
Introduction

This book originated from a graduate course given during the Spring of 2005 at the
University of Milan. Our goal was to present an extension of the original Bochner
technique describing a selection of results recently obtained by the authors, in non-
compact settings where in addition one didn’t assume that the relevant curvature
operators satisfied signum conditions. To make the course accessible to a wider
audience it was decided to introduce many of the more advanced analytical and
geometrical tools along the way.

The initial project has grown past the original plan, and we now aim at
treating in a unified and detailed way a variety of problems whose common thread
is the validity of Weitzenböck formulae.

As is well illustrated in the elegant work by H.H. Wu, [165], typically, one
is given a Riemannian (Hermitian) vector bundle E with compatible fiber metric
and considers a geometric Laplacian L on E which is related to the connection
(Bochner) Laplacian −tr(D∗D) via a fiber bundle endomorphism R which is in
turn related to the curvature of the base manifold M . Because of this relationship,
the space of L-harmonic sections of E reflects the geometric properties of M .

To illustrate the method, let us consider the original Bochner argument to es-
timate the first real Betti number b1(M) of a closed oriented Riemannian manifold
(M, 〈 , 〉).

By the Hodge–de Rham theory, b1(M) equals the dimension of the space of
harmonic 1-forms H1 (M). A formula of Weitzenböck, independently rediscovered
by Bochner, states that for every harmonic 1-form ω,
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∆ |ω|2 = |Dω|2 + Ric
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ω#, ω#

)
, (0.1)

where ∆ and Ric are the Laplace–Beltrami operator (with the sign convention
+d2/dx2) and the Ricci curvature of M, respectively, D denotes the extension
to 1-forms of the Levi–Civita connection, and ω# is the vector field dual to ω,
defined by 〈ω#, X〉 = ω(X) for all vector fields X . In particular |ω|2 satisfies the
differential inequality

∆ |ω|2 − q(x) |ω|2 ≥ 0,

where q(x)/2 is the lowest eigenvalue of the Ricci tensor at x. Thus, if Ric ≥ 0,
then |ω| is subharmonic. Since M is closed, we easily conclude that |ω| =const.
This can be done using two different viewpoints, (i) the L∞ and (ii) the Lp<+∞

one. As for (i), note that the smooth function |ω| attains its maximum at some
point and, therefore, by the Hopf maximum principle we conclude that |ω| =const.
In case (ii) we use the divergence theorem to deduce
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This again implies |ω| =const.
Now, since Ric ≥ 0, using this information in formula (0.1) shows that ω is

parallel, i.e., Dω = 0. As a consequence, ω is completely determined by its value at
a given point, say p ∈ M . The evaluation map εp : H1 (M) → Λ1

(
T ∗

pM
)

defined
by

εp (ω) = ωp

is an injective homomorphism, proving that, in general,

b1(M) = dimH1 (M) ≤ m.

Note that (0.1) yields

0 = Ric
(
ω#

p , ω
#
p

)
at p.

Therefore, if Ric (p) > 0, we get ωp = 0 which, in turn, implies ω = 0. This shows
that, when Ric is positive somewhere,

b1(M) = dimH1 (M) = 0.

The example suggests that one can generalize the investigation in several
directions. One can relax the assumption on the signum of the coefficient q(x),
consider complete non-compact manifolds, or both.

Maintaining compacteness, one can sometimes allow negative values of q(x)
using versions of the generalized maximum principle, according to which if ψ ≥ 0
satisfies

∆ψ − q (x)ψ ≥ 0, (0.2)

and M supports a solution ϕ > 0 of

∆ϕ− q (x)ϕ ≤ 0, (0.3)

then the ratio u = ψ/ϕ is constant. Combining (0.2) and (0.3) shows that ψ
satisfies (0.2) with equality sign. In particular, according to (0.1), ψ = |ω|2 satisfies
(0.2), and therefore, if M supports a function ϕ satisfying (0.3), we conclude, once
again, that ω is parallel, thus extending the original Bochner vanishing result to
this situation.

It is worth noting that the existence of a function ϕ satisfying (0.3) is related
to spectral properties of the operator −∆ + q (x), and that the conclusion of the
generalized maximum principle is obtained by combining (0.2) and (0.3) to show
that the quotient u satisfies a differential inequality without zero-order terms; see
Section 2.5 in [133].

In the non-compact setting the relevant function may fail to be bounded, and
even if it is bounded, it may not attain its supremum. In the latter case, one may
use a version of the maximum principle at infinity introduced by H. Omori, [124]
and generalized by S.T. Yau, [167], and S.Y Cheng and Yau, [34], elaborating ideas
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of L.V. Ahlfors. An account and further generalizations of this technique, which
however works under the assumption that q(x) is non-negative, may be found in
[131].

Here we consider the case where the manifold is not compact and the func-
tion encoding the geometric problem is not necessarily bounded, but is assumed
to satisfy suitable Lp integrability conditions, and the coefficient q(x) in the dif-
ferential (in)equality which describes the geometric problem is not assumed to be
non-negative.

Referring to the previous example, the space of harmonic 1-forms in L2 de-
scribes the L2 co-homology of a complete manifold, and under suitable assump-
tions it has a topological content sensitive to the structure at infinity of the man-
ifold. It turns out to be a bi-Lipschitz invariant, and, for co-compact coverings, it
is in fact a rough isometry invariant.

As in the compact case described above, one replaces the condition that
the coefficient q(x) is pointwise positive, with the assumption that there exists a
function ϕ satisfying (0.3) on M or at least outside a compact set. Again, one uses
a Weitzenböck-type formula to show that the geometric function ψ = |ω| satisfies
a differential inequality of the form (0.2).

Combining (0.2) and (0.3) and using the integrability assumption, one con-
cludes that either ψ vanishes and therefore the space L2H1(M) of L2-harmonic
1-forms is trivial or that L2H1(M) is finite-dimensional.

The method extends to the case of Lp-harmonic k-forms, even with values in a
fibre bundle, and in particular to harmonic maps with Lp energy density, provided
we consider an appropriate multiple of q(x) in (0.3), and restrict the integrability
coefficient p to a suitable range. Harmonic maps in turn yield information, as in
the compact case, on the topological structure of the underlying domain manifold.

This relationship becomes even more stringent in the case where the domain
manifold carries a Kählerian structure. Indeed, for complex manifolds, the splitting
in types allows to consider, besides harmonic maps, also pluriharmonic and holo-
morphic maps. If, in addition, the manifold is Kähler, the relevant Weitzenböck
identity for pluriharmonic functions (which in the L2 energy case coincides with
a harmonic function with L2 energy) takes on a form which reflects the stronger
rigidity of the geometry and allows us to obtain stronger conclusions. Thus, on the
one hand one can enlarge the allowed range of the integrability coefficient p, and
on the other hand one may deduce structure theorems which have no analogue in
the purely Riemannian case.

The extension to the non-compact case introduces several additional technical
difficulties, which require specific methods and tools. The description of these is
in fact a substantial part of the book, and while most, but not all, of the results
are well known, in many instances our approach is somewhat original. Further, in
some cases, one needs results in a form which is not easily found, if at all, in the
literature.

When we feel that these ancillary parts are important enough, or the ap-
proach sufficiently different from the mainstream treatment, a fairly detailed
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description is given. Thus we provide, for instance, a rather comprehensive treat-
ment of comparison methods in Riemannian geometry or of the spectral theory
of Schrödinger operators on manifolds. In other situations, the relevant tools are
introduced when needed. For instance this is the case of the Poincaré inequalities
or of the Moser iteration procedure.

The material is organized as follows.
In Chapter 1, after a quick review of harmonic maps between Riemannian

manifolds, where in particular we describe the Weitzenböck formula and derive a
sharp version of Kato’s inequality, we introduce the basic facts on the geometry
of complex manifolds, and Hermitian bundles, concentrating on the Kähler case.
Our approach is inspired by work of S.S. Chern, and is based on analyzing the
Riemannian counterpart of the Kähler structure.

The same line of arguments allows us to extend a result of J.H. Sampson,
[143], concerning the pluriharmonicity of a harmonic map from a compact Kähler
manifold into a Riemannian target with negative Hermitian curvature to the case
of a non-compact domain. This in turn yields a sharp version of a result of P. Li,
[96], for pluriharmonic real-valued functions. The chapter ends with a derivation
of Weitzenböck-type formulas for pluriharmonic and holomorphic maps.

Chapter 2 is devoted to a detailed description of comparison theorems in
Riemannian Geometry under curvature conditions, both pointwise and integral,
which will be extensively used throughout the book. We begin with general com-
parison results for the Laplacian and the Hessian of the distance function. The
approach, which is indebted to P. Petersen’s treatment, [128], is analytic in that
it only uses comparison results for ODEs avoiding the use of Jacobi fields, and it
is not limited to the case where the bound on the relevant curvature is a constant,
but is given in terms of a suitable function G of the distance from a reference point.
Some effort is also made to describe explicit bounds in a number of geometrically
significant situations, namely when G(r) = −B(1 + r2)α/2, or when G(t) satisfies
the integrability condition tG(t) ∈ L1([0,+∞)) considered, among others, by U.
Abresch, [1], and by S.H. Zhu, [171].

These estimates are then applied to obtain volume comparisons. Even though
the method works both for upper and lower estimates, we concentrate on upper
bounds, which hold under less stringent assumptions on the manifold, and in par-
ticular depend on lower bounds for the Ricci curvature alone, and do not require
topological restrictions. We also describe volume estimates under integral Ricci
curvature conditions which extend previous work of S. Gallot, [57], and, more
recently, by Petersen and G. Wei, [129]. We then describe remarkable lower esti-
mates for the volume of large balls on manifolds with almost non-negative Ricci
curvature obtained by P. Li and R. Schoen, [95] and Li and M. Ramachandran,
[98], elaborating on ideas of J. Cheeger M. Gromov and M. Taylor, [33]. These es-
timates in particular imply that such manifolds have infinite volume. We conclude
the chapter with a version of the monotonicity formula for minimal submanifolds
valid for the volume of intrinsic (as opposed to extrinsic) balls in bi-lipschitz har-
monic immersions.
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Chapter 3 begins with a quick review of spectral theory of self-adjoint opera-
tors on Hilbert spaces modelled after E.B. Davies’ monograph, [41]. In particular,
we define the essential spectrum and index of a (semibounded) operator, and apply
the minimax principle to describe some of their properties and their mutual rela-
tionships. We then concentrate on the spectral theory of Schrödinger operators on
manifolds, in terms of which many of the crucial assumptions of our geometrical
results are formulated.

After having defined Schrödinger operators on domains and on the whole
manifold, we describe variants of classical results by D. Fisher-Colbrie, [53], and
Fisher-Colbrie and Schoen, [54], which relate the non-negativity of the bottom of
the spectrum of a Schrödinger operator L on a domain Ω to the existence of a
positive solution of the differential inequality Lϕ ≤ 0 on Ω.

Since, as already mentioned above, the existence of such a solution is the
assumption on which the analytic results depend, this relationship allows us to
interpret such hypothesis as a spectral condition on the relevant Schrödinger op-
erator. This is indeed a classical and natural feature in minimal surfaces theory
where the stability, and the finiteness of the index of a minimal surface, amount
to the fact that the stability operator −∆− |II|2 has non-negative spectrum, re-
spectively finite Morse index.

In describing these relationships we give an account of the links between
essential spectrum, bottom of the spectrum, and index of a Schrödinger operator
L on a manifold, and that of its restriction to (internal or external) domains. With
a somewhat different approach and arguments, our presentation follows the lines
of a paper by P. Berard, M.P. do Carmo and W. Santos, [13].

Chapter 4 and Chapter 5 are the analytic heart of the book. In Chapter 4 we
prove a Liouville-type theorem for Lp solutions u of divergence-type differential
inequalities of the form

udiv
(
ϕ∇u) ≥ 0,

where ϕ is a suitable positive function. An effort is made to state and prove the
result under the minimal regularity assumptions that will be needed for geometric
applications. As a consequence we deduce the main result of the chapter, namely
a vanishing theorem for non-negative solutions of the Bochner-type differential
inequality

ψ∆ψ + a(x)ψ2 +A|∇ψ|2 ≥ 0. (0.4)

Assuming the existence of a positive solution of the inequality

∆ϕ+Ha(x)ϕ ≤ 0, (0.5)

for a suitable constant H , one proceeds similarly to what we described above, and
shows that an appropriate combination u of the function ψ and ϕ satisfies the
hypotheses of the Liouville-type theorem.

In Chapter 6 the analytic setting is similar, one considers vector spaces of
Lp-sections whose lengths satisfy the differential inequality (0.4) and proves that
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such spaces are finite-dimensional under the assumption that a solution ϕ to the
differential inequality (0.5) exists in the complement of a compact set K in M .
The idea of the proof is to show that there exists a constant C depending only
on the geometry of the manifold in a neighborhood of K such that the dimension
of every finite-dimensional subspace is bounded by C. The proof is based on a
version of a lemma by Li, and uses a technique of Li and J. Wang, [104] and [105],
combined with the technique of the coupling of the solutions ψ and ϕ which allows
us to deal with Lp sections with p not necessarily equal to 2. The proof requires
a number of technical results which are described in detailed, in some cases new,
direct proofs.

Chapter 6 to 9 are devoted to applications in different geometric contexts.
In Chapter 6 we specialize the vanishing results to the case of harmonic maps
with finite Lp energy, and derive results on the constancy of convergent harmonic
maps, and a Schwarz-type lemma for harmonic maps of bounded dilation. We then
describe topological results by Schoen and Yau, [146], concerning the fundamental
group of manifolds of non-negative Ricci curvature and of stable minimal hypersur-
faces immersed in non-positively curved ambient spaces. While the main argument
is the same as Schoen and Yau’s, the use of our vanishing theorem allows us to
relax their assumption that the Ricci curvature of the manifold is non-negative.
The chapter ends by generalizing to non-compact settings the finiteness theorems
of L. Lemaire, [93], for harmonic maps of bounded dilation into a negatively curved
manifold, on the assumption that the domain manifold has a finitely generated
fundamental group.

In Chapter 7 we use the techniques developed above to describe the topology
at infinity of a Riemannian manifold M , and more specifically the number of
unbounded connected components of the complement of a compact domain D in
M , namely the ends of M with respect to D.

The number of ends of a manifold will in turn play a crucial role in the
structure results for Kähler manifolds, and in the derivation of metric rigidity in
the Riemannian setting (see Chapters 8 and 9, respectively).

The chapter begins with an account of the theory relating the topology at in-
finity and suitable classes of harmonic functions on the manifold as developed by Li
and L.F. Tam and collaborators. At the basis of this theory is the fact that, via the
maximum principle, the parabolicity/non-parabolicity of an end is intimately con-
nected with the existence of a proper harmonic function on the end (the so-called
Evans–Selberg potential of the end), or, in the non-parabolic case, of a bounded
harmonic function on the end with finite Dirichlet integral. Combining these facts
with the analytic results of the previous chapters in particular, we obtain that the
manifold has only one, or at most finitely many non-parabolic ends, depending on
spectral assumptions on the operator L = −∆−a(x), where −a(x) is the smallest
eigenvalue of the Ricci tensor at x. To complete the picture, following H.-D. Cao,
Y. Shen, S. Zhu, [25], and Li and Wang, [104], one shows that when the mani-
fold supports an L1-Sobolev inequality, then all ends are non-parabolic. This in
particular applies to submanifolds of Cartan–Hadamard manifolds, provided that
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the second fundamental form is small in a suitable integral norm. In the chapter,
using a gluing technique of T. Napier and Ramachandran, [117], we also provide
the details of a construction sketched by Li and Ramachandran, [98] of harmonic
functions with controlled L2 energy growth that will be used in the structure the-
orems for Kähler manifolds. The last two sections of the chapter contain further
applications of these techniques to problems concerning line bundles over Kähler
manifolds, and to the reduction of codimension of harmonic immersions with less
than quadratic p-energy growth.

In Chapter 8 we concentrate on the Kähler setting. We begin by provid-
ing a detailed description of a result of Li and Yau, [107], on the constancy of
holomorphic maps with values in a Hermitian manifold with suitably negative
holomorphic bisectional curvature. We then describe two variations of the result,
where the conclusion is obtained under different assumptions: in the first, using
Poisson equation techniques, an integral growth condition on the Ricci tensor is re-
placed by a volume growth condition, while in the second one assumes a pointwise
lower bound on the Ricci curvature which is not necessarily integrable, together
with some spectral assumptions on a variant of the operator L. We then apply this
in the proof of the existence of pluri-subharmonic exhaustions due to Li and Ra-
machandran, [98], which is crucial in obtaining the important structure theorem
of Napier and Ramachandran, [117], and Li and Ramachandran, [98].

The unifying element of Chapter 9 is the validity of a Poincaré–Sobolev in-
equality. In the first section, we give a detailed proof of a warped product splitting
theorem of Li and Wang, [104]. There are two main ingredients in the proof. The
first is to prove that the metric splitting holds provided the manifold supports a
non-constant harmonic function u for which the Bochner inequality with a sharp
constant in the refined Kato’s inequality is in fact an equality. The second ingredi-
ent consists of energy estimates for a suitable harmonic function u on M obtained
by means of an exhaustion procedure. This is the point where the Poincaré–Sobolev
inequality plays a crucial role. Finally, one uses the analytic techniques of Chap-
ter 4 to show that u is the sought-for function which realizes equality in the
Bochner inequality. In the second section we begin by showing that whenever M
supports an L2 Poincaré–Sobolev-type inequality, then a non-negative Lp solution
ψ of the differential inequality (0.4),

ψ∆ψ + a(x)ψ2 +A|∇ψ|2 ≥ 0,

must vanish provided a suitable integral norm of the potential a(x) is small
compared to the Sobolev constant. This compares with the vanishing result of
Chapter 4 which holds under the assumption that the bottom of the spectrum
of −∆ + Ha(x) is non-negative. Actually, in view of the geometric applications
that follow, we consider the case where M supports an inhomogeneous Sobolev
inequality.

We then show how to recover the results on the topology at infinity for
submanifolds of Cartan–Hadamard manifolds of Chapter 7. In fact, using directly
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the Sobolev inequality allows us to obtain quantitative improvements. Further
applications are given to characterizations of space forms which extend in various
directions a characterization of the sphere among conformally flat manifolds with
constant scalar curvature of S. Goldberg, [61].

The book ends with two appendices. The first is devoted to the unique con-
tinuation property for solutions of elliptic partial differential systems on manifolds,
which plays an essential role in the finite-dimensionality result of Chapter 5. Apart
from some minor modifications, our presentation follows the line of J. Kazdan’s
paper [87].

In the second appendix we review some basic facts concerning the Lp co-
homology of complete non-compact manifolds. We begin by describing the basic
definitions of the Lp de Rham complex and discussing some simple, but significant
examples. We then collect some classical results like the Hodge, de Rham, Kodaira
decomposition, and briefly consider the role of Lp harmonic forms. Finally, we il-
lustrate some of the relationships between Lp cohomology and the geometry and
the topology of the underlying manifold both for p = 2 and p 	= 2. In particular
we present (with no proofs) the Whitney-type approach developed by J. Dodziuk,
[43] and V.M. Gol’dshtein, V.I. Kuz’minov, I.A. Shvedov, [63] and [64], where the
topological content of the Lp de Rham cohomology is emphasized by relating it
to a suitable, global simplicial theory on the underlying triangulated manifold.
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