Preface

During the last two or three centuries, most of the developments in science (in particular in Physics and Applied Mathematics) have been founded on the use of classical algebraic structures, namely groups, rings and fields. However many situations can be found for which those usual algebraic structures do not necessarily provide the most appropriate tools for modeling and problem solving. The case of arithmetic provides a typical example: the set of nonnegative integers endowed with ordinary addition and multiplication does not enjoy the properties of a field, nor even those of a ring.

A more involved example concerns Hamilton-Jacobi equations in Physics, which may be interpreted as optimality conditions associated with a variational principle (for instance, the Fermat principle in Optics, the 'Minimum Action' principle of Maupertuis, etc.). The discretized version of this type of variational problems corresponds to the well-known shortest path problem in a graph. By using Bellmann's optimality principle, the equations which define a solution to the shortest path problem, which are nonlinear in usual algebra, may be written as a linear system in the algebraic structure $(\mathbb{R} \cup\{+\infty\}$, Min, +), i.e. the set of reals endowed with the operation Min (minimum of two numbers) in place of addition, and the operation + (sum of two numbers) in place of multiplication.

Such an algebraic structure has properties quite different from those of the field of real numbers. Indeed, since the elements of $E=\mathbb{R} \cup\{+\infty\}$ do not have inverses for $\oplus=$ Min, this internal operation does not induce the structure of a group on E . In that respect $(\mathrm{E}, \oplus, \otimes)$ will have to be considered as an example of a more primitive algebraic structure as compared with fields, or even rings, and will be referred to as a semiring.

But this example is also representative of a particular class of semirings, for which the monoid (E, \oplus) is ordered by the order relation \propto (referred to as 'canonical') defined as:

$$
\mathrm{a} \propto \mathrm{~b} \Leftrightarrow \exists \mathrm{c} \in \mathrm{E} \quad \text { such that } \quad \mathrm{b}=\mathrm{a} \oplus \mathrm{c} .
$$

In view of this, $(\mathrm{E}, \oplus, \otimes)$ has the structure of a canonically ordered semiring which will be called, throughout this book, a dioid.

More generally, it is to be observed here that the operations Max and Min, which give the set of the reals a structure of canonically ordered monoid, come rather naturally into play in connection with algebraic models for many problems, thus leading to as many applications of dioid structures. Among some of the most characteristic examples, we mention:

- The dioids $(\mathbb{R}, \operatorname{Min},+)$ and $(\mathbb{R}$, Max, Min) which provide natural models for the shortest path problem and for the maximum capacity path problem respectively (the latter being closely related to the maximum weight spanning tree problem). Many other path-finding problems in graphs, corresponding to other types of dioids, will be studied throughout the book;
- The dioid ($\{0,1\}$, Max, Min) or Boolean Algebra, which is the algebraic structure underlying logic, and which, among other things, is the basis for modeling and solving connectivity problems in graphs;
- The dioid $\left(\mathrm{P}\left(\mathrm{A}^{*}\right), \cup, o\right.$), where $\mathrm{P}\left(\mathrm{A}^{*}\right)$ is the set of all languages on the alphabet A, endowed with the operations of union \cup and concatenation o , which is at the basis of the theory of languages and automata.
One of the primary objectives of this volume is precisely, on the one hand, to emphasize the deep relations existing between the semiring and dioid structures with graphs and their combinatorial properties; and, on the other hand, to show the capability and flexibility of these structures from the point of view of modeling and solving problems in extremely diverse situations. If one considers the many possibilities of constructing new dioids starting from a few reference dioids (vectors, matrices, polynomials, formal series, etc.), it is true to say that the reader will find here an almost unlimited source of examples, many of which being related to applications of major importance:
- Solution of a wide variety of optimal path problems in graphs (Chap. 4, Sect. 6);
- Extensions of classical algorithms for shortest path problems to a whole class of nonclassical path-finding problems (such as: shortest paths with time constraints, shortest paths with time-dependent lengths on the arcs, etc.), cf. Chap. 4, Sect. 4.4;
- Data Analysis techniques, hierarchical clustering and preference analysis (cf. Chap. 6, Sect. 6);
- Algebraic modeling of fuzziness and uncertainty (Chap. 1, Sect. 3.2 and Exercise 2);
- Discrete event systems in automation (Chap. 6, Sect. 7);
- Solution of various nonlinear partial differential equations, such as: HamiltonJacobi, and Bürgers equations, the importance of which is well-known in Physics (Chap. 7).
And, among all these examples, the alert reader will recognize the most widely known, and the most elementary mathematical object, the dioid of natural numbers:

At the start, was the dioid N !

Besides its emphasis on models and illustration by examples, the present book is also intended as an extensive overview of the mathematical properties enjoyed by these "nonclassical" algebraic structures, which either extend usual algebra (as for
the case of pre-semirings or semirings), or (as for the case of dioids) correspond to a new branch of algebra, clearly distinct from the one concerned with the classical structures of groups, rings and fields.

Indeed, a simple, though essential, result (which will be discussed in the first chapter) states that a monoid cannot simultaneously enjoy the properties of being a group and of being canonically ordered. Hence the algebra for sets endowed with two internal operations turns out to split into two disjoint branches, according to which of the following two (incompatible) assumptions holds:

- The "additive group" property, which leads to the structures of ring and of field;
- The "canonical order" property, which leads to the structures of dioid and of lattice.

For dioids, one of the immediate consequences of dropping the property of invertibility of addition to replace it by the canonical order property, is the need of considering pairs of elements instead of individual elements, to avoid the use of "negative" elements. Modulo this change in perspective, it will be seen how many basic results of usual algebra can be transposed. Consider, for instance, the properties involving the determinant of a square $\mathrm{n} \times \mathrm{n}$ matrix. In dioids (as well as in general semirings), the standard definition of the determinant cannot be used anymore, but we can define the bideterminant of $\mathrm{A}=\left(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\right)$ as the pair $\left(\operatorname{det}^{+}(\mathrm{A}), \operatorname{det}^{-}(\mathrm{A})\right)$, where $\operatorname{det}^{+}(\mathrm{A})$ denotes the sum of the weights of even permutations, and $\operatorname{det}^{-}(\mathrm{A})$ the sum of the weights of odd permutations of the elements of the matrix. For a matrix with a set of linearly dependent columns, the condition of zero determinant is then replaced by equality of the two terms of the bideterminant:

$$
\operatorname{det}^{+}(\mathrm{A})=\operatorname{det}^{-}(\mathrm{A})
$$

In a similar way, the concept of characteristic polynomial $\mathrm{P}_{\mathrm{A}}(\lambda)$ of a given matrix A, has to be replaced by the characteristic bipolynomial, in other words, by a pair of polynomials $\left(\mathrm{P}_{\mathrm{A}}{ }^{+}(\lambda), \mathrm{P}_{\mathrm{A}}{ }^{-}(\lambda)\right)$. Among other remarkable properties, it is then possible to transpose and generalize in dioids and in semirings, the famous CayleyHamilton theorem, $\mathrm{P}_{\mathrm{A}}(\mathrm{A})=0$, by the matrix identity:

$$
\mathrm{P}_{\mathrm{A}}{ }^{+}(\mathrm{A})=\mathrm{P}_{\mathrm{A}}^{-}(\mathrm{A}) .
$$

Another interesting example concerns the classical Perron-Frobenius theorem. This result, which states the existence on \mathbb{R}_{+}of an eigenvalue and an eigenvector for a nonnegative square matrix, may be viewed as a property of the dioid $\left(\mathbb{R}_{+},+, \times\right)$, thus opening the way to extensions to many other dioids. Incidentally we observe that it is precisely this dioid $\left(\mathbb{R}_{+},+, \times\right)$which forms the truly appropriate underlying structure for measure theory and probability theory, rather than the field of real numbers $(\mathbb{R},+, \times)$.

One of the ambitions of this book is thus to show that, as complements to usual algebra, based on the construct "Group-Ring-Field", other algebraic structures based on alternative constructs, such as "Canonically ordered monoid- dioid- distributive lattice" are equally interesting and rich, both in terms of mathematical properties and of applications.

Acknowledgements

Many people have contributed in some way to the "making of" the present volume. We gratefully acknowledge the kind and professional help received from Springer's staff, and in particular, from Gary Folven and Concetta Seminara-Kennedy.

Many thanks are due to Patricia and the company Katex for the huge textprocessing work in setting-up the initial manuscript. We also appreciate the contribution of Sundardevadoss Dharmendra and his team in India in working out the final manuscript.

We are indebted to Garry White for his most careful and professional help in the huge translation work from French to English language.

We want to express our gratitude to Prof. Didier Dubois and to Prof. Michel Gabisch for their comments and encouragements, and also for pointing out fruitful links with fuzzy set theory and decision making under uncertainty.

The "MAX-PLUS" group in INRIA, France, has provided us along the years with a stimulating research environment, and we thank J.P. Quadrat, M. Akian, S. Gaubert and G. Cohen for their participation in many fruitful exchanges. Also we acknowledge the work of P.L. Lions on the viscosity solutions to Hamilton-Jacobi equations as a major source of inspiration for our research on MINPLUS and MINMAX analyses. And, last but not least, special thanks are due to Professor Stefan Voß from Hamburg University, Germany, for his friendly encouragements and help in publishing our work in this, by now famous, series dedicated to Operations Research/Computer Science Interfaces.

Paris,	M. Gondran
January $15^{\text {th }} 2008$	M. Minoux

Chapter 2
 Combinatorial Properties of (Pre)-Semirings

1. Introduction

Many results of classical linear algebra, such as the well-known Cayley-Hamilton theorem, first established in the context of vector spaces on fields, do not actually require all the properties of these structures. We show in this chapter that many known results of this type are deduced from purely combinatorial properties which are valid in more elementary algebraic structures such as semirings and pre-semirings. We will not even require the dioid structure since there is no need to assume the presence of a canonical order relation.

In the present chapter we will thus consider matrices, polynomials and formal series with elements or coefficients in a pre-semiring or in a semiring.

The basic definitions concerning matrices, polynomials and formal series are introduced in Sects. 2 and 3

Definitions and basic properties for permutations are recalled in Sect. 4.1, and the concepts of a bideterminant and of the characteristic bipolynomial of a matrix are introduced in Sects. 4.2 and 4.3.

Section 5 presents a combinatorial proof of the extended version of the classical identity for the determinant of the product of two matrices. Section 6 provides a combinatorial proof of the Cayley-Hamilton theorem generalized to commutative pre-semirings.

In Sect. 7, we focus on the links between the bideterminant of a matrix and the arborescences of the associated directed graph. An extension to semirings of the classical "Matrix Tree Theorem" is first established in Sects. 7.1 and 7.2. A more general form of this result is then studied in Sect. 7.4, which may be considered as an extension to semirings, of the so-called "All Minors Matrix Tree Theorem".

Finally, a version of the well-known Mac Mahon identity, generalized to commutative pre-semirings, is presented in Sect. 8 .

In order to derive each of the identities discussed in this chapter, a superficial analysis might lead one to believe that it is enough to start from the corresponding classical result (usually stated in the field of real numbers) and to simply rewrite it by moving all the negative terms to the other side to make them appear positively.

The result of Sect. 5 (about the bideterminant of the product of two matrices), as well as the generalization of the classical "All-Minors Matrix Tree Theorem", which is studied in Sect. 7.4, provide concrete examples where such an approach would lead to a wrong result; this indeed confirms the necessity of new direct proofs, different from those previously known for the standard case.

2. Polynomials and Formal Series with Coefficients in a (Pre-) Semiring

2.1. Polynomials

Let $(\mathrm{E}, \oplus, \otimes)$ be a pre-semiring or a semiring with neutral elements ε and e (for \oplus and \otimes respectively).

Definition 2.1.1. A polynomial P of degree n in the variable x is defined by specifying a mapping $\mathrm{f}:\{0,1, \ldots \mathrm{n}\} \rightarrow \mathrm{E}$ where, $\forall \mathrm{k}, 0 \leq \mathrm{k} \leq \mathrm{n}, \mathrm{f}(\mathrm{k}) \in \mathrm{E}$ is called the coefficient of x^{k} in the polynomial P . P can thus be represented by the sum:

$$
\mathrm{P}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{f}(\mathrm{k}) \otimes \mathrm{x}^{\mathrm{k}}
$$

where the sum is to be understood in the sense of the operation \oplus (by convention $\mathrm{x}^{0}=\mathrm{e}$ and, $\forall \mathrm{k}: \varepsilon \otimes \mathrm{x}^{\mathrm{k}}=\varepsilon$).

In accordance with classical notation, we denote $\mathrm{E}[\mathrm{x}]$ the set of polynomials in x with coefficients in E.

Let P and Q be two polynomials of $\mathrm{E}[\mathrm{x}]$ defined as:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\mathrm{p}} \mathrm{f}(\mathrm{k}) \otimes \mathrm{x}^{\mathrm{k}} \\
& \mathrm{Q}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\mathrm{q}} \mathrm{~g}(\mathrm{k}) \otimes \mathrm{x}^{\mathrm{k}}
\end{aligned}
$$

The sum of P and Q , denoted $\mathrm{S}=\mathrm{P} \oplus \mathrm{Q}$, is the polynomial of degree at most $\mathrm{s}=\operatorname{Max}\{\mathrm{p}, \mathrm{q}\}$ defined as:

$$
\mathrm{S}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\mathrm{s}}(\mathrm{f}(\mathrm{k}) \oplus \mathrm{g}(\mathrm{k})) \otimes \mathrm{x}^{\mathrm{k}}
$$

(we agree to set $\mathrm{f}(\mathrm{j})=\varepsilon$ for $\mathrm{j}>\mathrm{p}$ and $\mathrm{g}(\mathrm{j})=\varepsilon$ for $\mathrm{j}>\mathrm{q}$).
The product of P and Q , denoted $\mathrm{T}=\mathrm{P} \otimes \mathrm{Q}$ is the polynomial of degree $\mathrm{r}=\mathrm{p}+\mathrm{q}$ defined as:

$$
T(x)=\sum_{k=0}^{r} t(k) \otimes x^{k}
$$

with, $\forall \mathrm{k}=0 \ldots \mathrm{r}$:

$$
\mathrm{t}(\mathrm{k})=\sum_{\substack{0 \leq \mathrm{i} \leq \mathrm{p} \\ 0 \leq \mathrm{j} \leq \mathrm{q} \\ \mathrm{i}+\mathrm{j}=\mathrm{k}}} \mathrm{f}(\mathrm{i}) \otimes \mathrm{g}(\mathrm{j})
$$

ε being the neutral element of $\oplus, \mathrm{E}[\mathrm{x}]$ has, as neutral element for \oplus, the polynomial denoted $\varepsilon(x)$, of degree 0 , defined as: $\varepsilon(x)=\varepsilon \otimes x^{0}=\varepsilon$. Likewise, e being the neutral element of $\otimes, \mathrm{E}[\mathrm{x}]$ has as neutral element for \otimes, the polynomial denoted $\mathrm{e}(\mathrm{x})$ of degree 0 defined as: $e(x)=e \otimes x^{0}=e$.

Proposition 2.1.2. (i) If $(\mathrm{E}, \oplus, \otimes)$ is a pre-semiring, then $(\mathrm{E}[\mathrm{x}], \oplus, \otimes)$ is a presemiring
(ii) If $(\mathrm{E}, \oplus, \otimes)$ is a semiring, then $(\mathrm{E}[\mathrm{x}], \oplus, \otimes)$ is a semiring
(iii) If $(\mathrm{E}, \oplus, \otimes)$ is a dioid, then $(\mathrm{E}[\mathrm{x}], \oplus, \otimes)$ is a dioid.

Proof. It follows from the fact that the elementary properties of \oplus and \otimes on E induce the same properties on $\mathrm{E}[\mathrm{x}]$. Let us just show that, in case (iii), the canonical preorder relation on $E[x]$ defined as:

$$
\mathrm{P} \leq \mathrm{Q} \Leftrightarrow \exists \mathrm{R} \in \mathrm{E}[\mathrm{x}] \quad \text { such that: } \mathrm{Q}=\mathrm{P} \oplus \mathrm{R}
$$

is an order relation.

$$
\begin{aligned}
& \text { If } P(x)=\sum_{k=0}^{p} f(k) \otimes x^{k} \\
& Q(x)=\sum_{k=0}^{q} g(k) \otimes x^{k}
\end{aligned}
$$

then $\mathrm{P} \leq \mathrm{Q} \Rightarrow \exists \mathrm{R}$ with: $\mathrm{R}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\mathrm{r}} \mathrm{h}(\mathrm{k}) \otimes \mathrm{x}^{\mathrm{k}}$, such that: $\mathrm{Q}=\mathrm{P} \oplus \mathrm{R}$
Similarly $\mathrm{Q} \leq \mathrm{P} \Rightarrow \exists \mathrm{R}^{\prime}$ with: $\mathrm{R}^{\prime}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\mathrm{r}^{\prime}} \mathrm{h}^{\prime}(\mathrm{k}) \otimes \mathrm{x}^{\mathrm{k}}$ such that: $\mathrm{P}=\mathrm{Q} \oplus \mathrm{R}^{\prime}$
Set $K=\operatorname{Max}\left\{p, q, r, r^{\prime}\right\}$ and let us agree that:

$$
\begin{array}{lllll}
\text { If } & K>p, & f(j)=\varepsilon & \text { for every } & j \in[p+1, K] \\
\text { If } & K>q, & g(j)=\varepsilon & \text { for every } & j \in[q+1, K] \\
\text { If } & K>r, & h(j)=\varepsilon & \text { for every } & j \in[r+1, K] \\
\text { If } & K>r^{\prime}, & h^{\prime}(j)=\varepsilon & \text { for every } & j \in\left[r^{\prime}+1, K\right]
\end{array}
$$

We deduce $\forall \mathrm{k}=0, \ldots \mathrm{~K}$:

$$
\begin{array}{rlrl}
\exists \mathrm{r}(\mathrm{k}): & \mathrm{g}(\mathrm{k}) & =\mathrm{f}(\mathrm{k}) \oplus \mathrm{r}(\mathrm{k}) \\
\exists \mathrm{r}^{\prime}(\mathrm{k}): & \mathrm{f}(\mathrm{k})=\mathrm{g}(\mathrm{k}) \oplus \mathrm{r}^{\prime}(\mathrm{k})
\end{array}
$$

in other words:

$$
\mathrm{f}(\mathrm{k}) \leq \mathrm{g}(\mathrm{k}), \quad \text { and } \quad \mathrm{g}(\mathrm{k}) \leq \mathrm{f}(\mathrm{k})
$$

Since $(\mathrm{E}, \oplus, \otimes)$ is a dioid, we deduce $\forall \mathrm{k}: \mathrm{f}(\mathrm{k})=\mathrm{g}(\mathrm{k})$ and therefore $\mathrm{P}=\mathrm{Q}$. ($\mathrm{E}[\mathrm{x}], \oplus, \otimes$) is thus clearly a dioid in this case.

The above is easily generalized to multivariate polynomials in several commutative indeterminates $x_{1}, x_{2}, \ldots x_{m}$, the set of these polynomials being denoted $\mathrm{E}\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{m}}\right]$.

2.2. Formal Series

Let $(\mathrm{E}, \oplus, \otimes)$ be a pre-semiring or a semiring with neutral elements ε and e (for \oplus and \otimes, respectively).

Definition 2.2.1. A formal series F in m commutative indeterminates $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{m}}$ is defined by specifying a mapping $\mathrm{f}: \mathrm{N}^{\mathrm{m}} \rightarrow \mathrm{E}$, where: $\forall\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots . \mathrm{k}_{\mathrm{m}}\right) \in \mathrm{N}^{\mathrm{m}}$, $\mathrm{f}\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots \mathrm{k}_{\mathrm{m}}\right)$ is the coefficient of the term $\mathrm{x}_{1}^{\mathrm{k}_{1}} \otimes \mathrm{x}_{2}^{\mathrm{k}_{2}} \otimes \cdots \otimes \mathrm{x}_{\mathrm{m}}^{\mathrm{k}_{\mathrm{m}}}$

Formally, we represent F by the (infinite) sum:

$$
\mathrm{F}=\sum_{\substack{\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{m}}\right) \\ \in \mathrm{N}^{\mathrm{m}}}} \mathrm{f}\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots \mathrm{k}_{\mathrm{m}}\right) \otimes \mathrm{x}_{1}^{\mathrm{k}_{1}} \otimes \cdots \otimes \mathrm{x}_{\mathrm{m}}^{\mathrm{k}_{\mathrm{m}}}
$$

Let us consider two formal series with coefficients $f\left(k_{1}, k_{2} \cdots k_{m}\right)$ and $g\left(k_{1}, \ldots, k_{m}\right)$. The sum is the formal series of coefficients $s\left(k_{1}, \ldots k_{m}\right)$ defined as:

$$
\forall\left(\mathrm{k}_{1}, \mathrm{k}_{2} \cdots \mathrm{k}_{\mathrm{m}}\right) \in \mathrm{N}^{\mathrm{m}}: \mathrm{s}\left(\mathrm{k}_{1} \cdots . \mathrm{k}_{\mathrm{m}}\right)=\mathrm{f}\left(\mathrm{k}_{1} \cdots \mathrm{k}_{\mathrm{m}}\right) \oplus \mathrm{g}\left(\mathrm{k}_{1} \cdots . \mathrm{k}_{\mathrm{m}}\right)
$$

The product is the formal series of coefficients $t\left(k_{1} \cdots k_{m}\right)$ defined as: $\forall\left(\mathrm{k}_{1} \ldots, \mathrm{k}_{\mathrm{m}}\right) \in \mathrm{N}^{\mathrm{m}}: \mathrm{t}\left(\mathrm{k}_{1}, \mathrm{k}_{2} \ldots, \mathrm{k}_{\mathrm{m}}\right)=\Sigma \mathrm{f}\left(\mathrm{i}_{1}, \mathrm{i}_{2} \ldots \mathrm{i}_{\mathrm{m}}\right) \otimes \mathrm{g}\left(\mathrm{j}_{1}, \ldots \mathrm{j}_{\mathrm{m}}\right)$ where the sum extends to all the pairs of m-tuples $\left(\mathrm{i}_{1}, \ldots \mathrm{i}_{\mathrm{m}}\right) \in \mathrm{N}^{\mathrm{m}},\left(\mathrm{j}_{1}, \mathrm{j}_{2}, \ldots \mathrm{j}_{\mathrm{m}}\right) \in \mathrm{N}^{\mathrm{m}}$ such that:

$$
\mathrm{i}_{1}+\mathrm{j}_{1}=\mathrm{k}_{1}, \mathrm{i}_{2}+\mathrm{j}_{2}=\mathrm{k}_{2}, \ldots, \mathrm{i}_{\mathrm{m}}+\mathrm{j}_{\mathrm{m}}=\mathrm{k}_{\mathrm{m}}
$$

Proposition 2.1.2 of Sect. 2.1 easily extends to formal series as defined above.

3. Square Matrices with Coefficients in a (Pre)-Semiring

Let $(\mathrm{E}, \oplus, \otimes)$ be a pre-semiring or a semiring. We denote $\mathrm{M}_{\mathrm{n}}(\mathrm{E})$ the set of square $\mathrm{n} \times \mathrm{n}$ matrices with elements in E .

Given two matrices $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ and $\mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)$ of $\mathrm{M}_{\mathrm{n}}(\mathrm{E})$

- The sum, denoted $A \oplus B$, is the matrix $S=\left(s_{i j}\right)$ defined as:

$$
\forall \mathrm{i}, \mathrm{j}: \mathrm{s}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}} \oplus \mathrm{~b}_{\mathrm{ij}}
$$

- The product, denoted $\mathrm{A} \otimes \mathrm{B}$, is the matrix $\mathrm{T}=\left(\mathrm{t}_{\mathrm{ij}}\right)$ defined as:

$$
\forall \mathrm{i}, \mathrm{j}: \mathrm{t}_{\mathrm{ij}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ik}} \otimes \mathrm{~b}_{\mathrm{kj}} \quad(\text { sum in the sense of } \oplus) .
$$

If E has a neutral element ε for \oplus, the matrix:

$$
\sum=\left[\begin{array}{c}
\varepsilon, \varepsilon, \ldots, \varepsilon \\
: \\
\varepsilon, \varepsilon, \ldots, \varepsilon
\end{array}\right]
$$

is the neutral element of $\mathrm{M}_{\mathrm{n}}(\mathrm{E})$ for \oplus.
If, moreover, E has unit element e , and ε is absorbing for \otimes, then the matrix:

$$
\mathrm{I}=\left[\begin{array}{llll}
\mathrm{e} & & & \\
& \mathrm{e} & & \varepsilon \\
& \varepsilon & \ddots & \\
& & \mathrm{e}
\end{array}\right]
$$

is the unit element of $\mathrm{M}_{\mathrm{n}}(\mathrm{E})$ for \otimes.
It is then easy to prove the following:
Proposition 3.1. (i) If $(\mathrm{E}, \oplus, \otimes)$ is a pre-semiring then $\left(\mathrm{M}_{\mathrm{n}}(\mathrm{E}), \oplus, \otimes\right)$ is a presemiring
(ii) If $(\mathrm{E}, \oplus, \otimes)$ is a semiring, then $\left(\mathrm{M}_{\mathrm{n}}(\mathrm{E}), \oplus, \otimes\right)$ is a semiring (in general noncommutative)
(iii) If $(\mathrm{E}, \oplus, \otimes)$ is a dioid, then $\left(\mathrm{M}_{\mathrm{n}}(\mathrm{E}), \oplus, \otimes\right)$ is a dioid (in general noncommutative)

In the subsequent sections, we study properties of square $\mathrm{n} \times \mathrm{n}$ matrices with elements in a commutative pre-semiring $(\mathrm{E}, \oplus, \otimes)$. For some of the properties considered, we will have to assume that $(\mathrm{E}, \oplus, \otimes)$ has a semiring structure.

4. Bideterminant of a Square Matrix. Characteristic Bipolynomial

In this section we introduce the concept of bideterminant for matrices with coefficients in a pre-semiring.

4.1. Reminder About Permutations

Let π be a permutation of $X=\{1,2, \ldots, n\}$ where, $\forall i \in X, \pi(i) \in X$ denotes the element corresponding to i through π. The graph associated with π is the directed graph G_{π} having X as set of vertices and n arcs of the form (i, $\pi(i)$). This graph can contain loops (when $\pi(i)=i$).

It is well-known that the permutation graph decomposes into disjoint elementary circuits (each connected component is an elementary circuit). If a connected component is reduced to a single vertex i, the corresponding circuit is the loop (i, i).

Figure 1 below represents the permutation graph of $\{1, \ldots 7\}$ defined as:

$$
\pi(1)=7, \pi(2)=4, \pi(3)=5, \pi(4)=2, \pi(5)=1, \pi(6)=6, \pi(7)=3
$$

The parity of a permutation π, is defined as the parity of the number of transpositions necessary to transform the permutation π into the identity permutation.

Thus, in the above example, a possible sequence of transpositions would be:

$$
\left(\begin{array}{l}
7 \\
4 \\
5 \\
2 \\
1 \\
6 \\
3
\end{array}\right) \rightarrow\left(\begin{array}{l}
1 \\
4 \\
5 \\
2 \\
7 \\
6 \\
3
\end{array}\right) \rightarrow\left(\begin{array}{l}
1 \\
2 \\
5 \\
4 \\
7 \\
6 \\
3
\end{array}\right) \rightarrow\left(\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
7 \\
6 \\
5
\end{array}\right) \rightarrow\left(\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7
\end{array}\right)
$$

The permutation of Fig. 1 is therefore even.
More generally, we can prove:
Property 4.1.1. The parity of a permutation π is equal to the parity of the number of circuits of even length of the graph G_{π} associated with the permutation.

Fig. 1 Permutation graph

Example. The graph of Fig. 1 contains two circuits of even length (1, 7, 3, 5) and (2, 4), the corresponding permutation is therefore even. ||

We call signature of a permutation π, the quantity sign (π) defined as:

$$
\begin{array}{ll}
\operatorname{sign}(\pi)=+1 & \text { if } \pi \text { is even } \\
\operatorname{sign}(\pi)=-1 & \text { if } \pi \text { is odd }
\end{array}
$$

It is easy to see that the signature of a permutation π can be calculated as:

$$
\operatorname{sign}(\pi)=\prod_{\mathrm{C} \text { circuit of } \mathrm{G}_{\pi}}(-1)^{|\mathrm{C}|-1}
$$

(where $|\mathrm{C}|$ is the cardinality of the circuit, and where the product extends to the set of the circuits of G_{π}).

In the example of Fig. 1 we have three circuits: $\mathrm{C}_{1}=(6)$ of odd length and $\mathrm{C}_{2}=(2,4) ; \mathrm{C}_{3}=(1,3,5,7)$ of even length. We clearly have:

$$
\begin{aligned}
\operatorname{sign}(\pi) & =(-)^{\left|\mathrm{C}_{1}\right|-1} \times(-1)^{\left|\mathrm{C}_{2}\right|-1} \times(-1)^{\left|\mathrm{C}_{3}\right|-1} \\
& =+1
\end{aligned}
$$

Hereafter we denote:
$\operatorname{Per}(\mathrm{n})$ the set of all the permutations of $\{1,2, \ldots, n\}$
$\operatorname{Per}^{+}(\mathrm{n})$ the set of all the even permutations of $\{1,2, \ldots, n\}$ (the set of the permutations of signature +1)
$\operatorname{Per}^{-}(\mathrm{n})$ the set of odd permutations of $\{1,2 \ldots, \mathrm{n}\}$ (of signature -1)
We will also make use of the concept of partial permutation: a partial permutation of $X=\{1, \ldots, n\}$ is simply a permutation of a subset S of X.

Example. If $X=\{1, \ldots, 7\} S=\{2,3,5,7\}$ then σ defined as:

$$
\sigma(2)=3 ; \quad \sigma(3)=7 ; \quad \sigma(5)=5 ; \quad \sigma(7)=2
$$

is a permutation of S and a partial permutation of X . The domain of definition of σ, denoted dom (σ), is $S=\{2,3,5,7\}$

With every partial permutation σ of $\mathrm{X}=\{1, \ldots, \mathrm{n}\}$ we can associate the permutation $\hat{\sigma}$ of $\{1, \ldots, n\}$ defined as:

$$
\left\{\begin{array}{lll}
\hat{\sigma}(\mathrm{i})=\sigma(\mathrm{i}) & \text { if } & \mathrm{i} \in \operatorname{dom}(\sigma) \\
\hat{\sigma}(\mathrm{i})=\mathrm{i} & \text { if } & \mathrm{i} \in \mathrm{X} \backslash(\operatorname{dom}(\sigma))
\end{array}\right.
$$

$\hat{\sigma}$ will be referred to as the extension of σ.

Fig. 2 Graph associated with a partial permutation σ of characteristic $+1: \sigma \in \operatorname{Part}^{+}$(7)

The parity (resp. signature) of a partial permutation σ is the parity (resp. signature) of its extension $\hat{\sigma}$.

The characteristic of a partial permutation σ, denoted char (σ), is defined as:

$$
\operatorname{char}(\sigma)=\operatorname{sign}(\sigma) \times(-1)^{|\sigma|}
$$

$|\sigma|$ denoting the cardinality of $\operatorname{dom}(\sigma)$.
We observe that, if σ is a partial permutation of order k (i.e. $|\sigma|=|\operatorname{dom}(\sigma)|=k$) and cyclic (i.e. such that the associated graph contains a single circuit covering all the vertices of dom $(\sigma))$ then: $\operatorname{sign}(\sigma)=\operatorname{sign}(\hat{\sigma})=(-1)^{\mathrm{k}-1}$, hence:

$$
\operatorname{char}(\sigma)=(-1)^{2 \mathrm{k}+1}=-1
$$

From the above, we deduce:
Property 4.1.2. For every partial permutation $\sigma, \operatorname{char}(\sigma)=(-1)^{\mathrm{r}}$ where r is the number of circuits in the graph associated with σ.

Example. For the partial permutation of $\{1, \ldots, 7\}$ defined as:

$$
\sigma(2)=3 ; \quad \sigma(3)=7 ; \quad \sigma(5)=5 ; \quad \sigma(7)=2 .
$$

the associated graph (see Fig. 2) contains two circuits, therefore: $\operatorname{char}(\sigma)=+1$. \|
Hereafter, we denote $\operatorname{Part}(\mathrm{n})$ the set of all the partial permutations of $\{1, \ldots, n\}$ (Observe that $\operatorname{Per}(\mathrm{n}) \subset \operatorname{Part}(\mathrm{n})$).

The set of partial permutations of characteristic +1 , (resp. of characteristic -1), will be denoted Part ${ }^{+}$(n) (resp. Part $^{-}(n)$).

4.2. Bideterminant of a Matrix

For a square matrix of order $\mathrm{n}, \mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ with elements in \mathbb{R} endowed with the standard operations, the determinant det (A) is classically defined as:

$$
\begin{equation*}
\operatorname{det}(\mathrm{A})=\sum_{\pi \in \operatorname{Per}(\mathrm{n})} \operatorname{sign}(\pi)\left(\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}, \pi(\mathrm{i})}\right) \tag{1}
\end{equation*}
$$

or equivalently, with the notation of Sect. 4.1., as:

$$
\begin{equation*}
\operatorname{det}(\mathrm{A})=\sum_{\pi \in \operatorname{Per}^{+}(\mathrm{n})}\left(\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}, \pi(\mathrm{i})}\right)-\sum_{\pi \in \operatorname{Per}^{-}(\mathrm{n})}\left(\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}, \pi(\mathrm{i})}\right) \tag{2}
\end{equation*}
$$

(the above sums should be understood in the sense of the addition of reals). This notation is possible given that $(\mathbb{R},+)$ is a group.

If one wishes to generalize the concept of determinant to algebraic structures featuring fewer properties, where addition does not induce a group structure, one must introduce the concept of bideterminant.

Definition 4.2.1. (Bideterminant)

Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ be a square $\mathrm{n} \times \mathrm{n}$ matrix with elements in a commutative presemiring $(\mathrm{E}, \oplus, \otimes)$. We call bideterminant of A the pair $\left(\operatorname{det}^{+}(\mathrm{A})\right.$, $\left.\operatorname{det}^{-}(\mathrm{A})\right)$ where the values $\operatorname{det}^{+}(\mathrm{A}) \in \mathrm{E}$ and $\operatorname{det}^{-}(\mathrm{A}) \in \mathrm{E}$ are defined as:

$$
\begin{align*}
& \operatorname{det}^{+}(\mathrm{A})=\sum_{\pi \in \operatorname{Per}^{+}(\mathrm{n})}\left(\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}, \pi(\mathrm{i})}\right) \tag{3}\\
& \operatorname{det}^{-}(\mathrm{A})=\sum_{\pi \in \operatorname{Per}^{-}(\mathrm{n})}\left(\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}, \pi(\mathrm{i})}\right) \tag{4}
\end{align*}
$$

(the above sums and products should be understood in the sense of the operations \oplus and \otimes of the pre-semiring).

4.3. Characteristic Bipolynomial

In the case of a real $n \times n$ matrix A, the characteristic polynomial is defined as the polynomial in the variable λ equal to the determinant of the matrix $\lambda I-A$ where I is the $\mathrm{n} \times \mathrm{n}$ unit matrix:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{A}}(\lambda) & =\operatorname{det}(\lambda \mathrm{I}-\mathrm{A}) \\
& =\sum_{\pi \in \operatorname{Per}(\mathrm{n})} \operatorname{sign}(\pi)\left(\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~b}_{\mathrm{i}, \pi(\mathrm{i})}\right) \\
\text { where, } & \forall \mathrm{i}, \mathrm{j}:\left\{\begin{array}{lll}
\mathrm{b}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{ij}} & \text { if } & \mathrm{i} \neq \mathrm{j} \\
\mathrm{~b}_{\mathrm{ij}}=\lambda-\mathrm{a}_{\mathrm{ij}} & \text { if } & \mathrm{i}=\mathrm{j}
\end{array}\right.
\end{aligned}
$$

We observe that, for every $\mathrm{q}, 1 \leq \mathrm{q} \leq \mathrm{n}$, the coefficient of the term involving $\lambda^{\mathrm{n}-\mathrm{q}}$ in the above expression can be expressed as:

$$
\begin{align*}
& \sum_{\substack{\sigma \in \operatorname{Part(n)} \\
|\sigma|=\mathrm{q}}} \operatorname{sign}(\sigma)\left(\prod_{\mathrm{i} \in \operatorname{dom}(\sigma)}\left(-\mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})}\right)\right) \\
= & \sum_{\substack{\sigma \in \operatorname{Part}(\mathrm{n}) \\
|\sigma|=\mathrm{q}}}(-1)^{|\sigma|} \cdot \operatorname{sign}(\sigma)\left(\prod_{\mathrm{i} \in \operatorname{dom}(\sigma)}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})}\right)\right) \tag{5}
\end{align*}
$$

For $\mathrm{q}=0$, the λ^{n} term has coefficient equal to 1 . Observing that $(-1)^{|\sigma|} \operatorname{sign}(\sigma)$ is none other than the characteristic $\operatorname{char}(\sigma)$ (see Sect. 4.1), (5) is rewritten:

$$
\begin{equation*}
\sum_{\substack{\sigma \in \operatorname{Part}(\mathrm{n}) \\|\sigma|=\mathrm{q}}} \operatorname{car}(\sigma)\left(\prod_{i \in \operatorname{dom}(\sigma)}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})}\right)\right) \tag{6}
\end{equation*}
$$

By denoting (see Sect. 4.1) Part ${ }^{+}$(n) (resp. Part $^{-}(\mathrm{n})$) the set of partial permutations of $\{1, \ldots, n\}$ with characteristic +1 (resp. with characteristic -1) then the above sum becomes:

$$
\begin{equation*}
\sum_{\substack{\sigma \in \operatorname{Part}^{+}(\mathrm{n}) \\|\sigma|=\mathrm{q}}}\left(\prod_{i \in \operatorname{dom}(\sigma)}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})}\right)\right)-\sum_{\substack{\sigma \in \operatorname{Part}^{-}(\mathrm{n}) \\|\sigma|=\mathrm{q}}}\left(\prod_{i \in \operatorname{dom}(\sigma)}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})}\right)\right) \tag{7}
\end{equation*}
$$

Now, when $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ is a matrix with coefficients in a pre-semiring $(\mathrm{E}, \oplus, \otimes)$, one is then naturally lead to define the characteristic bipolynomial as follows.

Definition 4.3.1. (characteristic bipolynomial) Let $A=\left(a_{i j}\right)$ be a square $\mathrm{n} \times \mathrm{n}$ matrix with elements in a commutative pre-semiring $(\mathrm{E}, \oplus, \otimes)$. We call characteristic bipolynomial the pair $\left(\mathrm{P}_{\mathrm{A}}^{+}(\lambda), \mathrm{P}_{\mathrm{A}}^{-}(\lambda)\right)$ where $\mathrm{P}_{\mathrm{A}}^{+}(\lambda)$ and $\mathrm{P}_{\mathrm{A}}^{-}(\lambda)$ are two polynomials of degree n in the variable λ, defined as:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{A}}^{+}(\lambda)=\sum_{\mathrm{q}=1}^{\mathrm{n}}\left(\sum_{\substack{\sigma \in \mathrm{Part}^{+}(\mathrm{n}) \\|\sigma|=\mathrm{q}}}\left(\prod_{i \in \operatorname{dom}(\sigma)}^{n}\left(\mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})}\right)\right)\right) \otimes \lambda^{\mathrm{n}-\mathrm{q}} \oplus \lambda^{\mathrm{n}} \tag{8}
\end{equation*}
$$

and:

$$
\begin{equation*}
P_{A}^{-}(\lambda)=\sum_{q=1}^{n}\left(\sum_{\substack{\sigma \in \operatorname{Part}^{-}(n) \\|\sigma|=q}}\left(\prod_{i \in \operatorname{dom}(\sigma)}^{n}\left(a_{i, \sigma(i)}\right)\right)\right) \otimes \lambda^{n-q} \tag{9}
\end{equation*}
$$

(the sums and the products above are to be understood in the sense of the addition \oplus and the multiplication \otimes of the pre-semiring $(\mathrm{E}, \oplus, \otimes)$).

We observe that, in the case where $(\mathrm{E}, \oplus, \otimes)$ is a semiring, ε the neutral element of \oplus, is absorbing and the formulae (8)-(9) give:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{A}}^{+}(\varepsilon)=\sum_{\substack{\sigma \in \operatorname{Parrt}^{+}(\mathrm{n}) \\
|\sigma|=\mathrm{n}}}\left(\prod_{\mathrm{i}} \mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})}\right) \\
& \mathrm{P}_{\mathrm{A}}^{-}(\varepsilon)=\sum_{\substack{\sigma \in \operatorname{Part}^{-}(\mathrm{n}) \\
|\sigma|=\mathrm{n}}}\left(\prod_{\mathrm{i}} \mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})}\right)
\end{aligned}
$$

Since, for $|\sigma|=n$, $\operatorname{char}(\sigma)=(-1)^{\mathrm{n}} \operatorname{sign}(\sigma)$, we see that for even $n, \operatorname{Part}^{+}(\mathrm{n})=$ $\mathrm{Per}^{+}(\mathrm{n})$ and consequently:

$$
\mathrm{P}_{\mathrm{A}}^{+}(\varepsilon)=\operatorname{det}^{+}(\mathrm{A}), \mathrm{P}_{\mathrm{A}}^{-}(\varepsilon)=\operatorname{det}^{-}(\mathrm{A})
$$

For odd n , we have $\operatorname{Part}^{+}(\mathrm{n})=\operatorname{Per}^{-}(\mathrm{n})$ and consequently:

$$
\mathrm{P}_{\mathrm{A}}^{+}(\varepsilon)=\operatorname{det}^{-}(\mathrm{A}), \mathrm{P}_{\mathrm{A}}^{-}(\varepsilon)=\operatorname{det}^{+}(\mathrm{A})
$$

We thus find again the analogue of the classical property for the characteristic polynomial:

$$
\mathrm{P}_{\mathrm{A}}(0)=\operatorname{det}(-\mathrm{A})=(-1)^{\mathrm{n}} \operatorname{det}(\mathrm{~A})
$$

5. Bideterminant of a Matrix Product as a Combinatorial Property of Pre-Semirings

Given two square $\mathrm{n} \times \mathrm{n}$ real matrices, a classical result of linear algebra is the identity:

$$
\operatorname{det}(\mathrm{A} \times \mathrm{B})=\operatorname{det}(\mathrm{A}) \times \operatorname{det}(\mathrm{B})
$$

In the present section we study the generalization of this result to square matrices with elements in a commutative pre-semiring $(\mathrm{E}, \oplus, \otimes)$.

$$
\text { If } \quad \mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right) \quad \mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right) \quad \text { and } \quad \mathrm{C}=\mathrm{A} \otimes \mathrm{~B}=\left(\mathrm{c}_{\mathrm{ij}}\right)
$$

with:

$$
\mathrm{c}_{\mathrm{ij}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ik}} \otimes \mathrm{~b}_{\mathrm{kj}} \quad(\text { sum in the sense of the operation } \oplus)
$$

Then, by definition (see Sect. 4.2):

$$
\begin{equation*}
\operatorname{det}^{+}(\mathrm{A} \otimes \mathrm{~B})=\sum_{\pi \in \operatorname{Per}^{+}(\mathrm{n})}\left(\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}, \pi(\mathrm{i})}\right) \tag{10}
\end{equation*}
$$

For $\pi \in \operatorname{Per}^{+}(n)$ fixed, we can write:

$$
\begin{equation*}
\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}, \pi(\mathrm{i})}=\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ik}} \otimes \mathrm{~b}_{\mathrm{k}, \pi(\mathrm{i})}\right) \tag{11}
\end{equation*}
$$

By using distributivity, each term in the expansion of expression (11) is obtained by choosing, for each value of $\mathrm{i}(1 \leq \mathrm{i} \leq n)$, a value of $\mathrm{k} \in\{1, \ldots, n\}$. In other words, each term in the expanded expression is associated with a mapping $\mathrm{f}:\{1, \ldots, \mathrm{n}\} \rightarrow$ $\{1, \ldots, n\}$, and the value of the corresponding term in (11) is:

$$
\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}, \mathrm{f}(\mathrm{i})} \otimes \mathrm{b}_{\mathrm{f}(\mathrm{i}), \pi(\mathrm{i})}\right)
$$

By denoting $\mathrm{F}(\mathrm{n})$ the set of mappings: $\{1, \ldots, \mathrm{n}\} \rightarrow\{1, \ldots, \mathrm{n}\},(10)$ can therefore be rewritten:

$$
\begin{equation*}
\operatorname{det}^{+}(\mathrm{A} \otimes \mathrm{~B})=\sum_{\mathrm{f} \in \mathrm{~F}(\mathrm{n})} \sum_{\pi \in \operatorname{Per}^{+}(\mathrm{n})} \prod_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}, \mathrm{f}(\mathrm{i})} \otimes \mathrm{b}_{\mathrm{f}(\mathrm{i}), \pi(\mathrm{i})}\right) \tag{12}
\end{equation*}
$$

We would similarly obtain:

$$
\begin{equation*}
\operatorname{det}^{-}(\mathrm{A} \otimes \mathrm{~B})=\sum_{\mathrm{f} \in \mathrm{~F}(\mathrm{n})} \sum_{\pi \in \operatorname{Per}^{-}(\mathrm{n})} \prod_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}, \mathrm{f}(\mathrm{i})} \otimes \mathrm{b}_{\mathrm{f}(\mathrm{i}), \pi(\mathrm{i})}\right) \tag{13}
\end{equation*}
$$

Among the mappings of $\mathrm{F}(\mathrm{n})$, we find (even and odd) permutations, i.e.:

$$
\mathrm{F}(\mathrm{n})=\operatorname{Per}^{+}(\mathrm{n}) \cup \operatorname{Per}^{-}(\mathrm{n}) \cup \mathrm{F}^{\prime}(\mathrm{n})
$$

where $F^{\prime}(n)$ denotes the set of all the mappings of $F(n)$ which are not permutations. Expression (12) therefore decomposes into the sum of three sub-expressions:

$$
\begin{align*}
& \alpha^{+}=\sum_{\mathrm{f} \in \operatorname{Per}^{+}(\mathrm{n})} \sum_{\pi \in \operatorname{Per}^{+}(\mathrm{n})} \prod_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}, \mathrm{f}(\mathrm{i})} \otimes \mathrm{b}_{\mathrm{f}(\mathrm{i}), \pi(\mathrm{i})}\right) \tag{14}\\
& \beta^{+}=\sum_{\mathrm{f} \in \operatorname{Per}^{-}(\mathrm{n})} \sum_{\pi \in \operatorname{Per}^{+}(\mathrm{n})} \prod_{\mathrm{i}=1}\left(\mathrm{a}_{\mathrm{i}, \mathrm{f}(\mathrm{i})} \otimes \mathrm{b}_{\mathrm{f}(\mathrm{i}), \pi(\mathrm{i})}\right) \tag{15}\\
& \gamma^{+}=\sum_{\mathrm{f} \in \mathrm{~F}^{\prime}(\mathrm{n})} \sum_{\pi \in \operatorname{Per}^{+}(\mathrm{n})} \prod_{\mathrm{i}=1}\left(\mathrm{a}_{\mathrm{i}, \mathrm{f}(\mathrm{i})} \otimes \mathrm{b}_{\mathrm{f}(\mathrm{i}), \pi(\mathrm{i})}\right) \tag{16}
\end{align*}
$$

In cases where f is a permutation, let g be the permutation $\pi \circ f^{-1}$. In the expressions (14) and (15) above, we can rewrite the term:

$$
\left(\prod_{i=1}^{n} a_{i, f(i)}\right) \otimes\left(\prod_{i=1}^{n} b_{f(i), \pi(i)}\right) \text { as: }\left(\prod_{i=1}^{n} a_{i, f(i)}\right) \otimes\left(\prod_{i=1}^{n} b_{i, g(i)}\right)
$$

Let us then consider the expression α^{+}.
f being an even permutation, f^{-1} is even and g, as the product of two even permutations is even. Then α^{+}can be rewritten:

$$
\begin{align*}
\alpha^{+} & =\left(\sum_{f \in \operatorname{Per}^{+}(\mathrm{n})} \prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}, \mathrm{f}(\mathrm{i})}\right) \otimes\left(\sum_{\mathrm{g} \in \operatorname{Per}^{+}(\mathrm{n})} \prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~b}_{\mathrm{i}, \mathrm{~g}(\mathrm{i})}\right) \tag{17}\\
& =\operatorname{det}^{+}(\mathrm{A}) \otimes \operatorname{det}^{+}(B)
\end{align*}
$$

Let us now consider the expression β^{+}.
f being odd, f^{-1} is odd and g , as the product of an even permutation and an odd permutation, is odd. Then β^{+}can be rewritten:

$$
\begin{align*}
\beta^{+} & =\left(\sum_{f \in \operatorname{Per}^{-}(n)} \prod_{i=1}^{n} a_{i, f(i)}\right) \otimes\left(\sum_{g \in \operatorname{Per}^{-}(n)} \prod_{i=1}^{n} b_{i, g(i)}\right) \tag{18}\\
& =\operatorname{det}^{-}(A) \otimes \operatorname{det}^{-}(B)
\end{align*}
$$

From the above, we deduce:

$$
\begin{equation*}
\operatorname{det}^{+}(\mathrm{A} \otimes \mathrm{~B})=\operatorname{det}^{+}(\mathrm{A}) \otimes \operatorname{det}^{+}(\mathrm{B}) \oplus \operatorname{det}^{-}(\mathrm{A}) \otimes \operatorname{det}^{-}(\mathrm{B}) \oplus \gamma^{+} \tag{19}
\end{equation*}
$$

Through similar reasoning, we would prove that:

$$
\begin{equation*}
\operatorname{det}^{-}(\mathrm{A} \otimes \mathrm{~B})=\operatorname{det}^{+}(\mathrm{A}) \otimes \operatorname{det}^{-}(\mathrm{B}) \oplus \operatorname{det}^{-}(\mathrm{A}) \otimes \operatorname{det}^{+}(\mathrm{B}) \oplus \gamma^{-} \tag{20}
\end{equation*}
$$

with:

$$
\begin{equation*}
\gamma^{-}=\sum_{\mathrm{f} \in \mathrm{~F}^{\prime}(\mathrm{n})} \sum_{\pi \in \operatorname{Per}^{-}(\mathrm{n})} \prod_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}, \mathrm{f}(\mathrm{i})} \otimes \mathrm{b}_{\mathrm{f}(\mathrm{i}), \pi(\mathrm{i})}\right) \tag{21}
\end{equation*}
$$

Now we prove:
Lemma 5.1. The two expressions γ^{+}, given by (16), and γ^{-}, given by (21), take the same value.

Proof. Let us consider an arbitrary term of the sum (16) whose value is:

$$
\theta=\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}, \mathrm{f}(\mathrm{i})} \otimes \mathrm{b}_{\mathrm{f}(\mathrm{i}), \pi(\mathrm{i})}
$$

with $\mathrm{f} \in \mathrm{F}^{\prime}(\mathrm{n})$ and $\pi \in \operatorname{Per}^{+}(\mathrm{n})$.
We are going to show that we associate it with a term θ^{\prime} of expression (21) such that $\theta^{\prime}=\theta$.

Since $f \in F^{\prime}(n)$, f is not a permutation of $X=\{1, \ldots, n\}$, which therefore implies that there exists $i_{0} \in X, i_{0}^{\prime} \in X, i_{0}^{\prime} \neq i_{0}, k \in X$ such that:

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{i}_{0}\right)=\mathrm{k}=\mathrm{f}\left(\mathrm{i}_{0}^{\prime}\right) \tag{22}
\end{equation*}
$$

If there exist several ordered triples ($\left.i_{0}, i_{0}^{\prime}, k\right)$ satisfying (22) we choose the smallest possible value of k and, for this value of k , the two smallest possible values for i_{0} and i_{0}^{\prime}.

From the permutation π, let us define the following permutation π^{\prime} :

$$
\left\{\begin{array}{l}
\pi^{\prime}(\mathrm{j})=\pi(\mathrm{j}) \forall \mathrm{j} \in \mathrm{X} \backslash\left\{\mathrm{i}_{0}, \mathrm{i}_{0}^{\prime}\right\}, \\
\pi^{\prime}\left(\mathrm{i}_{0}\right)=\pi\left(\mathrm{i}_{0}^{\prime}\right), \\
\pi^{\prime}\left(\mathrm{i}_{0}^{\prime}\right)=\pi\left(\mathrm{i}_{0}\right)
\end{array}\right.
$$

We observe that π^{\prime} is deduced from π by transposition of the elements i_{0} and i_{0}^{\prime}, consequently $\pi^{\prime} \in \operatorname{Per}^{-}(\mathrm{n})$. Furthermore, we observe that the same construction that obtains $\left(f, \pi^{\prime}\right)$ from (f, π) enables one to obtain (f, π) from $\left(f, \pi^{\prime}\right)$.

Finally, we have:

$$
\begin{aligned}
& \theta^{\prime}=\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}, \mathrm{f}(\mathrm{i})} \otimes \mathrm{b}_{\mathrm{f}(\mathrm{i}), \pi^{\prime}(\mathrm{i})}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\prod_{\substack{i=1 \\
i \neq i_{0} \\
i \neq i_{0}^{\prime}}}^{n} a_{i, f(i)} \otimes b_{f(i), \pi(i)}\right) \otimes a_{i_{0, k}} \otimes b_{k, \pi\left(i_{0}\right)} \otimes a_{i_{0, k}^{\prime}} \otimes b_{k, \pi\left(i_{0}^{\prime}\right)} \\
& =\theta
\end{aligned}
$$

which completes the proof.
We have therefore obtained:
Theorem 1. Let A and B be two square $\mathrm{n} \times \mathrm{n}$ matrices with coefficients in a commutative pre-semiring $(\mathrm{E}, \oplus, \otimes)$.

Then:

$$
\operatorname{det}^{+}(\mathrm{A} \otimes \mathrm{~B})=\operatorname{det}^{+}(\mathrm{A}) \otimes \operatorname{det}^{+}(\mathrm{B}) \oplus \operatorname{det}^{-}(\mathrm{A}) \otimes \operatorname{det}^{-}(\mathrm{B}) \oplus \gamma
$$

and:

$$
\operatorname{det}^{-}(\mathrm{A} \otimes \mathrm{~g})=\operatorname{det}^{+}(\mathrm{A}) \otimes \operatorname{det}^{-}(\mathrm{B}) \oplus \operatorname{det}^{-}(\mathrm{A}) \otimes \operatorname{det}^{+}(\mathrm{B}) \oplus \gamma
$$

where:

$$
\begin{aligned}
\gamma & =\sum_{\mathrm{f} \in \mathrm{~F}^{\prime}(\mathrm{n})} \sum_{\pi \in \operatorname{Per}^{+}(\mathrm{n})}\left(\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}, \mathrm{f}(\mathrm{i})} \otimes \mathrm{b}_{\mathrm{f}(\mathrm{i}), \pi(\mathrm{i})}\right) \\
& =\sum_{\mathrm{f} \in \mathrm{~F}^{\prime}(\mathrm{n})} \sum_{\pi \in \operatorname{Per}^{-}(\mathrm{n})}\left(\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}, \mathrm{f}(\mathrm{i})} \otimes \mathrm{b}_{\mathrm{f}(\mathrm{i}), \pi(\mathrm{i})}\right)
\end{aligned}
$$

$\mathrm{F}^{\prime}(\mathrm{n})$, in the above expressions, denoting the set of the mappings $\mathrm{f}:\{1, \ldots \mathrm{n}\} \rightarrow\{1, \ldots \mathrm{n}\}$ which are not permutations.

As an immediate consequence of the above, we find again the well-known result:
Corollary 5.2. If (E, \oplus) is a group, then:

$$
\operatorname{det}(\mathrm{A} \otimes \mathrm{~B})=\operatorname{det}(\mathrm{A}) \otimes \operatorname{det}(\mathrm{B})
$$

As already pointed out in the introduction, Theorem 1 above clearly does not directly follow from the classical result (on the real field). Indeed a different proof is needed for the case of pre-semirings to get the exact expression of the additional term γ arising in both expressions of $\operatorname{det}^{+}(A \otimes B)$ and $\operatorname{det}^{-}(A \otimes B)$.

6. Cayley-Hamilton Theorem in Pre-Semirings

The Cayley-Hamilton theorem is a classical result of linear algebra (on the field of real numbers) according to which a matrix satisfies its own characteristic equation.

Combinatorial proofs of this theorem have been provided by Straubing (1983) and previously by Rutherford (1964). Rutherford's result constituted, moreover, a generalization of the theorem to the case of semirings.

Below we give a combinatorial proof inspired from Straubing (1983) and Zeilberger (1985), but which further generalizes the theorem to the case of commиtative pre-semirings (indeed, it does not need to assume that ε, the neutral element of \oplus, is absorbing for \otimes).

Theorem 2. Let $(\mathrm{E}, \oplus, \otimes)$ be a commutative pre-semiring with neutral elements ε and e .

Let A be a square $\mathrm{n} \times \mathrm{n}$ matrix with coefficients in $(\mathrm{E}, \oplus, \otimes)$, and let $\left(\mathrm{P}_{\mathrm{A}}^{+}(\lambda)\right.$, $\left.\mathrm{P}_{\mathrm{A}}^{-}(\lambda)\right)$ be the characteristic bipolynomial of A .

$$
\begin{equation*}
\text { Then we have: } \mathrm{P}_{A}^{+}(\mathrm{A})=\mathrm{P}_{\mathrm{A}}^{-}(\mathrm{A}) \tag{23}
\end{equation*}
$$

where:
$\mathrm{P}_{\mathrm{A}}^{+}(\mathrm{A})$ and $\mathrm{P}_{\mathrm{A}}^{-}(\mathrm{A})$ are matrices obtained by replacing $\lambda^{\mathrm{n}-\mathrm{q}}$ by the matrix $\mathrm{A}^{\mathrm{n}-\mathrm{q}}$ in the expression of $\mathrm{P}_{\mathrm{A}}^{+}(\lambda)$ and $\mathrm{P}_{\mathrm{A}}^{-}(\lambda)$, and where the following conventional notation is used: A^{o} denotes the matrix with diagonal terms equal to e and nondiagonal terms equal to ε; for every $\alpha \in \mathrm{E}, \alpha \otimes \mathrm{A}^{0}$ denotes the matrix with diagonal terms equal to α and nondiagonal terms equal to ε.

Proof. We show that each entry (i, j) of the matrix $\mathrm{P}_{\mathrm{A}}^{+}(\mathrm{A})$ is equal to the entry (i, j) of the matrix $\mathrm{P}_{\mathrm{A}}^{-}(\mathrm{A})$.

Let us therefore consider i and j as fixed.
For $\mathrm{q}=0,1, \ldots, \mathrm{n}-1$, the value of term (i, j$)$ of the matrix $\mathrm{A}^{\mathrm{n}-\mathrm{q}}$ is:

$$
\left(\mathrm{A}^{\mathrm{n}-\mathrm{q}}\right)_{\mathrm{ij}}=\sum_{\substack{\mathrm{p} \in \mathrm{P}_{\mathrm{ij}} \\|\mathrm{p}|=\mathrm{n}-\mathrm{q}}}\left(\prod_{(\mathrm{k}, 1) \in \mathrm{p}} \mathrm{a}_{\mathrm{k}, 1}\right)
$$

where P_{ij} is the set of (nonnecessarily elementary) paths joining i to j in the complete directed graph on the set of vertices $\{1, \ldots, \mathrm{n}\}$, and where $|\mathrm{p}|$ denotes the cardinality (number of arcs) of the path $\mathrm{p} \in \mathrm{P}_{\mathrm{ij}}$.

For $\mathrm{q}=\mathrm{n}$, consistently with the adopted notational convention, $\left(\mathrm{A}^{\mathrm{n}-\mathrm{q}}\right)_{\mathrm{i}, \mathrm{j}}=$ $\left(A^{0}\right)_{i j}$ is equal to ε for $i \neq j$, and to e for $i=j$.

Furthermore, the coefficient of $\mathrm{A}^{\mathrm{n}-\mathrm{q}}$ in $\mathrm{P}_{\mathrm{A}}^{+}(\mathrm{A})$ is:

$$
\sum_{\substack{\sigma \in \operatorname{Part}^{+}(\mathrm{n}) \\|\sigma|=\mathrm{q}}}\left(\prod_{\mathrm{i} \in \operatorname{dom}(\sigma)} \mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})}\right)
$$

and, consequently, the term (i, j) of the matrix $P_{A}^{+}(A)$ (by using the distributivity of \otimes with respect to \oplus) is given by the following formulae. For $\mathrm{i} \neq \mathrm{j}$:

$$
\begin{equation*}
\sum_{q=1}^{n-1}\left[\left(\sum_{\substack{p \in P_{i j} \\|p|=n-q}} \prod_{(k, 1) \in p} a_{k, 1}\right) \otimes\left(\sum_{\substack{\sigma \in \operatorname{Part}^{+}(n) \\|\sigma|=q}} \prod_{\substack{i \in \operatorname{dom}(\sigma)}} a_{i, \sigma(i)}\right)\right] \oplus\left[\sum_{\substack{p \in P_{i j} \\|p|=n}} \prod_{(k, 1) \in p} a_{k, 1}\right] \tag{24}
\end{equation*}
$$

For $\mathrm{i}=\mathrm{j}$, we must add to expression (24) the extra term:

$$
\sum_{\substack{\sigma \in \operatorname{Part}^{+}(\mathrm{n}) \\|\sigma|=\mathrm{n}}}\left(\prod_{\mathrm{i} \in \operatorname{dom}(\sigma)} \mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})}\right)
$$

(which may be viewed as corresponding to the value $\mathrm{q}=\mathrm{n}$).
Let us denote $\mathcal{F}_{\mathrm{ij}}^{+}$(resp. $\mathcal{F}_{\mathrm{ij}}^{-}$) the family of graphs having $\mathrm{X}=\{1,2, \ldots, \mathrm{n}\}$ as vertex set and whose set of arcs U decomposes into: $\mathrm{U}=\mathrm{P} \cup \mathrm{C}$ where:

- P is a set of arcs forming a path from i to j;
- C is a set of arcs such that the graph $\mathrm{G}=[\mathrm{X}, \mathrm{C}]$ is the graph associated with a partial permutation σ of X with $\sigma \in \operatorname{Part}^{+}(\mathrm{n})\left(\right.$ resp. $\left.\sigma \in \operatorname{Part}^{-}(\mathrm{n})\right)$.
In other words, $[\mathrm{X}, \mathrm{C}]$ is a union of an even (resp. odd) number of disjoint circuits (loops are allowed) not necessarily covering all the vertices.
- $|\mathrm{U}|=|\mathrm{P}|+|\mathrm{C}|=\mathrm{n}$.

The weight $\mathrm{w}(\mathrm{G})$ of a graph $\mathrm{G}=[\mathrm{X}, \mathrm{U}]$ belonging to $\mathcal{F}_{\mathrm{ij}}^{+}$or to $\mathcal{F}_{\mathrm{ij}}^{-}$is defined as:

$$
\mathrm{w}(\mathrm{G})=\prod_{(\mathrm{k}, 1) \in \mathrm{U}} \mathrm{a}_{\mathrm{k}, 1}
$$

In the case where $\mathrm{i} \neq \mathrm{j}$, by expanding (24) (distributivity) we then observe that entry (i, j) of $\mathrm{P}_{\mathrm{A}}^{+}(\mathrm{A})$ is:

$$
\begin{equation*}
\sum_{\mathrm{G} \in \mathcal{F}_{\mathrm{ij}}^{+}} \mathrm{w}(\mathrm{G}) \tag{25}
\end{equation*}
$$

In the case where $\mathrm{i}=\mathrm{j}$, by considering that the path P can be empty in the decomposition $\mathrm{U}=\mathrm{P} \cup \mathrm{C}$, the additional term corresponding to $\mathrm{q}=\mathrm{n}$ is clearly taken into account in expression (25).

Similarly, it is easy to see that the entry (i, j) of $P_{A}^{-}(A)$ is, in all cases, $(i=j$ and $\mathrm{i} \neq \mathrm{j}$), equal to:

$$
\begin{equation*}
\sum_{\mathrm{G} \in \mathcal{F}_{\mathrm{ij}}^{-}} \mathrm{w}(\mathrm{G}) \tag{26}
\end{equation*}
$$

It therefore remains to show that the two expressions (25) and (26) are equal. To do so, let us show that, with any graph G of $\mathcal{F}_{\mathrm{ij}}^{+}$, we can associate a graph G^{\prime} of $\mathcal{F}_{\mathrm{ij}}^{-}$ of the same weight, $\mathrm{w}\left(\mathrm{G}^{\prime}\right)=\mathrm{w}(\mathrm{G})$, the correspondence thus exhibited between $\mathcal{F}_{\mathrm{ij}}^{+}$ and $\mathcal{F}_{\mathrm{ij}}^{-}$being one-to-one.

Let us therefore consider $\mathrm{G}=[\mathrm{X}, \mathrm{P} \cup \mathrm{C}] \in \mathcal{F}_{\mathrm{ij}}^{+} .[\mathrm{X}, \mathrm{C}]$ is a union of an even number (possibly zero) of vertex-disjoint circuits (Fig. 3 shows an example where $\mathrm{n}=8, \mathrm{i}=1, \mathrm{j}=4)$.

Since $|\mathrm{P}|+|\mathrm{C}|=\mathrm{n}$, we observe that the sets of vertices covered by P and C necessarily have at least one common element. Furthermore, the path P not necessarily being elementary, P can contain one (or several) circuit(s).

Fig. 3 Example illustrating the proof of the Cayley-Hamilton theorem. A graph $G \in \mathcal{F}_{\mathrm{ij}}^{+}$for $\mathrm{n}=8$, with $\mathrm{i}=1$ and $\mathrm{j}=4$. The path P is indicated in full lines and the partial permutation σ of characteristic +1 (as it contains two vertex-disjoint circuits) is indicated with dotted lines

Let us follow the path P starting from i until one of the following two situations occurs:

Case 1. We arrive at a vertex of P already traversed without meeting a vertex covered by C;
Case 2. We arrive at a vertex k covered by C .
In case 1 we have identified a circuit Γ of P which does not contain any vertex covered by C. In this case, we construct $\mathrm{G}^{\prime}=\left[\mathrm{X}, \mathrm{P}^{\prime} \cup \mathrm{C}^{\prime}\right]$ where:

- P^{\prime} is deduced from P by eliminating the circuit Γ;
- C^{\prime} is deduced from C by adding the circuit Γ.

We observe that C^{\prime} now contains an odd number of disjoint circuits, therefore $\mathrm{G}^{\prime} \in$ $\mathcal{F}_{\mathrm{ij}}^{-}$.

In case 2, let Γ be the circuit of C containing the vertex k . We construct $\mathrm{G}^{\prime}=$ $\left[\mathrm{X}, \mathrm{P}^{\prime} \cup \mathrm{C}^{\prime}\right]$ where:

- P^{\prime} is deduced from P by adding the circuit Γ;
- C^{\prime} is deduced from C by eliminating the circuit Γ.

Here again, C^{\prime} contains an odd number of disjoint circuits, therefore $\mathrm{G}^{\prime} \in \mathcal{F}_{\mathrm{ij}}^{-}$.
Furthermore, we observe that in the two cases, G and G^{\prime} have the same set of arcs, therefore $w\left(G^{\prime}\right)=w(G)$.

Finally, it is easy to see that, the same construction by which G is transformed into G^{\prime} can be used to transform G^{\prime} back into G : there is therefore a one-to-one correspondence between $\mathcal{F}_{\mathrm{ij}}^{+}$and $\mathcal{F}_{\mathrm{ij}}^{-}$. (see illustration in Fig. 4)

From the above we deduce:

$$
\sum_{\mathrm{G} \in \mathcal{F}_{\mathrm{ij}}^{+}} \mathrm{w}(\mathrm{G})=\sum_{\mathrm{G} \in \mathcal{F}_{i j}^{-}} \mathrm{w}(\mathrm{G})
$$

which completes the proof of Theorem 2.

Fig. 4 The graph G^{\prime} obtained by including the circuit $(3,6,8)$ in P is an element of $\mathcal{F}_{\mathrm{ij}}^{-}$and it has the same weight as G

7. Semirings, Bideterminants and Arborescences

In the present section we consider a square $\mathrm{n} \times \mathrm{n}$ matrix, $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ with elements in a commutative semiring $(\mathrm{E}, \oplus, \otimes)$. We assume therefore:

- That \oplus has a neutral element ε
- That \otimes has a neutral element e.
- That ε is absorbing for \otimes that is to say,

$$
\forall \mathrm{x} \in \mathrm{E}: \quad \varepsilon \otimes \mathrm{x}=\mathrm{x} \otimes \varepsilon=\varepsilon
$$

For $r \in[1, n]$ we denote \bar{A} the $(n-1) \times(n-1)$ matrix deduced from A by deleting row r and column r.

We denote I the $(n-1) \times(n-1)$ identity matrix of $M_{n-1}(E)$ with all diagonal terms equal to e and all other terms equal to ε.

7.1. An Extension to Semirings of the Matrix-Tree Theorem

Let us begin by stating below the result which will be proved in Sect. 7.2, and which may be viewed as a generalization, to semirings, of the classical "Matrix-Tree-Theorem" by Borchardt (1860) and Tutte (1948).

Theorem 3. (Minoux, 1997)
Let A be a square $\mathrm{n} \times \mathrm{n}$ matrix with coefficients in a commutative semiring $(\mathrm{E}, \oplus, \otimes)$. Let $\overline{\mathrm{A}}$ be the matrix deduced from A by deleting row r and column $\mathrm{r}(\mathrm{r} \in$ $[1, \mathrm{n}])$ and let B be the $(2 \mathrm{n}-2) \times(2 \mathrm{n}-2)$ matrix of the form:

$$
B=\left[\begin{array}{c}
\overline{\mathrm{D}}: \overline{\mathrm{A}} \\
\cdots \vdots \\
\mathrm{I}: \\
\mathrm{I} \\
\mathrm{I}
\end{array}\right]
$$

where I is the identity matrix of $\mathrm{M}_{\mathrm{n}-1}(\mathrm{E})$ and $\overline{\mathrm{D}}$ the diagonal matrix whose diagonal terms are:

$$
\mathrm{d}_{\mathrm{ii}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \quad \forall \mathrm{i} \in\{1, \ldots, \mathrm{n}\} \backslash\{\mathrm{r}\}
$$

(sum in the sense of \oplus).
Let us denote by \mathcal{G} the complete directed 1-graph on the vertex set $\mathrm{X}=$ $\{1,2, \ldots, \mathrm{n}\}$ and by \mathcal{T}_{r} the set of the arborescences rooted at r in \mathcal{G}. For an arbitrary partial graph G of \mathcal{G}, the weight of G , denoted $\mathrm{w}(\mathrm{G})$, is the product (in the sense of $\otimes)$ of the values a_{ij} for all the arcs (i, j) of G .

Then we have the identity:

$$
\operatorname{det}^{+}(\mathrm{B})=\operatorname{det}^{-}(\mathrm{B}) \oplus \sum_{\mathcal{G} \in \mathcal{T}_{\mathrm{r}}} \mathrm{w}(\mathrm{G})
$$

7.2. Proof of Extended Theorem

To prove Theorem 3 , let us consider the following $(2 n-2) \times(2 n-2)$ square matrix:

$$
\mathrm{B}^{\prime}=\left[\begin{array}{c}
\overline{\mathrm{A}}: \overline{\mathrm{D}} \\
\cdots \because: \\
\mathrm{I}: \mathrm{I}
\end{array}\right]
$$

We observe that the permutation applied to the columns of B to obtain B^{\prime} is even if $n-1$ is even, and odd if $n-1$ is odd. Consequently, if $n-1$ is even we have $\operatorname{det}^{+}(B)=\operatorname{det}^{+}\left(B^{\prime}\right)$ and $\operatorname{det}^{-}(B)=\operatorname{det}^{-}\left(B^{\prime}\right)$. If $n-1$ is odd, we have: $\operatorname{det}^{+}(B)=$ $\operatorname{det}^{-}\left(B^{\prime}\right)$ and $\operatorname{det}^{-}(B)=\operatorname{det}^{+}\left(B^{\prime}\right)$.

Let us begin by studying the properties of the bideterminant of $\mathrm{B}^{\prime}=\left(\mathrm{b}_{\mathrm{ij}}^{\prime}\right)$. We have:

$$
\begin{equation*}
\operatorname{det}^{+}\left(\mathrm{B}^{\prime}\right)=\sum_{\pi \in \operatorname{Per}^{+}(2 \mathrm{n}-2)}\left(\prod_{\mathrm{i}=1}^{2 \mathrm{n}-2} \mathrm{~b}_{\mathrm{i}, \pi(\mathrm{i})}^{\prime}\right) \tag{27}
\end{equation*}
$$

In the above expression, all the terms corresponding to permutations π of $\{1, \ldots$, $2 \mathrm{n}-2\}$ such that $\mathrm{b}_{\mathrm{i}, \pi(\mathrm{i})}^{\prime}=\varepsilon$ for some $\mathrm{i} \in[1,2 \mathrm{n}-2]$ disappear because of the absorption property.

Consequently, in (27), we only have to take into account the permutations π of $\operatorname{Per}^{+}(2 n-2)$ such that, for $1 \leq i \leq n-1$:

$$
\pi(\mathrm{i}+\mathrm{n}-1)=\mathrm{i} \quad \text { or } \quad \pi(\mathrm{i}+\mathrm{n}-1)=\mathrm{i}+\mathrm{n}-1
$$

Each admissible permutation π can therefore be associated with a partition of $\bar{X}=$ $\{1, \ldots, n-1\}$ in two subsets U and V where:

$$
\begin{array}{ll}
U=\{i / i \in \bar{X} ; & \pi(i+n-1)=i\} \\
V=\{i / i \in \bar{X} ; & \pi(i+n-1)=i+n-1\}
\end{array}
$$

Furthermore, we observe that the columns of B^{\prime} indexed $i+n-1$ with $i \in U$ can only be covered by rows with index $\mathrm{i} \in \mathrm{U}$. Given that $\overline{\mathrm{D}}$ is diagonal, we must therefore have:

$$
\forall \mathrm{i} \in \mathrm{U}: \quad \pi(\mathrm{i})=\mathrm{i}+\mathrm{n}-1
$$

Each admissible permutation π can therefore be considered as derived from a permutation σ of V (a partial permutation of $\mathrm{X}=\{1, \ldots, \mathrm{n}\}$) as follows:

$$
\left\{\begin{array}{l}
\forall \mathrm{i} \in \mathrm{~V}:\left\{\begin{array}{l}
\pi(\mathrm{i})=\sigma(\mathrm{i}) \\
\pi(\mathrm{i}+\mathrm{n}-1)=\mathrm{i}+\mathrm{n}-1
\end{array}\right. \\
\forall \mathrm{i} \in \mathrm{U}:\left\{\begin{array}{l}
\pi(\mathrm{i})=\mathrm{i}+\mathrm{n}-1 \\
\pi(\mathrm{i}+\mathrm{n}-1)=\mathrm{i}
\end{array}\right.
\end{array}\right.
$$

The graph representing π on the set of vertices $\{1, \ldots, 2 n-2\}$ therefore consists of:

- Elementary circuits representing the partial permutation σ;
- $|\mathrm{V}|$ loops on the vertices $\mathrm{i}+\mathrm{n}-1(\mathrm{i} \in \mathrm{V})$;
- $|\mathrm{U}|$ circuits of length 2 (therefore even) of the form ($i, i+n-1$), $i \in U$.

The signature of π is therefore equal to

$$
\operatorname{sign}(\pi)=\operatorname{sign}(\sigma) \times(-1)^{|\mathrm{U}|}
$$

hence:

$$
\begin{aligned}
\operatorname{sign}(\pi) & =\operatorname{sign}(\pi) \times(-1)^{2 \times|\mathrm{V}|} \\
& =\operatorname{sign}(\sigma) \times(-1)^{|\mathrm{V}|} \times(-1)^{|\mathrm{U}|+|\mathrm{V}|} \\
& =\operatorname{char}(\sigma) \times(-1)^{\mathrm{n}-1}
\end{aligned}
$$

(since $\mathrm{V}=\operatorname{dom}(\sigma)$).
Let us first assume that $n-1$ is even. In this case, $\operatorname{sign}(\pi)$ is none other than the characteristic of σ as a partial permutation of \bar{X}, and $\pi \in \operatorname{Per}^{+}(2 n-2)$ if and only if $\sigma \in \operatorname{Part}^{+}(\mathrm{n}-1)$. Then, (27) can be rewritten:

$$
\begin{align*}
\operatorname{det}^{+}\left(\mathrm{B}^{\prime}\right) & =\sum_{\sigma \in \operatorname{Part}^{+}(\mathrm{n}-1)}\left(\prod_{\mathrm{i} \in \mathrm{~V}} \mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})}\right) \otimes\left(\prod_{\mathrm{i} \in \mathrm{U}} \mathrm{~d}_{\mathrm{ii}}\right) \tag{28}\\
& =\operatorname{det}^{+}(\mathrm{B})
\end{align*}
$$

We would obtain a similar expression for $\operatorname{det}^{-}\left(\mathrm{B}^{\prime}\right)=\operatorname{det}^{-}(\mathrm{B})$ simply by replacing $\sigma \in \operatorname{Part}^{+}(\mathrm{n}-1)$ in (28) with $\sigma \in \operatorname{Part}^{-}(\mathrm{n}-1)$. (Fig. 5)

Let us now consider the case where $n-1$ is odd. We then have $\operatorname{sign}(\pi)=$ $-\operatorname{char}(\sigma)$, and, consequently, we have:

$$
\begin{align*}
\operatorname{det}^{+}\left(\mathrm{B}^{\prime}\right) & =\sum_{\sigma \in \operatorname{Part}^{-}(\mathrm{n}-1)}\left(\prod_{\mathrm{i} \in \mathrm{~V}} \mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})}\right) \otimes\left(\prod_{\mathrm{i} \in \mathrm{U}} \mathrm{~d}_{\mathrm{ii}}\right) \tag{29}\\
& =\operatorname{det}^{-}(\mathrm{B})
\end{align*}
$$

(we obtain the expression of $\operatorname{det}^{-}\left(\mathrm{B}^{\prime}\right)=\operatorname{det}^{+}(\mathrm{B})$ by replacing $\sigma \in \operatorname{Part}^{-}(\mathrm{n}-1)$ in (29) with $\sigma \in \operatorname{Part}^{+}(\mathrm{n}-1)$).

Thus it is seen that, in both cases ($n-1$ even or odd), the expression giving $\operatorname{det}^{+}(\mathrm{B})$ is:

$$
\begin{equation*}
\operatorname{det}^{+}(\mathrm{B})=\sum_{\sigma \in \operatorname{Part}^{+}(\mathrm{n}-1)}\left(\prod_{\mathrm{i} \in \mathrm{~V}} \mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})}\right) \otimes\left(\prod_{\mathrm{i} \in \mathrm{U}} \mathrm{~d}_{\mathrm{ii}}\right) \tag{30}
\end{equation*}
$$

(where $V=\operatorname{dom}(\sigma)$ and $U=\bar{X} \backslash V$). The expression giving $\operatorname{det}^{-}(B)$ is simply deduced from the above by replacing $\sigma \in \operatorname{Part}^{+}(\mathrm{n}-1)$ with $\sigma \in \operatorname{Part}^{-}(\mathrm{n}-1)$.

Fig. 5 The matrix B^{\prime} and a partition of $\bar{X}=\{1, \ldots, n-1\}$ into two subsets U and V corresponding to an admissible permutation π of $\{1, \ldots, 2 n-2\}$. Only the terms distinct from ε (neutral element of \oplus) are represented (by circles). The terms indicated in black are those corresponding to the permutation π. The partial permutation σ is the one induced by π on the sub-matrix of \bar{A} restricted to the rows and columns of V

Let us denote \mathcal{F}^{+}(resp. \mathcal{F}^{-}) the family of all directed graphs constructed on the vertex set $X=\{1,2, \ldots, n\}$, of the form $G=[X, C \cup Y]$ where:

- C is a set of arcs constituting vertex-disjoint circuits and containing an even (resp. odd) number of circuits;
- Y is a set of arcs such that, for every $i \in X \backslash\{r\}$ not covered by C, Y contains a single arc of the form (i, j) (the possibility $\mathrm{j}=\mathrm{i}$ being authorized, as well as the possibility $\mathrm{j}=\mathrm{r}$).

By expanding expression (30), that is to say by replacing each term d_{ii} by $\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}}$ and by using distributivity, we then observe that $\operatorname{det}^{+}(B)$ can be expressed in the form:

$$
\begin{equation*}
\operatorname{det}^{+}(\mathrm{B})=\sum_{\mathrm{G} \in \mathcal{F}^{+}} \mathrm{w}(\mathrm{G}) \tag{31}
\end{equation*}
$$

where the "weight" $w(G)$ of the graph $G=[X, C \cup Y]$ is:

$$
\mathrm{w}(\mathrm{G})=\prod_{(\mathrm{k}, 1) \in \mathrm{C} \cup \mathrm{Y}} \mathrm{a}_{\mathrm{k}, 1}
$$

We would prove similarly that:

$$
\begin{equation*}
\operatorname{det}^{-}(\mathrm{B})=\sum_{\mathrm{G} \in \mathcal{F}^{-}} \mathrm{w}(\mathrm{G}) \tag{32}
\end{equation*}
$$

Among the graphs of $\mathcal{F}^{+} \cup \mathcal{F}^{-}$, those which do not contain a cycle play a special role. Indeed, in this case, $\mathrm{C}=\emptyset$, and the set Y does not contain a cycle and is composed of $n-1 \operatorname{arcs}$ (an arc originating at each vertex $i \in X \backslash\{r\}$). Y therefore forms an arborescence rooted at r .

Since $\mathrm{C}=\emptyset$, the subclass \mathcal{T}_{r} (the set of arborescences rooted at r) is necessarily included in \mathcal{F}^{+}.

If we denote

$$
\mathcal{F}^{+}=\mathcal{T}_{r \cup} \mathcal{F}_{c}^{+}
$$

we can therefore write:

$$
\begin{equation*}
\operatorname{det}^{+}(\mathrm{B})=\sum_{\mathrm{G} \in \mathcal{T}_{\mathrm{r}}} \mathrm{w}(\mathrm{G}) \oplus \sum_{\mathrm{G} \in \mathcal{F}_{\mathrm{c}}^{+}} \mathrm{w}(\mathrm{G}) \tag{33}
\end{equation*}
$$

The end of the proof uses the following result (Zeilberger, 1985):
Lemma 7.2.1.

$$
\begin{equation*}
\sum_{\mathrm{G} \in \mathcal{F}_{\mathrm{c}}^{+}} \mathrm{w}(\mathrm{G})=\sum_{\mathrm{G} \in \mathcal{F}^{-}} \mathrm{w}(\mathrm{G}) \tag{34}
\end{equation*}
$$

Proof. It proceeds by showing that, with each graph $G \in \mathcal{F}_{c}^{+}$we can associate a graph G^{\prime} of \mathcal{F}^{-}with $\mathrm{w}\left(\mathrm{G}^{\prime}\right)=\mathrm{w}(\mathrm{G})$, and that the correspondence is one-to-one.

Let us therefore consider a graph G of $\mathcal{F}_{\mathrm{c}}^{+}$of the form $\mathrm{G}=[\mathrm{X}, \mathrm{C} \cup \mathrm{Y}]$.
This graph contains at least one circuit and [X, C] contains an even number (possibly zero) of circuits. Among all the circuits of G, let us consider the one which meets the vertex with the smallest index number and let Γ be the set of its arcs.

If $\Gamma \subset Y$ then let us define $\mathrm{G}^{\prime}=\left[\mathrm{X}, \mathrm{C}^{\prime} \cup \mathrm{Y}^{\prime}\right]$ with

$$
\begin{aligned}
\mathrm{C}^{\prime} & =\mathrm{C} \cup \Gamma \\
\mathrm{Y}^{\prime} & =\mathrm{Y} \backslash \Gamma
\end{aligned}
$$

If $\Gamma \subset \mathrm{C}$ then let us define C^{\prime} and Y^{\prime} as:

$$
\begin{aligned}
& \mathrm{C}^{\prime}=\mathrm{C} \backslash \Gamma \\
& \mathrm{Y}^{\prime}=\mathrm{Y} \cup \Gamma
\end{aligned}
$$

In both cases, C^{\prime} contains an odd number of circuits, therefore $\mathrm{G}^{\prime} \in \mathcal{F}^{-}$, and as G and G^{\prime} have the same sets of arcs:

$$
\mathrm{w}\left(\mathrm{G}^{\prime}\right)=\mathrm{w}(\mathrm{G}) .
$$

Furthermore, we observe that the same construction which transforms G to G^{\prime} enables one to transform G^{\prime} back to G .

We would prove in the same way that, with every $\mathrm{G} \in \mathcal{F}^{-}$we can associate $\mathrm{G}^{\prime} \in \mathcal{F}_{\mathrm{c}}^{+}$such that $\mathrm{w}\left(\mathrm{G}^{\prime}\right)=\mathrm{w}(\mathrm{G})$.

This completes the proof of Lemma 7.2.1.
By using Lemma 7.2.1, (33) is then rewritten:

$$
\operatorname{det}^{+}(\mathrm{B})=\sum_{\mathrm{G} \in \mathcal{T}_{\mathrm{r}}} \mathrm{w}(\mathrm{G}) \oplus \operatorname{det}^{-}(\mathrm{B}), \text { which establishes Theorem } 3 .
$$

7.3. The Classical Matrix-Tree Theorem as a Special Case

In the special case where A is a real matrix on the field of real numbers, we see that

$$
\sum_{\mathrm{G} \in \mathcal{I}_{\mathrm{r}}} \mathrm{w}(\mathrm{G})=\operatorname{det}^{+}(\mathrm{B})-\operatorname{det}^{-}(\mathrm{B})=\operatorname{det}(\mathrm{B})
$$

where $\operatorname{det}(B)$ is the determinant of B in the usual sense and:

$$
\begin{aligned}
\operatorname{det}(\mathrm{B}) & =\operatorname{det}\left[\begin{array}{cc}
\overline{\mathrm{D}}: & \overline{\mathrm{A}} \\
\cdots & \cdots \\
\mathrm{I}: & \mathrm{I}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{ccc}
\overline{\mathrm{D}}-\overline{\mathrm{A}}: & \overline{\mathrm{A}} \\
\cdots \cdots & \cdots \\
0 & \vdots & \mathrm{I}
\end{array}\right] \\
& =\operatorname{det}(\overline{\mathrm{D}}-\overline{\mathrm{A}})
\end{aligned}
$$

From the above, we deduce the following corollary, known as the "Matrix Tree Theorem", due independently to Borchardt (1860) and Tutte (1948):

Corollary 7.3.1. Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ be a square $\mathrm{n} \times \mathrm{n}$ matrix with real coefficients; D the diagonal matrix whose ith diagonal term is $\mathrm{d}_{\mathrm{ii}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} ; \overline{\mathrm{A}}$ and $\overline{\mathrm{D}}$ the matrices deduced from A and D by eliminating the rth row and the rth column (for any fixed r , $1 \leq \mathrm{r} \leq \mathrm{n})$. Then $\operatorname{det}(\overline{\mathrm{D}}-\overline{\mathrm{A}})$ is equal to the sum of the weights of the arborescences rooted at r in the graph associated with matrix A .

Theorem 3 can thus be considered as an extension to semirings of the "Matrix-Tree Theorem".

7.4. A Still More General Version of the Theorem

A more general version of the "Matrix Tree Theorem", known as the "All Minors Matrix Tree Theorem" (see Chen (1976), Chaiken (1982)) can also be extended to semirings. We present this extension below (Theorem 4).

Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ be a square $\mathrm{n} \times \mathrm{n}$ matrix with coefficients in a commutative semi-ring $(\mathrm{E}, \oplus, \otimes)$, such that $\forall \mathrm{i}=1, \ldots, \mathrm{n}: \mathrm{a}_{\mathrm{ii}}=\varepsilon$ (the neutral element of \oplus in E).

For every $i \in X=\{1,2, \ldots, n\}$ set:

$$
\mathrm{d}_{\mathrm{ii}}=\sum_{\substack{\mathrm{k}=1 \\ \mathrm{k} \neq \mathrm{i}}}^{\mathrm{n}} \mathrm{a}_{\mathrm{ik}}
$$

Let $L \subset X$ be a subset of rows of A and $K \subset X$ a subset of columns of A with $|\mathrm{L}|=|\mathrm{K}|$.

Let A be the sub-matrix of A obtained by eliminating the rows of L and the columns of K. The rows and the columns of \bar{A} are therefore indexed by $\bar{L}=X \backslash L$ and $\overline{\mathrm{K}}=\mathrm{X} \backslash \mathrm{K}$.

By setting $\mathrm{m}=|\overline{\mathrm{L}}|=|\overline{\mathrm{K}}|$ and $\mathrm{p}=|\overline{\mathrm{L}} \cap \overline{\mathrm{K}}|$ let us consider the $(\mathrm{m}+\mathrm{p}) \times(\mathrm{m}+\mathrm{p})$ square matrix B having the block structure:

$$
\mathrm{B}=\left[\begin{array}{c:c}
\overline{\mathrm{A}}: \overline{\mathrm{Q}} \\
\cdots & \cdots \\
R: \mathrm{I}_{\mathrm{p}}
\end{array}\right]
$$

where:
I_{p} is the $\mathrm{p} \times \mathrm{p}$ identity matrix of the semiring $(\mathrm{E}, \oplus, \otimes)$.
Q is a $\mathrm{m} \times \mathrm{p}$ matrix whose rows are indexed by $\overline{\mathrm{L}}$ and whose columns are indexed by $\overline{\mathrm{L}} \cap \overline{\mathrm{K}}$; all its terms are equal to ε except those indexed (i, i) with $\mathrm{i} \in \overline{\mathrm{L}} \cap \overline{\mathrm{K}}$ which are equal to d_{ii}.
R is a $p \times m$ matrix whose lines are indexed by $\bar{L} \cap \overline{\mathrm{~K}}$ and whose columns are indexed by $\overline{\mathrm{K}}$; all its terms are equal to ε except those indexed (i, i) with $\mathrm{i} \in \overline{\mathrm{L}} \cap \overline{\mathrm{K}}$ which are equal to e (the neutral element of \otimes in E).

For every subset $\mathrm{Y} \subset \mathrm{X}=\{1,2, \ldots, \mathrm{n}\}$ let us denote $\operatorname{sign}(\mathrm{Y}, \mathrm{X})=(-1)^{v(\mathrm{Y}, \mathrm{X})}$ where:

$$
\nu(\mathrm{Y}, \mathrm{X})=|\{(\mathrm{i}, \mathrm{j}) / \mathrm{i} \in \mathrm{X} \backslash \mathrm{Y}, \mathrm{j} \in \mathrm{Y}, \mathrm{i}<\mathrm{j}\}|
$$

and $\mathrm{s}(\mathrm{L}, \mathrm{K})=\operatorname{sign}(\mathrm{L}, \mathrm{X}) \times \operatorname{sign}(\mathrm{K}, \mathrm{X}) \times(-1)^{\mathrm{m}}$.
Let us also consider the set $\mathcal{T}=\mathcal{T}^{+} \cup \mathcal{T}^{-}$of all the directed forests H on the vertex set X satisfying the following three properties:
(i) H contains exactly $|\mathrm{L}|=|\mathrm{K}|$ trees;
(ii) Each tree of H contains exactly a vertex of L and a vertex of K ;
(iii) Each tree of H is an arborescence, the root of which is the unique vertex of K which it contains.

The subsets \mathcal{T}^{+}and \mathcal{T}^{-}are then defined as follows.
With each $\mathrm{H} \in \mathcal{T}$ we can associate a one-to-one correspondence $\pi^{*}: \mathrm{L} \rightarrow \mathrm{K}$ defined as: $\pi^{*}(\mathrm{j})=\mathrm{i}$ if and only if $\mathrm{i} \in \mathrm{K}$ and $\mathrm{j} \in \mathrm{L}$ belong to the same tree of H .

Then $\mathcal{T}^{+}\left(\right.$resp. $\left.\mathcal{T}^{-}\right)$is the set of the directed forests of \mathcal{T} such that sign $\left(\pi^{*}\right)=+1$ $\left(\right.$ resp. sign $\left.\left(\pi^{*}\right)=-1\right)$.
We can then state:
Theorem 4. (Minoux, 1998a)
If $\mathrm{s}(\mathrm{L}, \mathrm{K})=+1$ then there exists $\Delta \in \mathrm{E}$
such that:

$$
\left\{\begin{array}{l}
\operatorname{det}^{+}(\mathrm{B})=\sum_{\mathrm{H} \in \mathcal{T}^{+}} \mathrm{w}(\mathrm{H}) \oplus \Delta \\
\operatorname{det}^{-}(\mathrm{B})=\sum_{\mathrm{H} \in \mathcal{T}^{-}} \mathrm{w}(\mathrm{H}) \oplus \Delta
\end{array}\right.
$$

If $\mathrm{s}(\mathrm{L}, \mathrm{K})=-1$ then there exists $\Delta \in \mathrm{E}$ such that:

$$
\left\{\begin{array}{l}
\operatorname{det}^{+}(\mathrm{B})=\sum_{\mathrm{H} \in \mathcal{T}^{-}} \mathrm{w}(\mathrm{H}) \oplus \Delta \\
\operatorname{det}^{-}(\mathrm{B})=\sum_{\mathrm{H} \in \mathcal{T}^{+}} \mathrm{w}(\mathrm{H}) \oplus \Delta
\end{array}\right.
$$

Proof. Refer to Exercise 1 at the end of the chapter where the exact expression of Δ is specified.

The above result suggests, once again, an essential remark concerning the general approach followed in the present chapter. In fact, suppose that we apply the simple trick which consists in formally deducing the generalized result from the classical result. The reader will easily be convinced that we can reformulate the classical "All-Minors Matrix-Tree Theorem" as:

$$
\operatorname{det}(\mathrm{B})=\sum_{\mathrm{H} \in \mathcal{T}^{+}} \mathrm{w}(\mathrm{H})-\sum_{\mathrm{H} \in \mathcal{T}^{-}} \mathrm{w}(\mathrm{H})
$$

If one thinks that it then suffices to rewrite the classical result by switching each term appearing negatively to the other side of the equation, one is led to propose a generalized version of the form:

$$
\operatorname{det}^{+}(\mathrm{B}) \oplus \sum_{\mathrm{H} \in \mathcal{T}^{-}} \mathrm{w}(\mathrm{H})=\operatorname{det}^{-}(\mathrm{B}) \oplus \sum_{\mathrm{H} \in \mathcal{T}^{+}} \mathrm{w}(\mathrm{H})
$$

which is not correct. Indeed, the above formula does not take into account the additional term Δ which cancels itself in the classical result.

Only a direct proof, specialized to the semiring structure, can exhibit this term and provide the exact expression (see Exercise 1 at the end of the chapter).

8. A Generalization of the Mac Mahon Identity to Commutative Pre-Semirings

Let us consider a square $\mathrm{n} \times \mathrm{n}$ matrix, $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ with coefficients in a commutative pre-semiring $(\mathrm{E}, \oplus, \otimes)$.
$\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ being indeterminates and $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}$ natural integers, we consider the expression:

$$
\begin{gather*}
\left(a_{11} \otimes x_{1} \oplus a_{12} \otimes x_{2} \oplus \cdots a_{1 n} \otimes x_{n}\right)^{m_{1}} \\
\otimes\left(a_{21} \otimes x_{1} \oplus \cdots \oplus a_{2 n} \otimes x_{n}\right)^{m_{2}} \tag{35}\\
\cdot \\
\cdot \\
\bullet \\
\bullet\left(a_{n 1} \otimes x_{1} \oplus \cdots \oplus a_{n n} \otimes x_{n}\right)^{m_{n}}
\end{gather*}
$$

and we denote $K\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ the coefficient of the term involving $x_{1}^{m_{1}} \otimes x_{2}^{m_{2}} \otimes$ $\cdots \otimes \mathrm{x}_{\mathrm{n}}^{\mathrm{m}_{\mathrm{n}}}$ in the expansion of expression (35).

The Mac Mahon identity (1915) (recalled in Sect. 8.2 below) establishes a link between the formal series S in $x_{1}, x_{2}, \ldots, x_{n}$, with coefficients $K\left(m_{1}, m_{2}, \ldots, m_{n}\right)$, and the expansion of the inverse of the determinant of the matrix $I-A D_{x}$, where D_{x} is the diagonal matrix whose diagonal terms are the indeterminates $x_{1}, x_{2}, \ldots, x_{n}$.

In Sect. 8.1, we establish a more general version of this result for commutative pre-semirings by giving a combinatorial proof generalizing that of Foata (1965), Cartier and Foata (1969) (see also Zeilberger, 1985). In Sect. 8.2 we show that the classical identity can be found again as a special case.

8.1. The Generalized Mac Mahon Identity

Theorem 5. (Minoux 1998b, 2001)

Let $(\mathrm{E}, \oplus, \otimes)$ be a commutative pre-semiring and $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right) \in \mathrm{M}_{\mathrm{n}}(\mathrm{E})$.
Let S denote the formal series:

$$
\begin{equation*}
\mathrm{S}=\sum_{\left(\mathrm{m}_{1}, \ldots \mathrm{~m}_{\mathrm{n}}\right)} \mathrm{K}\left(\mathrm{~m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right) \otimes \mathrm{x}_{1}^{\mathrm{m}_{1}} \otimes \mathrm{x}_{2}^{\mathrm{m}_{2}} \otimes \cdots \otimes \mathrm{x}_{\mathrm{n}}^{m_{n}} \tag{36}
\end{equation*}
$$

where the sum extends to all distinct n -tuples of natural integers.
Then we have the following generalized Mac Mahon identity:

$$
\begin{align*}
& \mathrm{S} \otimes\left(\sum_{\sigma \in \operatorname{Part}^{+}(\mathrm{n})} \prod_{\mathrm{i} \in \operatorname{dom}(\sigma)} \mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})} \otimes \mathrm{x}_{\sigma(\mathrm{i})}\right) \\
& =\mathrm{e} \oplus \mathrm{~S} \otimes\left(\sum_{\sigma \in \operatorname{Part}^{-}(\mathrm{n})} \prod_{\mathrm{i} \in \operatorname{dom}(\sigma)} \mathrm{a}_{\mathrm{i}, \sigma(\mathrm{i})} \otimes \mathrm{x}_{\sigma(\mathrm{i})}\right) \tag{37}
\end{align*}
$$

Proof. Let us consider the family $\mathcal{G}\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)$ of all the directed multigraphs of the form $\mathrm{G}=[\mathrm{X}, \mathrm{Y}]$ where $\mathrm{X}=\{1,2, \ldots, \mathrm{n}\}$ is the vertex set and where the set of $\operatorname{arcs} \mathrm{Y}$ satisfies the two conditions:
(1) $\forall i \in X, Y$ contains exactly m_{i} arcs origining at i
(2) $\forall i \in X, Y$ contains exactly m_{i} arcs terminating at i
(observe that the graphs of the family $\mathcal{G}\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)$ can obviously contain loops).

The weight of $\mathrm{G}=[\mathrm{X}, \mathrm{Y}]$ is defined as the formal expression:

$$
\mathrm{w}(\mathrm{G})=\prod_{(\mathrm{k}, 1) \in \mathrm{Y}}\left(\mathrm{a}_{\mathrm{k} 1} \otimes \mathrm{x}_{1}\right)
$$

(product in the sense of \otimes) with the convention $\mathrm{w}(\mathrm{G})=\mathrm{e}$ if $\mathrm{Y}=\emptyset$.
We then verify that:

$$
\begin{aligned}
\mathrm{K}\left(\mathrm{~m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right) \mathrm{x}_{1}^{\mathrm{m}_{1}} & \otimes \mathrm{x}_{2}^{\mathrm{m}_{2}} \otimes \cdots \otimes \mathrm{x}_{\mathrm{n}}^{\mathrm{m}_{\mathrm{n}}} \\
= & \sum_{\mathrm{G} \in \mathcal{G}\left(\mathrm{~m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)} \mathrm{w}(\mathrm{G})
\end{aligned}
$$

Consequently, the expression S given by (36) can be rewritten:

$$
\begin{aligned}
\mathrm{S} & =\sum_{\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)} \sum_{\mathrm{G} \in \mathcal{G}\left(\mathrm{~m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)} \mathrm{w}(\mathrm{G})=\sum_{\mathrm{G} \in \mathcal{G}} \mathrm{w}(\mathrm{G}) \\
\text { with } \mathcal{G} & =\bigcup_{\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)} \mathcal{G}\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)
\end{aligned}
$$

(union extended to all distinct n-tuples of natural integers).
Let us now consider the family \mathcal{F}^{+}(resp. \mathcal{F}^{-}) of all the graphs of the form $\mathrm{G}=[\mathrm{X}, \mathrm{Y} \cup \mathrm{C}]$ where:

- $[\mathrm{X}, \mathrm{Y}] \in \mathcal{G}$
- $\quad[\mathrm{X}, \mathrm{C}]$ is the graph representative of a partial permutation $\sigma \in \operatorname{Part}^{+}(\mathrm{n})$ (resp. $\sigma \in \operatorname{Part}^{-}(\mathrm{n})$). It is therefore a set of arcs forming an even number (resp. odd number) of elementary vertex-disjoint circuits (some of these circuits may be loops).
We then observe that the left-hand side of (37) is equal to: $\sum_{\mathrm{G} \in \mathcal{F}^{+}} \mathrm{w}(\mathrm{G})$ and the right-hand side of (37) is equal to: $e \oplus \sum_{\mathrm{G} \in \mathcal{F}-} \mathrm{w}(\mathrm{G})$.

Among all the graphs of the family $\mathcal{F}^{+} \cup \mathcal{F}^{-}$, let us consider $\mathrm{G}_{0}=[\mathrm{X}, \mathrm{Y} \cup \mathrm{C}]$ with $\mathrm{Y}=\emptyset$ and $\mathrm{C}=\emptyset$. In this case, the graph $[\mathrm{X}, \mathrm{Y}]$ corresponds to $\mathrm{m}_{1}=$ $0, \mathrm{~m}_{2}=0, \ldots \mathrm{~m}_{\mathrm{n}}=0$, it is therefore the unique element of the family $\mathcal{G}(0,0, \ldots 0)$. Furthermore, $\mathrm{G}_{0} \in \mathcal{F}^{+}$since $\mathrm{C}=\emptyset$ corresponds to an even number of circuits, and $\mathrm{w}\left(\mathrm{G}_{0}\right)=\mathrm{e}$.

Consequently, it suffices to establish that:

$$
\begin{equation*}
\sum_{\mathrm{G} \in \mathcal{F}^{+} \backslash \mathrm{G}_{0}} \mathrm{w}(\mathrm{G})=\sum_{\mathrm{G} \in \mathcal{F}^{-}} \mathrm{w}(\mathrm{G}) \tag{38}
\end{equation*}
$$

To do so, we are going to exhibit a one-to-one correspondence between $\mathcal{F}^{+} \backslash \mathrm{G}_{0}$ and \mathcal{F}^{-}such that, if $\mathrm{G} \in \mathcal{F}^{+} \backslash \mathrm{G}_{0}$ and $\mathrm{G}^{\prime} \in \mathcal{F}^{-}$are images through this one-to-one correspondence, then $\mathrm{w}\left(\mathrm{G}^{\prime}\right)=\mathrm{w}(\mathrm{G})$.

All the graphs of the form $[\mathrm{X}, \mathrm{Y} \cup \mathrm{C}]$ in $\left(\mathcal{F}^{+} \backslash \mathrm{G}_{0}\right) \cup \mathcal{F}^{-}$are assumed to be represented by adjacency lists with the following convention: for every $i \in X$, if i belongs to a circuit in [X, C], then the arc of origin i in C is placed in the first position of the list of the arcs of origin i.

Now, let us consider $G=[X, Y \cup C] \in \mathcal{F}^{+} \backslash G_{0}$. Since $G \neq G_{0}$, there exists at least one vertex of nonzero degree in G. Among these, let i_{0} be the vertex having minimum index number.

Observe that C consists of an even number of vertex-disjoint circuits (this number may possibly be zero).

Let us traverse the partial graph [X, Y] starting from vertex i_{0} by using the arcs of Y as follows: from every intermediate vertex i encountered that is not covered by C , we take the arc (i, j) which appears first in the adjacency list of vertex i. The traversal stops when one of the two following situations arises:

Case 1. We arrive at a vertex already encountered in the pathway before having encountered a vertex covered by C;
Case 2. We arrive at a vertex k covered by C .
In the first case, we have exhibited a circuit of the partial graph [X, Y], which does not have a common vertex with C . Let $\Gamma \subset \mathrm{Y}$ be the set of its arcs.

$$
\begin{aligned}
\text { We then form } & \mathrm{G}^{\prime}=\left[\mathrm{X}, \mathrm{Y}^{\prime} \cup \mathrm{C}^{\prime}\right] \\
\text { with } & \mathrm{Y}^{\prime}=\mathrm{Y} \backslash \Gamma \\
& \mathrm{C}^{\prime}=\mathrm{C} \cup \Gamma
\end{aligned}
$$

In the second case, C contains a circuit passing through k and let Γ be the set of its arcs. Then we form $\mathrm{G}^{\prime}=\left[\mathrm{X}, \mathrm{Y}^{\prime} \cup \mathrm{C}^{\prime}\right]$ with:

$$
\begin{aligned}
\mathrm{Y}^{\prime} & =\mathrm{Y} \cup \Gamma \\
\mathrm{C}^{\prime} & =\mathrm{C} \backslash \Gamma
\end{aligned}
$$

Moreover, the adjacency list of each node i covered by the circuit Γ is modified in such a way that the arc of Γ which originates at i becomes the first in the adjacency list for i.

In both cases, C^{\prime} contains an odd number of vertex-disjoint circuits. Furthermore, the sets of arcs of G and G^{\prime} being the same, we have $w\left(G^{\prime}\right)=w(G)$.

Finally, we observe that, thanks to the convention established concerning the order of arcs in the adjacency lists, the same construction which transforms G into G^{\prime} enables one to transform G into G^{\prime}. This is therefore a one-to-one correspondence between $\mathcal{F}^{+} \backslash \mathrm{G}_{0}$ and \mathcal{F}^{-}, which completes the proof of Theorem 5 .

8.2. The Classical Mac Mahon Identity as a Special Case

It is interesting to verify that the generalized form (37) of the Mac Mahon identity includes, as a special case, the usual form on the field of real numbers, which is expressed by the following corollary:
Corollary 8.2.1. S being defined as in expression (36), and B denoting the matrix $\mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)_{\substack{\mathrm{i}=1, \ldots \mathrm{n} \\ \mathrm{j}=1, \ldots \mathrm{n}}}^{8,}\left(\mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}}\right)_{\substack{\mathrm{i}=1, \ldots \mathrm{n} \\ \mathrm{j}=1, \ldots \mathrm{n}}}$, we have:

$$
\begin{equation*}
S \times \operatorname{det}(I-B)=1 \tag{39}
\end{equation*}
$$

Proof. See Exercise 2 at the end of the chapter and Minoux (1998b, 2001).

Exercises

Exercise 1. We consider the real matrix:

$$
A=\left[\begin{array}{rrrr}
4 & 2 & 0 & 1 \\
0 & 3 & -1 & 2 \\
2 & 0 & 5 & -3 \\
-2 & 1 & 6 & 0
\end{array}\right]
$$

on a dioid $(\overline{\mathbb{R}}, \oplus, \otimes)$.
(1) Give the formal expression of the bideterminant of A, by formally stating $\operatorname{det}^{+}(\mathrm{A})$ and det^{-}(A).
(2) Compute the value of the bideterminant when the dioid under consideration is $(\overline{\mathbb{R}}, \operatorname{Max}, \operatorname{Min})$. Check that $\operatorname{Max}\left\{\operatorname{det}^{+}(\mathrm{A}) ; \operatorname{det}^{-}(\mathrm{A})\right\}$ is indeed equal to the optimal value of the «bottleneck» (Max-Min) assignment problem.
(3) Compute the value of the bideterminant when the dioid under consideration is $(\overline{\mathbb{R}}, \operatorname{Max},+)$. Check that $\operatorname{Max}\left\{\operatorname{det}^{+}(\mathrm{A})\right.$; $\left.\operatorname{det}^{-}(\mathrm{A})\right\}$ is indeed equal to the optimal value of the assignment problem (where the objective is to maximize the sum of the selected entries).
(4) Check the Cayley-Hamilton theorem for A in both cases ($(\overline{\mathbb{R}}$, Max, Min) and $(\overline{\mathbb{R}}, \operatorname{Max},+)$).

Exercise 2. We consider the real 4×4 matrix with entries in the dioid $(\overline{\mathbb{R}}, \operatorname{Min},+$):

$$
A=\left[\begin{array}{cccc}
\infty & 4 & 0 & 1 \\
0 & \infty & -1 & 2 \\
3 & 5 & \infty & -3 \\
-2 & 1 & 6 & \infty
\end{array}\right]
$$

which is a generalized adjacency matrix corresponding to the complete oriented graph.
(1) Set up the list of all arborescences with root $\mathrm{r}=1$ in the above graph, and calculate the sum S (in the sense of $\oplus=\mathrm{Min}$) of the weights of these arborescences. We recall that, in the Matrix-Tree Theorem (see Theorem 3, Sect. 7.1), the arborescences involved are those having arcs oriented from the pending vertices to the root. The vertex $r=1$ has thus zero out-degree.
(2) Check the generalized version of the «matrix tree theorem» on this example, in other words that $\operatorname{det}^{+}(\mathrm{B})=\operatorname{Min}\left\{\operatorname{det}^{-}(\mathrm{B}) ; \mathrm{S}\right\}$
where B is the 6×6 matrix: $\left[\begin{array}{c}\bar{D}: \bar{A} \\ \cdots \cdots \\ \mathrm{I}: \mathrm{I}\end{array}\right]$
where:
$\overline{\mathrm{A}}$ is deduced from A by deleting the first row and the first column of $\mathrm{A} ; \overline{\mathrm{D}}$ is the diagonal matrix with diagonal entries:

$$
\mathrm{d}_{\mathrm{ii}}=\operatorname{Min}_{\mathrm{j}=1, \ldots, \mathrm{n}}\left\{\mathrm{a}_{\mathrm{ij}}\right\} \quad \forall \mathrm{i}=2,3,4
$$

[Answers:

(1) There are 16 distinct arborescences rooted at $\mathrm{r}=1$ in this example. For instance the arborescence composed of the $\operatorname{arcs}(2,1)(3,1)(4,1)$ with weight $1(=0+$ $3-2)$; the arborescence composed of the arcs $(2,1)(3,1)(4,2)$ with weight 4 , etc. The minimum of the weights of these 16 arborescences is $S=-6$, and corresponds to the arborescence $(4,1)(2,3)(3,4)$.
(2) We have $\overline{\mathrm{A}}=\left[\begin{array}{ccc}\infty & -1 & 2 \\ 5 & \infty & -3 \\ 1 & 6 & \infty\end{array}\right]$ and $\overline{\mathrm{D}}=\left[\begin{array}{ccc}-1 & \infty & \infty \\ \infty & -3 & \infty \\ \infty & \infty & -2\end{array}\right]$ and it can be checked that:

$$
\operatorname{det}^{+}(B)=-6, \quad \operatorname{det}^{-}(B)=-3
$$

and that the extended Matrix-Tree Theorem holds since:

$$
\left.\operatorname{det}^{+}(\mathrm{B})=\operatorname{Min}\left\{\operatorname{det}^{-}(\mathrm{B}), \mathrm{S}\right\}=\operatorname{Min}\{-3,-6\} .\right]
$$

Exercise 3. (Proof of Theorem 4: generalized "All Minors Matrix Tree Theorem") In this exercise, we refer to the concepts and notation used in Sect. 7.4.
Given two subsets U and V of X of equal cardinality $(|\mathrm{U}|=|\mathrm{V}|)$, we refer to as matching every one-to-one correspondence $\pi: \mathrm{U} \rightarrow \mathrm{V}$. The signature of a matching $\pi: U \rightarrow V$, denoted $\operatorname{sign}(\pi)$, is defined as follows. A pair (i, j) of elements of U is said to be in inversion relatively to π if $\mathrm{i}<\mathrm{j}$ and $\pi(\mathrm{i})>\pi(\mathrm{j})$. By denoting $\nu(\pi)$ the number of pairs $(i, j) i \in U, j \in U$, which are in inversion relatively to π, then sign $(\pi)=(-1)^{\nu(\pi)}$. We observe that, in the special case where $\mathrm{U}=\mathrm{V}=\mathrm{X}$, a matching is none other than a permutation of X , and we verify that in this case the definition of the matching signature is consistent with that of the permutation signature.

The characteristic of a matching $\pi: \mathrm{U} \rightarrow \mathrm{V}$ is defined as:

$$
\begin{aligned}
\operatorname{char}(\pi) & =\operatorname{sign}(\pi) \times(-1)^{|\mathrm{W}|} \\
\text { where } \quad \mathrm{W} & =\{\mathrm{i} / \mathrm{i} \in \mathrm{U}, \pi(\mathrm{i})=\mathrm{i}\}
\end{aligned}
$$

We now denote by \mathcal{F}^{+}(resp. \mathcal{F}^{-}) the set of all the directed graphs on X having as set of arcs $\mathrm{S} \cup \mathrm{T}$ where:

- S is the set of arcs of the form ($i, \pi(i)$) for every $i \in L$ such that $i \neq \pi(i)$, where $\pi: \overline{\mathrm{L}} \rightarrow \overline{\mathrm{K}}$ is a matching of characteristic +1 (resp. of characteristic -1).
- T is a set of arcs such that, for every $i \in \bar{L}$ satisfying $\pi(i)=i$, there is exactly one arc in T of the form (k, i) with $\mathrm{k} \in \mathrm{X}, \mathrm{k} \neq \mathrm{i}$ (note that $\pi(\mathrm{i})=\mathrm{i}$ implies $\mathrm{i} \in \overline{\mathrm{L}} \cap \overline{\mathrm{K}})$.

Among the graphs H of the family \mathcal{F}^{+}(resp. \mathcal{F}^{-}) those which are circuitless are exactly those of \mathcal{T}^{+}(resp. \mathcal{T}^{-}) (see Sect. 7.4). We can therefore write:
$\mathcal{F}^{+}=\mathcal{T}^{+} \cup \mathcal{F}_{\mathrm{c}}^{+}$and $\mathcal{F}^{-}=\mathcal{T}^{-} \cup \mathcal{F}_{\mathrm{c}}^{-}$where $\mathcal{F}_{\mathrm{c}}^{+}$(resp. $\mathcal{F}_{\mathrm{c}}^{-}$) denotes the family of sub-graphs $\mathrm{H} \in \mathcal{F}^{+}$(resp. $\mathrm{H} \in \mathcal{F}^{-}$) which contain nontrivial circuits (i.e. circuits which are not loops).
(1) Prove that we have:

$$
\operatorname{det}^{+}(\mathrm{B})=\sum_{\mathrm{H} \in \mathcal{F}^{+}} \mathrm{w}(\mathrm{H}) \quad \text { and } \quad \operatorname{det}^{-}(\mathrm{B})=\sum_{\mathrm{H} \in \mathcal{F}^{-}} \mathrm{w}(\mathrm{H})
$$

(2) Show, by using an argument similar to the one used by Chaiken (1982), that

$$
\sum_{\mathrm{H} \in \mathcal{F}_{\mathrm{c}}^{+}} \mathrm{w}(\mathrm{H})=\sum_{\mathrm{H} \in \mathcal{F}_{\mathrm{c}}^{-}} \mathrm{w}(\mathrm{H})
$$

(3) Then show that Theorem 4 is deduced from the above by taking:

$$
\Delta=\sum_{\mathrm{H} \in \mathcal{F}_{\mathrm{c}}^{+}} \mathrm{w}(\mathrm{H})=\sum_{\mathrm{H} \in \mathcal{F}_{\mathrm{c}}^{-}} \mathrm{w}(\mathrm{H})
$$

[Answers: refer to Minoux (1998a)].
Exercise 4. Where we recover the classical Mac Mahon identity
Here we take the field of real numbers as the basic algebraic structure.
(1) Let B be a $n \times n$ matrix with coefficients in \mathbb{R}, and I the identity matrix of $M_{n}(\mathbb{R})$. Prove that:

$$
\operatorname{det}(I-B)=\sum_{\sigma \in \operatorname{Part}^{+}(\mathrm{n})}\left(\underset{\mathrm{j} \in \operatorname{dom}(\sigma)}{\prod} \mathrm{b}_{\mathrm{i}, \sigma(\mathrm{i})}\right)-\sum_{\sigma \in \operatorname{Part}^{-}(\mathrm{n})}\left(\prod_{\mathrm{i} \in \operatorname{dom}(\sigma)}^{\Pi} b_{\mathrm{i}, \sigma(\mathrm{i})}\right) .
$$

(2) By using the above relation, deduce from Theorem 5 (see Sect. 8.1) the classical Mac Mahon identity:

$$
\begin{array}{ll}
& S \times \operatorname{det}(I-B)=1 \\
\text { with } & B=\left(b_{i j}\right)_{\substack{i \\
j=1 \ldots n}}=\left(a_{i j} \mathrm{a}_{\mathrm{j}}\right)_{\substack{i=1 \ldots n \\
j=1 \ldots n}} .
\end{array}
$$

[Answers: refer to Minoux (1998b, 2001)]

