12.19.

Theorem 12.21 Under the assumptions of Theorem 12.19,

sup
t∈(0,1)

|αn(t)|
δ(t)

L⇒ sup
t∈(0,1)

|B(t)|
δ(t)

,

where B(t) is a Brownian bridge.

Remark. An important relaxation in Theorem 12.21 is that the “for all
c” requirement can be relaxed to “for some c”; sometimes this can be
useful.
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Although Theorem 12.21 specifies the limiting distribution of
supt∈(0,1)

|αn(t)|
δ(t) for appropriate δ(t), the following inequality of Birnbaum

and Marshall (1961) is useful because it is explicit and holds for all n.

Proposition 12.3 Suppose δ(t) is right continuous and belongs to F0,1, and
M = ∫ 1

0 δ−2(t)dt < ∞. Then, ∀ n, x, P(supt∈(0,1)
|αn(t)|
δ(t) > x) ≤ M

x2 .

Example 12.12 The results imply that a symmetric function δ(t) is not
amenable to an invariance principle for the weighted uniform empirical pro-
cess if δ(t) ∼ √

t near zero. But, for example, δ(t) = [t(1 − t)]1/3works,
and supt∈(0,1)

αn(t)
[t(1−t)]1/3 will converge weakly to supt∈(0,1)

B(t)
[t(1−t)]1/3 . Explicit

evaluation of the distribution of this latter functional (or similar ones corre-
sponding to other δ(t)) usually would not be possible. However, bounds on
their CDFs often would be possible.

12.11 Exercises

Exercise 12.1 For n = 25 and 50, approximate the probability
P(max1≤k≤n |Sk| > 2

√
n) when the sample observations are iid U [−1, 1].

Does the U [−1, 1] assumption have any role in your approximation?

Exercise 12.2 * Plot the density function of G2, the limiting CDF of the
normalized maximum of absolute partial sums.

Exercise 12.3 For n = 25 and 50, approximate the probability that at least
60% of the time, a simple symmetric random walk remains over the axis.

Exercise 12.4 Give examples of three functions that are members of D[0, 1]
but not of C[0, 1].

Exercise 12.5 * Prove that each of the functionals hi , i = 1, 2, 3, 4 are con-
tinuous on C[0, 1] with respect to the uniform metric.

Exercise 12.6 * Why is the functional h5 not everywhere continuous with
respect to the uniform metric?

Exercise 12.7 * Approximately simulate 20 paths of a Brownian motion by
using its Karhunen-Loeve expansion (suitably truncated).
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Exercise 12.8 Formally prove that the CLT for partial sums follows from
the strong invariance principle available if four moments are assumed to be
finite.

Exercise 12.9 * Compute and plot a 95% nonparametric confidence band
for the CDF based on the KMT theorem for n = 100, 500 when the data are
simulated from U [0, 1], N [0, 1].

Exercise 12.10 * Find the VC dimension of the following classes of sets :

(a) southwest quadrants of Rd ;

(b) closed half-spaces of Rd ;

(c) closed balls of Rd ;

(d) closed rectangles of Rd .

Exercise 12.11 Give examples of three nontrivial classes of sets in Rd that
are not VC classes.

Exercise 12.12 * Design a test for testing that sample observations in R2

are iid from a uniform distribution in the unit square by using suitable VC
classes and applying the CLT for empirical measures.

Exercise 12.13 * Find the VC dimension of all polygons in the plane with
four vertices.

Exercise 12.14 * Is the VC dimension of the class of all ellipsoids of Rd

the same as that of the class of all closed balls of Rd?

Exercise 12.15 * Consider the class of Box-Cox transformations F =
{ xλ−1

λ
, x > 0, λ �= 0}. Show that F is a VC-subgraph class (see p. 153

in van der Vaart and Wellner (1996) for hints).

Exercise 12.16 Give an example of a stationary Gaussian process for which
the condition

∑
ρ(2n) < ∞ holds and a few examples where the condition

does not hold.

Exercise 12.17 * Prove the general inequality 4α( j, n) ≤ ρ( j, n).

Exercise 12.18 * Define ψ( j, n) = sup{| P(A∩B)
P(A)P(B) −1| : A ∈ σ (Xk, 0 ≤ k ≤

j ), B ∈ σ (Xk, k ≥ j + n)}, and call {Xk}k≥0 ψ-mixing if sup j ψ( j, n) → 0
as n → ∞. Show that
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(a) stationary m-dependence implies ψ-mixing;

(b)ψ-mixing implies ρ-mixing.
Note: Part (b) is hard.

Exercise 12.19 Suppose Xk = ∑∞
i=0

1
(i+1)2 εk−i , where ε j are iid U [−1, 1].

Is {Xk}k≥0 a short-range dependent process? Is Xk summable with probabil-
ity 1?

Exercise 12.20 * Derive a martingale central limit theorem with nonrandom
norming by using Theorem 12.18.

Exercise 12.21 * Prove that P
(

supt∈(0,1)
|αn(t)|√
t(1−t)

= ∞
)
= 1 ∀ n ≥ 1. Hint:

Look at t near zero and consider the law of the iterated logarithm.

Exercise 12.22 Give examples of functions δ(t) that satisfy the assumptions
of the Birnbaum-Marshall inequality in Section 12.10.

Exercise 12.23 * Approximate the probability P
(

supt∈(0,1)
|αn(t)|

[t(1−t)]1/3 > x
)

by using the weak convergence result of Theorem 12.21.

References

Alexander, K. (1984). Probability inequalities for empirical processes and a law of the
iterated logarithm, Ann. Prob., 12, 1041–1067.

Alexander, K. (1987). The central limit theorem for empirical processes on Vapnik-
Chervonenkis classes, Ann. Prob., 15, 178–203.

Andrews, D. and Pollard, D. (1994). An introduction to functional central limit theorems
for dependent stochastic processes, Int. Stat. Rev., 62, 119–132.

Arcones, M. and Yu, B. (1994). Central limit theorems for empirical and U -processes
of stationary mixing sequences, J. Theor. Prob., 1, 47–71.

Athreya, K. and Pantula, S. (1986). Mixing properties of Harris chains and autoregres-
sive processes, J. Appl. Prob., 23, 880–892.

Beran, R. and Millar, P. (1986). Confidence sets for a multinomial distribution, Ann.
Stat., 14, 431–443.

Billingsley, P. (1956). The invariance principle for dependent random variables, Trans.
Am. Math. Soc., 83(1), 250–268.

Billingsley, P. (1968). Convergence of Probability Measures, John Wiley, New York.
Birnbaum, Z. and Marshall, A. (1961). Some multivariate Chebyshev inequalities with

extensions to continuous parameter processes, Ann. Math. Stat., 32, 687–703.
Bradley, R. (2005). Basic properties of strong mixing conditions: a survey and some

open problems, Prob. Surv., 2, 107–144.
Brillinger, D. (1969). An asymptotic representation of the sample df, Bull. Am. Math.

Soc., 75, 545–547.



References 181

Brown, B. (1971). Martingale central limit theorems, Ann. Math. Stat., 42, 59–66.
Cameron, R. and Martin, W. (1945). Evaluation of various Wiener integrals by use of

certain Sturm-Liouville differential equations, Bull. Am. Math. Soc., 51, 73–90.
Chanda, K. (1974). Strong mixing properties of linear stochastic processes, J. Appl.

Prob., 11, 401–408.
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Chapter 2
Metrics, Information Theory, Convergence,
and Poisson Approximations

Sometimes it is technically convenient to prove a certain type of convergence
by proving that, for some suitable metric d on the set of CDFs, d(Fn, F ) →
0 instead of proving the required convergence directly from the definition.
Here Fn, F are CDFs on some space, say the real line. Metrics are also
useful as statistical tools to assess errors in distribution estimation and to
study convergence properties in such statistical problems. The metric, of
course, will depend on the type of convergence desired.

The central limit theorem justifiably occupies a prominent place in all
of statistics and probability theory. Fourier methods are most commonly
used to prove the central limit theorem. This is technically efficient but
fails to supply any intuition as to why the result should be true. It is in-
teresting that proofs of the central limit theorem have been obtained that
avoid Fourier methods and use instead much more intuitive information-
theoretic methods. These proofs use convergence of entropies and Fisher
information in order to conclude convergence in law to normality. It was
then realized that such information-theoretic methods are useful also to
establish convergence to Poisson limits in suitable paradigms; for exam-
ple, convergence of appropriate Bernoulli sums to a Poisson limit. In any
case, Poisson approximations are extremely useful in numerous compli-
cated problems in both probability theory and statistics. In this chapter,
we give an introduction to the use of metrics and information-theoretic
tools for establishing convergences and also give an introduction to Poisson
approximations.

Good references on metrics on distributions are Dudley (1989),
Rachev (1991), and Reiss (1989). The role of information theory in estab-
lishing central limit theorems can be seen, among many references, in Lin-
nik (1959), Brown (1982), and Barron (1986). Poisson approximations have
a long history. There are first-generation methods and then there are the mod-
ern methods, often called the Stein-Chen methods. The literature is huge. A
few references are LeCam (1960), Sevas’tyanov (1972), Stein (1972, 1986),

A. DasGupta, Asymptotic Theory of Statistics and Probability,
C© Springer Science+Business Media, LLC 2008 19
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Chen (1975), and Barbour, Holst and Janson (1992). Two other references
where interesting applications are given in an easily readable style are Arra-
tia, Goldstein, and Gordon (1990) and Diaconis and Holmes (2004).

2.1 Some Common Metrics and Their Usefulness

There are numerous metrics and distances on probability distributions on
Euclidean spaces. The choice depends on the exact purpose and on technical
feasibility. We mention a few important ones only and give some informa-
tion about their interrelationships, primarily in the form of inequalities. The
inequalities are good to know in any case.

(i) Metric for convergence in probability

dE (X,Y ) = E
(

|X−Y |
1+|X−Y |

)
. This extends to the multidimensional case in

the obvious way by using the Euclidean norm ||X − Y ||.
(ii) Kolmogorov metric

dK (F, G) = supx |F (x) − G(x)|. This definition includes the multidi-
mensional case.

(iii) Lévy metric
dL(F, G) = inf{ε > 0 : F (x − ε) − ε ≤ G(x) ≤ F (x + ε) + ε ∀x}.

(iv) Total variation metric
dT V (P, Q) = supBorel A |P(A) − Q(A)|. This also includes the multi-
dimensional case. If P, Q are both absolutely continuous with respect
to some measure μ, then dTV(P, Q) = 1

2

∫ | f (x) − g(x)|dμ(x), where
f is the density of P with respect to μ and g is the density of Q with
respect to μ.

(v) Kullback-Leibler distance
K (P, Q) = − ∫

(log q
p )d P = − ∫

(log q
p )pdμ, where p = d P

dμ and

q = d Q
dμ for some μ. Again, the multidimensional case is included.

Note that K is not symmetric in its arguments P, Q.
(vi) Hellinger distance

H (P, Q) = [∫
(
√

p −√
q)2dμ

]1/2
, where again p = d P

dμ and q = d Q
dμ

for some μ, and the multidimensional case is included.

Theorem 2.1

(i) Xn
P−→ X iff dE (Xn, X ) → 0.

(ii) Xn
L−→ X iff dL(Fn, F ) → 0, where Xn ∼ Fn and X ∼ F .
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(iii) Xn
L−→ X if dK (Fn, F ) → 0, the reverse being true only under addi-

tional conditions.
(iv) If X ∼ F , where F is continuous and Xn ∼ Fn , then Xn

L−→ X iff
dK (Fn, F ) → 0 (Polyá’s theorem).

(v) Xn
L−→ X if dT V (Pn, P) → 0, where Xn ∼ Pn, X ∼ P (the converse

is not necessarily true).
(vi) H (P, Q) ≤ √

K (P, Q).
(vii) H (P, Q) ≥ dTV(P, Q).

(viii) H (P, Q)/
√

2 ≤ √
dTV(P, Q).

Proofs of parts of Theorem 2.1 are available in Reiss (1989).

Corollary 2.1 (a) The total variation distance and the Hellinger distance are
equivalent in the sense dT V (Pn, P) → 0 ⇔ H (Pn, P) → 0.

(b) If Pn, P are all absolutely continuous with unimodal densities, and if Pn

converges to P in law, then H (Pn, P) → 0.

(c) Convergence in Kullback-Leibler distance implies convergence in total
variation and hence convergence in law.

Note that the proof of part (b) also uses Ibragimov’s theorem stated
below.

Remark. The Kullback-Leibler distance is very popular in statistics. Specif-
ically, it is frequently used in problems of model selection, testing for good-
ness of fit, Bayesian modeling and Bayesian asymptotics, and in certain es-
timation methods known as minimum distance estimation. The Kolmogorov
distance is one of the easier ones computationally and has been used in many
problems, too, and notably so in the literature on robustness and Bayesian
robustness. The Hellinger distance is a popular one in problems of den-
sity estimation and in time series problems. The Lévy metric is technically
hard to work with but metrizes weak convergence, a very useful property.
It, too, has been used in the robustness literature, but it is more common
in probability theory. Convergence in total variation is extremely strong,
and many statisticians seem to consider it unimportant. But it has a direct
connection to L1 distance, which is intuitive. It has a transformation invari-
ance property and, when it holds, convergence in total variation is extremely
comforting.

Notice the last two parts in Theorem 2.1. We have inequalities in both
directions relating the total variation distance to the Hellinger distance. Since
computation of the total variation distance is usually difficult, Hellinger dis-
tances are useful in establishing useful bounds on total variation.
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2.2 Convergence in Total Variation and Further
Useful Formulas

Next, we state three important results on when convergence in total variation
can be asserted; see Reiss (1989) for all three theorems and also almost any
text on probability for a proof of Scheffé’s theorem.

Theorem 2.2 (Scheffé) Let fn, n ≥ 0 be a sequence of densities with re-
spect to some measure μ. If fn → f0 a.e. (μ), then dTV( fn, f0) → 0.

Remark. Certain converses to Scheffé’s theorem are available, and the most
recent results are due to Sweeting (1986) and Boos (1985). As we remarked
before, convergence in total variation is very strong, and even for the sim-
plest weak convergence problems, convergence in total variation should not
be expected without some additional structure. The following theorem ex-
emplifies what kind of structure may be necessary. This is a general theorem
(i.e., no assumptions are made on the structural forms of the statistics). In the
Theorem 2.4 below, convergence in total variation is considered for sample
means of iid random variables (i.e., there is a restriction on the structural
form of the underlying statistics). It is not surprising that this theorem needs
fewer conditions than Theorem 2.3 to assert convergence in total variation.

Theorem 2.3 (Ibragimov) Suppose P0 and (for large n) Pn are unimodal,
with densities f0 = d P0

dλ and fn = d Pn
dλ , where λ denotes Lebesgue measure.

Then Pn
L−→ P0 iff dTV(Pn, P0) → 0.

Definition 2.1 A random variable X is said to have a lattice distribution if it
is supported on a set of the form {a + nh : n ∈ Z}, where a is a fixed real,
h a fixed positive real, and Z the set of integers.

Theorem 2.4 Suppose X1, . . . , Xn are iid nonlattice random variables with
a finite variance and characteristic function ψ(t). If, for some p ≥ 1, ψ ∈
L p(λ), where λ denotes Lebesgue measure, then

√
n(X̄−μ)

σ
converges to

N (0, 1) in total variation.

Example 2.1 Suppose Xn is a sequence of random variables on [0, 1] with

density fn(x) = 1+cos(2πnx). Then, Xn
L⇒ U [0, 1] by a direct verification

of the definition using CDFs. However, note that the densities fn do not
converge to the uniform density 1 as n → ∞. The limit distribution P0

is unimodal, but the distribution Pn of Xn is not unimodal. The example
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shows that the condition in Ibragimov’s theorem above that the Pn need to
be unimodal as well cannot be relaxed.

Example 2.2 Suppose X1, X2, . . . are iid χ2(2) with density 1
2 e−x/2. The

characteristic function of X1 is ψ(t) = 1
1−2i t , which is in L p(λ) for any

p > 1. Hence, by Theorem 2.4,
√

n(X−2)
2 converges in total variation to

N (0, 1). We now verify that in fact the density of Zn =
√

n(X−2)
2 converges

pointwise to the N (0, 1) density, which by Scheffé’s theorem will also imply
convergence in total variation. The pointwise convergence of the density is
an interesting calculation.

Since Sn = ∑n
i=1 Xi has the χ2(2n) distribution with density e−x/2 xn−1

2nΓ (n) , Zn

has density fn(z) = e−(z
√

n+n)(1+ z√
n

)n−1nn− 1
2

Γ (n) . Hence, log fn(z) = −z
√

n − n +
(n−1)( z√

n
− z2

2n + O(n−3/2))+ (n− 1
2 ) log n− logΓ (n) = −z

√
n−n+ (n−

1)( z√
n
− z2

2n + O(n−3/2))+ (n− 1
2 ) log n− (n log n−n− 1

2 log n+ log
√

2π+
O(n−1)) on using Stirling’s approximation for log �(n).

On canceling terms, this gives log fn(z) = − z√
n
− log

√
2π − (n−1)z2

2n +
O(n−1/2), implying that log fn(z) → − log

√
2π − z2

2 , and hence fn(z) →
1√
2π

e−
z2

2 , establishing the pointwise density convergence.

Example 2.3 The Hellinger and the Kullback-Leibler distances are
generally easier to calculate than the total variation distance. The normal
case itself is a good example. For instance, the Kullback-Leibler distance
K (Np(μ, I), Np(0, I)) = 1

2 ||μ||2.
Many bounds on the total variation distance between two multivariate

normal distributions are known; we mention a few below that are relatively
neat.

dTV(Np(μ1, I), Np(μ2, I)) ≤ 1√
2
||μ1 − μ2||,

dTV(Np(0,Σ), Np(0, I)) ≤ min

⎧
⎪⎨

⎪⎩

1√
2

(
p∑

i=1
(σ 2

i − 1) − log |Σ |
) 1

2

p2p+1||Σ − I||2
,

where ||A||2 denotes the usual Euclidean matrix norm (
∑

i

∑
j a2

i j )
1/2. These

and other bounds can be seen in Reiss (1989).
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Example 2.4 Suppose Xn ∼ N (μn, σ
2
n ) and X0 ∼ N (μ, σ 2). Then Xn con-

verges to X0 in total variation if and only if μn → μ and σ 2
n → σ 2. This

can be proved directly by calculation.

Remark. There is some interest in finding projections in total variation of a
fixed distribution to a given class of distributions. This is a good problem but
usually very hard, and even in simple one-dimensional cases, the projection
can only be found by numerical means. Here is an example; the exercises at
the end of the chapter offer some more cases.

Example 2.5 If Xn ∼ Bin(n, pn) and npn → λ, 0 < λ < ∞, then Xn

converges in law to the Poi(λ) distribution. In practice, this result is used to
approximate a Bin(n, p) distribution for large n and small p by a Poisson
distribution with mean np. One can ask what is the best Poisson approx-
imation for a given Bin(n, p) distribution (e.g., what is the total variation
projection of a given Bin(n, p) distribution onto the class of all Poisson dis-
tributions). An explicit description would not be possible. However, the total
variation projection can be numerically computed.

For instance, if n = 50, p = .01, then the total variation projection is the
Poisson distribution with mean .5025. If n = 100, p = .05, then the total
variation projection is the Poisson distribution with mean 5.015. The best
Poisson approximation seems to have a mean slightly off from np. In fact, if
the total variation projection has mean λn , then |λn − λ| → 0. We will come
back to Poisson approximations to binomials later in this chapter.

2.3 Information-Theoretic Distances, de Bruijn’s
Identity, and Relations to Convergence

Entropy and Fisher information are two principal information-theoretic quan-
tities. Statisticians, by means of well-known connections to inference such
as the Cramér-Rao inequality and maximum likelihood estimates, are very
familiar with the Fisher information. Probabilists, on the other hand, are very
familiar with entropy. We first define them formally.

Definition 2.2 Let f be a density in Rd . The entropy of f , or synony-
mously of a random variable X ∼ f , is H (X ) = − ∫

f (x) log f (x)dx =
−E f [log f (X )].

For integer-valued variables, the definition is similar.

Definition 2.3 Let X be integer valued with P(X = j ) = p j . Then, the
entropy of X is H (X ) = −∑

j p( j ) log p( j ).
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Fisher information is defined only for smooth densities. Here is the defi-
nition.

Definition 2.4 Let f be a density in Rd . Suppose f has one partial deriva-
tive with respect to each coordinate everywhere in its support {x : f (x) >

0}. The Fisher information of f , or synonymously of a random variable
X ∼ f , is I (X ) = ∫

x : f (x)>0
||� f (x)||2

f (x) dx = E f [|| � log f (X )||2], where �(.)
denotes the gradient vector.

Remark. The function � log f (x) is called the score function of f .
Entropy and Fisher information each satisfy certain suitable subadditivity

properties. We record their most basic properties below. Johnson (2004) can
be consulted for proofs of the theorems in this section apart from the specific
references given for particular theorems below.

Theorem 2.5 (a) For jointly distributed random variables X,Y, H (X,Y ) ≤
H (X ) + H (Y ) with equality iff X,Y are independent:

(b) For any σ > 0, H (μ+ σ X ) = logσ + H (X ).

(c) For independent random variables X,Y, H (X+Y ) ≥ max{H (X ), H (Y )}.
(d) For jointly distributed random variables X,Y, I (X,Y )≥max{I (X ), I (Y )}.
(e) For any σ, I (μ+ σ X ) = I (X )

σ 2 .

(f) For independent random variables X,Y, I (X + Y ) ≤ α2 I (X ) +
(1 − α)2 I (Y )∀0 ≤ α ≤ 1 with equality iff X,Y are each normal.

(g) For independent random variables X,Y, I (X + Y ) ≤
(

1
I (X ) + 1

I (Y )

)−1

with equality iff X,Y are each normal.

Example 2.6 For some common distributions, we give expressions for the
entropy and Fisher information when available.

Distribution H (X ) I (X )
Exponential(1) 1 1

N (0, 1) 1
2 log(2π ) + 1

2 1
Gamma(α, 1) α + log �(α) + (α − 1)ψ(α) 1

α−2(α > 2)
C(0, 1) — 1

2
Nd(0,Σ) d

2 log(2π ) + log |Σ | + d
2 tr�−1

Remark. In the table above, ψ is the di-Gamma function (i.e., the derivative
of log �).

Entropy and Fisher information, interestingly, are connected to each other.
They are connected by a link to the normal distribution and also through an
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algebraic relation known as de Bruijn’s identity. We mention the link through
the normal distribution first.

Theorem 2.6 Among all densities with mean 0 and variance σ 2 < ∞, the
entropy is maximized by the N (0, σ 2) density. On the other hand, among all
densities with mean 0 and variance σ 2 < ∞ such that the Fisher information
is defined, Fisher information is minimized by the N (0, σ 2) density.

Remark. The theorem says that normal distributions are extremals in two
optimization problems with a variance constraint, namely the maximum en-
tropy and the minimum Fisher information problems. Actually, although we
state the theorem for N (0, σ 2), the mean is irrelevant. This theorem estab-
lishes an indirect connection between H and I inherited from a connection
of each to normal distributions.

We can use H and I to define distances between two different distribu-
tions. These are defined as follows.

Definition 2.5 Let X ∼ f,Y ∼ g, and assume that g(x) = 0 ⇒ f (x) = 0.
The entropy divergence or differential entropy between f and g is defined
as

D( f ||g) =
∫

f (x) log

(
f (x)

g(x)

)

.

The Fisher information distance between f and g is defined as

I ( f ||g) = I (X ||Y ) =
∫

[|| � log f −� log(g)||2] f (x)dx .

Using the normal distribution as a benchmark, we can define a standardized
Fisher information as follows.

Definition 2.6 Let X ∼ f have finite variance σ 2. The standardized Fisher
information of f is defined as Is( f ) = Is(X ) = σ 2 I ( f ||N (0, σ 2)).

The advantage of the standardization is that Is( f ) can be zero only when
f itself is a normal density. Similarly, the entropy divergence of a density f
with a normal density can be zero only if f is that same normal density.

We state the elegant algebraic connection between entropy divergence and
standardized Fisher information next.

Theorem 2.7 (De Bruijn’s Identity) Let X ∼ f have variance 1. Let Z be
a standard normal variable independent of X . For t > 0, let ft denote the
density of X +√

t Z . Then, I ( ft ) = 2 d
dt [H ( ft )].
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Remark. De Bruijn’s identity (which extends to higher dimensions) is a
consequence of the heat equation of partial differential equations; see John-
son (2004). A large number of such d

dt identities of use in statistics (although
not de Bruijn’s identity itself) are proved in Brown et al. (2006). That such
a neat algebraic identity links entropy with Fisher information is a pleasant
surprise.

We now describe how convergence in entropy divergence is a very strong
form of convergence.

Theorem 2.8 Let fn, f be densities in Rd . Suppose D( fn|| f ) → 0. Then
fn converges to f in total variation; in particular, convergence in distribution
follows.

This theorem has completely general densities fn, f . In statistics, often
one is interested in densities of normalized convolutions. Calculating their
entropies or entropy distances from the density of the limiting N (0, 1) dis-
tribution could be hard because convolution densities are difficult to write.
In a remarkable result, Barron (1986) proved the following.

Theorem 2.9 Let X1, X2, · · · be iid zero-mean, unit-variance random vari-
ables and let fn denote the density (assuming it exists) of

√
n X̄ . If, for some

m, D( fm ||N (0, 1)) < ∞, then D( fn||N (0, 1)) → 0.
Analogously, one can use Fisher information in order to establish weak

convergence. The intuition is that if the Fisher information of
√

nX̄ is con-
verging to 1, which is the Fisher information of the N (0, 1) distribution,
then by virtue of the unique Fisher information minimizing property of the
N (0, 1) subject to a fixed variance of 1 (stated above), it ought to be the case
that

√
n X̄ is converging to N (0, 1) in distribution. The intuition is pushed to

a proof in Brown (1982), as stated below.

Theorem 2.10 Let X1, X2, · · · be iid zero-mean, unit-variance random vari-
ables and Z1, Z2, · · · be an iid N (0, 1) sequence independent of the {Xi }.
Let v > 0 and Yn(v) = √

nX̄ +√
vZn . Then, for any v, Is (Yn(v)) → 0 and

hence
√

n X̄
L⇒ N (0, 1).

Remark. It had been suspected for a long time that there should be such a
proof of the central limit theorem by using Fisher information. It was later
found that Brown’s technique was so powerful that it extended to central
limit theorems for many kinds of non-iid variables. These results amounted
to a triumph of information theory tools and provided much more intuitive
proofs of the central limit results than proofs based on Fourier methods.

An interesting question to ask is what can be said about the rates of con-
vergence of the entropy divergence and the standardized Fisher information
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in the canonical CLT situation (i.e., for
√

n X̄ when Xi are iid with mean
0 and variance 1). This is a difficult question. In general, one can hope for
convergence at the rate of 1

n . The following is true.

Theorem 2.11 Let X1, X2, · · · be iid zero-mean, unit-variance random vari-
ables. Then, each of D(

√
n X̄ ||N (0, 1)) and Is(

√
nX̄ ) is O( 1

n ).

Remark. This is quite a bit weaker than the best results that are now known.
In fact, one can get bounds valid for all n, although they involve constants
that usually cannot be computed. Johnson and Barron (2003) may be con-
sulted to see the details.

2.4 Poisson Approximations

Exercise 1.5 in Chapter 1 asks to show that the sequence of Bin(n, 1
n ) dis-

tributions converges in law to the Poisson distribution with mean 1. The
Bin(n, 1

n ) is a sum of n independent Bernoullis but with a success probabil-
ity that is small and also depends on n. The Bin(n, 1

n ) is a count of the total
number of occurrences among n independent rare events. It turns out that
convergence to a Poisson distribution can occur even if the individual suc-
cess probabilities are small but not the same, and even if the Bernoulli vari-
ables are not independent. Indeed, approximations by Poisson distributions
are extremely useful and accurate in many problems. The problems arise in
diverse areas. Poisson approximation is a huge area, with an enormous body
of literature, and there are many book-length treatments. We provide here a
glimpse into the area with some examples.

Definition 2.7 Let p, q be two mass functions on the integers. The total vari-
ation distance between p and q is defined as dTV(p, q) = supA⊆Z |Pp(X ∈
A) − Pq(X ∈ A)|, which equals 1

2

∑
j |p( j ) − q( j )|.

A simple and classic result is the following.

Theorem 2.12 (LeCam (1960)) (a) dTV(Bin(n, λ
n ),Poi(λ)) ≤ 8λ

n . (b) For
n ≥ 1, let {Xin}n

i=1 be a triangular array of independent Ber(pin) vari-
ables. Let Sn = ∑n

i=1 Xin and λn = ∑n
i=1 pin. Then, dTV(Sn,Poi(λn)) ≤

8
λn

∑n
i=1 p2

in, if max{pin, 1 ≤ i ≤ n} ≤ 1
4 .

A neat corollary of LeCam’s theorem is the following.

Corollary 2.2 If Xin is a triangular array of independent Ber(pin) variables
such that max{pin, 1 ≤ i ≤ n} → 0, and λn = ∑n

i=1 pin → λ, 0 < λ < ∞,

then dTV(Sn,Poi(λ)) → 0 and hence Sn
L⇒ Poi(λ).
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The Poisson distribution has the property of having equal mean and vari-
ance, so intuition would suggest that if a sum of independent Bernoulli
variables had, asymptotically, an equal mean and variance, then it should
converge to a Poisson distribution. That, too, is true.

Corollary 2.3 If Xin is a triangular array of independent Ber(pin) variables
such that

∑n
i=1 pin and

∑n
i=1 pin(1 − pin) each converge to λ, 0 < λ < ∞,

then Sn
L⇒ Poi(λ).

It is a fact that, in many applications, although the variable can be rep-
resented as a sum of Bernoulli variables, they are not independent. The
question arises if a Poisson limit can still be proved. The question is rather
old. Techniques that we call first-generation techniques, using combinatorial
methods, are successful in some interesting problems. These methods typ-
ically use generating functions or sharp Bonferroni inequalities. Two very
good references for looking at those techniques are Kolchin, Sevas’tyanov,
and Chistyakov (1978) and Galambos and Simonelli (1996). Here is perhaps
the most basic result of that type.

Theorem 2.13 For N ≥ 1, let Xin, i = 1, 2, · · · , n = n(N ) be a triangular
array of Bernoulli random variables, and let Ai = Ain denote the event
where Xin = 1. For a given k, let Mk = Mkn be the kth binomial moment of
Sn; i.e., Mk = ∑n

j=k

( j
k

)
P(Sn = j ). If there exists 0 < λ < ∞ such that, for

every fixed k, Mk → λk

k! as N → ∞, then Sn
L⇒ Poi(λ).

Remark. In some problems, typically of a combinatorial nature, careful
counting lets one apply this basic theorem and establish convergence to a
Poisson distribution.

Example 2.7 (The Matching Problem) Cards are drawn one at a time from
a well-shuffled deck containing N cards, and a match occurs if the card bear-
ing a number, say j , is drawn at precisely the j th draw from the deck. Let SN

be the total number of matches. Theorem 2.13 can be used in this example.
The binomial moment Mk can be shown to be Mk = (N

k

)
1

N(N−1)...(N−k+1) , and

from here, by Stirling’s approximation, for every fixed k, Mk → 1
k! , estab-

lishing that the total number of matches converges to a Poisson distribution
with mean 1 as the deck size N → ∞. Note that the mean value of SN is
exactly 1 for any N . Convergence to a Poisson distribution is extremely fast
in this problem; even for N = 5, the Poisson approximation is quite good.
For N = 10, it is almost exact!
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For information, we note the following superexponential bound on the
error of the Poisson approximation in this problem; this is proved in Das-
Gupta (1999).

Theorem 2.14 dTV(SN ,Poi(1)) ≤ 2N

(N+1)! ∀N .

Example 2.8 (The Committee Problem) From n people, N = N (n) com-
mittees are formed, each committee of a fixed size m. We let N , n → ∞,
holding m fixed. The Bernoulli variable Xin is the indicator of the event that
the i th person is not included in any committee. Under the usual assumptions
of independence and also the assumption of random selection, the binomial

moment Mk can be shown to be Mk = (n
k

)
[ (n−k

m )
(n

m) ]N .

Stirling’s approximation shows that Mk ∼ nk

k! e−k N( m
n +O(n−2)) as n → ∞.

One now sees on inspection that if N , n are related as N = n log n
m −n log λ+

o(n−1) for some 0 < λ < ∞, then Mk → λkm

k! and so, from the basic
convergence theorem above, the number of people who are left out of all
committees converges to Poi(λm).

Example 2.9 (The Birthday Problem) This is one of the most colorful ex-
amples in probability theory. Suppose each person in a group of n people
has, mutually independently, a probability 1

N of being born on any given day
of a year with N calendar days. Let Sn be the total number of pairs of people
(i, j ) such that they have the same birthday. P(Sn > 0) is the probability
that there is at least one pair of people in the group who share the same
birthday. It turns out that if n, N are related as n2 = 2Nλ+ o(N ), for some

0 < λ < ∞, then Sn
L⇒ Poi(λ). For example, if N = 365, n = 30, then Sn

is roughly Poisson with mean 1.233.
A review of the birthday and matching problems is given in

DasGupta (2005). Many of the references given at the beginning of this
chapter also discuss Poisson approximation in these problems.

We earlier described the binomial moment method as a first-generation
method for establishing Poisson convergence. The modern method, which
has been fantastically successful in hard problems, is known as the Stein-
Chen method. It has a very interesting history. In 1972, Stein gave a novel
method of obtaining error bounds in the central limit theorem. Stein (1972)
gave a technique that allowed him to have dependent summands and also
allowed him to use non-Fourier methods, which are the classical meth-
ods in that problem. We go into those results, generally called Berry-
Esseen bounds, later in the book (see Chapter 11). Stein’s method was
based on a very simple identity, now universally known as Stein’s iden-
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tity (published later in Stein (1981)), which says that if Z ∼ N (0, 1),
then for nice functions f, E [Z f (Z )] = E [ f ′(Z )]. It was later found that if
Stein’s identity holds for many nice functions, then the underlying variable
Z must be N (0, 1). So, the intuition is that if for some random variable
Z = Zn, E [Z f (Z ) − f ′(Z )] ≈ 0, then Z should be close to N (0, 1) in
distribution. In a manner that many still find mysterious, Stein reduced this
to a comparison of the mean of a suitable function h, related to f by a
differential equation, under the true distribution of Z and the N (0, 1) distri-
bution. From here, he was able to obtain non-Fourier bounds on errors in the
CLT for dependent random variables. A Stein type identity was later found
for the Poisson case in the decision theory literature; see Hwang (1982).
Stein’s method for the normal case was successfully adapted to the Pois-
son case in Chen (1975). The Stein-Chen method is now regarded as the
principal tool in establishing Poisson limits for sums of dependent Bernoulli
variables. Roughly speaking, the dependence should be weak, and for any
single Bernoulli variable, the number of other Bernoulli variables with which
it shares a dependence relation should not be very large. The Stein-Chen
method has undergone a lot of evolution with increasing sophistication since
Chen (1975). The references given in the first section of this chapter contain
a wealth of techniques, results, and, most of all, numerous new applica-
tions. Specifically, we recommend Arratia, Goldstein, and Gordon (1990),
Barbour, Holst and Janson (1992), Dembo and Rinott (1996), and the re-
cent monograph by Diaconis and Holmes (2004). See Barbour, Chen, and
Loh (1992) for use of the Stein-Chen technique for compound Poisson
approximations.

2.5 Exercises

Exercise 2.1 * Let X ∼ F with density 1
π(1+x2) ,−∞ < x < ∞. Find the

total variation projection of F onto the family of all normal distributions.

Exercise 2.2 For each of the following cases, evaluate the indicated dis-
tances.

(i) dTV(P, Q) when P = Bin(20, .05) and Q = Poisson(1).
(ii) dK (F, G) when F = N (0, σ 2) and G = Cauchy(0, τ 2).

(iii) H (P, Q) when P = N (μ, σ 2) and Q = N (ν, τ 2).

Exercise 2.3 * Write an expansion in powers of ε for dTV(P, Q) when P =
N (0, 1) and Q = N (ε, 1).
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Exercise 2.4 Calculate and plot (as a function of μ) H (P, Q) and dTV(P, Q)
when P = N (0, 1) and Q = N (μ, 1).

Exercise 2.5 * Suppose Pn = Bin(n, pn) and P = Poi(λ). Give a suffi-
cient condition for dTV(Pn, P) → 0. Can you give a nontrivial necessary
condition?

Exercise 2.6 Show that if X ∼ P , Y ∼ Q, then dTV(P, Q) ≤ P(X �= Y ).

Exercise 2.7 Suppose Xi
indep.∼ Pi ,Yi

indep.∼ Qi . Then dTV(P1 ∗ P2 ∗ · · · ∗
Pn, Q1 ∗ Q2 ∗ · · · ∗ Qn) ≤∑n

i=1 dTV(Pi , Qi ), where ∗ denotes convolution.

Exercise 2.8 Suppose Xn is a Poisson variable with mean n
n+1 and X is

Poisson with mean 1.

(a) Show that the total variation distance between the distributions of Xn and
X converges to zero.

(b) * (Harder) Find the rate of convergence to zero in part (a).

Exercise 2.9 * Let P = N (0, 1) and Q = N (μ, σ 2). Plot the set S =
{(μ, σ ) : dTV(P, Q) ≤ ε} for some selected values of ε.

Exercise 2.10 Suppose X1, X2, . . . are iid Exp(1). Does
√

n(X̄ − 1) con-
verge to standard normal in total variation?

Exercise 2.11 If Xi are iid, show that X̄n
P−→ 0 iff E

(
X̄ 2

n

1+X̄ 2
n

)
→ 0.

Exercise 2.12 * Let X ∼ U [−1, 1]. Find the total variation projection of X
onto the class of all normal distributions.

Exercise 2.13 * Consider the family of densities with mean equal to a spec-
ified μ. Find the density in this family that maximizes the entropy.

Exercise 2.14 * (Projection in Entropy Distance) Suppose X has a density
with mean μ and variance σ 2. Show that the projection of X onto the class
of all normal distributions has the same mean and variance as X .

Exercise 2.15 * (Projection in Entropy Distance Continued) Suppose X
is an integer-valued random variable with mean μ. Show that the projection
of X onto the class of all Poisson distributions has the same mean as X .
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Exercise 2.16 * First write the exact formula for the entropy of a Poisson
distribution, and then prove that the entropy grows at the rate of logλ as the
mean λ → ∞.

Exercise 2.17 What can you say about the existence of entropy and Fisher
information for Beta densities? What about the double exponential density?

Exercise 2.18 Prove that the standardized Fisher information of a
Gamma(α, 1) density converges to zero at the rate 1

α
, α being the shape

parameter.

Exercise 2.19 * Consider the Le Cam bound dTV(Bin(n, p),Poi(np)) ≤ 8p.
Compute the ratio dTV(Bin(n,p),Poi(np))

p for a grid of (n, p) pairs and investigate
the best constant in Le Cam’s inequality.

Exercise 2.20 * For N = 5, 10, 20, 30, compute the distribution of the total
number of matches in the matching problem, and verify that the distribution
in each case is unimodal.

Exercise 2.21 Give an example of a sequence of binomial distributions that
converge neither to a normal (on centering and norming) nor to a Poisson
distribution.
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Chapter 29
The Bootstrap

The bootstrap is a resampling mechanism designed to provide informa-
tion about the sampling distribution of a functional T (X1, X2, ..., Xn, F ),
where X1, X2, ..., Xn are sample observations and F is the CDF from which
X1, X2, ..., Xn are independent observations. The bootstrap is not limited to
the iid situation. It has been studied for various kinds of dependent data
and complex situations. In fact, this versatile nature of the bootstrap is
the principal reason for its popularity. There are numerous texts and re-
views of bootstrap theory and methodology at various technical levels. We
recommend Efron and Tibshirani (1993) and Davison and Hinkley (1997)
for applications-oriented broad expositions and Hall (1992) and Shao and
Tu (1995) for detailed theoretical development. Modern reviews include
Hall (2003), Beran (2003), Bickel (2003), and Efron (2003). Bose and Poli-
tis (1992) is a well-written nontechnical account, and Lahiri (2003) is a rig-
orous treatment of the bootstrap for various kinds of dependent data.

Suppose X1, X2, . . . , Xn
iid∼ F and T (X1, X2, ..., Xn, F ) is a functional;

e.g., T (X1, X2, ..., Xn, F ) =
√

n(X̄−μ)
σ

, where μ = EF (X1) and σ 2 =
VarF (X1). In statistical problems, we frequently need to know something
about the sampling distribution of T ; e.g., PF (T (X1, X2, ..., Xn, F ) ≤ t). If
we had replicated samples from the population, resulting in a series of values
for the statistic T , then we could form estimates of PF (T ≤ t) by counting
how many of the Ti ’s are ≤ t . But statistical sampling is not done that way.
We do not usually obtain replicated samples; we obtain just one set of data
of some size n. However, let us think for a moment of a finite population. A
large sample from a finite population should be well representative of the full
population itself, so replicated samples (with replacement) from the original
sample, which would just be an iid sample from the empirical CDF Fn , could
be regarded as proxies for replicated samples from the population itself, pro-
vided n is large. Suppose that for some number B we draw B resamples of
size n from the original sample. Denoting the resamples from the original
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sample as (X∗
11, X∗

12, ..., X∗
1n), (X∗

21, X∗
22, ..., X∗

2n), ..., (X∗
B1, X∗

B2, ..., X∗
Bn),

with corresponding values T ∗
1 , T ∗

2 , ..., T ∗
B for the functional T , one can use

simple frequency-based estimates such as
#{ j :T ∗

j ≤t}
B to estimate PF (T ≤ t).

This is the basic idea of the bootstrap. Over time, the bootstrap has found
its use in estimating other quantities, e.g., VarF (T ) or quantiles of T . The
bootstrap is thus an omnibus mechanism for approximating sampling distri-
butions or functionals of sampling distributions of statistics. Since frequen-
tist inference is mostly about sampling distributions of suitable statistics,
the bootstrap is viewed as an immensely useful and versatile tool, further
popularized by its automatic nature. However, it is also frequently used in
situations where it should not be used. In this chapter, we give a broad
methodological introduction to various types of bootstraps, explain their
theoretical underpinnings, discuss their successes and limitations, and try
them out in some trial cases.

29.1 Bootstrap Distribution and the Meaning of Consistency

The formal definition of the bootstrap distribution of a functional is the fol-
lowing.

Definition 29.1 Let X1, X2, . . . , Xn
iid∼ F and T (X1, X2, ..., Xn, F ) be a

given functional. The ordinary bootstrap distribution of T is defined as

HBoot(x) = PFn (T (X∗
1, ..., X∗

n, Fn) ≤ x),

where (X∗
1, ..., X∗

n ) is an iid sample of size n from the empirical CDF Fn.
It is common to use the notation P∗ to denote probabilities under the

bootstrap distribution.

Remark. PFn (·) corresponds to probability statements corresponding to
all the nn possible resamples with replacement from the original sample
(X1, . . . , Xn). Since recalculating T from all nn resamples is basically im-
possible unless n is very small, one uses a smaller number of B resam-
ples and recalculates T only B times. Thus HBoot(x) itself is estimated by a
Monte Carlo, known as the bootstrap Monte Carlo, so the final estimate for
PF (T (X1, X2, ..., Xn, Fn) ≤ x) absorbs errors from two sources: (i) pretend-
ing (X∗

i1, X∗
i2, ..., X∗

in) to be bona fide resamples from F ; (ii) estimating the
true HBoot(x) by a Monte Carlo. By choosing B adequately large, the Monte
Carlo error is generally ignored. The choice of B that would let one ignore
the Monte Carlo error is a hard mathematical problem; Hall (1986, 1989a)
are two key references. It is customary to choose B ≈ 300 for variance
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estimation and a somewhat larger value for estimating quantiles. It is hard to
give any general reliable prescriptions on B.

It is important to note that the resampled data need not necessarily be
obtained from the empirical CDF Fn . Indeed, it is a natural question whether
resampling from a smoothed nonparametric distribution estimator can result
in better performance. Examples of such smoothed distribution estimators
are integrated kernel density estimates. It turns out that, in some prob-
lems, smoothing does lead to greater accuracy, typically in the second order.
See Silverman and Young (1987) and Hall, DiCiccio, and Romano (1989)
for practical questions and theoretical analysis of the benefits of using a
smoothed bootstrap. Meanwhile, bootstrapping from Fn is often called the
naive or orthodox bootstrap, and we will sometimes use this terminology.

Remark. At first glance, the idea appears to be a bit too simple to actually
work. But one has to have a definition for what one means by the bootstrap
working in a given situation. It depends on what one wants the bootstrap to
do. For estimating the CDF of a statistic, one should want HBoot(x) to be
numerically close to the true CDF Hn(x) of T . This would require consid-
eration of metrics on CDFs. For a general metric ρ, the definition of “the
bootstrap working” is the following.

Definition 29.2 Let F and G be two CDFs on a sample space X . Let

ρ(F, G) be a metric on the space of CDFs on X . For X1, X2, . . . , Xn
iid∼ F ,

and a given functional T (X1, X2, ..., Xn, F ), let

Hn(x) = PF (T (X1, X2, ..., Xn, F ) ≤ x),

HBoot(x) = P∗(T (X∗
1, X∗

2, ..., X∗
n , Fn) ≤ x).

We say that the bootstrap is weakly consistent under ρ for T if ρ(Hn, HBoot)
P⇒ 0 as n → ∞. We say that the bootstrap is strongly consistent under ρ for

T if ρ(Hn, HBoot)
a.s.⇒ 0.

Remark. Note that the need for mentioning convergence to zero in proba-
bility or a.s. in this definition is due to the fact that the bootstrap distribution
HBoot is a random CDF. That HBoot is a random CDF has nothing to do with
bootstrap Monte Carlo; it is a random CDF because as a function it depends
on the original sample (X1, X2, ..., Xn). Thus, the bootstrap uses a random
CDF to approximate a deterministic but unknown CDF, namely the true CDF
Hn of the functional T .

Example 29.1 How does one apply the bootstrap in practice? Suppose, for
example, T (X1, . . . , Xn, F ) =

√
n(X̄−μ)

σ
. In the orthodox bootstrap scheme,
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we take iid samples from Fn . The mean and the variance of the empiri-
cal distribution Fn are X̄ and s2 = 1

n

∑n
i=1(Xi − X̄ )2 (note the n rather

than n − 1 in the denominator). The bootstrap is a device for estimating
PF (

√
n(X̄−μ(F))

σ
≤ x) by PFn (

√
n(X̄∗

n−X̄)
s ≤ x). We will further approximate

PFn (
√

n(X̄∗
n−X̄)

s ≤ x) by resampling only B times from the original sample
set {X1, . . . , Xn}. In other words, finally we will report as our estimate for

PF (
√

n(X̄−μ)
σ

≤ x) the number #{ j :
√

n(X̄∗
n, j−X̄)

s ≤ x}/B.

29.2 Consistency in the Kolmogorov and Wasserstein
Metrics

We start with the case of the sample mean of iid random variables. If

X1, . . . , Xn
iid∼ F and if VarF (Xi ) < ∞, then

√
n(X̄ − μ) has a limiting

normal distribution by the CLT. So a probability such as PF (
√

n(X̄−μ) ≤ x)
could be approximated for example by �( x

s ), where s is the sample standard
deviation. An interesting property of the bootstrap approximation is that,
even when the CLT approximation �( x

s ) is available, the bootstrap approx-
imation may be more accurate. We will later describe theoretical results in
this regard. But first we present two consistency results corresponding to
the following two specific metrics that have earned a special status in this
literature:

(i) Kolmogorov metric

K (F, G) = sup
−∞<x<∞

|F (x) − G(x)|;

(ii) Mallows-Wasserstein metric

!2(F, G) = inf
�2,F,G

(E |Y − X |2)
1
2 ,

where X ∼ F , Y ∼ G, and �2,F,G is the class of all joint distributions
of (X,Y ) with marginals F and G, each with a finite second moment.

!2 is a special case of the more general metric

!p(F, G) = inf
�p,F,G

(E |Y − X |p)
1
p ,

with the infimum being taken over the class of joint distributions with
marginals as F, G, and the pth moment of F, G being finite.
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Of these, the Kolmogorov metric is universally regarded as a natural
one. But how about !2? !2 is a natural metric for many statistical problems

because of its interesting property that !2(Fn, F ) → 0 iff Fn
L⇒ F and

EFn (Xi ) → EF (Xi ) for i = 1, 2. Since one might want to use the bootstrap
primarily for estimating the CDF, mean, and variance of a statistic, consis-
tency in !2 is just the right result for that purpose.

Theorem 29.1 Suppose X1, X2, . . . , Xn
iid∼ F and that EF (X2

1) < ∞. Let
T (X1, . . . , Xn, F ) = √

n(X̄ − μ). Then K (Hn, HBoot) and !2(Hn, HBoot)
a.s.−→ 0 as n → ∞.

Remark. Strong consistency in K is proved in Singh (1981), and that for
!2 is proved in Bickel and Freedman (1981). Notice that EF (X2

1) < ∞
guarantees that

√
n(X̄ − μ) admits a CLT. And Theorem 29.1 says that the

bootstrap is strongly consistent (w.r.t. K and !2) under that assumption. This
is in fact a very good rule of thumb: if a functional T (X1, X2, ..., Xn, F )
admits a CLT, then the bootstrap would be at least weakly consistent for T .
Strong consistency might require a little more assumption.

We sketch a proof of the strong consistency in K . The proof requires use
of the Berry-Esseen inequality, Polya’s theorem (see Chapter 1 or Chap-
ter 2), and a strong law known as the Zygmund-Marcinkiewicz strong law,
which we state below.

Lemma 29.1 (Zygmund-Marcinkiewicz SLLN) Let Y1,Y2, . . . be iid ran-
dom variables with CDF F and suppose, for some 0 < δ < 1, EF |Y1|δ < ∞.
Then n−1/δ

∑n
i=1 Yi

a.s.⇒ 0.
We are now ready to sketch the proof of strong consistency of HBoot

under K . Using the definition of K , we can write K (Hn, HBoot) =
supx

∣
∣PF {Tn ≤ x} − P∗

{
T ∗

n ≤ x
}∣
∣

= sup
x

∣
∣
∣
∣PF

{
Tn

σ
≤ x

σ

}

− P∗

{
T ∗

n

s
≤ x

s

}∣
∣
∣
∣

= sup
x

∣
∣
∣
∣PF

{
Tn

σ
≤ x

σ

}

− �
( x

σ

)
+Φ

( x

σ

)
− �

( x

s

)
+Φ

(x

s

)

−P∗

{
T ∗

n

s
≤ x

s

}∣
∣
∣
∣

≤ sup
x

∣
∣
∣
∣PF

{
Tn

σ
≤ x

σ

}

− �
( x

σ

)∣∣
∣
∣+ sup

x

∣
∣
∣�

( x

σ

)
− �

( x

s

)∣
∣
∣

+ sup
x

∣
∣
∣
∣�

( x

s

)
− P∗

{
T ∗

n

s
≤ x

s

}∣
∣
∣
∣

= An + Bn + Cn, say.
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That An → 0 is a direct consequence of Polya’s theorem. Also, s2 con-
verges almost surely to σ 2 and so, by the continuous mapping theorem, s
converges almost surely to σ . Then Bn ⇒ 0 almost surely by the fact that
�(·) is a uniformly continuous function. Finally, we can apply the Berry-
Esseen theorem to show that Cn goes to zero:

Cn ≤ 4

5
√

n
· EFn |X∗

1 − Xn|3
[varFn (X∗

1)]3/2
= 4

5
√

n
·
∑n

i=1 |Xi − Xn|3
ns3

≤ 4

5n3/2s3
· 23

[
n∑

i=1

|Xi − μ|3 + n|μ− Xn|3
]

= M

s3

[
1

n3/2

n∑

i=1

|Xi − μ|3 + |X n − μ|3√
n

]

,

where M = 32
5 .

Since s ⇒ σ > 0 and Xn ⇒ μ, it is clear that |Xn − μ|3/(
√

ns3) ⇒ 0
almost surely. As regards the first term, let Yi = |Xi − μ|3 and δ = 2/3.
Then the {Yi} are iid and

E |Yi |δ = EF |Xi − μ|3·2/3 = VarF (X1) < ∞.

It now follows from the Zygmund-Marcinkiewicz SLLN that

1

n3/2

n∑

i=1

|Xi − μ|3 = n−1/δ
n∑

i=1

Yi ⇒ 0 a.s. as n → ∞.

Thus, An + Bn + Cn ⇒ 0 almost surely, and hence K (Hn, HBoot) ⇒ 0.
We now proceed to a proof of convergence under the Wasserstein-

Kantorovich-Mallows metric !2. Recall that convergence in !2 allows us to
conclude more than weak convergence. We start with a sequence of results
that enumerate useful properties of the !2 metric.

These facts (see Bickel and Freedman (1981)) are needed to prove con-
sistency of HBoot in the !2 metric.

Lemma 29.2 Let Gn, G ∈ �2. Then !2(Gn, G) → 0 if and only if

Gn
L⇒ G and lim

n→∞

∫

xkdGn(x) =
∫

xk dG(x), k = 1, 2.
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Lemma 29.3 Let G, H ∈ �2, and suppose Y1, . . . ,Yn are iid G and
Z1, . . . , Zn are iid H . If G(n) is the CDF of

√
n(Ȳ − μG) and H (n) is the

CDF of
√

n(Z̄ − μH ), then !2(G(n), H (n)) ≤ !2(G, H ), ∀ n ≥ 1.

Lemma 29.4 (Glivenko-Cantelli) Let X1, X2, . . . , Xn be iid F and let Fn

be the empirical CDF. Then Fn(x) → F (x) almost surely, uniformly in x .

Lemma 29.5 Let X1, X2, . . . , Xn be iid F and let Fn be the empirical CDF.
Then !2(Fn, F ) ⇒ 0 almost surely.

The proof that !2(Hn, HBoot) converges to zero almost surely follows on
simply putting together the lemmas 29.2–29.5. We omit this easy verifica-
tion.

It is natural to ask if the bootstrap is consistent for
√

n(X̄ −μ) even when
EF (X2

1) = ∞. If we insist on strong consistency, then the answer is negative.
The point is that the sequence of bootstrap distributions is a sequence of
random CDFs and so it cannot be expected a priori that it will converge to
a fixed CDF. It may very well converge to a random CDF, depending on the
particular realization X1, X2, . . .. One runs into this problem if EF (X2

1) does
not exist. We state the result below.

Theorem 29.2 Suppose X1, X2, . . . are iid random variables. There exist
μn(X1, X2, ..., Xn), an increasing sequence cn , and a fixed CDF G(x) such
that

P∗

⎛

⎜
⎜
⎝

n∑

i=1
(X∗

i − μ(X1, . . . , Xn))

cn
≤ x

⎞

⎟
⎟
⎠

a.s.−→ G(x)

if and only if EF (X2
1) < ∞, in which case cn√

n
−→1.

Remark. The moral of Theorem 29.2 is that the existence of a nonrandom
limit itself would be a problem if EF (X2

1) = ∞. See Athreya (1987), Giné
and Zinn (1989), and Hall (1990) for proofs and additional examples.

The consistency of the bootstrap for the sample mean under finite second
moments is also true for the multivariate case. We record consistency under
the Kolmogorov metric next; see Shao and Tu (1995) for a proof.

Theorem 29.3 Let X1∼
, · · · , Xn

∼
, · · · be iid F with covF (X1∼

) = �, � fi-

nite. Let T (X1∼
, X2∼

, ..., Xn∼
, F ) = √

n(X̄∼ −μ
∼

). Then K (HBoot, Hn)
a.s.−→ 0

as n → ∞.
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29.3 Delta Theorem for the Bootstrap

We know from the ordinary delta theorem that if T admits a CLT and g(·) is a
smooth transformation, then g(T ) also admits a CLT. If we were to believe in
our rule of thumb, then this would suggest that the bootstrap should be con-
sistent for g(T ) if it is already consistent for T . For the case of sample mean
vectors, the following result holds; again, see Shao and Tu (1995) for a proof.

Theorem 29.4 Let X1∼
, X2∼

, ..., Xn∼
iid∼ F and let �p×p = covF (X1∼

) be fi-

nite. Let T (X1∼
, X2∼

, ..., Xn∼
, F ) = √

n(X̄∼ −μ
∼

) and, for some m ≥ 1, let

g : R
p → R

m. If ∇g(·) exists in a neighborhood of μ
∼

,∇g(μ
∼

) �= 0
∼

, and if

∇g(·) is continuous at μ
∼

, then the bootstrap is strongly consistent w.r.t. K

for
√

n(g(X̄∼ ) − g(μ
∼

)).

Example 29.2 Let X1, X2, . . . , Xn
iid∼ F , and suppose EF (X4

1) < ∞. Let
Yi
∼
= ( Xi

X 2
i
). Then, with p = 2, Y1∼

,Y2∼
, ...,Yn

∼
are iid p-dimensional vectors

with cov(Y1∼
) finite. Note that Ȳ∼ = ( X̄

1
n

∑n
i=1 X 2

i

)
. Consider the transformation

g : R
2 → R

1 defined as g(u, v) = v − u2. Then 1
n

∑n
i=1(Xi − X̄ )2 =

1
n

∑n
i=1 X2

i −(X̄ )2 = g(Ȳ∼). If we let μ
∼
= E (Y1∼

), then g(μ
∼

) = σ 2 = Var(X1).

Since g(·) satisfies the conditions of the Theorem 29.4, it follows that the
bootstrap is strongly consistent w.r.t. K for

√
n( 1

n

∑n
i=1(Xi − X̄ )2 − σ 2).

29.4 Second-Order Accuracy of the Bootstrap

One philosophical question about the use of the bootstrap is whether the
bootstrap has any advantages at all when a CLT is already available. To be
specific, suppose T (X1, . . . , Xn, F ) = √

n(X̄ −μ). If σ 2 = VarF (X ) < ∞,

then
√

n(X̄ − μ)
L⇒ N (0, σ 2) and K (HBoot, Hn)

a.s.→ 0. So two competitive
approximations to PF (T (X1, . . . , Xn, F ) ≤ x) are �( x

σ̂
) and PFn (

√
n(X̄∗ −

X̄ ) ≤ x). It turns out that, for certain types of statistics, the bootstrap approx-
imation is (theoretically) more accurate than the approximation provided
by the CLT. Because any normal distribution is symmetric, the CLT can-
not capture information about the skewness in the finite sample distribution
of T . The bootstrap approximation does so. So the bootstrap succeeds in
correcting for skewness, just as an Edgeworth expansion would do. This
is called Edgeworth correction by the bootstrap, and the property is called
second-order accuracy of the bootstrap. It is important to remember that



29.4 Second-Order Accuracy of the Bootstrap 469

second-order accuracy is not automatic; it holds for certain types of T but
not for others. It is also important to understand that practical accuracy
and theoretical higher-order accuracy can be different things. The follow-
ing heuristic calculation will illustrate when second-order accuracy can be
anticipated. The first result on higher-order accuracy of the bootstrap is due
to Singh (1981). In addition to the references we provided in the beginning,
Lehmann (1999) gives a very readable treatment of higher-order accuracy of
the bootstrap.

Suppose X1, X2, . . . , Xn
iid∼ F and T (X1, . . . , Xn, F ) =

√
n(X̄−μ)

σ
; here

σ 2 = VarF (X1) < ∞. We know that T admits the Edgeworth expansion

PF (T ≤ x) = �(x) + p1(x |F )√
n

ϕ(x) + p2(x |F )

n
ϕ(x)

+smaller order terms,

P∗(T ∗ ≤ x) = �(x) + p1(x |Fn)√
n

ϕ(x) + p2(x |Fn)

n
ϕ(x)

+smaller order terms,

Hn(x) − HBoot(x) = p1(x |F ) − p1(x |Fn)√
n

+ p2(x |F ) − p2(x |Fn)

n
+smaller order terms.

Recall now that the polynomials p1, p2 are given as

p1(x |F ) = γ

6
(1 − x2),

p2(x |F ) = x

[
κ − 3

24
(3 − x2) − κ2

72
(x4 − 10x2 + 15)

]

,

where γ = EF (X1−μ)3

σ 3 and κ = EF (X1−μ)4

σ 4 . Since γFn
− γ = Op( 1√

n
) and

κFn
− κ = Op( 1√

n
), just from the CLT for γFn

and κFn
under finiteness of

four moments, one obtains Hn(x) − HBoot(x) = Op( 1
n ). If we contrast this

with the CLT approximation, in general, the error in the CLT is O( 1√
n ), as is

known from the Berry-Esseen theorem. The 1√
n

rate cannot be improved in
general even if there are four moments. Thus, by looking at the standardized
statistic

√
n(X̄−μ)

σ
, we have succeeded in making the bootstrap one order more

accurate than the CLT. This is called second-order accuracy of the bootstrap.
If one does not standardize, then

PF (
√

n(X̄ − μ) ≤ x) = PF

(√
n(X̄ − μ)

σ
≤ x

σ

)

→ �
( x

σ

)
,
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and the leading term in the bootstrap approximation in this unstandardized
case would be Φ( x

σ̂
). So the bootstrap approximates the true CDF Hn(x)

also at the rate 1√
n
; i.e., if one does not standardize, then Hn(x)− HBoot(x) =

Op( 1√
n
). We have now lost the second-order accuracy. The following second

rule of thumb often applies.

Rule of Thumb Let X1, X2, . . . , Xn
iid∼ F and T (X1, . . . , Xn, F ) a func-

tional. If T (X1, . . . , Xn, F )
L⇒ N (0, τ 2), where τ is independent of F , then

second-order accuracy is likely. Proving it will depend on the availability of
an Edgeworth expansion for T . If τ depends on F (i.e., τ = τ (F )), then the
bootstrap should be just first-order accurate.

Thus, as we will now see, the orthodox bootstrap is second-order accurate
for the standardized mean

√
n(X̄−μ)

σ
, although from an inferential point of

view it is not particularly useful to have an accurate approximation to the
distribution of

√
n(X̄−μ)

σ
because σ would usually be unknown, and the accu-

rate approximation could not really be used to construct a confidence interval
for μ. Still, the second-order accuracy result is theoretically insightful.

We state a specific result below for the case of standardized and nonstan-
dardized sample means. Let Hn(x) = PF (

√
n(X̄ − μ) ≤ x), Hn,0(x) =

PF (
√

n(X̄−μ)
σ

≤ x), HBoot(x) = P∗(
√

n(X̄∗ − X̄ ) ≤ x), HBoot,0(x) =
PFn (

√
n(X̄∗−X̄)

s ≤ x).

Theorem 29.5 Let X1, X2, . . . , Xn
iid∼ F .

(a) If EF |X1|3 < ∞ and F is nonlattice, then K (Hn,0, HBoot,0) = op( 1√
n
).

(b) If EF |X1|3 < ∞ and F is lattice, then
√

nK (Hn,0, HBoot,0)
P−→ c,

0 < c < ∞.

Remark. See Lahiri (2003) for a proof. The constant c in the lattice case
equals h

σ
√

2π
, where h is the span of the lattice {a + kh, k = 0,±1,±2, ...}

on which the Xi are supported. Note also that part (a) says that higher-order
accuracy for the standardized case obtains with three moments; Hall (1988)
showed that finiteness of three absolute moments is in fact necessary and
sufficient for higher-order accuracy of the bootstrap in the standardized case.
Bose and Babu (1991) investigate the unconditional probability that the
Kolmogorov distance between HBoot and Hn exceeds a quantity of the order
o(n− 1

2 ) for a variety of statistics and show that, with various assumptions,
this probability goes to zero at a rate faster than O(n−1).
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Example 29.3 How does the bootstrap compare with the CLT approxima-
tion in actual applications? The question can only be answered by case-by-
case simulation. The results are mixed in the following numerical table. The
Xi are iid Exp(1) in this example and T = √

n(X̄ − 1) with n = 20. For the
bootstrap approximation, B = 250 was used.

t Hn(t) CLT approximation HBoot(t)

−2 0.0098 0.0228 0.0080
−1 0.1563 0.1587 0.1160
0 0.5297 0.5000 0.4840
1 0.8431 0.8413 0.8760
2 0.9667 0.9772 0.9700

29.5 Other Statistics

The ordinary bootstrap that resamples with replacement from the empirical
CDF Fn is consistent for many other natural statistics besides the sample
mean and even higher-order accurate for some, but under additional con-
ditions. We mention a few such results below; see Shao and Tu (1995) for
further details on the theorems in this section.

Theorem 29.6 (Sample Percentiles)

Let X1, . . . , Xn be
iid∼ F and let 0 < p < 1. Let ξp = F−1(p) and suppose

F has a positive derivative f (ξp) at ξp . Let Tn = T (X1, . . . , Xn, F ) =√
n(F−1

n (p)− ξp) and T ∗
n = T (X∗

1, . . . , X∗
n, Fn) = √

n(F∗−1
n (p)− F−1

n (p)),
where F∗

n is the empirical CDF of X∗
1, . . . , X∗

n . Let Hn(x) = PF (Tn ≤ x)
and HBoot(x) = P∗(T ∗

n ≤ x). Then, K (HBoot, Hn) = O(n−1/4
√

log log n)
almost surely.

Remark. So again we see that, under certain conditions that ensure the ex-
istence of a CLT, the bootstrap is consistent.

Next we consider the class of one-sample U -statistics.

Theorem 29.7 (U-statistics)

Let Un = Un(X1, . . . , Xn) be a U -statistic with a kernel h of order 2. Let

θ = EF (Un) = EF [h(X1, X2)], where X1, X2
iid∼ F . Assume:

(i) EF
(
h2(X1, X2)

)
< ∞.

(ii) τ 2 = VarF

(
h̃(X )

)
> 0, where h̃(x) = EF [h(X1, X2)|X2 = x].

(iii) EF |h(X1, X1)| < ∞.
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Let Tn = √
n(Un−θ) and T ∗

n = √
n(U ∗

n −Un), where U ∗
n = Un(X∗

1, . . . , X∗
n),

Hn(x) = PF (Tn ≤ x), and HBoot(x) = P∗(T ∗
n ≤ x). Then K (Hn, HBoot)

a.s−→0.

Remark. Under conditions (i) and (ii),
√

n(Un − θ) has a limiting normal
distribution. Condition (iii) is a new additional condition and actually cannot
be relaxed. Condition (iii) is vacuous if the kernel h is bounded or a function
of |X1 − X2|. Under additional moment conditions on the kernel h, there is
also a higher-order accuracy result; see Helmers (1991).

Previously, we observed that the bootstrap is consistent for smooth func-
tions of a sample mean vector. That lets us handle statistics such as the
sample variance. Under some more conditions, even higher-order accuracy
obtains. Here is a result in that direction.

Theorem 29.8 (Higher-Order Accuracy for Functions of Means)

Let X1, . . . , Xn
iid∼ F with EF (X1) = μ and covF (X1) = �p×p . Let

g : R
p → R be such that g(·) is twice continuously differentiable in some

neighborhood of μ and �g(μ) �= 0. Assume also:

(i) EF ||X1 − μ||3 < ∞.
(ii) lim sup||t ||→∞

∣
∣EF

(
eit ′X1

)∣
∣ < 1.

Let Tn =
√

n(g(X̄ )−g(μ))√
(�g(μ))′�(�g(μ))

and T ∗
n =

√
n(g(X̄∗)−g(X̄))√

(�g(X̄))′S(�g(X̄))
, where S = S(X1, . . . ,

Xn) is the sample variance-covariance matrix. Also let Hn(x) = PF (Tn ≤ x)

and HBoot(x) = P∗(T ∗
n ≤ x). Then

√
nK (Hn, HBoot)

a.s−→0.
Finally, let us describe the case of the t-statistic. By our previous rule of

thumb, we would expect the bootstrap to be higher-order accurate simply
because the t-statistic is already studentized and has an asymptotic variance
function independent of the underlying F .

Theorem 29.9 (Higher-Order Accuracy for the t-statistic)

Let X1, . . . , Xn
iid∼ F . Suppose F is nonlattice and that EF (X6) < ∞.

Let Tn =
√

n(X̄−μ)
s and T ∗

n =
√

n(X̄∗−X̄)
s∗ , where s∗ is the standard deviation

of X∗
1, . . . , X∗

n . Let Hn(x) = PF (Tn ≤ x) and HBoot(x) = P∗(T ∗
n ≤ x).

Then
√

nK (Hn, HBoot)
a.s−→0.
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29.6 Some Numerical Examples

The bootstrap is used in practice for a variety of purposes. It is used to
estimate a CDF, a percentile, or the bias or variance of a statistic Tn . For
example, if Tn is an estimate for some parameter θ , and if EF (Tn − θ) is
the bias of Tn , the bootstrap estimate EFn (T ∗

n − Tn) can be used to esti-
mate the bias. Likewise, variance estimates can be formed by estimating
VarF (Tn) by VarFn (T ∗

n ). How accurate are the bootstrap-based estimates in
reality?

This can only be answered on the basis of case-by-case simulation. Some
overall qualitative phenomena have emerged from these simulations. They
are:

(a) The bootstrap captures information about skewness that the CLT will
miss.

(b) The bootstrap tends to underestimate the variance of a statistic Tn .

Here are a few numerical examples.

Example 29.4 Let X1, . . . , Xn
iid∼ Cauchy(μ, 1). Let Mn be the sample me-

dian and Tn = √
n(Mn − μ). If n is odd, say n = 2k + 1, then there is an

exact variance formula for Mn . Indeed

Var(Mn) = 2n!

(k!)2πn

π/2∫

0

xk(π − x)k(cot x)2dx ;

see David (1981). Because of this exact formula, we can easily gauge the
accuracy of the bootstrap variance estimate. In this example, n = 21 and
B = 200. For comparison, the CLT-based variance estimate is also used,
which is

V̂ar(Mn) = π2

4n
.

The exact variance, the CLT-based estimate, and the bootstrap estimate for
the specific simulation are 0.1367, 0.1175, and 0.0517, respectively. Note the
obvious underestimation of variance by the bootstrap. Of course, one cannot
be sure if it is the idiosyncrasy of the specific simulation.

A general useful result on consistency of the bootstrap variance estimate
for medians under very mild conditions is in Ghosh et al. (1984).
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Example 29.5 Suppose X1, . . . , Xn are iid Poi(μ), and let Tn be the
t-statistic Tn = √

n(X̄ −μ)/s. In this example, n = 20 and B = 200, and for
the actual data, μ was chosen to be 1. Apart from the bias and the variance of
Tn , in this example we also report percentile estimates for Tn . The bootstrap
percentile estimates are found by calculating T ∗

n for the B resamples and
calculating the corresponding percentile value of the B values of T ∗

n . The
bias and the variance are estimated to be −0.18 and 1.614, respectively. The
estimated percentiles are reported in the following table.

α Estimated 100αPercentile

0.05 −2.45
0.10 −1.73
0.25 −0.76
0.50 −0.17
0.75 0.49
0.90 1.25
0.95 1.58

On observing the 100(1 − α)% estimated percentiles, it is clear that there
seems to be substantial skewness in the distribution of T . Whether the skew-
ness is truly as serious can be assessed by a large-scale simulation.

Example 29.6 Suppose (Xi ,Yi ), i =1, 2, · · · , n are iid BV N (0, 0, 1, 1, ρ),
and let r be the sample correlation coefficient. Let Tn = √

n(r−ρ). We know

that Tn
L⇒ N (0, (1 − ρ2)2); see Chapter 3. Convergence to normality is very

slow. There is also an exact formula for the density of r . For n ≥ 4, the exact
density is

f (r |ρ) = 2n−3(1 − ρ2)(n−1)/2

π (n − 3)!
(1 − r2)(n−4)/2

∞∑

k=0

�

(
n + k − 1

2

)2 (2ρr )k

k!
;

see Tong (1990). In the following table, we give simulation averages of the
estimated standard deviation of r by using the bootstrap. We used n = 20
and B = 200. The bootstrap estimate was calculated for 1000 independent
simulations, and the table reports the average of the standard deviation esti-
mates over the 1000 simulations.

n True ρ True s.d. of r CLT estimate Bootstrap estimate
0.0 0.230 0.232 0.217

20 0.5 0.182 0.175 0.160
0.9 0.053 0.046 0.046
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Again, except when ρ is large, the bootstrap underestimates the variance
and the CLT estimate is better.

29.7 Failure of the Bootstrap

In spite of the many consistency theorems in the previous sections, there are
instances where the ordinary bootstrap based on sampling with replacement
from Fn actually does not work. Typically, these are instances where the
functional Tn fails to admit a CLT. Before seeing a few examples, we list a
few situations where the ordinary bootstrap fails to estimate the CDF of Tn

consistently:

(a) Tn = √
n(X̄ − μ) when VarF (X1) = ∞.

(b) Tn = √
n(g(X̄ ) − g(μ)) and ∇g(μ) = 0.

(c) Tn = √
n(g(X̄ ) − g(μ)) and g is not differentiable at μ.

(d) Tn = √
n(F−1

n (p)− F−1(p)) and f (F−1(p)) = 0 or F has unequal right
and left derivatives at F−1(p).

(e) The underlying population Fθ is indexed by a parameter θ , and the sup-
port of Fθ depends on the value of θ .

(f) The underlying population Fθ is indexed by a parameter θ , and the true
value θ0 belongs to the boundary of the parameter space �.

Example 29.7 Let X1, X2, . . . , Xn
iid∼ F and σ 2 = VarF (X ) = 1. Let

g(x) = |x | and Tn = √
n(g(X̄ ) − g(μ)). If the true value of μ is 0, then

by the CLT for X̄ and the continuous mapping theorem, Tn
L⇒ |Z | with

Z ∼ N (0, σ 2). To show that the bootstrap does not work in this case, we
first need to observe a few subsidiary facts.

(a) For almost all sequences {X1, X2, · · · }, the conditional distribution of√
n(X

∗
n − Xn), given Xn , converges in law to N (0, σ 2) by the triangular

array CLT (see van der Vaart (1998).

(b) The joint asymptotic distribution of (
√

n(X n − μ),
√

n(X
∗
n − Xn))

L⇒
(Z1, Z2), where Z1, Z2 are iid N (0, σ 2).

In fact, a more general version of part (b) is true. Suppose (Xn,Yn) is

a sequence of random vectors such that Xn
L⇒ Z ∼ H (some Z ) and

Yn|Xn
L⇒ Z (the same Z ) almost surely. Then (Xn,Yn)

L⇒ (Z1, Z2), where
Z1, Z2 are iid ∼ H .
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Therefore, returning to the example, when the true μ is 0,

T ∗
n = √

n(|X∗
n| − |X n|)

= |√n(X
∗
n − Xn) +√

n Xn| − |√n Xn|
L⇒ |Z1 + Z2| − |Z1|,

where Z1, Z2 are iid N (0, σ 2). But this is not distributed as the absolute
value of N (0, σ 2). The sequence of bootstrap CDFs is therefore not consis-
tent when μ = 0.

Example 29.8 Let X1, X2, . . . , Xn
iid∼ U (0, θ) and let Tn = n(θ − X(n)),

T ∗
n = n(X(n) − X∗

(n)). The ordinary bootstrap will fail in this example in the
sense that the conditional distribution of T ∗

n given X(n) does not converge to
the Exp(θ) a.s. Let us assume θ = 1. Then, for t ≥ 0,

PFn (T ∗
n ≤ t) ≥ PFn (T ∗

n = 0)

= PFn (X∗
(n) = X(n))

= 1 − PFn (X∗
(n) < X(n))

= 1 −
(

n − 1

n

)n

n→∞−→ 1 − e−1.

For example, take t = 0.0001. Then limn PFn (T ∗
n ≤ t) ≥ 1 − e−1, while

limn PF (Tn ≤ t) = 1 − e−0.0001 ≈ 0. So PFn (T ∗
n ≤ t) �→ PF (Tn ≤ t).

The phenomenon of this example can be generalized essentially to any
CDF F with a compact support [ω(F ), ω(F )] with some conditions on F ,
such as existence of a smooth and positive density. This is one of the earliest
examples of the failure of the ordinary bootstrap. We will revisit this issue
in the next section.

29.8 m out of n Bootstrap

In the particular problems presented above and several other problems where
the ordinary bootstrap fails to be consistent, resampling fewer than n obser-
vations from Fn , say m observations, cures the inconsistency problem. This
is called the m out of n bootstrap. Typically, consistency will be regained if
m = o(n); in some general theorems in this regard, one requires m2 = o(n)
or some similar stronger condition than m = o(n). If the n out of n ordinary
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bootstrap is already consistent, then there can still be m out of n schemes
with m going to ∞ slower than n that are also consistent, but the m out of
n scheme will perform somewhat worse than the n out of n. See Bickel,
Göetze, and van Zwet (1997) for an overall review.

We will now present a collection of results that show that the m out of
n bootstrap, written as the m/n bootstrap, solves the orthodox bootstrap’s
inconsistency problem in a number of cases; see Shao and Tu (1995) for
proofs and details on all of the theorems in this section.

Theorem 29.10 Let X1, X2, . . . be iid F , where F is a CDF on R
d , d ≥ 1.

Suppose μ = EF (X1) and � = covF (X1) exist, and suppose � is positive
definite. Let g : R

d → R be such that �g(μ) = 0 and the Hessian matrix
�2g(μ) is not the zero matrix. Let Tn = n(g(X̄n) − g(μ)) and T ∗

m,n =
m(g(X̄m

∗
)−g(X̄n)) and define Hn(x) = PF{Tn ≤ x} and HBoot,m,n(x) =

P∗{T ∗
m,n ≤ x}. Here X̄m

∗
denotes the mean of an iid sample of size

m = m(n) from Fn , where m → ∞ with n.

(a) If m = o(n), then K (HBoot,m,n, Hn)
P⇒ 0.

(b) If m = o( n
log log n ), then K (HBoot,m,n, Hn)

a.s.⇒ 0.

Theorem 29.11 Let X1, X2, . . . be iid F , where F is a CDF on R. For
0 < p < 1, let ξp = F−1(p). Suppose F has finite and positive left
and right derivatives f (ξp+), f (ξp−) and that f (ξp+) �= f (ξp−). Let
Tn = √

n(F−1
n (p) − ξp) and T ∗

m,n = √
m(F∗−1

m (p) − F−1
n (p)), and define

Hn(x) = PF{Tn ≤ x}and HBoot,m,n(x) = P∗{T ∗
m,n ≤ x}. Here, F∗−1

m (p)
denotes the pth quantile of an iid sample of size m from Fn .

(a) If m = o(n), then K (HBoot,m,n, Hn)
P⇒ 0.

(b) If m = o( n
log log n ), then K (HBoot,m,n, Hn)

a.s.⇒ 0.

Theorem 29.12 Suppose F is a CDF on R, and let X1, X2, . . . be iid F .
Suppose θ = θ(F ) is such that F (θ) = 1 and F (x) < 1 for all x < θ .
Suppose, for some δ > 0, PF

{
n1/δ(θ − X(n)) > x

} −→ e−(x/θ)δ , ∀ x .
Let Tn = n1/δ(θ − X(n)) and T ∗

m,n = m1/δ(X(n) − X∗
(m)), and define

Hn(x) = PF{Tn ≤ x} and HBoot,m,n(x) = P∗{T ∗
m,n ≤ x}.

(a) If m = o(n), then K (HBoot,m,n, Hn)
P⇒ 0.

(b) If m = o( n
log log n ), then K (HBoot,m,n, Hn)

a.s.⇒ 0.
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Remark. Clearly an important practical question is the choice of the boot-
strap resample size m. This is a difficult question to answer, and no precise
prescriptions that have any sort of general optimality are possible. A rule of
thumb is to take m ≈ 2

√
n.

29.9 Bootstrap Confidence Intervals

The standard method to find a confidence interval for a parameter θ is to find
a studentized statistic, sometimes called a pivot, say Tn = θ̂n−θ

σ̂n
, such that

Tn
L⇒ T , with T having some known CDF G. An equal-tailed confidence

interval for θ , asymptotically correct, is constructed as

θ̂n − G−1(1 − α/2)σ̂n ≤ θ ≤ θ̂n − G−1(α/2)σ̂n.

This agenda requires the use of a standard deviation estimate σ̂n for the stan-
dard deviation of θ̂n and the knowledge of the function G(x). Furthermore, in
many cases, the limiting CDF G may depend on some unknown parameters,
too, that will have to be estimated in turn to construct the confidence interval.
The bootstrap methodology offers an omnibus, sometimes easy to imple-
ment, and often more accurate method of constructing confidence intervals.
Bootstrap confidence intervals and lower and upper one-sided confidence
limits of various types have been proposed in great generality. Although, as
a matter of methodology, they can be used in an automatic manner, a theoret-
ical evaluation of their performance requires specific structural assumptions.
The theoretical evaluation involves an Edgeworth expansion for the relevant
statistic and an expansion for their quantiles, called Cornish-Fisher expan-
sions. Necessarily, we are limited to the cases where the underlying statistic
admits a known Edgeworth and Cornish-Fisher expansion. The main refer-
ence is Hall (1988), but see also Göetze (1989), Hall and Martin (1989),
Bickel (1992), Konishi (1991), DiCiccio and Efron (1996), and Lee (1999),
of which the article by DiCiccio and Efron is a survey article and Lee (1999)
discusses m/n bootstrap confidence intervals. There are also confidence in-
tervals based on more general subsampling methods, which work asymptot-
ically under the mildest conditions. These intervals and their extensions to
higher dimensions are discussed in Politis, Romano, and Wolf (1999).

Over time, various bootstrap confidence limits have been proposed. Gen-
erally, the evolution is from the algebraically simplest to progressively more
complicated and computer-intensive formulas for the limits. Many of these
limits have, however, now been incorporated into standard statistical soft-
ware. We present below a selection of these different bootstrap confidence
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limits and bounds. Let θ̂n = θ̂n(X1, . . . , Xn) be a specific estimate of the
underlying parameter of interest θ .

(a) The bootstrap percentile lower bound (B P). Let G(x) = Gn(x) =
PF{θ̂n ≤ x} be the exact distribution and let Ĝ(x) = P∗{θ̂∗n ≤ x} be the
bootstrap distribution. The lower 1 − α bootstrap percentile confidence
bound would be Ĝ−1(α), so the reported interval would be [Ĝ−1(α),∞).
This was present in Efron (1979) itself, but it is seldom used because it
tends to have a significant coverage bias.

(b) Transformation-based bootstrap percentile confidence bound. Suppose
there is a suitable 1-1 transformation ϕ = ϕn of θ̂n such that PF{ϕ(θ̂n) −
ϕ(θ) ≤ x} = ψ(x), with ψ being a known continuous, strictly increas-
ing, and symmetric CDF (e.g., the N (0, 1) CDF). Then a transformation-
based bootstrap percentile lower confidence bound for θ is ϕ−1(ϕ̂n + zα),
where ϕ̂n = ϕ(θ̂n) and zα = ψ−1(α). Transforming may enhance the
quality of the confidence bound in some problems. But, on the other
hand, it is rare that one can find such a 1-1 transformation with a known
ψ .

(c) Bootstrap-t (BT ). Let tn = θ̂n−θ

σ̂n
, where σ̂n is an estimate of the stan-

dard error of θ̂n , and let t∗n = θ̂∗n −θ̂n

σ̂ ∗
n

be its bootstrap counterpart. As
usual, let HBoot(x) = P∗{t∗n ≤ x}. The bootstrap-t lower bound is
θ̂n − H−1

Boot(1 − α)σ̂n , and the two-sided BT confidence limits are θ̂n −
H−1

Boot(1−α1)σ̂n and θ̂n−H−1
Boot(α2)σ̂n, where α1+α2 = α, the nominal

confidence level.

(d) Bias-corrected bootstrap percentile bound (BC). The derivation of the
BC bound involves quite a lot of calculation; see Efron (1981) and Shao
and Tu (1995). The BC lower confidence bound is given by θBC =
Ĝ−1[ψ(zα + 2ψ−1(Ĝ(θ̂n)))], where Ĝ is the bootstrap distribution of θ̂∗n ,
ψ is as above, and zα = ψ−1(α).

(e) Hybrid bootstrap confidence bound (B H ). Suppose for some determin-
istic sequence {cn}, cn(θ̂n − θ) ∼ Hn and let HBoot be the bootstrap
distribution; i.e., the distribution of cn(θ̂∗n − θ̂n) under Fn. We know that
PF{cn(θ̂n − θ) ≤ H−1

n (1 − α)} = 1 − α.

If we knew Hn , then we could turn this into a 100(1 − α)% lower confi-
dence bound, θ ≥ θ̂n − 1

cn
H−1

n (1 − α). But Hn is, in general, not known,
so we approximate it by HBoot. That is, the hybrid bootstrap lower confi-
dence bound is defined as θBH = θ̂n − 1

cn
H−1

Boot(1 − α).

(f) Accelerated bias-corrected bootstrap percentile bound (BCa). The ordi-
nary bias-corrected bootstrap bound is based on the assumption that we



480 29 The Bootstrap

can find z0 = z0(F, n) and ψ (for known ψ) such that

PF{ϕ̂n − ϕ + z0 ≤ x} = ψ(x).

The accelerated bias-corrected bound comes from the modified assump-
tion that there exists a constant a = a(F, n) such that PF

{
ϕ̂n−ϕ

1+aϕ + z0 ≤
x
} = ψ(x). In applications, it is rare that even this modification holds

exactly for any given F and n. Manipulation of this probability statement

results in a lower bound, θBCa
= Ĝ−1

(
ψ
(

z0 + zα+z0
1−a(zα−z0)

))
, where

zα = ψ−1(α), a is the acceleration parameter, and Ĝ is as before. We re-
peat that, of these, z0 and a both depend on F and n. They will have to be
estimated. Moreover, the CDF ψ will generally have to be replaced by an
asymptotic version; e.g., an asymptotic normal CDF of (ϕ̂n−ϕ)/(1+aϕ).
The exact manner in which z0 and a depend on F and n is a function of
the specific problem. For example, suppose that the problem to begin
with is a parametric problem, F = Fθ . In such a case, z0 = z0(θ, n) and
a = a(θ, n). The exact form of z0(θ, n) and a(θ, n) depends on Fθ , θ̂n ,
and ϕ.

Remark. As regards computational simplicity, BP, BT, and BH are the sim-
plest to apply; BC and BCa are harder to apply and, in addition, are based
on assumptions that will rarely hold exactly for finite n. Furthermore, BCa

involves estimation of a very problem-specific acceleration constant a. The
bootstrap-t intervals are popular in practice, provided an estimate σ̂n is read-
ily available. The BP method usually suffers from a large bias in coverage
and is seldom used.

Remark. If the model is parametric, F = Fθ , and θ̂n is the MLE, then one
can show the following general and useful formula: a = z0 = 1

6×skewness
coefficient of !̇(θ), where !̇(θ) is the score function, !̇(θ) = d

dθ log f (x1, . . . ,

xn|θ). This expression allows for estimation of a and z0 by plug-in esti-
mates. Nonparametric estimates of a and z0 have also been suggested; see
Efron (1987) and Loh and Wu (1987).

We now state the theoretical coverage properties of the various one-sided
bounds and two-sided intervals.

Definition 29.3 Let 0 < α < 1 and In = In(X1, . . . , Xn) be a confi-
dence set for the functional θ(F (n)), where F (n) is the joint distribution of
(X1, . . . , Xn). Then In is called kth-order accurate if PF (n)

{
In # θ(F (n))

} =
1 − α + O(n−k/2).
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The theoretical coverage properties below are derived by using Edge-
worth expansions as well as Cornish-Fisher expansions for the underlying
estimate θ̂n . If X1, X2, . . . are iid F on R

d , 1 ≤ d < ∞, and if θ = ϕ(μ),
θ̂ = ϕ(X̄ ), for a sufficiently smooth map ϕ : R

d → R, then such Edgeworth
and Cornish-Fisher expansions are available. In the results below, it is as-
sumed that θ and θ̂ are the images of μ and X̄ , respectively, under such a
smooth mapping ϕ. See Hall (1988) for the exact details.

Theorem 29.13 The CLT, BP, BH and BC one-sided confidence bounds are
first-order accurate. The BT and BCa one-sided bounds are second-order
accurate. The CLT, BP, BH, BT, and BCa two-sided intervals are all second-
order accurate.

Remark. For two-sided intervals, the higher-order accuracy result is ex-
pected because the coverage bias for the two tails cancels in the n−1/2 term,
as can be seen from the Edgeworth expansion. The striking part of the result
is that the BT and BCa can achieve higher-order accuracy even for one-sided
bounds.

The second-order accuracy of the BT lower bound is driven by an Edge-
worth expansion for Hn and an analogous one for HBoot. One can invert these
expansions for the CDFs to get expansions for their quantiles; i.e., to obtain
Cornish-Fisher expansions. Under suitable conditions on F , H−1

n and H−1
Boot

admit expansions of the forms

H−1
n (t) = zt + q11(zt , F )√

n
+ q12(zt , F )

n
+ o

(
1

n

)

and

H−1
Boot(t) = zt + q11(zt , Fn)√

n
+ q12(zt , Fn)

n
+ o

(
1

n

)

(a.s.),

where q11(·, F ) and q12(·, F ) are polynomials with coefficients that depend
on the moments of F . The exact polynomials depend on what the statistic θ̂n

is. For example, if θ̂n = X̄ and σ̂ =
√

1
n−1

∑
(Xi − X̄ )2, then q11(x, F ) =

− γ

6 (1+ 2x2), q12 = x[ x2+3
4 − κ(x2−3)

12 + 5γ 2

72 (4x2 − 1)], where γ = EF
(X−μ)3

σ 3

and κ = EF
(X−μ)4

σ 4 − 3. For a given t, 0 < t < 1, on subtraction,

H−1
n (t) − H−1

Boot(t) =
1√
n

[q11(zt , F ) − q11(zt , Fn)]

+1

n
[q12(zt , F ) − q12(zt , Fn)] + o

(
1

n

)

(a.s.)
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= 1√
n

Op

(
1√
n

)

+ 1

n
Op

(
1√
n

)

+ o

(
1

n

)

(a.s.)

= Op

(
1

n

)

.

The actual confidence bounds obtained from Hn, HBoot are θ Hn
= θ̂n −

σ̂n H−1
n (1 − α) and θBT = θ̂n − σ̂n H−1

Boot(1 − α). On subtraction,

|θ Hn
− θBT| = σ̂n Op

(
1

n

)
typically= Op(n− 3

2 ).

Thus, the bootstrap-t lower bound is approximating the idealized lower
bound with third-order accuracy. In addition, it can be shown that P(θ ≥
θBT) = 1 − α + p(zα)ϕ(zα)

n + o
(

1
n

)
, where p(·) is again a polynomial de-

pending on the specific statistic and F . For the case of X̄ , as an example,
p(x) = x

6 (1 + 2x2)(κ − 3
2γ

2). Notice the second-order accuracy in this cov-
erage statement in spite of the fact that the confidence bound is one sided.
Again, see Hall (1988) for full details.

29.10 Some Numerical Examples

How accurate are the bootstrap confidence intervals in practice? Only case-
by-case numerical investigation can give an answer to that question. We
report in the following table results of simulation averages of coverage and
length in two problems. The sample size in each case is n = 20, in each case
B = 200, the simulation size is 500, and the nominal coverage 1 − α = .9.

θ (F) Type of CI F
N (0,1) t(5) Weibull

coverage length coverage length coverage length
μ Regular t .9 0.76 .91 1.8 .75 2.8

BP .91 0.71 .84 1.7 .73 2.6
BT .92 0.77 .83 2.7 .83 5.5

σ 2 BP .79 0.86 .68 1.1 .65 1.3
BT .88 1.5 .85 3.2 .83 5.5

From the table, the bootstrap-t interval seems to buy more accuracy (i.e.,
a smaller bias in coverage) with a larger length than the BP interval. But
the BP interval has such a serious bias in coverage that the bootstrap-t may
be preferable. To kill the bias, modifications of the BP method have been
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suggested, such as the bias-corrected BP and the accelerated bias-corrected
BP intervals. Extensive numerical comparisons are reported in Shao and
Tu (1995).

29.11 Bootstrap Confidence Intervals for Quantiles

Another interesting problem is the estimation of quantiles of a CDF F on R.
We know, for example, that if X1, X2, . . . are iid F , if 0 < p < 1, and if
f = F ′ exists and is strictly positive at ξp = F−1(p), then

√
n(F−1

n (p) −
ξp)

L⇒ N (0, p(1 − p)[ f (ξp)]−2). So, a standard CLT-based interval is

F−1
n (p) ± zα/2√

n
·
√

p(1 − p)

f̂ (ξp)
,

where f̂ (ξp) is some estimate of the unknown f = F ′ at the unknown ξp .
For a bootstrap interval, let Hn be the CDF of

√
n(F−1(p) − ξp) and

HBoot its bootstrap counterpart. Using the terminology from before, a hybrid
bootstrap two-sided confidence interval for ξp is

[
F−1

n (p) − H−1
Boot(1 − α

2 )/
√

n, F−1
n (p) − H−1

Boot(
α
2 )/

√
n
]
.

It turns out that this interval is not only asymptotically correct but also
comes with a surprising asymptotic accuracy. The main references are Hall,
DiCiccio, and Romano (1989) and Falk and Kaufman (1991).

Theorem 29.14 Let X1, X2, . . . be iid and F a CDF on R. For 0 < p < 1,
let ξp = F−1(p), and suppose 0 < f (ξp) = F ′(ξp) < ∞. If In is the
two-sided hybrid bootstrap interval, then PF{In # ξp} = 1 − α + O(n−1/2).

Remark. Actually, the best result available is stronger and says that PF{In #
ξp} = 1 − α + c(F,α,p)√

n
+ o(n−1/2), where c(F, α, p) has an explicit but

complicated formula. That the bias of the hybrid interval is O(n−1/2) is still
a surprise in view of the fact that the bootstrap distribution of F−1

n (p) is
consistent at a very slow rate; see Singh (1981).

29.12 Bootstrap in Regression

Regression models are among the key ones that differ from the iid setup
and are also among the most widely used. Bootstrap for regression cannot
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be model-free; the particular choice of the bootstrap scheme depends on
whether the errors are iid or not. We will only talk about the linear model
with deterministic X and iid errors. Additional moment conditions will be
necessary depending on the specific problem to which the bootstrap will
be applied. The results here are available in Freedman (1981). First let us
introduce some notation.

Model: yi = β ′xi + εi , where β is a p × 1 vector and so is xi , and εi are
iid with mean 0 and variance σ 2 < ∞.

X is the n× p design matrix with i th row equal to x ′
i ; H = X (X ′X )−1 X ′

and hi = Hii = x ′
i (X ′X )−1xi .

β̂ = β̂LS = (X ′X )−1 X ′y is the least squares estimate of β, where
y = (y1, · · · , yn)′ and (X ′X )−1 is assumed to be nonsingular.

The bootstrap scheme is defined below.

29.13 Residual Bootstrap

Let e1, e2, · · · , en denote the residuals obtained from fitting the model (i.e.,
ei = yi − x ′

i β̂); ē = 0 if xi = (1, xi1, · · · , xi,p−1)′ but not otherwise. Define
ẽi = ei − ē, and let e∗1, · · · , e∗n be a sample with replacement of size n
from {ẽ1, · · · , ẽn}. Let y∗

i = x ′
i β̂ + e∗i and let β∗ be the LSE of β computed

from (xi , y∗
i ), i = 1, · · · , n. This is the bootstrapped version of β̂, and the

scheme is called the residual bootstrap (RB).

Remark. The more direct approach of resampling the pairs (xi , yi) is known
as the paired bootstrap and is necessary when the errors are not iid; for exam-
ple, the case where the errors are still independent but their variances depend
on the corresponding covariate values (called the heteroscedastic case). In
such a case, the residual bootstrap scheme would not work.

By simple matrix algebra, it can be shown that

E∗(β∗) = β̂,

cov∗(β∗) = σ̂ 2(X ′X )−1,

where σ̂ 2 = (1/n)
∑n

i=1(ei − ē)2. Note that E (σ̂ 2) < σ 2. So on average the
bootstrap covariance matrix estimate will somewhat underestimate cov(β̂).
However, cov∗(β∗) is still consistent under some mild conditions. See Shao
and Tu (1995) or Freedman (1981) for the following result.
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Theorem 29.15 Suppose |X ′X | → ∞ and max1≤i≤n hi → 0 as n → ∞.
Then [cov∗(β∗)]−1cov(β̂) ⇒ Ip×p almost surely.

Example 29.9 The only question is, when do the conditions |X ′X | → ∞,
max1≤i≤n hi → 0 hold? As an example, take the basic regression model
yi = β0 + β1xi + εi with one covariate. Then, |X ′X | = n

∑
i (xi − x̄)2 and

hi = (
∑

j x2
j − 2xi

∑
j x j + nx2

i )/(n
∑

j (x j − x̄)2).

∴ hi ≤
4n max j x2

j

n
∑

j (x j − x̄)2
= 4 max j x2

j
∑

j (x j − x̄)2
.

Therefore, for the theorem to apply, it is enough to have max |x j |/√∑
(x j − x̄)2 → 0 and n

∑
(xi − x̄ )2 → ∞.

29.14 Confidence Intervals

We present some results on bootstrap confidence intervals for a linear com-
bination θ = c′β1, where β ′ = (β0, β

′
1); i.e., there is an intercept term in

the model. Correspondingly, x ′
i = (1, t ′i ). The confidence interval for θ or

confidence bounds (lower or upper) are going to be in terms of the studen-
tized version of the LSE of θ , namely θ̂ = c′β̂1. In fact, β̂1 = S−1

t t Sty , where
Stt = ∑

i (ti − t̄)(ti − t̄)′ and Sty = ∑
i (ti − t̄)(yi − ȳ)′. The bootstrapped

version of θ̂ is θ∗ = c′β∗
1 , where β∗′ = (β∗

0 , β
∗′
1 ) as before. Since the variance

of θ̂ is σ 2c′S−1
t t c, the bootstrapped version of the studentized θ̂ is

θ∗s = θ∗ − θ̂
√

1
n

∑
i (yi − x ′

iβ
∗)2c′S−1

t t c
.

The bootstrap distribution is defined as HBoot(x) = P∗(θ∗s ≤ x). For given α,
let H−1

Boot(α) be the αth quantile of HBoot. We consider the bootstrap-t (BT)
confidence bounds and intervals for θ . They are obtained as

θ
(α)
BT = θ̂ − H−1

Boot(1 − α)
√

σ̂ 2c′S−1
t t c,

θ̄
(α)
BT = θ̂ − H−1

Boot(α)
√

σ̂ 2c′S−1
t t c,

and the intervals θL ,BT = θ
(α/2)
BT and θU,BT = θ̄

(α/2)
BT .

There are some remarkable results on the accuracy in coverage of the BT
one-sided bounds and confidence intervals. We state one key result below.
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Theorem 29.16 (a) P(θ ≥ θBT) = (1 − α) + O(n−3/2).

(b) P(θ ≤ θ̄BT) = (1 − α) + O(n−3/2).

(c) P(θL ,BT ≤ θ ≤ θU,BT) = (1 − α) + O(n−2).

These results are derived in Hall (1989).

Remark. It is remarkable that one already gets third-order accuracy for the
one-sided confidence bounds and fourth-order accuracy for the two-sided
bounds. There seems to be no intuitive explanation for this phenomenon. It
just happens that certain terms cancel in the Cornish-Fisher expansions used
in the proof for the regression case.

29.15 Distribution Estimates in Regression

The residual bootstrap is also consistent for estimating the distribution of
the least squares estimate β̂ of the full vector β. The metric chosen is the
Mallows-Wasserstein metric we used earlier for sample means of iid data.
See Freedman (1981) for the result below. We first state the model and the
required assumptions below.

Let yi = x ′
iβ+εi , where xi is the p-vector of covariates for the i th sample

unit. Write the design matrix as Xn . We assume that the εi ’s are iid with
mean 0 and variance σ 2 < ∞ and that {Xn} is a sequence of nonstochastic
matrices. We assume that, for every n (n > p), X ′

n Xn is positive definite. Let
hi = x ′

i (X ′X )−1xi and let hmax = max{hi }. We assume, for the consistency
theorem below, that:

(C1) Stability: 1
n X ′

n Xn → V , where V is a p × p positive definite matrix.
(C2) Uniform asymptotic negligibility: hmax → 0.

Under these conditions, we have the following theorem of Freedman (1981)
for RB.

Theorem 29.17 Under conditions C1 and C2 above, we have the follow-
ing:

(a)
√

n(β̂ − β)
L⇒ Np(0, σ 2V−1).

(b) For almost all {εi : i ≥ 1}, √n(β∗ − β̂)
L⇒ Np(0, σ 2V−1).

(c) 1
σ

(X ′
n Xn)1/2(β̂ − β)

L⇒ Np(0, Ip).

(d) For almost all {εi : i ≥ 1}, 1
σ̂

(X ′
n Xn)1/2(β∗ − β̂)

L⇒ Np(0, Ip).
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(e) If Hn and HBoot are the true and bootstrap distributions of
√

n(β̂−β)
and

√
n(β∗ − β̂), respectively, then for almost all {εi : i ≥ 1}, !2

(Hn, HBoot) → 0.

Remark. This theorem gives a complete picture of the consistency issue for
the case of a nonstochastic design matrix and iid errors using the residual
bootstrap. If the errors are iid but the design matrices are random, the same
results hold as long as the conditions of stability and uniform asymptotic
negligibility stated earlier hold with probability 1. See Shao and Tu (1995)
for the case of independent but not iid errors (for example, the heteroscedas-
tic case).

29.16 Bootstrap for Dependent Data

The orthodox bootstrap does not work when the sample observations are
dependent. This was already pointed out in Singh (1981). It took some time
before consistent bootstrap schemes were offered for dependent data. There
are consistent schemes that are meant for specific dependence structures
(e.g., stationary autoregression of a known order) and also general bootstrap
schemes that work for large classes of stationary time series without requir-
ing any particular dependence structure. The model-based schemes are bet-
ter for the specific models but can completely fall apart if some assumption
about the specific model does not hold.

We start with examples of some standard short-range dependence time
series models. As opposed to these models, there are some that have a long
memory or long-range dependence. The bootstrap runs into problems for
long-memory data; see Lahiri (2006).

Standard time series models for short-range dependent processes in-
clude:

(a) Autoregressive processes. The observations yt are assumed to satisfy

yt = μ+ θ1 yt−1 + θ2 yt−2 + . . . θp yt−p + εt ,

where 1 ≤ p < ∞ and the εt ’s are iid white noise with mean 0 and
variance σ 2 < ∞. The {yt} process is stationary if the solutions of the
polynomial equation

1 + θ1z + θ2z2 + . . . + θpz p = 0
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lie strictly outside the unit circle in the complex plane. This process is
called autoregression of order p and is denoted by AR(p).

(b) Moving average processes. Given a white noise process {εt } with mean
0 and variance σ 2 < ∞, the observations are assumed to satisfy

yt = μ+ εt − ϕ1εt−1 − ϕ2εt−2 − . . .− ϕqεt−q,

where 1 ≤ q < ∞. The process {yt} is stationary if the roots of

1 − ϕ1z − ϕ2z2 − . . .− ϕq zq = 0

lie strictly outside the unit circle. This process is called a moving average
process of order q and is denoted by MA(q).

(c) Autoregressive moving average processes. This combines the two previ-
ously mentioned models. The observations are assumed to satisfy

yt = μ+ θ1 yt−1 + . . . θp yt−p + εt − ϕ1εt−1 − . . .− ϕqεt−q .

The process {yt} is called an autoregressive moving average process of
order (p, q) and is denoted by ARMA(p, q).

For all of these processes, the autocorrelation sequence dies off quickly;
in particular, if ρk is the autocorrelation of lag k, then

∑
k |ρk | < ∞.

29.17 Consistent Bootstrap for Stationary Autoregression

A version of the residual bootstrap (RB) was offered in Bose (1988) and
shown to be consistent and even higher-order accurate for the least squares
estimate (LSE) of the vector of regression coefficients in the stationary
AR(p) case. For ease of presentation, we assume μ = 0 and σ = 1. In
this case, the LSE of θ = (θ1, . . . , θp)′ is defined as θ̂ = arg minθ

∑n
t=1

[
yt−

∑p
j=1 θ j yt− j

]2
, where y1−p, . . . ,y0, y1, . . . ,yn is the observed data sequence.

There is a closed-form expression of θ̂ ; specifically, θ̂ = S−1
nn

(∑n
t=1 yt yt−1,

∑n
t=1 yt yt−2, . . . ,

∑n
t=1 yt yt−p

)
, where Snn = ((Si j

nn))p×p and Si j
nn =∑n

t=1 yt−i yt− j . Let σk = cov(yi , yi+k) and let

� =

∣
∣
∣
∣
∣
∣
∣
∣
∣

σ0 σ1 . . . σp−1

σ1 σ0 . . . σp−2
...

. . .
σp−1 σp−2 . . . σ0

∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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Assume � is positive definite. It is known that under this condition√
n�−1/2(θ̂−θ)

L⇒ N (0, I ). So we may expect that with a suitable bootstrap
scheme

√
n�̂−1/2 (θ∗ − θ̂ ) converges a.s. in law to N (0, I ). Here �̂ denotes

the sample autocovariance matrix. We now describe the bootstrap scheme
given in Bose (1988).

Let ŷt = ∑p
j=1 θ̂ j yt− j and let the residuals be et = yt − ŷt . To obtain

the bootstrap data, define {y∗
1−2p, y∗

2−2p, . . . , y∗
−p} ≡ {y1−p, y2−p, . . . .y0}.

Obtain bootstrap residuals by taking a random sample with replacement
from {et − ē}. Then obtain the “starred” data by using the equation y∗

t =∑p
j=1 θ̂ j y∗

t− j + e∗t . Then θ∗ is the LSE obtained by using {y∗
t }. Bose (1988)

proves the following result.

Theorem 29.18 Assume that ε1 has a density with respect to Lebesgue
measure and that E (ε8

1) < ∞. If Hn(x) = P{√n�−1/2(θ̂ − θ) ≤ x} and
HBoot(x) = P∗{

√
n�̂−1/2(θ∗ − θ̂ ) ≤ x}, then ‖Hn − HBoot‖∞ = o(n−1/2),

almost surely.

Remark. This was the first result on higher-order accuracy of a suitable form
of the bootstrap for dependent data. One possible criticism of the otherwise
important result is that it assumes a specific dependence structure and that it
assumes the order p is known. More flexible consistent bootstrap schemes
involve some form of block resampling, which we describe next.

29.18 Block Bootstrap Methods

The basic idea of the block bootstrap method is that if the underlying series
is a stationary process with short-range dependence, then blocks of obser-
vations of suitable lengths should be approximately independent and the
joint distribution of the variables in different blocks would be (about) the
same due to stationarity. So, if we resample blocks of observations rather
than observations one at a time, then that should bring us back to the nearly
iid situation, a situation in which the bootstrap is known to succeed. The
block bootstrap was first suggested in Carlstein (1986) and Künsch (1989).
Various block bootstrap schemes are now available. We only present three
such schemes, for which the block length is nonrandom. A small problem
with some of the blocking schemes is that the “starred” time series is not
stationary, although the original series is, by hypothesis, stationary. A ver-
sion of the block bootstrap that resamples blocks of random length allows
the “starred” series to be provably stationary. This is called the stationary
bootstrap, proposed in Politis and Romano (1994), and Politis, Romano,
and Wolf (1999). However, later theoretical studies have established that
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the auxiliary randomization to determine the block lengths can make the
stationary bootstrap less accurate. For this reason, we only discuss three
blocking methods with nonrandom block lengths.

(a) Nonoverlapping block bootstrap (NBB). In this scheme, one splits the
observed series {y1, . . . , yn} into nonoverlapping blocks

B1 = {y1, . . . , yh}, B2 = {yh+1, . . . , y2h}, . . . ,
Bm = {y(m−1)h+1, . . . , ymh},

where it is assumed that n = mh. The common block length is h.
One then resamples B∗

1 , B∗
2 , . . . , B∗

m at random, with replacement, from
{B1, . . . , Bm}. Finally, the B∗

i ’s are pasted together to obtain the “starred”
series y∗

1 , . . . , y∗
n .

(b) Moving block bootstrap (MBB). In this scheme, the blocks are

B1 = {y1, . . . , yh}, B2 = {y2, . . . , yh+1}, . . . , BN = {yn−h+1, . . . , yn},

where N = n−h+1. One then resamples B∗
1 , . . . , B∗

m from B1, . . . , BN ,
where still n = mh.

(c) Circular block bootstrap (CBB). In this scheme, one periodically extends
the observed series as y1, y2, . . . , yn, y1, y2, . . . , yn, . . .. Suppose we let
zi be the members of this new series, i = 1, 2, . . .. The blocks are defined
as

B1 = {z1, . . . , zh}, B2 = {zh+1, . . . , z2h}, . . . , Bn = {zn, . . . , zn+h−1}.

One then resamples B∗
1 , . . . , B∗

m from B1, . . . , Bn .

Next we give some theoretical properties of the three block bootstrap
methods described above. The results below are due to Lahiri (1999).

Suppose {yi : −∞ < i < ∞} is a d-dimensional stationary process with
a finite mean μ and spectral density f . Let h : R

d → R
1 be a sufficiently

smooth function. Let θ = h(μ) and θ̂n = h(ȳn), where ȳn is the mean of the
realized series. We propose to use the block bootstrap schemes to estimate
the bias and variance of θ̂n . Precisely, let bn = E (θ̂n − θ) be the bias and let
σ 2

n = Var(θ̂n) be the variance. We use the block bootstrap-based estimates
of bn and σ 2

n , denoted by b̂n and σ̂ 2
n , respectively.

Next, let Tn = θ̂n −θ = h(ȳn)−h(μ), and let T ∗
n = h(ȳ∗

n )−h(E∗ ȳ∗
n ). The

estimates b̂n and σ̂ 2
n are defined as b̂n = E∗T ∗

n and σ̂ 2
n = Var∗(T ∗

n ). Then the
following asymptotic expansions hold; see Lahiri (1999).
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Theorem 29.19 Let h : R
d → R

1 be a sufficiently smooth function.

(a) For each of the NBB, MBB, and CBB, there exists c1 = c1( f ) such that

Eb̂n = bn + c1

nh
+ o((nh)−1), n → ∞.

(b) For the NBB, there exists c2 = c2( f ) such that

Var(b̂n) = 2π2c2h

n3
+ o(hn−3), n → ∞,

and for the MBB and CBB,

Var(b̂n) = 4π2c2h

3n3
+ o(hn−3), n → ∞.

(c) For each of NBB, MBB, and CBB, there exists c3 = c3( f ) such that
E (σ̂ 2

n ) = σ 2
n + c3

nh + o((nh)−1), n → ∞.

(d) For NBB, there exists c4 = c4( f ) such that Var(σ̂ 2
n ) = 2π2c4h

n3 +
o(hn−3), n → ∞, and for the MBB and CBB, Var(σ̂ 2

n ) = 4π2c4h
3n3 +

o(hn−3), n → ∞.

These expansions are used in the next section.

29.19 Optimal Block Length

The asymptotic expansions for the bias and variance of the block boot-
strap estimates, given in Theorem 29.19, can be combined to produce MSE-
optimal block lengths. For example, for estimating bn by b̂n , the leading term
in the expansion for the MSE is

m(h) = 4π2c2h

3n3
+ c2

1

n2h2
.

To minimize m(·), we solve m′(h) = 0 to get

hopt =
(

3c2
1

2π2c2

)1/3

n1/3.



492 29 The Bootstrap

Similarly, an MSE-optimal block length can be derived for estimating σ 2
n

by σ̂ 2
n . We state the following optimal block-length result of Lahiri (1999)

below.

Theorem 29.20 For the MBB and the CBB, the MSE-optimal block length
for estimating bn by b̂n satisfies

hopt =
(

3c2
1

2π2c2

)1/3

n1/3(1 + o(1)),

and the MSE-optimal block length for estimating σ 2
n by σ̂ 2

n satisfies

hopt =
(

3c2
3

2π2c4

)1/3

n1/3(1 + o(1)).

Remark. Recall that the constants ci depend on the spectral density f of
the process. So, the optimal block lengths cannot be used directly. Plug-
in estimates for the ci may be substituted, or the formulas can be used
to try block lengths proportional to n1/3 with flexible proportionality con-
stants. There are also other methods in the literature on selection of block
lengths; see Hall, Horowitz, and Jing (1995) and Politis and White
(2004).

29.20 Exercises

Exercise 29.1 For n = 10, 20, 50, take a random sample from an N (0, 1)
distribution and bootstrap the sample mean X̄ using a bootstrap Monte Carlo
size B = 200. Construct a histogram and superimpose on it the exact density
of X̄ . Compare the two.

Exercise 29.2 For n = 5, 25, 50, take a random sample from an Exp(1)
density and bootstrap the sample mean X̄ using a bootstrap Monte Carlo size
B = 200. Construct a histogram and superimpose on it the exact density of
X̄ and the CLT approximation. Compare the two and discuss if the bootstrap
is doing something that the CLT answer does not.

Exercise 29.3 * By using combinatorial coefficient matching cleverly, de-
rive a formula for the number of distinct orthodox bootstrap samples with a
general value of n.
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Exercise 29.4 * For which, if any, of the sample mean, the sample median,
and the sample variance is it possible to explicitly obtain the bootstrap dis-
tribution HBoot(x)?

Exercise 29.5 * For n = 3, write an expression for the exact Kolmogorov
distance between Hn and HBoot when the statistic is X̄ and F = N (0, 1).

Exercise 29.6 For n = 5, 25, 50, take a random sample from an Exp(1)
density and bootstrap the sample mean X̄ using a bootstrap Monte Carlo
size B = 200 using both the canonical bootstrap and the natural parametric
bootstrap. Construct the corresponding histograms and superimpose them
on the exact density. Is the parametric bootstrap more accurate?

Exercise 29.7 * Prove that under appropriate moment conditions, the boot-
strap is consistent for the sample correlation coefficient r between two
jointly distributed variables X,Y .

Exercise 29.8 * Give examples of three statistics for which the condition in
the rule of thumb on second-order accuracy of the bootstrap does not hold.

Exercise 29.9 * By gradually increasing the value of n, numerically approx-
imate the constant c in the limit theorem for the Kolmogorov distance for the
Poisson(1) case (see the text for the definition of c).

Exercise 29.10 * For samples from a uniform distribution, is the bootstrap
consistent for the second-largest order statistic? Prove your assertion.

Exercise 29.11 For n = 5, 25, 50, take a random sample from an Exp(1)
density and compute the bootstrap-t , bootstrap percentile, and the usual t
95% lower confidence bounds on the population mean. Use B = 300. Com-
pare them meaningfully.

Exercise 29.12 * Give an example of:

(a) a density such that the bootstrap is not consistent for the median;

(b) a density such that the bootstrap is not consistent for the mean;

(c) a density such that the bootstrap is consistent but not second-order accu-
rate for the mean.

Exercise 29.13 For simulated independent samples from the U [0, θ) den-
sity, let Tn = n(θ − X(n)). For n = 20, 40, 60, numerically approximate
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K (HBoot,m,n, Hn) with varying choices of m and investigate the choice of an
optimal m.

Exercise 29.14 * Suppose (Xi ,Yi ) are iid samples from a bivariate normal
distribution. Simulate n = 25 observations taking ρ = .5, and compute:

(a) the usual 95% confidence interval;

(b) the interval based on the variance stabilizing transformation (Fisher’s z)
(see Chapter 4);

(c) the bootstrap percentile interval;

(d) the bootstrap hybrid percentile interval;

(e) the bootstrap-t interval with σ̂n as the usual estimate;

(f) the accelerated bias-corrected bootstrap interval using ϕ as Fisher’s z,
z0 = r

2
√

n
(the choice coming from theory), and three different values of

a near zero.
Discuss your findings.

Exercise 29.15 * In which of the following cases are the results in
Hall (1988) not applicable and why?

(a) estimating the 80th percentile of a density on R;

(b) estimating the variance of a Gamma density with known scale and un-
known shape parameter;

(c) estimating θ in the U [0, θ] density;

(d) estimating P(X > 0) in a location-parameter Cauchy density;

(e) estimating the variance of the t-statistic for Weibull data;

(f) estimating a binomial success probability.

Exercise 29.16 Using simulated data, compute a standard CLT-based 95%
confidence interval and the hybrid bootstrap interval for the 90th percentile
of a (i) standard Cauchy distribution and (ii) a Gamma distribution with
scale parameter 1 and shape parameter 3. Compare them and comment. Use
n = 20, 40.

Exercise 29.17 * Are the centers of the CLT-based interval and the hybrid
bootstrap interval for a population quantile always the same? Sometimes the
same?
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Exercise 29.18 * Simulate a series of length 50 from a stationary AR(p)
process with p = 2 and then obtain the starred series by using the scheme
in Bose (1988).

Exercise 29.19 * For the simulated data in Exercise 29.18, obtain the actual
blocks in the NBB and the MBB schemes with h = 5. Hence, generate the
starred series by pasting the resampled blocks.

Exercise 29.20 For n = 25, take a random sample from a bivariate normal
distribution with zero means, unit variances, and correlation .6. Implement
the residual bootstrap using B = 150. Compute a bootstrap estimate of
the variance of the LSE of the regression slope parameter. Comment on the
accuracy of this estimate.

Exercise 29.21 For n = 25, take a random sample from a bivariate normal
distri-bution with zero means, unit variances, and correlation .6. Implement
the paired bootstrap using B = 150. Compute a bootstrap estimate of the
variance of the LSE of the regression slope parameter. Compare your results
with the preceding exercise.

Exercise 29.22 * Give an example of two design matrices that do not satisfy
the conditions C1 and C2 in the text.

Exercise 29.23 * Suppose the values of the covariates are xi = 1
i ,

i = 1, 2, · · · , n in a simple linear regression setup. Prove or disprove that the
residual bootstrap consistently estimates the distribution of the LSE of the
slope parameter if the errors are (i) iid N (0, σ 2), (ii) iid t(m, 0, σ 2), where
m denotes the degree of freedom.

Exercise 29.24 * Suppose X̄n is the sample mean of an iid sample from a
CDF F with a finite variance and X̄n

∗ is the mean of a bootstrap sample.
Consistency of the bootstrap is a statement about the bootstrap distribution,
conditional on the observed data. What can you say about the unconditional
limit distribution of

√
n(X̄n

∗ − μ), where μ is the mean of F?
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Bickel, P.J., Göetze, F., and van Zwet, W. (1997). Resampling fewer than n observations:
gains, losses, and remedies for losses, Stat. Sinica, 1, 1–31.

Bose, A. (1988). Edgeworth correction by bootstrap in autoregressions, Ann. Stat.,
16(4), 1709–1722.

Bose, A. and Babu, G. (1991). Accuracy of the bootstrap approximation, Prob. Theory
Related Fields, 90(3), 301–316.

Bose, A. and Politis, D. (1992). A review of the bootstrap for dependent samples, in
Stochastic Processes and Statistical Inference, B.L.S.P Rao and B.R. Bhat, (eds.),
New Age, New Delhi.

Carlstein, E. (1986). The use of subseries values for estimating the variance of a general
statistic from a stationary sequence, Ann. Stat., 14(3), 1171–1179.

David, H.A. (1981). Order Statistics, Wiley, New York.
Davison, A.C. and Hinkley, D. (1997). Bootstrap Methods and Their Application,

Cambridge University Press, Cambridge.
DiCiccio, T. and Efron, B. (1996). Bootstrap confidence intervals, with discussion, Stat.

Sci., 11(3), 189–228.
Efron, B. (1979). Bootstrap methods: another look at the Jackknife, Ann. Stat., 7(1),

1–26.
Efron, B. (1981). Nonparametric standard errors and confidence intervals, with

discussion, Can. J. Stat., 9(2), 139–172.
Efron, B. (1987). Better bootstrap confidence intervals, with comments, J. Am. Stat.

Assoc., 82(397), 171–200.
Efron, B. (2003). Second thoughts on the bootstrap, Stat. Sci., 18(2), 135–140.
Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap, Chapman and

Hall, New York.
Falk, M. and Kaufman, E. (1991). Coverage probabilities of bootstrap confidence

intervals for quantiles, Ann. Stat., 19(1), 485–495.
Freedman, D. (1981). Bootstrapping regression models, Ann. Stat., 9(6), 1218–1228.
Ghosh, M., Parr, W., Singh, K., and Babu, G. (1984). A note on bootstrapping the

sample median, Ann. Stat., 12, 1130–1135.
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