
Preface 

Most applied optimization problems involve constraints: What is the maximum 
profit that a manufacturer can make given a limited number of machines and a 
limited labour force? What is the minimum amount of fuel that a fleet of trucks 
can consume while making a specified set of deliveries? What is the smallest 
amount of silicon needed to etch an electronic circuit while respecting limits on 
signal propagation time, inter-wire distance, etc.? Applications of constrained 
optimization are everywhere in industry, business, and government.  

Of course, the solution returned by an optimization algorithm must also be 
feasible: we want the best possible value of the objective function that satisfies all 
constraints and variable bounds. Some optimization algorithms are not even able 
to proceed towards optimality until a feasible solution is available. In addition, the 
optimization question can be converted to a feasibility question, and vice versa. 
And what happens when an algorithm is unable to find a feasible solution? How 
do we know what went wrong? How do we repair the model? Questions of 
optimization, feasibility, and infeasibility are inextricably linked. 

There has been a surge of important developments related to feasibility and 
infeasibility in optimization in the last two decades, a trend that continues to 
accelerate even today. New and more efficient methods for seeking feasibility in 
difficult optimization forms such as mixed-integer programs and nonlinear programs 
are emerging. The first effective algorithms for analyzing infeasible models have 
been discovered and implemented in commercial software. A community of 
researchers in constraint programming has begun to integrate their knowledge and 
approaches with the optimization community. Unanticipated spin-off applications of 
the new algorithms are being found. It’s an exciting time. 

The goal of this book is to summarize the state of the art in recent work at the 
interface of optimization and feasibility. It should serve as a useful reference for 
researchers, graduate students, and software developers working on optimization, 
feasibility, infeasibility, and related topics. Readers having a reasonable grounding 
in optimization (linear and nonlinear programming, mixed-integer programming, 
etc.) should have no difficulty following the material.  

Lightweight coverage of topics in constraint programming, with an emphasis 
on constraint satisfaction problems, is included to illustrate the extensive overlap 
and convergence in the two literatures. An ideal version of the book would cover 
topics in constraint programming in the same depth as topics in optimization, but 
this is beyond the scope of this project: collecting and organizing the wealth of 
new developments relating to feasibility and infeasibility in optimization. I hope 
the resulting book is useful to both optimizers and constraint programmers, and 
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that it helps accelerate the ongoing merger of the two communities merge into a 
stronger hybrid. 
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equal zero) is always a basic feasible solution for an LP in a variation of canonical 
form that consists entirely of ≤ inequalities in which every element of b is non-
negative, and all variables are nonnegative. Similarly, network LPs in which the 
arc flow lower bounds are all zero admit the origin as a feasible solution. 

advanced methods of seeking feasibility are needed. In the simplex method, the 
most popular technique for reaching feasibility for general LPs is the two-phase 
method for reasons of numerical stability. The Big-M method, commonly pre-
sented in textbooks, is seldom used in implemented solvers.  

More recently, infeasible-path interior point methods have been developed that 
do not necessarily reach feasibility until they also reach optimality. These tech-
niques are beyond the scope of this book. See Wright (1997). 

While reaching feasibility in LPs may seem to be a well-understood problem, 
there are a variety of heuristics which can speed the process considerably, such as 
crash starts, warm starts, and crossover from an infeasible solution. 

2.1 The Phase 1 Algorithm 

Given a basic feasible solution, the simplex algorithm is efficient at moving to a 
better adjacent basic feasible solution. It simply repeats this operation until recog-
nizing that no further improvement is possible, and returns this final basic feasible 
solution as the optimum solution. As mentioned above, the difficulty with general 
LPs is that no basic feasible solution is immediately obvious except in very special 
cases. The phase 1 method addresses this problem by introducing nonnegative ar-
tificial variables into the problem so that a basic feasible solution is immediately 
available at the origin in the artificial space. A phase 1 objective function is also 
introduced which reaches its optimum value when the artificial variables are    

in this special form, e.g. includes equality or ≥ constraints, or has negative entries

A general linear program has the form {min, max} cx, subject to Ax {≤, ≥, =} b,   
l ≤ x ≤ u, where c is a 1× n row vector, x, l, u, and b are n × 1 column vectors, and 

feasible solution for certain linear programs. For example, the origin (all variables 

It is more difficult to find a first feasible solution when the general LP is not    

in b. In these cases, the origin is no longer available as a feasible solution, so more 

A is an m × n array, all consisting of real numbers. It is simple to find an immediate 



Without loss of generality, let us initially assume an LP in which all variables 
are restricted to be nonnegative, and all of the elements of b have nonnegative 
values. With these restrictions, the constraints that eliminate the origin as a basic 
feasible solution are the equality constraints and ≥ constraints that have strictly 
positive entries in b. To permit the origin as a feasible point, we introduce a non-
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The origin is a basic feasible solution for this phase 1 LP, hence the simplex 
method is able to initialize and iterate towards an optimum solution. 

If the phase 1 LP terminates at an optimum solution in which W = 0, then it has 
found a point at which the artificial variables can be dropped and all of the origi-

objective function. Ordinary simplex iterations then proceed to the optimum of the 

function is normally included in the phase 1 matrix and updated as a nonbinding 
row so that it is in proper form when it comes time to solve the phase 2 problem. 

On the other hand, if the phase 1 LP terminates at an optimum solution in 
which W > 0, then we know that the original LP is infeasible. W represents the 
sum of the violations of the equality and ≥ constraints, hence the size of W at the 
optimum solution is in some sense a measure of the size of the infeasibility. This 
notion can be generalized if the LP is fully elasticized (see Sec. 6.1.4). Other 
properties of the phase 1 solution, such as the dual prices of the slack variables, 
are useful in analyzing the cause of the infeasibility, as explained in later chapters. 

There are some minor potential difficulties if the phase 1 solution terminates 

have a value of zero and yet be in the basis. This can happen when the model has 
redundancies. However this is easy to recognize and handle. Dantzig and Thapa 
(1997, pp. 81– 82) list three ways to handle this problem, the simplest of which is 
to simply pivot the artificial variable out of the basis. This is done by choosing a 
nonzero element in a column for an original variable in the row for which the arti-
ficial variable is basic, and performing the pivot. 

Note that it is possible to formulate a phase 1 that includes only a single artifi-

 

then we are at feasible solution for the original problem Details follow. 
driven to their lowest possible values; if all artifical variables achieve a value of  zero,

xthe inequality a x ≥ b  is replaced by a
negative artificial variable y
(i)  + y ≥ b , and (ii) the equality  a x = b  

 for each such nonstandard constraint i, as follows  

process now initiates phase 2 at the current point by dropping all of the artifi-

is replaced by a x  + y = b . The phase 1 objective function is to minimize W  =Σ y .  

cial variable, however for implementation reasons this variant is not used in practice.

with W = 0 but the solution is degenerate. In this case, an artificial variable may 

See Nazareth (1987, pp. 147–149) for details. 

nal constraints are satisfied, i.e. a feasible point for the original problem. The solution

cial variables and the phase 1 objective function, and re-introducing the original 

original objective function. Note that for efficiency reasons, the original objective 
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2.2 The Big-M Method 

The Big-M method requires the introduction of the same artificial variables as in 
the phase 1 method described above. The difference lies in how the artificial vari-

which is used as a penalty to discourage the inclusion of any artificial variables in 
the basis. The method works towards feasibility and optimality simultaneously 
within a single phase by using an appropriate form of the objective function:  

• for maximization: max Z = cx – My, 
• for minimization: min Z = cx + My. 

As for the two-phase method described above, feasibility is recognized when 
all of the artificial variables are driven to zero. This may not happen until optimal-
ity is also reached. 

The practical difficulty with the Big-M approach is that the large multiplier in-
troduces numerical difficulties in the solution by dominating the calculations, 
however if the value of M is too small, then the procedure will terminate with an 
infeasible optimum solution. See Padberg (1999) for guidelines on choosing a 
suitable value for Big-M. Because of the numerical difficulties, the Big-M method 
is seldom used in practice. 

2.3 Phase 1 from Any Basis 

The phase 1 procedure given in Sec. 2.1 must start at the origin. A procedure that 
can be invoked from any given starting basis is preferable since it can be invoked 
when feasibility is lost (e.g. by accumulated rounding errors, or by changes to the 
model after it has been solved). As shown by Nazareth (1987), such a phase 1 pro-
cedure is possible if the upper and lower bounds on the variables are specifically 
considered (though this method applies equally well to singly-bounded or un-
bounded variables). 

Consider the usual equation format of the LP after any necessary slack and sur-
plus variables have been added: Ax = b. Partitioning the variables into the set of 
basic variables 0

Bx  and the set of nonbasic variables 0
Nx  at a given basis induces a 

similar partitioning of the A matrix into B0, the columns associated with the basic 
variables, and N , the columns associated with the nonbasic variables. The rewrit-
ten LP equation is then 

bxNxB =+ 0000
NB . 

Now the following relationship holds at any iteration:  
0000
NB xNbxB −= . 

either  its upper or lower bound. 
Given a basis, the values of the nonbasic variables are known (each nonbasic 

variable is at one of its bounds), and so all of the constant and variable values on 

The following phase 1 procedure considers that a variable can be nonbasic at   

ables are driven out of the basis. “Big-M ” refers to a large positive multiplier M, 

 0
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the right hand side of 0000
NB xNbxB −=  are known. Now we can solve for the 

values of the basic variables:  
)()( 0010

NB xNbBx −= − . 
Note that it may be numerically convenient to peg some of the nonbasic variables 

may be outside of their bounds during phase 1, i.e. the solution may be infeasible. 
The goal of the phase 1 procedure is then to drive all of the basic variables that are  
currently outside their bounds to within them.  

V as the set of basic variables that violate their lower bounds. Nazareth (1987) 
i  

 
and the phase 1 reduced costs reflect the rate of change of the sum of the infeasi-

0

normal manner towards feasibility. The cost component is reset to zero when a 
variable that is outside its bounds eventually satisfies them. 

When variables can violate their bounds, or can be nonbasic at either the upper 
or the lower bound, there are several conditions to consider when choosing the 
leaving basic variable during simplex iterations (see Greenberg (1978)):  

• A variable may be basic, outside its bounds and moving away from them, and 
hence will never be chosen as the leaving basic variable. 

• A variable may be basic, outside its bounds and moving towards them, in which 
case it may pass through the violated bound and become nonbasic at the 
opposite bound. 

• A variable may be basic and within its bounds, in which case it may become 
nonbasic at the first bound it meets. 
These conditions are checked when determining the leaving basic variable, and 

the basic variable that most restricts the change in the value of the entering basic 
variable is chosen as the leaving basic variable, as usual. Note that an entering ba-
sic variable may be decreasing in value. Any variables that satisfy their bounds are 
kept inside their bounds by this procedure, while variables that violate their 
bounds are gradually made to satisfy them. In other words, the number of infeasi-
bilities (NINF) is gradually reduced, eventually to zero if the LP is feasible. 

While this procedure is effective, the fact that it keeps a variable within its 
bounds once it satisfies them can be overly restrictive. In some cases it is prefer-
able to allow an entering basic variable to increase beyond the point at which the 
first currently-feasible basic variable encounters a bound because the overall sum 
of infeasibilities is still decreasing. When choosing the leaving basic variable, 
there are up to two thresholds associated with every basic variable: 
• No thresholds if the basic variable is currently outside its bounds and moving 

away from them. 

(Nazareth 1987)). After solving for the values of the basic variables, some of them 

0

at values between their bounds; these variables are called superbasic (see 

if i∈V , and c = 0 otherwise, then the sum of the infeasibilities is given correctly 

This means that whenever infeasibility is discovered, the cost vector c is replaced 
by the vector just described, and the simplex method is able to iterate in the 

shows that if the prices and reduced costs (π) are set to  c  =  1 if  i   ∈ V , c = –1  i 

Let us define V as the set of basic variables that violate their upper bounds, and 

bilities when a nonbasic variable is introduced into the infeasible basis B .  
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threshold, the variable contributes to the sum of the infeasibilities. 
• Two threshholds if the basic variable is currently outside its bounds and 

moving towards them. The first threshhold moves the basic variable into its 
feasible range, but is not blocking; beyond this threshold the variable no longer 
contributes to the sum of the infeasibilities. The second threshold is at the 
second bound and beyond this point the variable again contributes to the sum of 
the infeasibilities. 

A more advanced procedure for choosing the leaving basic variable first sorts 
all of the thresholds in order from smallest to largest. It then looks at the rate of 
change of the sum of the infeasibilities in the zone between each threshold. The 

crease in the sum of the infeasibilities at the possible expense of increasing NINF. 
It is also possible to combine the two goals by examining the thresholds to reduce 
the sum of the infeasibilities as much as possible while not increasing NINF. This 
is done by choosing the threshold that is latest in the sorted list that does not in-
crease NINF. Note that while you may pass through a threshold that causes a cur-
rently feasible basic variable to violate its bounds, a later threshold may cause a 
variable that currently violates its bounds to satisfy them, hence there is no net 
impact on NINF. 

Nazareth (1987) describes the practical details of an efficient implementation of 
this scheme, including ways to immediately eliminate variables from considera-
tion as the leaving basic variable, and ways to combine the calculations into a sin-
gle pass through the candidate variables. 

2.4 Crash Start Heuristics 

A crash start in the context of linear programming is a procedure for generating a 
high quality initial basis. It may not be feasible, but it should be as close to feasi-
bility as possible and have other helpful characteristics such as providing a nearly 
triangular matrix (which speeds the calculations). An LP with m independent rows 

where one slack variable is added for each row. The main operation in crashing 
the initial basis is selecting m of the variables to be in the initial basis. 

Sec. 2.3 and the phase 1 procedure iterates to feasibility. 

threshold dividing the last zone that shows a rate of decrease in the sum of the 

15 

infeasibilities from the first zone that shows a rate of increase in the sum of  
the infeasibilities identifies the leaving basic variable. This emphasizes the de-

and n original variables is normally converted to a form having n + m variables, 

The FortMP software (Ellison et al. 1999) describes a fairly standard crash 
procedure. The unit basis consisting of the slack variables is first set up, and then 

culated. Then an appropriate phase 1 cost structure is assigned, as described in 
Once the basis is selected, the current values of the basic variables can be cal-

A basic slack variable is a candidate for an exchange with a nonbasic original 
nonbasic original variables are gradually exchanged for basic slack variables.  

variable if the pivot element at the intersection of the row for the basic slack variable 

• One threshold if the basic variable is currently within its bounds. Beyond this 
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selected in previous exchanges have nothing but zeroes on the current pivot row. 
If the rows and columns in the revised basis are ordered in the same order as their 
selection into the basis, this leads to a triangular basis. 

The row selected for an exchange should have as few nonzero elements as pos-
sible in columns that are candidates for exchange into the basis, on the principle 
described above. A variable is then selected for exchange into the basis, and all 
other candidate nonbasic variables that have a nonzero pivot element in the current 

lected, a matrix update would be required). 

the selection is based on sparsity as described. According to Ellison et al. (1999), 

degree of restriction, from most to least (i.e. basic variables that have a smaller 

without bounds). Fixed columns are never selected for exchange into the basis. 
The crash procedure can also be adjusted, primarily by changing the tie-breaking 
rules, to reduce the amount of degeneracy in the crashed basis. 

If the phase 1 procedure uses artificial variables, then the crashing procedure 
can be designed to reduce the number of artificial variables in the basis. Only rows 
corresponding to basic artificial variables can be selected. The nonbasic variable is 
chosen so that the pivot element is of reasonable size; this helps avoid basis singu-
larity. In this same vein, most solvers include a parameter that allows the user to 
select a minimum size for any pivot, usually set as a minimum fraction of the larg-
est element in the column. 

2.5 Crossover from an Infeasible Basis 

Crossover normally refers to the process of moving from a feasible point provided 
by an interior point LP algorithm to a nearby feasible basis (the basic solution is 
desirable because it gives access to sensitivity analysis, etc.). However, if an ad-
vanced infeasible basis can be provided, e.g. by a crash procedure, then it is some-
times possible to crossover from that basis to a nearby feasible basis. This opens 
the possibility of using heuristic methods to generate an initial solution that is rea-
sonably close to feasibility and then crossing over to a nearby feasible basis. The 
FortMP software (Ellison et al. 1999) includes techniques for providing a close-to-

There are many ties for the selection of the row corresponding to the basic vari-
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the way in which ties are broken has a big impact on the feasibility of the final 
basis. Ties for the basic variable row are broken in favour of equality constraints 
(so that artificial variables are removed from the basis), and after that according to the 

range are exchanged first). Rows having free variables are never selected. Ties for 
the nonbasic variable column are broken by preferring to exchange variables that 

row are marked as unsuitable for exchange into the basis later (because, if se-

have the largest range, with first consideration being given to free variables (those 

able and the column corresponding to the nonbasic variable to be exchanged when 

feasible initial point and for the subsequent crossover. 

and the column for the nonbasic original variable is nonzero. To avoid the work 
involved in updating the matrix to check this condition, various heuristics are applied, 
using the fact that there has been no update to the pivot element if the variable columns 
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At a basis provided by a crash start, the solution is likely to include a certain 
number of superbasic variables (nonbasic variables that are not equal to one of 
their bounds, but instead lie between their bounds). So-called purify or push algo-
rithms are then used to move superbasic variables to either a basic or nonbasic 
status, i.e. to arrive at a feasible basis. In FortMP (Ellison et al. 1999) there are 
separate push algorithms to remove primal superbasic variables and to remove 
dual superbasic variables. Both function in essentially the same way. The main 
idea is to examine the effect on the basic variables when the value of a superbasic 

of its bounds before any basic variable does, then the superbasic is simply 
switched to nonbasic status. If a basic variable reaches one its bounds before the 
superbasic does, then a basis change is made, in which the basic variable is made 
nonbasic and the superbasic is made basic. 

The version of the crash heuristics that tries to eliminate artificial variables is 
preferred for use with the push heuristics since it helps reduce the amount of work 
during the push phase. In addition, during the push phase, any original variables 
that are at their bounds after the crash are temporarily fixed at those values. 

improving the output of the crash step before purifying. FortMP uses a successive 
overrelaxation (SOR) algorithm (Press et al. 1992), an iterative technique for solv-

dure has three steps: (i) apply the crash heuristic to create an approximately lower 
triangular basis, (ii) apply the successive overrelaxation algorithm to improve the 
point provided by the crash heuristic, and (iii) apply the push algorithms to cross 
over to a feasible basis. With luck the SOR procedure produces a feasible solution 
directly, which eases the crossover to a basic solution. If it does not produce a fea-

2.6 Advanced Starts: Hot and Warm Starts 

If the LP solution process is stopped for any reason, the current basis and associ-

information provides a hot start which allows the solver to begin where it left off 

restarted. This may happen because the conditions being modeled have changed, 
but it is an essential part of two important procedures. In solving mixed-integer 
programs via branch and bound, numerous LPs are solved in a tree-structured 
search for a solution that is both LP-feasible and integer-feasible. Each LP is iden-
tical to a previous LP except that a bound on one variable has been adjusted so 

An approximate solution that is even closer to feasibility can be supplied by 

sible solution, then the push algorithms may yet do so, though this is not guaranteed.

ing systems of linear equations (see Sec. 2.8), for this purpose. The overall proce-

without repeating the set of iterations, including the phase 1 feasibility-seeking 

ated information may be stored. If the solution process is restarted later, this stored 

It frequently happens that minor changes are made to the LP model before it is 
iterations, which originally generated the stored basis. 
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variable is adjusted (in a manner similar to examining the effect of an entering 
basic variable on the existing basic variables). If the superbasic variable reaches one 
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that the previous LP solution is rendered infeasible. In LP infeasibility analysis 

differ by the addition or removal of one or several of the constraints or bounds. In 
cases such as these where the next LP to be solved is substantially similar (but not 
identical) to a previous LP, then a warm start that makes use of the previous solu-
tion and basis may be effective. This usually means that you can arrive at a new 
feasible (and optimal) solution in only a few iterations. 

In warm-starting, if the changes made to the model have not rendered the 
warm-start point infeasible, then the primal simplex iterations just pick up where 
they left off and continue iterating to optimality. However, if the changes to the 
model have made the warm-start point primal-infeasible (normally by a change to 

quickly reach primal feasibility at the dual optimum point, normally in a small 
number of iterations. 

Warm-starting an interior point method is considerably more difficult, but pro-
gress is being made. See Yildirim and Wright (2002) and John and Yildirim 
(2006) for details. 

2.7 Seeking Feasibility and Optimality Simultaneously 

An option often provided in simplex-based LP solvers is the ability to seek feasi-
bility and optimality simultaneously. This is what happens when using the big-M 
feasibility-seeking algorithm, of course, but there are better ways to combine the 
two that avoid the numerical difficulties associated with big-M. 

The simplest approach is to use a composite objective that weights the objective 
function and a measure of infeasibility, normally the sum of the infeasibilities. The 
MINOS software (Murtagh and Saunders 1987) uses a composite objective of the 
form 

specified weight. If the LP solver reaches an optimum solution for that objective 
function while the original model remains infeasible, then w is reduced by a factor 
of 10, and up to five such reductions are allowed before the algorithm gives up. 

Infeasible-path interior point algorithms for linear programming have been the 
subject of a great deal of research in the past decade. Also known as primal-dual 
interior point methods, these algorithms maintain an interior point that satisfies all 
of the inequality constraints, but that do not necessarily satisfy all of the equality 
constraints at any point before the optimum is reached. Details are beyond our 
scope here, but see e.g. Andersen et al. (1996) or Wright (1997). 

(see Sec. 6.2), several algorithms require the solution of sequences of LPs that  

minimize σw(cx) + (sum of infeasibilities), where σ = 1 for a minimization 

a constraint or bound, or by the addition of one), then the warm-start point  
will still be dual feasible. The solver then switches to the dual simplex method and will

objective function and σ = –1 for a maximization objective function and w is a user-
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2.8 Projection Methods 

There is a rich and extensive literature on projection methods for finding feasible 
points for sets of constraints that form a convex set, of which sets of linear con-
straints are an important special case. The properties of these methods are well-
studied, including guarantees of convergence for sets of convex inequalities. An 
excellent reference on this class of methods is Censor and Zenios (1997). Projec-
tion methods, under the name of constraint consensus methods, are also used as a 
heuristic technique for reaching near-feasible points in general sets of nonlinear 
constraints for which the convexity properties are not known (see Sec. 5.5); con-

infeasible point, easily given by ai, the ith row of the constraint matrix A in the set 

constraint. This closest feasible point is called the orthogonal projection of the 
violated point, and is obtained by moving in the gradient or anti-gradient direction, 
as appropriate, to the limiting value of the violated constraint (see Sec. 1.2). The 
vector showing how to move from the current infeasible point to the orthogonal 
projection point onto an individual violated constraint is sometimes called the fea-
sibility vector (Chinneck 2004), and denoted by fvi for the ith constraint ci. As has 

i i i i i
2

• ∇ci (x) is the gradient of the constraint, and ||∇ci (x)|| is its length. 
• vi is the constraint violation |ci (x) – bi|, or zero for satisfied constraints, 
• di is +1 if it is necessary to increase c(x) to satisfy the constraint, and –1 if it is 

necessary to decrease ci (x) to satisfy the constraint. 

The squared term in the denominator seems unexpected, but is easily explained. 
i i i

i i
priate gradient or anti-gradient direction to reach feasibility; the product is 

i i i i
2

i
The feasibility vectors for the violated constraints are used in different ways in 

the numerous varieties of projection algorithms (Censor and Zenios 1997; Censor, 
Elfving and Herman 2001). In all variants, the feasibility vectors must be com-
bined in some way to arrive at an update vector; this final vector is sometimes 
called the consensus vector (Chinneck 2004). Some main algorithm variants are: 

• Sequential projection algorithms update the current point by finding and 
applying the feasibility vector for one violated constraint at each iteration. The 
process continues until feasibility is achieved. The simplest version is cyclic 
(see below), but other variants are possible, see control sequences below. 

d∇c (x) / ||∇c (x)|| is a unit vector in the gradient or anti-gradient direction, as nec-

denoted by || fv ||. 

essary to reach feasibility. V  / ||∇c (x)|| is the number of units to move in the appro-

All methods in this category employ some form of a projection for each vio-

direction. The main idea is to use the gradient of the violated constraint at the current 
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vergence cannot be guaranteed under these conditions, but the algorithms are 
remarkably effective. 

lated constraint, most commonly a projection in the gradient or anti-gradient 

v d∇c (x) / | |∇c (x)|| . The length of the feasibility vector for the i th constraint is 

been shown by Xiao et al. (2003) and others, fv  = v d∇c (x) /  ||∇c (x)||  where: 

of linear constraints Ax{≤, ≥, =}b, to calculate the closest point that satisfies the 
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• Simultaneous projection algorithms calculate the feasibility vector for every 

feasibility is achieved. 

feasibility vectors for the violated constraints is combined in a weighted 
average. Component averaging (Censor, Gordon and Gordon 2001) on the 
other hand, realizes that not all of the constraints contain all of the variables. 

movement in that dimension is calculated. 
• Control sequences may be used to adjust which constraints are assessed at each 

iteration. In a cyclic control sequence, a sequential algorithm assesses the con-
straints in a round-robin fashion. The control sequence may also be almost 
cyclic (constraints or sets of constraints appear in every cycle, but not 
necessarily in the same order) or repetitive (Censor and Zenios 1997). Control 
sequences may be applied to individual constraints or to sets of constraints. 

The most violated constraint control determines which constraint is 
currently most violated and uses that constraint in a sequential update 

which determines a set of constraints that is most violated and uses those 
constraints in a simultaneous projection algorithm. 

 Voting heuristics may be used to determine which subsets of constraints to 

for some component xj than negative values, then increase the xj component 
by the average value of only the positive xj components in the feasibility 
vectors. Several variants of voting methods are described in Sec. 5.5. 

either lengthening or shortening it. 
• Oblique projections may be used instead of orthogonal projections. 

 

• Relaxation parameters may be used adjust the length of the consensus vector, 

the constraints which contain a particular variable are considered when the 
The final movement vector is therefore computed component-wise, and only 

In the usual simultaneous projection algorithm, the complete set of –

–

–

example, if the feasibility vectors of more constraints have positive values 

three orthogonal feasibility vectors. 

algorithm. A similar idea applies in the case of the remotest set control 

violated constraint and then combine them using some form of weighting  
to determine a final update consensus vector. This process if repeated until 

A simple example showing several steps in a cyclic orthogonal pro jectionl

shows the consensus vector resulting from the component-wise combination of the 
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combine in a simultaneous algorithm (Ibrahim and Chinneck 2005). For 

projection algorithm for three equality constraints is shown in Fig. 2.1 . Fig. 2.2  



                                                                     2.8 Projection Methods 

Versions of these algorithms have been 
introduced by many authors. One of the 
earlier methods for linear equalities is by 
Kaczmarz (1937), a cyclic orthogonal pro-

linear constraints. Another influential early 
development was the relaxation method for 
linear inequalities due to Agmon (1954), 
Motzkin and Schoenberg (1954), which 
consisted of a cyclic orthogonal projection 
method with relaxation. See Censor and 
Zenios (1997) for complete coverage of all 
related methods. 

While projection methods could poten-
tially be used in a feasibility-seeking phase 
1 procedure for general linear programs, 
they have not been adopted for this purpose 
in commercial LP solvers (though a succes-
sive overrelaxation procedure is optionally 
used as part of a phase 1 procedure in at 
least one solver: see Sec. 2.5). Instead they 
have been applied in special-purpose feasi-

bility seeking applications in radiation therapy planning, image reconstruction, 

A variant of projection methods known as randomized thermal relaxation algo-
rithms is used in the context of finding a maximum cardinality feasible subset for 
an infeasible set of linear constraints (see Sec. 7.6 for details on the algorithm). 
Experiments with feasible models comprised of large numbers of linear inequali-
ties show that the method is capable of reaching feasibility or near-feasibility very 
quickly (Amaldi et al. 2005). 

 
 

 
 

Fig. 2.2. The consensus vector (solid) 
results from the component-wise aver-
aging of the three feasibility vectors 
(dashed) 

orthogonal projection method 
Fig 2.1. Several steps in a cyclic 
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jection method. Cimmino (1938) first sug-  
gested a fully simultaneous method for 

etc. many of which are convex nonlinear problems if not linear. 




