
Preface

Most applied optimization problems involve constraints: What is the maximum
profit that a manufacturer can make given a limited number of machines and a
limited labour force? What is the minimum amount of fuel that a fleet of trucks
can consume while making a specified set of deliveries? What is the smallest
amount of silicon needed to etch an electronic circuit while respecting limits on
signal propagation time, inter-wire distance, etc.? Applications of constrained
optimization are everywhere in industry, business, and government.

Of course, the solution returned by an optimization algorithm must also be
feasible: we want the best possible value of the objective function that satisfies all
constraints and variable bounds. Some optimization algorithms are not even able
to proceed towards optimality until a feasible solution is available. In addition, the
optimization question can be converted to a feasibility question, and vice versa.
And what happens when an algorithm is unable to find a feasible solution? How
do we know what went wrong? How do we repair the model? Questions of
optimization, feasibility, and infeasibility are inextricably linked.

There has been a surge of important developments related to feasibility and
infeasibility in optimization in the last two decades, a trend that continues to
accelerate even today. New and more efficient methods for seeking feasibility in
difficult optimization forms such as mixed-integer programs and nonlinear programs
are emerging. The first effective algorithms for analyzing infeasible models have
been discovered and implemented in commercial software. A community of
researchers in constraint programming has begun to integrate their knowledge and
approaches with the optimization community. Unanticipated spin-off applications of
the new algorithms are being found. It’s an exciting time.

The goal of this book is to summarize the state of the art in recent work at the
interface of optimization and feasibility. It should serve as a useful reference for
researchers, graduate students, and software developers working on optimization,
feasibility, infeasibility, and related topics. Readers having a reasonable grounding
in optimization (linear and nonlinear programming, mixed-integer programming,
etc.) should have no difficulty following the material.

Lightweight coverage of topics in constraint programming, with an emphasis
on constraint satisfaction problems, is included to illustrate the extensive overlap
and convergence in the two literatures. An ideal version of the book would cover
topics in constraint programming in the same depth as topics in optimization, but
this is beyond the scope of this project: collecting and organizing the wealth of
new developments relating to feasibility and infeasibility in optimization. I hope
the resulting book is useful to both optimizers and constraint programmers, and

viii Preface

that it helps accelerate the ongoing merger of the two communities merge into a
stronger hybrid.

Acknowledgements

My graduate work was conducted during the late 1970s and early 1980s. Inspired by
the energy crises of those times, I constructed network optimization models to
minimize the use of energy in large industrial plants. Later I found the optimization
modeling more interesting than the energy aspects of this work. I had noticed that
some of the processing network models that I was using in the energy work
suffered from an inability to carry flow in some of the arcs, a pathology later
labeled nonviability (see Sec. 9.2). I developed algorithms to automatically
identify and analyze this problem.

Enter Harvey Greenberg. At that time he was involved in a project to develop
an Intelligent Mathematical Programming System (IMPS) (see e.g. Greenberg
(1996b)), and consequently had an interest in algorithms for analyzing modeling
errors of various types, such as nonviability. Harvey organized an extraordinary
series of meetings on the IMPS topic for an eclectic group of researchers from
academia and industry. Harvey invited me to one of these meetings and, as they
say, the rest is history. Sitting in the bar one night after the IMPS meeting we had
a discussion about whether or not you could isolate the cause of infeasibility in a
linear program to an irreducible subset of the constraints defining the model. At
the time, Harvey didn’t think it could be done, but I did, so I bet him a beer that I
could find a way to do so. As you will see in Part II of the book, I won that bet.

But there is a postscript to this story. I have now known Harvey for around
twenty years, and we have gone on to make numerous one-beer bets on other is-
sues in optimization. I have not won a single one of those subsequent bets, so I am
currently several hundred beers in debt to him. But I have an even bigger debt than
that. Harvey became my unofficial mentor, always ready to provide advice and
suggestions and listen to my ideas. His influence on my work has been profound.

Harvey and Pascal Van Hentenryck both took the time to read an early draft of
the book and provide advice and suggestions that greatly improved it. Both
pointed out topics that should be greatly expanded upon, especially the material on
constraint programming, but time is unfortunately limited, so a full treatment of
that topic remains another project. And as clever as those two fellows are, I’m sure
I’ve managed to hide a few errors in the manuscript that they did not find: those
are mine alone.

Last but not least are the two incredible ladies in my life, my wife Linda and
daughter Annie, who can finally look at this book and see what kept me glued to
the computer for such long hours over the past year. Thanks for being there.

John W. Chinneck

2 Seeking Feasibility in Linear Programs

equal zero) is always a basic feasible solution for an LP in a variation of canonical
form that consists entirely of ≤ inequalities in which every element of b is non-
negative, and all variables are nonnegative. Similarly, network LPs in which the
arc flow lower bounds are all zero admit the origin as a feasible solution.

advanced methods of seeking feasibility are needed. In the simplex method, the
most popular technique for reaching feasibility for general LPs is the two-phase
method for reasons of numerical stability. The Big-M method, commonly pre-
sented in textbooks, is seldom used in implemented solvers.

More recently, infeasible-path interior point methods have been developed that
do not necessarily reach feasibility until they also reach optimality. These tech-
niques are beyond the scope of this book. See Wright (1997).

While reaching feasibility in LPs may seem to be a well-understood problem,
there are a variety of heuristics which can speed the process considerably, such as
crash starts, warm starts, and crossover from an infeasible solution.

2.1 The Phase 1 Algorithm

Given a basic feasible solution, the simplex algorithm is efficient at moving to a
better adjacent basic feasible solution. It simply repeats this operation until recog-
nizing that no further improvement is possible, and returns this final basic feasible
solution as the optimum solution. As mentioned above, the difficulty with general
LPs is that no basic feasible solution is immediately obvious except in very special
cases. The phase 1 method addresses this problem by introducing nonnegative ar-
tificial variables into the problem so that a basic feasible solution is immediately
available at the origin in the artificial space. A phase 1 objective function is also
introduced which reaches its optimum value when the artificial variables are

in this special form, e.g. includes equality or ≥ constraints, or has negative entries

A general linear program has the form {min, max} cx, subject to Ax {≤, ≥, =} b,
l ≤ x ≤ u, where c is a 1× n row vector, x, l, u, and b are n × 1 column vectors, and

feasible solution for certain linear programs. For example, the origin (all variables

It is more difficult to find a first feasible solution when the general LP is not

in b. In these cases, the origin is no longer available as a feasible solution, so more

A is an m × n array, all consisting of real numbers. It is simple to find an immediate

Without loss of generality, let us initially assume an LP in which all variables
are restricted to be nonnegative, and all of the elements of b have nonnegative
values. With these restrictions, the constraints that eliminate the origin as a basic
feasible solution are the equality constraints and ≥ constraints that have strictly
positive entries in b. To permit the origin as a feasible point, we introduce a non-

i

i i i i i i i

i i i i
The origin is a basic feasible solution for this phase 1 LP, hence the simplex
method is able to initialize and iterate towards an optimum solution.

If the phase 1 LP terminates at an optimum solution in which W = 0, then it has
found a point at which the artificial variables can be dropped and all of the origi-

objective function. Ordinary simplex iterations then proceed to the optimum of the

function is normally included in the phase 1 matrix and updated as a nonbinding
row so that it is in proper form when it comes time to solve the phase 2 problem.

On the other hand, if the phase 1 LP terminates at an optimum solution in
which W > 0, then we know that the original LP is infeasible. W represents the
sum of the violations of the equality and ≥ constraints, hence the size of W at the
optimum solution is in some sense a measure of the size of the infeasibility. This
notion can be generalized if the LP is fully elasticized (see Sec. 6.1.4). Other
properties of the phase 1 solution, such as the dual prices of the slack variables,
are useful in analyzing the cause of the infeasibility, as explained in later chapters.

There are some minor potential difficulties if the phase 1 solution terminates

have a value of zero and yet be in the basis. This can happen when the model has
redundancies. However this is easy to recognize and handle. Dantzig and Thapa
(1997, pp. 81– 82) list three ways to handle this problem, the simplest of which is
to simply pivot the artificial variable out of the basis. This is done by choosing a
nonzero element in a column for an original variable in the row for which the arti-
ficial variable is basic, and performing the pivot.

Note that it is possible to formulate a phase 1 that includes only a single artifi-

then we are at feasible solution for the original problem Details follow.
driven to their lowest possible values; if all artifical variables achieve a value of zero,

xthe inequality a x ≥ b is replaced by a
negative artificial variable y
(i) + y ≥ b , and (ii) the equality a x = b

 for each such nonstandard constraint i, as follows

process now initiates phase 2 at the current point by dropping all of the artifi-

is replaced by a x + y = b . The phase 1 objective function is to minimize W =Σ y .

cial variable, however for implementation reasons this variant is not used in practice.

with W = 0 but the solution is degenerate. In this case, an artificial variable may

See Nazareth (1987, pp. 147–149) for details.

nal constraints are satisfied, i.e. a feasible point for the original problem. The solution

cial variables and the phase 1 objective function, and re-introducing the original

original objective function. Note that for efficiency reasons, the original objective

 2 Seeking Feasibility in Linear Programs 12

 2.3 Phase 1 from Any Basis

2.2 The Big-M Method

The Big-M method requires the introduction of the same artificial variables as in
the phase 1 method described above. The difference lies in how the artificial vari-

which is used as a penalty to discourage the inclusion of any artificial variables in
the basis. The method works towards feasibility and optimality simultaneously
within a single phase by using an appropriate form of the objective function:

• for maximization: max Z = cx – My,
• for minimization: min Z = cx + My.

As for the two-phase method described above, feasibility is recognized when
all of the artificial variables are driven to zero. This may not happen until optimal-
ity is also reached.

The practical difficulty with the Big-M approach is that the large multiplier in-
troduces numerical difficulties in the solution by dominating the calculations,
however if the value of M is too small, then the procedure will terminate with an
infeasible optimum solution. See Padberg (1999) for guidelines on choosing a
suitable value for Big-M. Because of the numerical difficulties, the Big-M method
is seldom used in practice.

2.3 Phase 1 from Any Basis

The phase 1 procedure given in Sec. 2.1 must start at the origin. A procedure that
can be invoked from any given starting basis is preferable since it can be invoked
when feasibility is lost (e.g. by accumulated rounding errors, or by changes to the
model after it has been solved). As shown by Nazareth (1987), such a phase 1 pro-
cedure is possible if the upper and lower bounds on the variables are specifically
considered (though this method applies equally well to singly-bounded or un-
bounded variables).

Consider the usual equation format of the LP after any necessary slack and sur-
plus variables have been added: Ax = b. Partitioning the variables into the set of
basic variables 0

Bx and the set of nonbasic variables 0
Nx at a given basis induces a

similar partitioning of the A matrix into B0, the columns associated with the basic
variables, and N , the columns associated with the nonbasic variables. The rewrit-
ten LP equation is then

bxNxB =+ 0000
NB .

Now the following relationship holds at any iteration:
0000
NB xNbxB −= .

either its upper or lower bound.
Given a basis, the values of the nonbasic variables are known (each nonbasic

variable is at one of its bounds), and so all of the constant and variable values on

The following phase 1 procedure considers that a variable can be nonbasic at

ables are driven out of the basis. “Big-M ” refers to a large positive multiplier M,

 0

13

 2 Seeking Feasibility in Linear Programs

the right hand side of 0000
NB xNbxB −= are known. Now we can solve for the

values of the basic variables:
)()(0010

NB xNbBx −= − .
Note that it may be numerically convenient to peg some of the nonbasic variables

may be outside of their bounds during phase 1, i.e. the solution may be infeasible.
The goal of the phase 1 procedure is then to drive all of the basic variables that are
currently outside their bounds to within them.

V as the set of basic variables that violate their lower bounds. Nazareth (1987)
i

and the phase 1 reduced costs reflect the rate of change of the sum of the infeasi-

0

normal manner towards feasibility. The cost component is reset to zero when a
variable that is outside its bounds eventually satisfies them.

When variables can violate their bounds, or can be nonbasic at either the upper
or the lower bound, there are several conditions to consider when choosing the
leaving basic variable during simplex iterations (see Greenberg (1978)):

• A variable may be basic, outside its bounds and moving away from them, and
hence will never be chosen as the leaving basic variable.

• A variable may be basic, outside its bounds and moving towards them, in which
case it may pass through the violated bound and become nonbasic at the
opposite bound.

• A variable may be basic and within its bounds, in which case it may become
nonbasic at the first bound it meets.
These conditions are checked when determining the leaving basic variable, and

the basic variable that most restricts the change in the value of the entering basic
variable is chosen as the leaving basic variable, as usual. Note that an entering ba-
sic variable may be decreasing in value. Any variables that satisfy their bounds are
kept inside their bounds by this procedure, while variables that violate their
bounds are gradually made to satisfy them. In other words, the number of infeasi-
bilities (NINF) is gradually reduced, eventually to zero if the LP is feasible.

While this procedure is effective, the fact that it keeps a variable within its
bounds once it satisfies them can be overly restrictive. In some cases it is prefer-
able to allow an entering basic variable to increase beyond the point at which the
first currently-feasible basic variable encounters a bound because the overall sum
of infeasibilities is still decreasing. When choosing the leaving basic variable,
there are up to two thresholds associated with every basic variable:
• No thresholds if the basic variable is currently outside its bounds and moving

away from them.

(Nazareth 1987)). After solving for the values of the basic variables, some of them

0

at values between their bounds; these variables are called superbasic (see

if i∈V , and c = 0 otherwise, then the sum of the infeasibilities is given correctly

This means that whenever infeasibility is discovered, the cost vector c is replaced
by the vector just described, and the simplex method is able to iterate in the

shows that if the prices and reduced costs (π) are set to c = 1 if i ∈ V , c = –1 i

Let us define V as the set of basic variables that violate their upper bounds, and

bilities when a nonbasic variable is introduced into the infeasible basis B .

14

 2.4 Crash Start Heuristics

threshold, the variable contributes to the sum of the infeasibilities.
• Two threshholds if the basic variable is currently outside its bounds and

moving towards them. The first threshhold moves the basic variable into its
feasible range, but is not blocking; beyond this threshold the variable no longer
contributes to the sum of the infeasibilities. The second threshold is at the
second bound and beyond this point the variable again contributes to the sum of
the infeasibilities.

A more advanced procedure for choosing the leaving basic variable first sorts
all of the thresholds in order from smallest to largest. It then looks at the rate of
change of the sum of the infeasibilities in the zone between each threshold. The

crease in the sum of the infeasibilities at the possible expense of increasing NINF.
It is also possible to combine the two goals by examining the thresholds to reduce
the sum of the infeasibilities as much as possible while not increasing NINF. This
is done by choosing the threshold that is latest in the sorted list that does not in-
crease NINF. Note that while you may pass through a threshold that causes a cur-
rently feasible basic variable to violate its bounds, a later threshold may cause a
variable that currently violates its bounds to satisfy them, hence there is no net
impact on NINF.

Nazareth (1987) describes the practical details of an efficient implementation of
this scheme, including ways to immediately eliminate variables from considera-
tion as the leaving basic variable, and ways to combine the calculations into a sin-
gle pass through the candidate variables.

2.4 Crash Start Heuristics

A crash start in the context of linear programming is a procedure for generating a
high quality initial basis. It may not be feasible, but it should be as close to feasi-
bility as possible and have other helpful characteristics such as providing a nearly
triangular matrix (which speeds the calculations). An LP with m independent rows

where one slack variable is added for each row. The main operation in crashing
the initial basis is selecting m of the variables to be in the initial basis.

Sec. 2.3 and the phase 1 procedure iterates to feasibility.

threshold dividing the last zone that shows a rate of decrease in the sum of the

15

infeasibilities from the first zone that shows a rate of increase in the sum of
the infeasibilities identifies the leaving basic variable. This emphasizes the de-

and n original variables is normally converted to a form having n + m variables,

The FortMP software (Ellison et al. 1999) describes a fairly standard crash
procedure. The unit basis consisting of the slack variables is first set up, and then

culated. Then an appropriate phase 1 cost structure is assigned, as described in
Once the basis is selected, the current values of the basic variables can be cal-

A basic slack variable is a candidate for an exchange with a nonbasic original
nonbasic original variables are gradually exchanged for basic slack variables.

variable if the pivot element at the intersection of the row for the basic slack variable

• One threshold if the basic variable is currently within its bounds. Beyond this

 2 Seeking Feasibility in Linear Programs

selected in previous exchanges have nothing but zeroes on the current pivot row.
If the rows and columns in the revised basis are ordered in the same order as their
selection into the basis, this leads to a triangular basis.

The row selected for an exchange should have as few nonzero elements as pos-
sible in columns that are candidates for exchange into the basis, on the principle
described above. A variable is then selected for exchange into the basis, and all
other candidate nonbasic variables that have a nonzero pivot element in the current

lected, a matrix update would be required).

the selection is based on sparsity as described. According to Ellison et al. (1999),

degree of restriction, from most to least (i.e. basic variables that have a smaller

without bounds). Fixed columns are never selected for exchange into the basis.
The crash procedure can also be adjusted, primarily by changing the tie-breaking
rules, to reduce the amount of degeneracy in the crashed basis.

If the phase 1 procedure uses artificial variables, then the crashing procedure
can be designed to reduce the number of artificial variables in the basis. Only rows
corresponding to basic artificial variables can be selected. The nonbasic variable is
chosen so that the pivot element is of reasonable size; this helps avoid basis singu-
larity. In this same vein, most solvers include a parameter that allows the user to
select a minimum size for any pivot, usually set as a minimum fraction of the larg-
est element in the column.

2.5 Crossover from an Infeasible Basis

Crossover normally refers to the process of moving from a feasible point provided
by an interior point LP algorithm to a nearby feasible basis (the basic solution is
desirable because it gives access to sensitivity analysis, etc.). However, if an ad-
vanced infeasible basis can be provided, e.g. by a crash procedure, then it is some-
times possible to crossover from that basis to a nearby feasible basis. This opens
the possibility of using heuristic methods to generate an initial solution that is rea-
sonably close to feasibility and then crossing over to a nearby feasible basis. The
FortMP software (Ellison et al. 1999) includes techniques for providing a close-to-

There are many ties for the selection of the row corresponding to the basic vari-

16

the way in which ties are broken has a big impact on the feasibility of the final
basis. Ties for the basic variable row are broken in favour of equality constraints
(so that artificial variables are removed from the basis), and after that according to the

range are exchanged first). Rows having free variables are never selected. Ties for
the nonbasic variable column are broken by preferring to exchange variables that

row are marked as unsuitable for exchange into the basis later (because, if se-

have the largest range, with first consideration being given to free variables (those

able and the column corresponding to the nonbasic variable to be exchanged when

feasible initial point and for the subsequent crossover.

and the column for the nonbasic original variable is nonzero. To avoid the work
involved in updating the matrix to check this condition, various heuristics are applied,
using the fact that there has been no update to the pivot element if the variable columns

 2.6 Advanced Starts: Hot and Warm Starts

At a basis provided by a crash start, the solution is likely to include a certain
number of superbasic variables (nonbasic variables that are not equal to one of
their bounds, but instead lie between their bounds). So-called purify or push algo-
rithms are then used to move superbasic variables to either a basic or nonbasic
status, i.e. to arrive at a feasible basis. In FortMP (Ellison et al. 1999) there are
separate push algorithms to remove primal superbasic variables and to remove
dual superbasic variables. Both function in essentially the same way. The main
idea is to examine the effect on the basic variables when the value of a superbasic

of its bounds before any basic variable does, then the superbasic is simply
switched to nonbasic status. If a basic variable reaches one its bounds before the
superbasic does, then a basis change is made, in which the basic variable is made
nonbasic and the superbasic is made basic.

The version of the crash heuristics that tries to eliminate artificial variables is
preferred for use with the push heuristics since it helps reduce the amount of work
during the push phase. In addition, during the push phase, any original variables
that are at their bounds after the crash are temporarily fixed at those values.

improving the output of the crash step before purifying. FortMP uses a successive
overrelaxation (SOR) algorithm (Press et al. 1992), an iterative technique for solv-

dure has three steps: (i) apply the crash heuristic to create an approximately lower
triangular basis, (ii) apply the successive overrelaxation algorithm to improve the
point provided by the crash heuristic, and (iii) apply the push algorithms to cross
over to a feasible basis. With luck the SOR procedure produces a feasible solution
directly, which eases the crossover to a basic solution. If it does not produce a fea-

2.6 Advanced Starts: Hot and Warm Starts

If the LP solution process is stopped for any reason, the current basis and associ-

information provides a hot start which allows the solver to begin where it left off

restarted. This may happen because the conditions being modeled have changed,
but it is an essential part of two important procedures. In solving mixed-integer
programs via branch and bound, numerous LPs are solved in a tree-structured
search for a solution that is both LP-feasible and integer-feasible. Each LP is iden-
tical to a previous LP except that a bound on one variable has been adjusted so

An approximate solution that is even closer to feasibility can be supplied by

sible solution, then the push algorithms may yet do so, though this is not guaranteed.

ing systems of linear equations (see Sec. 2.8), for this purpose. The overall proce-

without repeating the set of iterations, including the phase 1 feasibility-seeking

ated information may be stored. If the solution process is restarted later, this stored

It frequently happens that minor changes are made to the LP model before it is
iterations, which originally generated the stored basis.

17

variable is adjusted (in a manner similar to examining the effect of an entering
basic variable on the existing basic variables). If the superbasic variable reaches one

 2 Seeking Feasibility in Linear Programs

that the previous LP solution is rendered infeasible. In LP infeasibility analysis

differ by the addition or removal of one or several of the constraints or bounds. In
cases such as these where the next LP to be solved is substantially similar (but not
identical) to a previous LP, then a warm start that makes use of the previous solu-
tion and basis may be effective. This usually means that you can arrive at a new
feasible (and optimal) solution in only a few iterations.

In warm-starting, if the changes made to the model have not rendered the
warm-start point infeasible, then the primal simplex iterations just pick up where
they left off and continue iterating to optimality. However, if the changes to the
model have made the warm-start point primal-infeasible (normally by a change to

quickly reach primal feasibility at the dual optimum point, normally in a small
number of iterations.

Warm-starting an interior point method is considerably more difficult, but pro-
gress is being made. See Yildirim and Wright (2002) and John and Yildirim
(2006) for details.

2.7 Seeking Feasibility and Optimality Simultaneously

An option often provided in simplex-based LP solvers is the ability to seek feasi-
bility and optimality simultaneously. This is what happens when using the big-M
feasibility-seeking algorithm, of course, but there are better ways to combine the
two that avoid the numerical difficulties associated with big-M.

The simplest approach is to use a composite objective that weights the objective
function and a measure of infeasibility, normally the sum of the infeasibilities. The
MINOS software (Murtagh and Saunders 1987) uses a composite objective of the
form

specified weight. If the LP solver reaches an optimum solution for that objective
function while the original model remains infeasible, then w is reduced by a factor
of 10, and up to five such reductions are allowed before the algorithm gives up.

Infeasible-path interior point algorithms for linear programming have been the
subject of a great deal of research in the past decade. Also known as primal-dual
interior point methods, these algorithms maintain an interior point that satisfies all
of the inequality constraints, but that do not necessarily satisfy all of the equality
constraints at any point before the optimum is reached. Details are beyond our
scope here, but see e.g. Andersen et al. (1996) or Wright (1997).

(see Sec. 6.2), several algorithms require the solution of sequences of LPs that

minimize σw(cx) + (sum of infeasibilities), where σ = 1 for a minimization

a constraint or bound, or by the addition of one), then the warm-start point
will still be dual feasible. The solver then switches to the dual simplex method and will

objective function and σ = –1 for a maximization objective function and w is a user-

18

 2.8 Projection Methods

2.8 Projection Methods

There is a rich and extensive literature on projection methods for finding feasible
points for sets of constraints that form a convex set, of which sets of linear con-
straints are an important special case. The properties of these methods are well-
studied, including guarantees of convergence for sets of convex inequalities. An
excellent reference on this class of methods is Censor and Zenios (1997). Projec-
tion methods, under the name of constraint consensus methods, are also used as a
heuristic technique for reaching near-feasible points in general sets of nonlinear
constraints for which the convexity properties are not known (see Sec. 5.5); con-

infeasible point, easily given by ai, the ith row of the constraint matrix A in the set

constraint. This closest feasible point is called the orthogonal projection of the
violated point, and is obtained by moving in the gradient or anti-gradient direction,
as appropriate, to the limiting value of the violated constraint (see Sec. 1.2). The
vector showing how to move from the current infeasible point to the orthogonal
projection point onto an individual violated constraint is sometimes called the fea-
sibility vector (Chinneck 2004), and denoted by fvi for the ith constraint ci. As has

i i i i i
2

• ∇ci (x) is the gradient of the constraint, and ||∇ci (x)|| is its length.
• vi is the constraint violation |ci (x) – bi|, or zero for satisfied constraints,
• di is +1 if it is necessary to increase c(x) to satisfy the constraint, and –1 if it is

necessary to decrease ci (x) to satisfy the constraint.

The squared term in the denominator seems unexpected, but is easily explained.
i i i

i i
priate gradient or anti-gradient direction to reach feasibility; the product is

i i i i
2

i
The feasibility vectors for the violated constraints are used in different ways in

the numerous varieties of projection algorithms (Censor and Zenios 1997; Censor,
Elfving and Herman 2001). In all variants, the feasibility vectors must be com-
bined in some way to arrive at an update vector; this final vector is sometimes
called the consensus vector (Chinneck 2004). Some main algorithm variants are:

• Sequential projection algorithms update the current point by finding and
applying the feasibility vector for one violated constraint at each iteration. The
process continues until feasibility is achieved. The simplest version is cyclic
(see below), but other variants are possible, see control sequences below.

d∇c (x) / ||∇c (x)|| is a unit vector in the gradient or anti-gradient direction, as nec-

denoted by || fv ||.

essary to reach feasibility. V / ||∇c (x)|| is the number of units to move in the appro-

All methods in this category employ some form of a projection for each vio-

direction. The main idea is to use the gradient of the violated constraint at the current

19

vergence cannot be guaranteed under these conditions, but the algorithms are
remarkably effective.

lated constraint, most commonly a projection in the gradient or anti-gradient

v d∇c (x) / | |∇c (x)|| . The length of the feasibility vector for the i th constraint is

been shown by Xiao et al. (2003) and others, fv = v d∇c (x) / ||∇c (x)|| where:

of linear constraints Ax{≤, ≥, =}b, to calculate the closest point that satisfies the

 2 Seeking Feasibility in Linear Programs

• Simultaneous projection algorithms calculate the feasibility vector for every

feasibility is achieved.

feasibility vectors for the violated constraints is combined in a weighted
average. Component averaging (Censor, Gordon and Gordon 2001) on the
other hand, realizes that not all of the constraints contain all of the variables.

movement in that dimension is calculated.
• Control sequences may be used to adjust which constraints are assessed at each

iteration. In a cyclic control sequence, a sequential algorithm assesses the con-
straints in a round-robin fashion. The control sequence may also be almost
cyclic (constraints or sets of constraints appear in every cycle, but not
necessarily in the same order) or repetitive (Censor and Zenios 1997). Control
sequences may be applied to individual constraints or to sets of constraints.

The most violated constraint control determines which constraint is
currently most violated and uses that constraint in a sequential update

which determines a set of constraints that is most violated and uses those
constraints in a simultaneous projection algorithm.

 Voting heuristics may be used to determine which subsets of constraints to

for some component xj than negative values, then increase the xj component
by the average value of only the positive xj components in the feasibility
vectors. Several variants of voting methods are described in Sec. 5.5.

either lengthening or shortening it.
• Oblique projections may be used instead of orthogonal projections.

• Relaxation parameters may be used adjust the length of the consensus vector,

the constraints which contain a particular variable are considered when the
The final movement vector is therefore computed component-wise, and only

In the usual simultaneous projection algorithm, the complete set of –

–

–

example, if the feasibility vectors of more constraints have positive values

three orthogonal feasibility vectors.

algorithm. A similar idea applies in the case of the remotest set control

violated constraint and then combine them using some form of weighting
to determine a final update consensus vector. This process if repeated until

A simple example showing several steps in a cyclic orthogonal pro jectionl

shows the consensus vector resulting from the component-wise combination of the

20

combine in a simultaneous algorithm (Ibrahim and Chinneck 2005). For

projection algorithm for three equality constraints is shown in Fig. 2.1 . Fig. 2.2

 2.8 Projection Methods

Versions of these algorithms have been
introduced by many authors. One of the
earlier methods for linear equalities is by
Kaczmarz (1937), a cyclic orthogonal pro-

linear constraints. Another influential early
development was the relaxation method for
linear inequalities due to Agmon (1954),
Motzkin and Schoenberg (1954), which
consisted of a cyclic orthogonal projection
method with relaxation. See Censor and
Zenios (1997) for complete coverage of all
related methods.

While projection methods could poten-
tially be used in a feasibility-seeking phase
1 procedure for general linear programs,
they have not been adopted for this purpose
in commercial LP solvers (though a succes-
sive overrelaxation procedure is optionally
used as part of a phase 1 procedure in at
least one solver: see Sec. 2.5). Instead they
have been applied in special-purpose feasi-

bility seeking applications in radiation therapy planning, image reconstruction,

A variant of projection methods known as randomized thermal relaxation algo-
rithms is used in the context of finding a maximum cardinality feasible subset for
an infeasible set of linear constraints (see Sec. 7.6 for details on the algorithm).
Experiments with feasible models comprised of large numbers of linear inequali-
ties show that the method is capable of reaching feasibility or near-feasibility very
quickly (Amaldi et al. 2005).

Fig. 2.2. The consensus vector (solid)
results from the component-wise aver-
aging of the three feasibility vectors
(dashed)

orthogonal projection method
Fig 2.1. Several steps in a cyclic

21

jection method. Cimmino (1938) first sug-
gested a fully simultaneous method for

etc. many of which are convex nonlinear problems if not linear.

