
Preface

The study of the subgroup growth of infinite groups is an area of mathematical
research that has grown rapidly since its inception at the Groups St. Andrews
conference in 1985. It has become a rich theory requiring tools from and having
applications to many areas of group theory. Indeed, much of this progress is
chronicled by Lubotzky and Segal within their book [42].

However, one area within this study has grown explosively in the last few
years. This is the study of the zeta functions of groups with polynomial sub-
group growth, in particular for torsion-free finitely-generated nilpotent groups.
These zeta functions were introduced in [32], and other key papers in the de-
velopment of this subject include [10, 17], with [19, 23, 15] as well as [42]
presenting surveys of the area.

The purpose of this book is to bring into print significant and as yet
unpublished work from three areas of the theory of zeta functions of groups.

First, there are now numerous calculations of zeta functions of groups by
doctoral students of the first author which are yet to be made into printed form
outside their theses. These explicit calculations provide evidence in favour of
conjectures, or indeed can form inspiration and evidence for new conjectures.
We record these zeta functions in Chap. 2. In particular, we document the
functional equations frequently satisfied by the local factors. Explaining this
phenomenon is, according to the first author and Segal [23], “one of the most
intriguing open problems in the area”.

A significant discovery made by the second author was a group where
all but perhaps finitely many of the local zeta functions counting normal
subgroups do not possess such a functional equation. Prior to this discovery,
it was expected that all zeta functions of groups should satisfy a functional
equations. Prompted by this counterexample, the second author has outlined
a conjecture which offers a substantial demystification of this phenomenon.
This conjecture and its ramifications are discussed in Chap. 4.

Finally, it was announced in [16] that the zeta functions of algebraic groups
of types Bl, Cl and Dl all possessed a natural boundary, but this work is
also yet to be made into print. In Chap. 5 we present a theory of natural
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boundaries of two-variable polynomials. This is followed by Chap. 6 where
the aforementioned result on the zeta functions of classical groups is proved,
and Chap. 7, where we consider the natural boundaries of the zeta functions
attached to nilpotent groups listed in Chap. 2.

The first author thanks Zeev Rudnick who first informed him of Con-
jecture 1.11, Roger Heath-Brown who started the ball rolling and Fritz
Grunewald for discussions which helped bring the ball to a stop. The first
author also thanks the Max-Planck Institute in Bonn for hospitality during
the preparation of this work and the Royal Society for support in the form of
a University Research Fellowship. The second author thanks the EPSRC for
a Research Studentship and a Postdoctoral Research Fellowship, and the first
author for supervision during his doctoral studies.
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Nilpotent Groups: Explicit Examples

In this chapter we list some of the (now numerous) calculations of zeta func-
tions of T-groups and Lie rings. The primary emphasis is on bringing into print
explicit calculations that have yet to be published. However, we aim this chap-
ter to be more than just a gallery of results. Hence we begin the chapter with
some details about how these zeta functions have been calculated.

2.1 Calculating Zeta Functions of Groups

Zeta functions of groups have been calculated using a number of different
methods. The first examples counted ideals in T-groups of class 2 and were
calculated by Grunewald, Segal and Smith in [32]. A key part of their work is
the formula [32, Lemma 6.1]

ζ�
G,p(s) = ζZn,p(s)

∑

B≤A

|A : B|n−s|G : X(B)|−s , (2.1)

where A = γ2(G), G/A ∼= Z
d and X(B)/B = Z(G/B). Their calculations are

made by evaluating (2.1) for each group in turn. Although there are a few
general lemmas proved which help speed matters along, their methods are to
some extent tailored to each group individually. Nonetheless, their methods
suffice to calculate all but perhaps finitely many of the local factors ζ�

G,p(s)
for every T-group G of class 2 and Hirsch length at most 6.

In [60], Voll uses (2.1) and the Bruhat-Tits building of SLn(Qp) to compute
normal zeta functions of T-groups whose centres are free abelian of rank 2 or
3. In particular, Voll computes the normal zeta function of all T-groups whose
centre is of rank 2, and confirms the functional equation (1.5). This work is
based on the classification of such groups by Grunewald and Segal [31]. For
centres of rank 3, the geometry of the associated Pfaffian hypersurface comes
into play. Provided the singularities of this hypersurface are in some sense
not too severe, Voll gives a formula for the local normal zeta function of L
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depending on the number of points on the Pfaffian hypersurface. A highlight
of this work is explicit expressions for the rational functions P1(X,Y ) and
P2(X,Y ) in the local normal zeta function of the ‘elliptic curve example’
(1.6).

A more general approach is used by Voll in [61], where he considers the case
where the Pfaffian hypersurface has no lines. Indeed this occurs generically
if the abelianisation has rank greater than 4r − 10, where r is the dimension
of the centre. Provided this Pfaffian is smooth and absolutely irreducible, the
functional equation (1.5) holds. Voll also gives in [61] an explicit formula for
the normal zeta functions of the class-2 nilpotent groups known as ‘Grenham
groups’, using a combinatorial formula for the number of points on flag vari-
eties. This formula is also employed by Voll in [58], where he gives an explicit
formula for the local zeta functions counting all subgroups in the Grenham
groups.

One key assumption Voll makes in [61] is that the associated Pfaffian
hypersurface has no lines. A forthcoming paper by Paajanen [49] presents
the first step in overcoming this obstacle. She considers the normal zeta
function of a class-2 nilpotent group GS which encodes the Segre surface
S : x1x4 − x2x3 = 0. In particular, she calculates that

ζ�
GS ,p(s) = W0(p, p−s) + (p + 1)2W1(p, p−s) + 2(p + 1)W2(p, p−s)

for explicit rational functions Wi(p, p−s), i = 0, 1, 2. The coefficients (p + 1)2

and 2(p + 1) arise from the geometry of S reduced mod p: being isomorphic
to P

1(Fp) × P
1(Fp) it has (p + 1)2 points and 2(p + 1) lines.

Voll has also used combinatorial methods to yield an explicit expression
for the local normal zeta functions of the class-2 free nilpotent groups [62].
One key ingredient is an explicit expression for a sum of certain Hall polyno-
mials. Whilst there seems to be no simple formula for the Hall polynomials
themselves, a polynomial expression for the sum has been known for some
time.

One approach common to the work of Voll and Paajanen is to decom-
pose the local normal zeta function as a sum of rational functions with coeffi-
cients corresponding to invariants of a suitable algebraic variety. They are then
able to deduce functional equations by virtue of the fact that each individual
rational function with its coefficient satisfies the same functional equation.
In particular,

ζ�
GS ,p(s)

∣∣
p→p−1 = p28−12sζ�

GS ,p(s) ,

with the three rational functions above satisfying

W0(X−1, Y −1) = X28Y 12W0(X,Y ) ,

W1(X−1, Y −1) = X26Y 12W1(X,Y ) ,

W2(X−1, Y −1) = X27Y 12W2(X,Y ) .

The ‘missing’ powers of X are provided by the coefficients (p+1)2 and 2(p+1).
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2.2 Calculating Zeta Functions of Lie Rings

Most of the zeta functions presented in this chapter have been calculated by
the method of Lie rings, p-adic integrals and ad-hoc resolutions of singularities.
In particular, the zeta functions calculated in the theses of Taylor [57] and the
second author [64] were calculated this way. In particular, we shall work with
Lie rings instead of groups, and leave the reader to obtain the corresponding
results concerning groups via the Mal’cev correspondence. We shall also make
the assumption that our Lie rings are additively isomorphic to either Z

d or
Z

d
p, i.e. (additively) finitely generated and torsion-free.

Recall that ζ∗L,p(s) = ζ∗L⊗Zp
(s). Given a Zp-Lie ring L with basis B =

(e1, . . . , ed) for L, calculating either of the zeta functions ζ≤L,p or ζ�
L,p is essen-

tially a four-stage calculation:

1. Constructing the cone integral.
2. Breaking the integral into a sum of monomial integrals.
3. Evaluating the monomial integrals.
4. Summing the resulting rational functions.

2.2.1 Constructing the Cone Integral

Let M be an upper-triangular d × d matrix M = (mi,j) with entries in Zp.
We may consider the rows m1,. . . ,md of this matrix to be additive generators
of a submodule of L. This submodule will be a subring if

[mi,mj ] ∈ 〈m1, . . . ,md〉Zp
for all 1 ≤ i < j ≤ d (2.2)

and an ideal if

[ei,mj ] ∈ 〈m1, . . . ,md〉Zp
for all 1 ≤ i, j ≤ d . (2.3)

The following proposition and its proof gives us an explicit description of
the cone conditions, i.e. the conditions of the form v(fi(x)) ≤ v(gi(x)) for
1 ≤ i ≤ l. It is essentially Theorem 5.5 of [17].

Proposition 2.1. Let L be a Z-Lie ring with basis B = (e1, . . . , ed). Let V �
p

be the set of all upper-triangular matrices over Zp such that Z
d
p · M � L ⊗

Zp, and V ≤
p the set of such matrices such that Z

d
p · M ≤ L ⊗ Zp. Then V �

p

and V ≤
p are defined by the conjunction of polynomial divisibility conditions

v(fi(x)) ≤ v(gi(x)) for 1 ≤ i ≤ l. Furthermore, the conditions defining V �
p

satisfy deg fi(x) = deg gi(x), and those defining V ≤
p satisfy deg fi(x) + 1 =

deg gi(x).

Proof. Let m1, . . . ,md denote the rows of the matrix M , Cj the matrix whose
rows are ci = [ei, ej ]. Let M ′ denote the adjoint matrix of M and
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M � = M ′ diag(m−1
2,2 . . . m−1

d,d,m
−1
3,3 . . . ,m−1

d,d, . . . ,m
−1
dd , 1) .

Since M is upper-triangular, the (i, k) entry of M � is a homogeneous polyno-
mial of degree k − 1 in the variables mr,s with 1 ≤ r ≤ s ≤ k − 1.

The rows of M generate an ideal if we can solve, for each 1 ≤ i, j ≤ d, the
equation

miCj = (yi,j,1, . . . , yi,j,d)M

for (yi,j,1, . . . , yi,j,d) ∈ Z
d
p. This rearranges to

miCjM
� = (m1,1yi,j,1, . . . ,m1,1 . . . md,dyi,j,d)

for (yi,j,1, . . . , yi,j,d) ∈ Z
d
p. Set g�

i,j,k(x) to be the kth entry of the d-tuple
miCjM

�. g�
i,j,k(x) is a homogeneous polynomial of degree k in the mr,s, and

if we set fi,j,k(x) = m1,1 . . . mk,k, we obtain the conditions v(fi,j,k(x)) ≤
v(g�

i,j,k(x)) with deg(fi,j,k(x)) = deg(g�
i,j,k(x)).

Similarly, the rows of M generate a subring if we can solve, for 1 ≤ i <
j ≤ d,

mi

⎛

⎝
d∑

r=j

mj,rCr

⎞

⎠M � = (m1,1yi,j,1, . . . ,m1,1 . . . md,dyi,j,d)

for (yi,j,1, . . . , yi,j,d) ∈ Z
d
p. Again, we set g�

i,j,k(x) to be the kth entry of the

d-tuple mi

(∑d
r=j mj,rCr

)
M �. However, this time g�

i,j,k(x) is a homogeneous

polynomial of degree k +1, so we obtain conditions v(fi,j,k(x)) ≤ v(g�
i,j,k(x)).

Furthermore, deg(fi,j,k(x)) + 1 = deg(g�
i,j,k(x)). ��

Whilst every subring or ideal H has a matrix M whose rows additively
generate H, these matrices are by no means unique. Multiplying a row by
a p-adic unit or adding a multiple of a row to another row above it may
change the matrix but does not alter the subring additively generated by
the rows. Each diagonal entry mi,i is unique up to multiplication by p-adic
units, hence the measure of values it can take is (1 − p−1)|mi,i|p. Each off-
diagonal entry mi,j is only unique modulo |mj,j |−1

p . Hence the measure of
upper-triangular matrices generating H is (1−p−1)d|m1,1|p|m2,2|2p . . . |md,d|dp.
Note that although mi,i may vary, |mi,i|p is uniquely determined by H.

Finally, we note that the index of H is |m1,1m2,2 . . . md,d|−1
p . Hence we

may write

ζ∗L,p(s) = (1 − p−1)−d

∫

V ∗
p

|m1,1 . . . md,d|sp|m1
1,1 . . .md

d,d|−1
p dµ , (2.4)

or
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ζ∗L,p(s + d) = (1 − p−1)−d

∫

V ∗
p

|m1,1 . . . md,d|sp|md−1
1,1 . . . m1

d−1,d−1|p dµ . (2.5)

Note that the translation in (2.5) is necessary. Equation (2.4) is not a cone inte-
gral since the constant (independent of s) term in the integrand has a negative
exponent. We complete the set of cone data by setting f0(x) = m1,1 . . . md,d,
g0(x) = md−1

1,1 . . . md−1,d−1 and D = {f0(x), g0(x), . . . , fl(x), gl(x)}. We there-
fore obtain the following result.

Proposition 2.2. Let L be a Lie ring additively isomorphic to Z
d, ∗ ∈ {≤,�}.

There exists a set of cone integral data D = {f0, g0, . . . , fl, gl such that, for
all primes p,

ζ∗L,p(s + d) = (1 − p−1)−dZD(s, p) .

Furthermore, deg f0 = d, deg g0 =
(
d
2

)
.

2.2.2 Resolution

Once we have constructed the cone integral, the next step is to break the
integral into a sum of integrals with monomial conditions. As mentioned in
the Introduction, resolution of singularities gives us one way of doing this, and
more importantly guarantees that this can always be done. Hironaka’s proof
of resolution of singularities of any singular variety defined over a field of char-
acteristic 0 has been refined by Villamayor, Encinas, Bierstone and Milman,
and Hauser amongst others to produce an explicit constructive procedure.
In particular, Bodnár and Schicho have implemented a computer program to
calculate resolutions. We refer the reader wanting to know more to Hauser’s
accessible article on resolution [34] and its comprehensive bibliography.

However, we shall not use resolution of singularities, for a number of rea-
sons. Firstly, the computer program of Bodnár and Schicho works best in
small dimensions, and we shall typically require resolutions of a polynomial
with a large number of variables. Secondly, we shall find that we do not need
to resolve all the singularities of the polynomial F =

∏l
i=0 fi(x)gi(x). Singu-

larities lying outside V ∗
p do not need to be resolved. Thirdly, there are ‘tricks’

that can be applied to simplify the polynomial conditions and speed up the
process of decomposing the integral as a sum of monomial integrals. Some of
these will take advantage of the fact we are working over Qp, whereas reso-
lution is a general procedure for arbitrary fields of characteristic 0. A further
disadvantage of resolution is the highly technical language it is most rigor-
ously formulated in. We do not wish to alienate readers unfamiliar with this
advanced machinery.

Therefore, we resolve singularities in an elementary and ‘ad-hoc’ manner.
A collection of ‘tricks’ are used to simplify the conditions under the integral,
and when the conditions can be simplified no further we bisect the integral.
This bisection is achieved by choosing a pair of variables and splitting the
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domain of integration into two parts depending on which variable has the
larger valuation. Further ‘tricks’ and bisections may then be necessary to
reduce the integral into smaller and smaller pieces until all the pieces become
monomial.

The idea of bisecting the integral as described above has its origins in the
concept of a blow-up, an operation fundamental to the process of resolution
of singularities. Indeed, we shall refer to our bisections as ‘blow-ups’. Fur-
thermore, we can use ideas originating from algebraic geometry to provide
motivation for our choices of blow-ups. For example, suppose a non-monomial
factor of one of the cone conditions is of the form Pxj + Qxk for variables xj

and xk and nonzero polynomials P and Q. Let us also assume xj and xk have
nontrivial integrand exponent or feature somewhere in a monomial condition.
The polynomial F , being the product of all the cone data polynomials, has the
factors xj , xk and Pxj +Qxk, and therefore has a singularity with non-normal
crossings at xj = xk = 0. A blow-up involving xj and xk will then replace
this polynomial factor with xj(P + Qx′

k) (where xk = xjx
′
k) or xk(Px′

j + Q)
(where xj = x′

jxk) on the two sides of the blow-up. If P and Q are both
independent of xj and xk, then this trick reduces the sum of the total degrees
of the terms of the non-monomial factor. This trick is even more useful when
one of xj and xk divides the other side of the condition, since the monomial
factor xj or xk introduced above will cancel out. Algebraic geometry therefore
provides inspiration for our method, but we do not totally rely on it.

Initially, the integrand and the left-hand side of each condition v(fi(x)) ≤
v(gi(x)) is monomial, and this is something we preserve. For brevity we also
write fi(x) | gi(x) instead of v(fi(x)) ≤ v(gi(x)).

Examples of ‘Resolution’

To illustrate the concepts in the previous section, we present two example
calculation, where we construct the p-adic integral corresponding to a Lie ring
and in each case apply some ‘tricks’ and blow-ups to split it into monomial
integrals. The first example will illustrate the basic ideas, with some more
unusual and less obvious tricks employed in the second.

For the first example, we shall choose to count all subrings of the Lie ring

L = 〈x1, x2, x3, x4, y1, y2 : [x1, x2] = y1, [x1, x3] = y2, [x2, x4] = y2〉 .

In this case, the set V ≤
p is given by

V ≤
p = { (m1,1,m1,2 . . . ,m6,6) ∈ Z

21
p : fi(x) ≤ gi(x) for 1 ≤ i ≤ 6 } ,

where the six1 conditions fi(x) | gi(x) are listed below:

1 It is mere coincidence that there are six conditions in this case. Generally the
number of conditions obtained bears no relation to the rank of the underlying Lie
ring.
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m5,5 | m1,1m2,2 ,

m6,6 | m1,2m4,4 ,

m6,6 | m2,2m3,4 ,

m6,6 | m2,2m4,4 ,

m6,6 | m1,1m3,3 + m1,2m3,4 ,

m5,5m6,6 | m1,1m2,2m5,6 − m1,1m2,3m5,5 − m1,2m2,4m5,5 + m1,4m2,2m5,5 .

These conditions are independent of m1,3 and mi,j for 1 ≤ i ≤ 4, 5 ≤ j ≤ 6.
For the sake of clarity, we shall relabel the remaining 12 variables as a, b, . . . , l.
Thus,

ζ≤L,p(s) = (1 − p−1)−6I ,

where

I =
∫

W

|a|s−1
p |d|s−2

p |g|s−3
p |i|s−4

p |j|s−5
p |l|s−6

p dµ

and W is the subset of (a, b, . . . , l) ∈ Z
12
p defined by the conditions

j | ad , l | bi , l | dh , l | di , l | ag + bh , jl | adk − aej − bfj + cdj .

We perform a blow-up with l and d to remove the variable c. On one side of
the blow-up it disappears altogether, on the other its coefficient dj divides the
sum of the other terms of the polynomial:

1. v(l) ≤ v(d): set d = d′l. The conditions l | dh and l | di become trivially
true, and we can also remove the term cd′jl from the last condition. Thus

I1 =
∫

j|ad′l
l|bi

l|ag+bh
jl|ad′kl−aej−bfj

|a|s−1
p |d′|s−2

p |g|s−3
p |i|s−4

p |j|s−5
p |l|2s−7

p dµ .

Note that the exponent of |l|p is 2s − 7, as opposed to 2s − 8 = (s − 2) +
(s− 6). The discrepancy is caused by the dilation of the measure that the
change d = d′l brings about. By dividing the l out of d, we have allowed
d′ to take a greater measure of values in Zp than d. Hence we introduce a
Jacobean |l|p into the integrand to balance out the dilation.

2. v(l) > v(d): set l = dl′ with v(l′) ≥ 1. This then implies l′ | h and l′ | i.
To remove these two variable-divides-variable conditions, set h = h′l′ and
i = i′l′.

I2 =
∫

j|ad
d|bi′

dl′|ag+bh′l′

djl′|adk−aej−bfj+cdj
v(l′)≥1

|a|s−1
p |d|2s−7

p |g|s−3
p |i|s−4

p |j|s−5
p |l′|s−4

p dµ .
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The last condition implies

dj | adk − aej − bfj (2.6)

and thus l | c + (adk− aej − bfj)/dj, so we shall set c = c′ − (adk− aej −
bfj)/dj. After this substitution, the conditions no longer imply (2.6), so
to avoid altering the value of the integral, we must explicitly enforce (2.6).
We can also set c′ = c′′l to remove the condition l | c′. Hence

I2 =
∫

j|ad

d|bi′

dl′|ag+bh′l′

dj|adk−aej−bfj
v(l′)≥1

|a|s−1
p |d|2s−7

p |g|s−3
p |i′|s−4

p |j|s−5
p |l′|2s−7

p dµ .

In both cases we have removed c or c′′ from the conditions and the number
of terms in the last condition has dropped from 4 to 3.

We play a similar trick on I1 and I2 to remove f . By a stroke of luck it
turns out to also eliminate h from I1 and h′ from I2:

1.1. v(l) ≤ v(b): set b = b′l. Terms b′hl and −b′fjl disappear from the last
two conditions:

I1.1 =
∫

j|ad′l
l|ag

jl|a(d′kl−ej)

|a|s−1
p |d′|s−2

p |g|s−3
p |i|s−4

p |j|s−5
p |l|2s−6

p dµ .

1.2. v(l) > v(b): set l = bl′ with v(l′) ≥ 1, and i = i′l′. Now b | ag and
bj | a(bd′kl′ − ej) are implied by the last two conditions, so we set h =
h′l − ag/b and f = f ′l + a(bd′kl′ − ej)/bj. Again, we must introduce
explicitly the implied conditions.

I1.2 =
∫

j|abd′l′

b|ag
bj|a(bd′kl′−ej)

v(l′)≥1

|a|s−1
p |b|2s−6

p |d′|s−2
p |g|s−3

p |i′|s−4
p |j|s−5

p |l′|3s−8
p dµ .

2.1. v(d) ≤ v(b): set b = b′d:

I2.1 =
∫

j|ad

dl′|ag
dj|a(dk−ej)

v(l′)≥1

|a|s−1
p |d|2s−6

p |g|s−3
p |i′|s−4

p |j|s−5
p |l′|2s−7

p dµ .
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2.2. v(d) > v(b): set d = bd′ with v(d′) ≥ 1, i′ = d′i′′. Also bl′ | ag and bj |
a(bd′k−ej), so we can set h′ = d′h′−ag/bl′ and f = df ′+a(bd′k−ej)/bj:

I2.2 =
∫

j|abd′

bl′|ag
bj|a(bd′k−ej)

v(l′)≥1
v(d′)≥1

|a|s−1
p |b|2s−6

p |d′|3s−8
p |g|s−3

p |i′′|s−4
p |j|s−5

p |l′|2s−7
p dµ .

All four of these integrals are very similar, and can be reduced to monomials
in the same way. For simplicity we shall consider only I1.1.

1.1.1. v(j) ≤ v(d′kl): in this case, d′kl/j is an integer, so we may set e =
e′ + d′kl/j:

I1.1.1 =
∫

j|ad′l
l|ag

j|d′kl
l|ae′

|a|s−1
p |d′|s−2

p |g|s−3
p |i|s−4

p |j|s−5
p |l|2s−6

p dµ .

1.1.2. v(j) > v(d′kl): set j = j′d′kl with v(j′) ≥ 1:

I1.1.2 =
∫

j′k|a
l|ag

j′l|a(1−ej′)
v(j′)≥1

|a|s−1
p |d′|2s−6

p |g|s−3
p |i|s−4

p |j′|s−5
p |k|s−4

p |l|3s−10
p dµ .

Since v(j′) ≥ 1, v(1 − ej′) = 0. Thus

I1.1.2 =
∫

j′k|a
l|ag
j′l|a

v(j′)≥1

|a|s−1
p |d′|2s−6

p |g|s−3
p |i|s−4

p |j′|s−5
p |k|s−4

p |l|3s−10
p dµ .

In this case we can break up the initial integral into eight monomial integrals,
however larger examples may need to be broken up into many more integrals.
Evaluating these monomial integrals and summing gives us the local zeta
function counting all subrings in g6,4, which can be found below on p. 44.

The second example is more involved, and demonstrates some other tricks
which sometimes come in useful. We count ideals in the free class-3 2-generator
nilpotent Lie ring F3,2. This has presentation

〈x1, x2, y, z1, z2 : [x1, x2] = y, [x1, y] = z1, [x2, y] = z2〉 .
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Now

I := ζ�
F3,2,p(s) = (1 − p−1)−5

∫

W

|m1,1|s−1
p . . . |m5,5|s−5

p dµ ,

where W is defined by the conjunction of the following conditions:

m3,3 | m1,1 , m3,3 | m1,2 , m3,3 | m2,2 , m4,4 | m1,1 , m4,4 | m3,3 ,
m5,5 | m2,2 , m5,5 | m2,3 , m5,5 | m3,3 , m3,3m4,4 | m1,1m3,4 ,

m4,4m5,5 | m3,3m4,5 , m3,3m4,4 | m1,2m3,4 − m1,3m3,3 ,
m3,3m4,4 | m2,2m3,4 − m2,3m3,3 , m4,4m5,5 | m1,1m4,5 − m1,2m4,4 ,

m3,3m4,4m5,5 | m1,2m3,4m4,5 − m1,2m3,5m4,4 − m1,3m3,3m4,5 ,
m3,3m4,4m5,5 | m2,2m3,4m4,5 − m2,2m3,5m4,4 − m2,3m3,3m4,5 ,
m3,3m4,4m5,5 | m1,1m3,4m4,5 − m1,1m3,5m4,4 − m1,3m3,3m4,4 .

We start by setting m1,1 = m′
1,1m3,3, m1,2 = m′

1,2m3,3, m2,2 = m′
2,2m3,3,

m3,3 = m′
3,3m4,4 and m2,3 = m′

2,3m5,5. Doing so ‘uses up’ five of the first
eight conditions. These conditions, and the changes that eliminate them, are
typical when calculating local ideal zeta functions. Variables m1,4, m1,5, m2,4

and m2,5 don’t feature among the above conditions. Relabelling the remainder
from a to k tells us that

I = (1 − p−1)−5

∫

W ′
|a|s−1

p |d|s−2
p |f |3s−3

p |i|4s−6
p |k|s−4

p dµ ,

where W is the subset of all (a, . . . , k) ∈ Z
11
p satisfying

i | ag , k | fi , k | fj , i | bg − c , i | dg − ek , ik | agj − ahi − ci ,
ik | bgj − bhi − cj , ik | dgj − dhi − ekj .

Our focus is on the conditions and how to perform blow-ups to reduce the
conditions to monomials. We shall therefore neglect to track the changes to
the integrand.

We started the last calculation by aiming to remove a variable from the
integral. We cannot do the same here. Instead, we choose a blow-up between
i and j. Note that each term of the right-hand side of each of the last three
conditions above contains an i or a j. Where v(i) ≤ v(j), we set i = i′j and
then h = h′ + gj′ to obtain that

W1 :=
{

(a, . . . , k) ∈ Z
11
p :

i | ag , k | fi , k | dh′ , i | bg − c ,
i | dg − ek , k | ah′ + c , k | bh′ + cj′

}
.

A blow-up with k and c is the thing to do here. Where v(k) ≤ v(c), two
of the binomial conditions drop to monomial and a blow-up with i and k
will suffice to reduce to monomials. However, more interesting things happen
when v(k) > v(c). Firstly, let’s set k = ck′ with v(k′) ≥ 1, and then set
j′ = j′′k − bh′/c:
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W1.2 :=

⎧
⎨

⎩ (a, . . . , k′) ∈ Z
11
p :

c | bh′ , i | ag , ck′ | fi , ck′ | dh′ ,
i | bg − c , i | dg − eck′ , ck′ | ah′ + c ,

v(k′) ≥ 1

⎫
⎬

⎭ .

Consider the last condition, ck′ | ah′ + c. Since v(k′) ≥ 1, v(ck′) > v(c). This
implies that v(ah′) = v(c), so that ah′ | c. Set c = ac′h′:

W1.2 =

⎧
⎨

⎩ (a, . . . , k′) ∈ Z
11
p :

a | b , i | ag , ac′h′k′ | fi , ac′k′ | d ,
i | bg − ac′h′ , i | dg − ac′eh′k′ ,

c′k′ | 1 + c′ , v(k′) ≥ 1

⎫
⎬

⎭ .

c′k′ | 1 + c′ and v(k′) ≥ 1 imply that c′ ≡ −1 (mod p), in particular c′ is a
unit. We set c′ = c′′k− 1 as well as b = ab′ and d = ad′k′. After some tidying,
we end with the following monomial conditions:

W1.2 =
{

(a, . . . , k′) ∈ Z
11
p : i | ag , ah′k′ | fi , i | ah′ , v(k′) ≥ 1

}
.

We now return to the second half of the initial blow-up. We have

W2 :=

⎧
⎨

⎩(a, . . . , k) ∈ Z
11
p :

k | fj , i′j | ag , i′j | bg − c , j | dh − e′′k ,
k | d(g − hi′) , i′k | bg − bhi′ − c ,

i′k | ag − ahi′ − ci′ , v(i′) ≥ 1

⎫
⎬

⎭.

It is best not to do a blow-up at this point. Instead, we do a couple of changes
of variable. Firstly, we set g = g′ + hi′. Note that this change will make two
conditions longer. Setting c = c′+bg′ and then c′ = c′′i′k gives us the binomial
conditions

W2 =

⎧
⎨

⎩ (a, . . . , k) ∈ Z
11
p :

k | dg′ , k | fj , j | bh − c′′k ,
j | dh − e′′k , i′j | a(g′ + hi′) ,

i′k | g′(a − bi′) , v(i′) ≥ 1

⎫
⎬

⎭ .

A blow-up between j and k will remove the first two binomial conditions. It
is then routine (although not trivial) to split the two parts into monomials.
Evaluating the resulting monomial integrals and summing yields ζ�

F3,2,p(s), on
p. 51.

2.2.3 Evaluating Monomial Integrals

A p-adic cone integral with monomial conditions can be expressed as a sum
of integral points within a polyhedral cone in R

n, and there are algorithms
for evaluating such sums. One such example is the Elliott–MacMahon algo-
rithm described in [54]. However, the second author considered an alternative
approach, which appears to be more efficient for the monomial cone integrals
arising from zeta functions of Lie rings, but is not guaranteed to terminate.

This approach is to continue applying ‘blow-ups’ to further decompose
the monomial integrals until the conditions become trivial. One strategy for
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choosing blow-ups is to choose the two variables which appear most frequently
on opposite sides of conditions without appearing on the same side. It is not
difficult to automate this strategy, and in practice it has worked well, but it
is not difficult to construct integrals for which this strategy will fail.

Most of the ‘tricks’ described in the previous section are aimed at reducing
non-monomial conditions to monomials and so cannot be applied. The excep-
tion is that any conditions fi(x) | gi(x) where gi(x) is a single variable xj can
be removed by setting xj = x′

jfi(x).

2.2.4 Summing the Rational Functions

The final stage is to sum the rational functions resulting from the trivial
integrals. Whilst being the most elementary, it can also be the most compu-
tationally intensive. Given a perhaps large collection of rational functions in
two variables, we must add them up. This sort of summation can easily be
performed by a computer algebra system such as Maple or Magma. Indeed
this is the approach used by Taylor [57]. However, we can make use of the fact
that these rational functions are of the form

P (X,Y )∏r
i=1(1 − XaiY bi)

for some bivariate polynomial P (X,Y ) with ai, bi ∈ N. Typically, many of
the factors of the denominator will cancel out once all the terms have been
summed. If there are a large number of rational functions, it is advantageous
to pick factors we believe will cancel, sum all the rational functions with
this factor in the denominator and then hope that the factor cancels in this
partial sum. We may then replace the rational functions we summed with the
partial sum and continue. With less factors in the denominator, the remaining
rational functions should sum more quickly.

2.3 Explicit Examples

For the rest of this chapter we give explicit expressions for the local zeta
functions of many Lie rings. We also list the functional equation satisfied by
these local zeta functions (where applicable), and the abscissae of convergence
of the corresponding global zeta functions. We also give the order of the pole
on the abscissa of convergence when it is not a simple pole. Unless we state
otherwise, the local zeta functions we present are uniform, i.e. are given by
the same rational function in p and p−s for all primes p.

It may be noted that there are more zeta functions counting ideals than
all subrings. There are usually more conditions under a p-adic integral count-
ing ideals than under one counting all subrings, but the cone conditions for
counting ideals are simpler.
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The calculations involved are frequently long and tedious and were often
performed with computer assistance. Therefore we shall not provide proofs of
the calculations. This contrasts with the approach of Taylor [57], who does
provide proofs of his calculations in his thesis. One such proof runs to 40
pages. There are several zeta functions of comparable or greater complexity
presented in this chapter, and we simply don’t have the space to present the
proofs. Nonetheless we believe that all the zeta functions listed below are
correct. In particular, there shouldn’t have been any errors in transcription
since the LATEX source for each zeta function was generated from the computer
calculations.

The advent of computer calculations has also led to zeta functions with
the numerator and denominator of large degree. We have confined some of
the larger numerator polynomials to Appendix A. However, there are four
excessively large polynomials which we have chosen not to include since we
do not feel the extra 23 pages they would require would be justified. Further
details may be obtained from the authors on request.

Many of the examples will satisfy a functional equation of the form

ζ∗L,p(s)
∣∣
p→p−1 = (−1)cpb−asζ∗L,p(s) (2.7)

for all but perhaps finitely many primes p. However, there are a small number
that don’t. When we say that a local zeta function ‘satisfies no functional
equation’, we mean that it satisfies no functional equation of the form (2.7).

The Lie rings we shall be considering can be presented conveniently by
giving a basis and the nontrivial Lie brackets of the basis elements. Most
of these Lie brackets will be zero, so we make the convention that, up to
antisymmetry, any Lie bracket not listed is zero.

2.4 Free Abelian Lie Rings

Let L = Z
d, the free abelian Lie ring of rank d. Then

ζ�
L (s) = ζ≤L (s) =

d−1∏

i=0

ζ(s − i) ,

where ζ(s) is the Riemann zeta function. Hence this function is meromorphic
on the whole of C. In particular, the Tauberian Theorem (Theorem 1.8) men-
tioned in the Introduction allows us to deduce that if an is the number of
subgroups of index n in Z

2, then

n∑

i=1

ai ∼
π2

12
n2 ,

a result which seems remarkably difficult to obtain without the machinery of
zeta functions.
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In [22] it is shown that for any finite extension G of the free abelian group
Z

d, the zeta functions ζ∗G(s) are all meromorphic. This is proved by relating
the zeta functions to classical L-functions that arise in the work of Solomon,
Bushnell and Reiner. The zeta functions of the 17 plane crystallographic
groups, also known as the ‘wallpaper groups’, were calculated by McDermott
and are listed in [22].

We shall see that many of the zeta functions have a factor similar to the
local factor of ζZd(s). It is therefore convenient to use the notation

ζZn,p(s) =
n−1∏

i=0

ζp(s − i) , (2.8)

where ζp(s) = (1 − p−s)−1 is the p-factor of the Riemann zeta function.

2.5 Heisenberg Lie Ring and Variants

Let H be the free class two, two generator nilpotent Lie ring. This is the Lie
ring of strictly upper-triangular matrices

U3(Z) =

⎛

⎝
0 Z Z

0 0 Z

0 0 0

⎞

⎠ .

It is given by the presentation

H = 〈x, y, z : [x, y] = z〉 ,

where, as mentioned above, [x, z] = [y, z] = 0. For n ≥ 2, let Hn denote the
direct product of n copies of the Heisenberg Lie ring.

Theorem 2.3 ([32]).

ζ�
H,p(s) = ζZ2,p(s)ζp(3s − 2) ,

ζ≤H,p(s) = ζZ2,p(s)ζp(2s − 2)ζp(2s − 3)ζp(3s − 3)−1 .

These zeta functions satisfy the functional equations

ζ�
H,p(s)

∣∣
p→p−1 = −p3−5sζ�

H,p(s) ,

ζ≤H,p(s)
∣∣∣
p→p−1

= −p3−3sζ≤H,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
H =

α≤
H = 2, with ζ≤H(s) having a double pole at s = 2.
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Theorem 2.4 ([32, 57]).

ζ�
H2,p(s) = ζZ4,p(s)ζp(3s − 4)2ζp(5s − 5)ζp(5s − 4)−1 ,

ζ≤H2,p(s) = ζZ4,p(s)ζp(2s − 4)2ζp(2s − 5)2ζp(3s − 5)ζp(3s − 7)ζp(3s − 8)

× W≤
H2(p, p−s) ,

where W≤
H2(X,Y ) is

1 − X4Y 3 − 3X5Y 3 − X7Y 3 + X5Y 4 − X9Y 4 − X8Y 5 + 3X9Y 5 − 2X11Y 5

+ X10Y 6 + 3X11Y 6 + 3X12Y 6 + 2X13Y 6 + X14Y 6 − X14Y 7 + X15Y 7

− X14Y 8 + X15Y 8 − X15Y 9 − 2X16Y 9 − 3X17Y 9 − 3X18Y 9 − X19Y 9

+ 2X18Y 10 − 3X20Y 10 + X21Y 10 + X20Y 11 − X24Y 11 + X22Y 12

+ 3X24Y 12 + X25Y 12 − X29Y 15 .

These zeta functions satisfy the functional equations

ζ�
H2,p(s)

∣∣∣
p→p−1

= p15−10sζ�
H2,p(s) ,

ζ≤H2,p(s)
∣∣∣
p→p−1

= p15−6sζ≤H2,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
H2 =

α≤
H2 = 4.

Theorem 2.5 ([57]).

ζ�
H3,p(s) = ζZ6,p(s)ζp(3s − 6)3ζp(5s − 7)ζp(7s − 8)ζp(8s − 14)W�

H3(p, p−s) ,

where W�
H3(X,Y ) is

1 − 3X6Y 5 + 2X7Y 5 + X6Y 7 − 2X7Y 7 + X12Y 8 − 2X13Y 8 + 2X13Y 12

− X14Y 12 + 2X19Y 13 − X20Y 13 − 2X19Y 15 + 3X20Y 15 − X26Y 20 .

This zeta function satisfies the functional equation

ζ�
H3,p(s)

∣∣∣
p→p−1

= −p36−15sζ�
H3,p(s) .

The corresponding global zeta function has abscissa of convergence α�
H3 = 6.

Theorem 2.6 ([64]).

ζ�
H4,p(s) = ζZ8,p(s)ζp(3s − 8)4ζp(5s − 9)ζp(7s − 10)ζp(8s − 18)ζp(9s − 11)

× ζp(10s − 20)ζp(11s − 27)W�
H4(p, p−s) ,
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where the polynomial W�
H4(X,Y ) is given in Appendix A on p. 179. This zeta

function satisfies the functional equation

ζ�
H4,p(s)

∣∣∣
p→p−1

= p66−20sζ�
H4,p(s) .

The corresponding global zeta function has abscissa of convergence α�
H4 = 8.

Theorem 2.7. Let (K : Q) = 2, R be the ring of integers of K and L =
U3(R). Then

1. If p is inert (of which there are possibly infinitely many) then

ζ�
L,p(s) = ζZ4,p(s)ζp(5s − 5)ζp(6s − 8)(1 + p4−5s) .

2. If p is ramified (of which there are only finitely many) then

ζ�
L,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(5s − 5) .

3. If p is split then U3(R ⊗ Zp) = U3(Zp) × U3(Zp) and we already have a
calculation of this factor from Theorem 2.4 above.

For all split or inert primes p, this zeta function satisfies the functional equa-
tion

ζ�
L,p(s)

∣∣
p→p−1 = p15−10sζ�

L,p(s) ,

whereas for p ramified,

ζ�
L,p(s)

∣∣
p→p−1 = p15−12sζ�

L,p(s) .

The corresponding global zeta function has abscissa of convergence α�
L = 4.

Taking the Euler product of all these factors we can represent the global
zeta function in terms of the Riemann zeta function and the Dedekind zeta
function ζK(s) of the underlying quadratic number field K (as observed in
Corollary 8.2 of [32]):

Corollary 2.8.

ζ�
L (s) = ζZ4(s)ζ(5s − 4)ζ(5s − 5)ζK(3s − 4)/ζK(5s − 4) . (2.9)

Theorem 2.9 ([32, 57]). Let L = U3(R3) be the Lie ring of 3 × 3 upper
triangular matrices over the ring of integers R3 of a algebraic number field K
of degree 3 over Q.

1. If p is inert in R3, then

ζ�
L,p(s) = ζZ6,p(s)ζp(7s − 8)ζp(8s − 14)ζp(9s − 18)W�

L,in(p, p−s)

where

W�
L,in(X,Y ) = 1 + X6Y 7 + X7Y 7 + X12Y 8 + X13Y 8 + X19Y 15 .
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2. If p ramifies completely in R3 (i.e. if (p) = p3 for some prime ideal p),
then

ζ�
L,p(s) = ζZ6,p(s)ζp(3s − 6)ζp(7s − 8)ζp(8s − 14)(1 + p7−5s) .

3. If p ramifies partially in R3 (i.e. if (p) = p2q for prime ideals p �= q),

ζ�
L,p(s) = ζZ6,p(s)ζp(3s − 6)2ζp(5s − 7)ζp(7s − 8)ζp(8s − 14)W�

L,rp(p, p−s),

where

W�
L,rp(X,Y ) = 1 − X6Y 5 + X7Y 5 − X7Y 7 − X13Y 8 + X13Y 10

− X14Y 10 + X20Y 15 .

4. If p splits completely in R3:

ζ�
L,p(s)= ζZ6,p(s)ζp(3s − 6)3ζp(5s − 7)ζp(7s − 8)ζp(8s − 14)W�

L,sc(p, p−s),

where W�
L,sc = W�

H3(X,Y ) given above on p. 35.

5. If p splits partially in R3 (i.e. (p) = pq for prime ideals p �= q):

ζ�
L,p(s) = ζZ6,p(s)ζp(3s − 6)ζp(5s − 7)ζp(7s − 8)ζp(6s − 12)ζp(8s − 14)

× W�
L,sp(p, p−s) ,

where

W�
L,sp(X,Y ) = 1 + X6Y 5 − X6Y 7 − X12Y 8 − X14Y 12 − X20Y 13

+ X20Y 15 + X26Y 20 .

For all primes that do not ramify, this zeta function satisfies the functional
equation

ζ�
L,p(s)

∣∣
p→p−1 = −p36−15sζ�

L,p(s) .

The corresponding global function has abscissa of convergence α�
L = 6.

Remark 2.10. 1. Cases 3 and 5 can only occur if the field K is not a normal
extension of Q.

2. As with the case with a quadratic number field, the p-local normal zeta
function does satisfy a functional equation even when p ramifies. If fp is
the ramification degree of p in K, then

ζ�
L,p(s)

∣∣
p→p−1 = −p36−(13+2fp)sζ�

L,p(s)

for all primes p.
It is possible to write the global zeta function of L in terms of Riemann

zeta functions, the zeta function of the number field and Euler products of
these two variable polynomials. However, the end result is not as neat as (2.9):
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Proposition 2.11. If (K : Q) = 3, R is the ring of integers of K and L =
U3(R) then

ζ�
L (s) = ζZ6(s)ζ(5s − 7)ζ(7s − 8)ζ(8s − 14)ζK(3s − 6)

∏

p

W�
L,p(p, p−s) ,

where

W�
L,p(X,Y ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

W�
L,in(X,Y )(1 − X7Y 5) if p is inert in R,

1 − X14Y 10 if p ramifies completely in R,
W�

L,rp(X,Y ) if p ramifies partially in R,
W�

L,sc(X,Y ) if p splits completely in R,
W�

L,sp(X,Y ) if p splits partially in R.

2.6 Grenham’s Lie Rings

The next examples are calculations made by Grenham in his D.Phil. thesis [28]
of zeta functions of Lie rings Gn with the following presentation:

Gn = 〈z, x1, . . . , xn−1, y1, . . . , yn−1 : [z, xi] = yi (1 ≤ i ≤ n − 1)〉 .

These Lie rings are class-2 nilpotent. G2
∼= H, the Heisenberg Lie ring

again. Grenham calculated ζ�
Gn,p(s) and ζ≤Gn,p(s) for n ≤ 5. They all have the

form of products of local Riemann zeta functions together with one of the
palindromic polynomials.

Theorem 2.12 ([32, 28]).

ζ�
G3,p(s) = ζZ3,p(s)ζp(3s − 3)2ζp(3s − 4)ζp(5s − 6)ζp(6s − 6)−1 ,

ζ≤G3,p(s) = ζZ3,p(s)ζp(2s − 4)ζp(2s − 5)ζp(3s − 6)W≤
G3

(p, p−s) ,

where

W≤
G3

(X,Y ) = 1 + X3Y 2 + X4Y 2 − X4Y 3 − X5Y 3 − X8Y 5 .

These zeta functions satisfy the functional equations

ζ�
G3,p(s)

∣∣
p→p−1 = −p10−8sζ�

G3,p(s) ,

ζ≤G3,p(s)
∣∣∣
p→p−1

= −p10−5sζ≤G3,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
G3

=
α≤
G3

= 3, with ζ≤G3
(s) having a double pole at s = 3.
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Theorem 2.13 ([28]).

ζ�
G4,p(s) = ζZ4,p(s)ζp(3s − 6)ζp(5s − 10)ζp(7s − 12)W�

G4
(p, p−s) ,

where

W�
G4

(X,Y ) = 1 + X4Y 3 + X5Y 3 + X8Y 5 + X9Y 5 + X13Y 8 ,

and

ζ≤G4,p(s) = ζZ4,p(s)ζp(2s − 5)ζp(2s − 6)ζp(2s − 7)ζp(3s − 10)ζp(4s − 12)

× W≤
G4

(p, p−s)

where W≤
G4

(X,Y ) is

1 + X4Y 2 + X5Y 2 + X6Y 2 − X5Y 3 − X6Y 3 − X7Y 3 + X8Y 3 + X9Y 3

− X9Y 4 − X10Y 4 − X11Y 4 − X14Y 6 − X15Y 6 − X16Y 6 + X16Y 7 + X17Y 7

− X18Y 7 − X19Y 7 − X20Y 7 + X19Y 8 + X20Y 8 + X21Y 8 + X25Y 10 .

These zeta functions satisfy the functional equations

ζ�
G4,p(s)

∣∣
p→p−1 = −p21−11sζ�

G4,p(s) ,

ζ≤G4,p(s)
∣∣∣
p→p−1

= −p21−7sζ≤G4,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
G4

=
α≤
G4

= 4, with ζ≤G4
(s) having a double pole at s = 4.

Theorem 2.14 ([28]).

ζ�
G5,p(s) = ζZ5,p(s)ζp(3s − 8)ζp(5s − 14)ζp(7s − 18)ζp(9s − 20)W�

G5
(p, p−s)

where W�
G5

(X,Y ) is

1 + X5Y 3 + X6Y 3 + X7Y 3 + X10Y 5 + X11Y 5 + 2X12Y 5 + X13Y 5 + X15Y 7

+ X16Y 7 + X17Y 7 + X17Y 8 + X18Y 8 + X19Y 8 + X21Y 10 + 2X22Y 10

+ X23Y 10 + X24Y 10 + X27Y 12 + X28Y 12 + X29Y 12 + X34Y 15 ,

and

ζ≤G5,p(s) = ζZ5,p(s)ζp(2s − 6)ζp(2s − 8)ζp(2s − 9)ζp(3s − 14)ζp(4s − 18)

× ζp(5s − 20)ζp(s − 2)−1W≤
G5

(p, p−s) ,

where W≤
G5

(X,Y ) is
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1 + X2Y + X4Y 2 + X5Y 2 + X6Y 2 + 2X7Y 2 + X8Y 2 + X9Y 3 + 2X10Y 3

+ X11Y 3 + 2X12Y 3 + X13Y 3 + X12Y 4 + 2X14Y 4 + 2X15Y 4 + X16Y 4

+ X17Y 4 + 2X17Y 5 + X18Y 5 + 2X19Y 5 + X20Y 5 − X18Y 6 − X20Y 6

+ X21Y 6 + 2X22Y 6 + 2X23Y 6 + 2X24Y 6 + X25Y 6 − X22Y 7 − 2X23Y 7

− 2X24Y 7 − 2X25Y 7 − X26Y 7 + X27Y 7 + X29Y 7 − X27Y 8 − 2X28Y 8

− X29Y 8 − 2X30Y 8 − X30Y 9 − X31Y 9 − 2X32Y 9 − 2X33Y 9 − X35Y 9

− X34Y 10 − 2X35Y 10 − X36Y 10 − 2X37Y 10 − X38Y 10 − X39Y 11

− 2X40Y 11 − X41Y 11 − X42Y 11 − X43Y 11 − X45Y 12 − X47Y 13 .

These zeta functions satisfy the functional equations

ζ�
G5,p(s)

∣∣
p→p−1 = −p36−14sζ�

G5,p(s) ,

ζ≤G5,p(s)
∣∣∣
p→p−1

= −p36−9sζ≤G5,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
G5

=
α≤
G5

= 5, with ζ≤G5
(s) having a triple pole at s = 5.

In [61], Voll has given an explicit expression for ζ�
Gn,p(s), and in a forthcoming

paper, gives a similar expression for ζ≤Gn,p(s). In particular, he proves that

Theorem 2.15. Let n > 1. Then for all primes p, ζ�
Gn,p(s) and ζ≤Gn,p(s) satisfy

the functional equations

ζ�
Gn,p(s)

∣∣
p→p−1 = −p(2n−1

2 )−(3n−1)sζ�
Gn,p(s) ,

ζ≤Gn,p(s)
∣∣∣
p→p−1

= −p(2n−1
2 )−(2n−1)sζ≤Gn,p(s) .

Grenham proved that the abscissa of convergence of ζ�
Gn

(s) is n. Voll gives in
[61] an expression for the abscissa of convergence of ζ≤Gn

(s), which agrees with
an expression previously derived by Paajanen. In particular, α≤

G6
(s) = 19/3.

2.7 Free Class-2 Nilpotent Lie Rings

Let F2,n denote the free nilpotent Lie ring of class two on n generators. F2,2

is the Heisenberg Lie ring once again.

2.7.1 Three Generators

Theorem 2.16 ([32, 57]). Let the Lie ring F2,3 have presentation
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〈x1, x2, x3, y1, y2, y3 : [x1, x2] = y1, [x1, x3] = y2, [x2, x3] = y3〉 .

Then

ζ�
F2,3,p(s) = ζZ3,p(s)ζp(3s − 5)ζp(5s − 8)ζp(6s − 9)W�

F2,3
(p, p−s) ,

where

W�
F2,3

(X,Y ) = 1 + X3Y 3 + X4Y 3 + X6Y 5 + X7Y 5 + X10Y 8 ,

and

ζ≤F2,3,p(s) = ζZ3,p(s)ζp(2s − 4)ζp(2s − 5)ζp(2s − 6)ζp(3s − 6)ζp(3s − 7)

× ζp(3s − 8)ζp(4s − 8)−1W≤
F2,3

(p, p−s) ,

where W≤
F2,3

(X,Y ) is

1 + X3Y 2 + X4Y 2 + X5Y 2 − X4Y 3 − X5Y 3 − X6Y 3 − X7Y 4 − X9Y 4

− X10Y 5 − X11Y 5 − X12Y 5 + X11Y 6 + X12Y 6 + X13Y 6 + X16Y 8 .

These zeta functions satisfy the functional equations

ζ�
F2,3,p(s)

∣∣∣
p→p−1

= p15−9sζ�
F2,3,p(s) ,

ζ≤F2,3,p(s)
∣∣∣
p→p−1

= p15−6sζ≤F2,3,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
F2,3

= 3,

α≤
F2,3

= 7/2.

The zeta function counting all subrings is interesting since the abscissa
of convergence is not an integer and is strictly greater than the rank of the
abelianisation of G. This was the first such example calculated at nilpotency
class 2.

2.7.2 n Generators

In [62], Voll gives an explicit formulae for the local ideal zeta functions of F2,n

for all n. We shall not replicate Voll’s explicit formulae for these functions,
but we shall state some corollaries he deduces. Put h(n) = 1

2n(n + 1), the
rank of F2,n.

Corollary 2.17. The local zeta functions ζ�
F2,n,p(s) are uniform, i.e. are given

by the same rational function in p and p−s for all primes p.
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Corollary 2.18. The local ideal zeta function of F2,n satisfies the local func-
tional equation

ζ�
F2,n,p(s)

∣∣∣
p→p−1

= (−1)h(n)p(h(n)
2 )−(h(n)+n)sζ�

F2,n,p(s)

for all primes p.

Corollary 2.19. The abscissa of convergence of ζ�
F2,n

(s) is

α�
F2,n

= max

{
n,

((
n
2

)
− j
)
(n + j) + 1

h(n) − j

∣∣∣∣∣ j ∈ {1, . . . ,
(
n
2

)
− 1}

}

and ζ�
F2,n

(s) has a simple pole at s = α�
F2,n

.

In particular, F2,5 has abscissa of convergence α�
F2,5

= 51/10. Indeed, this
is the first Lie ring whose local ideal zeta function is known to have abscissa
of convergence strictly greater than the rank of the abelianisation.

2.8 The ‘Elliptic Curve Example’

Theorem 2.20 ([60]). Let E denote the elliptic curve y2 = x3 − x. Define
the nilpotent Lie ring LE by the presentation

LE =

〈
x1, . . . , x6, y1, y2, y3 :

[x1, x4] = y3, [x1, x5] = y1, [x1, x6] = y2,
[x2, x4] = y1, [x2, x5] = y3,
[x3, x4] = y2, [x3, x6] = y1

〉
.

Then, for all but finitely many primes p, the local zeta function of LE is given
by

ζ�
LE ,p(s) = ζZ6,p(s)ζp(5s − 7)ζp(7s − 8)ζp(9s − 18)ζp(8s − 14)

× (P1(p, p−s) + |E(Fp)|P2(p, p−s)) ,

where

|E(Fp)| =
∣∣{ (x : y : z) ∈ P

2(Fp) : y2z = x3 − xz2
}∣∣ ,

P1(X,Y ) = (1 + X6Y 7 + X7Y 7 + X12Y 8 + X13Y 8 + X19Y 15)(1 − X7Y 5) ,

P2(X,Y ) = X6Y 5(1 − Y 2)(1 + X13Y 8) .

In [13] it was shown that this zeta function is not finitely uniform, thus an-
swering in the negative a question posed by Grunewald, Segal and Smith in
[32] that seemed ‘plausible’. However, there was some doubt as to whether
this zeta function would satisfy a functional equation similar to that satisfied
by other local ideal zeta functions of Lie rings of class 2. The dependency on
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the number of points mod p on an elliptic curve did cast some doubt on this.
However, it can easily be checked that

P1(X−1, Y −1) = X−26Y −20P1(X,Y ) ,

P2(X−1, Y −1) = X−25Y −20P2(X,Y ) .

Together with the functional equation of the Weil zeta function applied to
|E(Fp)|, this yields

Corollary 2.21 (Voll [60]). For all but finitely many primes p,

ζ�
LE ,p(s)

∣∣
p→p−1 = −p36−15sζ�

LE ,p(s) .

2.9 Other Class Two Examples

We start with a number of Lie rings which appear in [32].

Theorem 2.22 ([32]). Let G(m, r) denote the direct product of Z
r with the

central product of m copies of the Heisenberg Lie ring H. Then G(m, r) has
Hirsch length 2m + r + 1.

ζ�
G(m,r),p(s) = ζZ2m+r,p(s)ζp((2m + 1)s − (2m + r)) .

For m ≤ 2,

ζ≤G(1,r),p(s) = ζZr+2,p(s)ζp(2s − (r + 2))ζp(2s − (r + 3))ζp(3s − (r + 3))−1 ,

ζ≤G(2,r),p(s) = ζZr+4,p(s)ζp(3s − (r + 4))ζp(3s − (r + 6))ζp(3s − (r + 7))

× W≤
G(2,r)(p, p−s) ,

where

W≤
G(2,r)(X,Y ) = 1 + Xr+5Y 3 − Xr+5Y 4 − Xr+6Y 4 − Xr+7Y 4 − Xr+8Y 4

+ Xr+8Y 5 + X2r+13Y 8 .

These zeta functions satisfy the functional equations

ζ�
G(m,r),p(s)

∣∣∣
p→p−1

= (−1)2m+r+1p(2m+r+1
2 )−(4m+r+1)sζ�

G(m,r),p(s) ,

ζ≤G(m,r),p(s)
∣∣∣
p→p−1

= (−1)2m+r+1p(2m+r+1
2 )−(2m+r+1)sζ≤G(m,r),p(s) (m = 1, 2) .

The corresponding global zeta functions have abscissa of convergence α�
G(m,r) =

2m + r for all m ∈ N>0, r ∈ N and α≤
G(m,r) = 2m + r for m ∈ {1, 2}, r ∈ N.
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Theorem 2.23 ([32]). For r ∈ N,

ζ�
G3×Zr,p(s) = ζZr+3

p
(s)ζp(3s − (r + 4))ζp(5s − (2r + 6))(1 + pr+3−3s) ,

ζ≤G3×Zr,p(s) = ζZr+3
p

(s)ζp(2s − (r + 4))ζp(2s − (r + 5))ζp(3s − (2r + 6))

× W≤
G3×Zr (p, p−s) ,

where

W≤
G3×Zr (p, p−s) = 1 + Xr+3Y 2 + Xr+4Y 2 − Xr+4Y 3 − Xr+5Y 3 − X2r+8Y 5 .

These zeta functions satisfy the functional equations

ζ�
G3×Zr,p(s)

∣∣∣
p→p−1

= (−1)r+5p(r+5
2 )−(r+8)sζ�

G3×Zr,p(s) ,

ζ≤G3×Zr,p(s)
∣∣∣
p→p−1

= (−1)r+5p(r+5
2 )−(r+5)sζ≤G3×Zr,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
G3×Zr =

α≤
G3×Zr = r + 3.

The calculations of the ideal zeta functions were made by Grunewald, Segal
and Smith in [32]. Note that they use the more cumbersome notation F2,3/〈z〉
in place of G3.

Theorem 2.24 ([32, 64]). Let

g6,4 = 〈x1, x2, x3, x4, y1, y2 : [x1, x2] = y1, [x1, x3] = y2, [x2, x4] = y2〉 .

Then

ζ�
g6,4,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(5s − 5)ζp(6s − 9)ζp(8s − 9)−1 ,

ζ≤g6,4,p(s) = ζZ4,p(s)ζp(2s − 5)ζp(3s − 5)ζp(3s − 7)ζp(3s − 8)ζp(4s − 9)

× ζp(4s − 11)ζp(5s − 12)W≤
g6,4

(p, p−s) ,

where W≤
g6,4(X,Y ) is given in Appendix A on p. 180. These zeta functions

satisfy the functional equations

ζ�
g6,4,p(s)

∣∣∣
p→p−1

= p15−10sζ�
g6,4,p(s) ,

ζ≤g6,4,p(s)
∣∣∣
p→p−1

= p15−6sζ≤g6,4,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
g6,4

=
α≤

g6,4 = 4.
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In [32], this Lie ring is given the more cumbersome name F2,3/〈z〉 · Z. For
brevity we have changed the name. The new name is borrowed from the
classification of nilpotent Lie algebras of dimension 6 mentioned in Sect. 2.14
below.

Let Tn denote the maximal class-two quotient of the Lie ring of unitrian-
gular n × n matrices. Tn has presentation

〈x1, . . . , xn, y1, . . . , yn−1 : [xi, xi+1] = yi for 1 ≤ i ≤ n − 1〉 .

T2 is the Heisenberg Lie ring once again, and T3
∼= G3, whose zeta functions

are given in Sect. 2.6.

Theorem 2.25 ([57, 64]).

ζ�
T4,p(s) = ζZ4,p(s)ζp(3s − 5)2ζp(5s − 6)ζp(5s − 8)ζp(6s − 10)ζp(7s − 12)

× W�
T4

(p, p−s) ,

where W�
T4

(X,Y ) is

1 + X4Y 3 − X5Y 5 + X8Y 5 − X8Y 6 − X9Y 6 − X10Y 8 − X12Y 8 − X13Y 9

+ X13Y 10 − 2X14Y 10 + X14Y 11 + X15Y 11 − X16Y 11 − X17Y 11 + 2X17Y 12

− X18Y 12 + X18Y 13 + X19Y 14 + X21Y 14 + X22Y 16 + X23Y 16 − X23Y 17

+ X26Y 17 − X27Y 19 − X31Y 22 ,

and

ζ≤T4,p(s) = ζZ4,p(s)ζp(2s − 5)2ζp(2s − 6)2ζp(3s − 6)ζp(3s − 8)2ζp(3s − 9)

× ζp(4s − 12)ζp(5s − 14)W≤
T4

(p, p−s) ,

where the polynomial W≤
T4

(X,Y ) is given in Appendix A on p. 180. These zeta
functions satisfy the functional equations

ζ�
T4,p(s)

∣∣
p→p−1 = −p21−11sζ�

T4,p(s) ,

ζ≤T4,p(s)
∣∣∣
p→p−1

= −p21−7sζ≤T4,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
T4

=
α≤

T4
= 4.

2.10 The Maximal Class Lie Ring M3 and Variants

The most well-understood zeta functions of Lie rings are those for Lie rings
of nilpotency class 2. However, as we move to higher nilpotency classes, there
is much less in the way of theory to help us. In particular, as we mentioned
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in Chap. 1, the Mal’cev correspondence can be avoided for nilpotency class 2.
There is no such shortcut in higher nilpotency classes.

Taylor [57] was the first to calculate the zeta functions of a class-3-nilpotent
Lie ring, and since then the second author has greatly enlarged the stock of
examples at class 3.

In some sense, the ‘simplest’ Lie rings of nilpotency class n are the Lie
rings Mn, with presentation

Mn = 〈z, x1, x2, . . . , xn : [z, xi] = xi+1 for i = 1, . . . , n − 1〉 .

In particular, H = M2. We now consider M3 and some variations.

Theorem 2.26. For r ∈ Z,

ζ�
M3×Zr,p(s) =

ζZr+2,p(s)ζp(3s − (r + 2))ζp(4s − (r + 2))ζp(5s − (r + 3))
ζp(5s − (r + 2))

,

and

ζ≤M3×Zr,p(s) = ζZr+2,p(s)ζp(2s − (r + 3))ζp(3s − (r + 5))ζp(3s − (2r + 4))

× ζp(4s − (2r + 6))W≤
M3×Zr(p, p−s) ,

where

W≤
M3×Zr (p, p−s) = 1 + Xr+2Y 2 + Xr+3Y 2 − Xr+3Y 3 − Xr+5Y 4 + X2r+6Y 4

− 2X2r+6Y 5 − 2X2r+7Y 5 + X2r+7Y 6 − X3r+8Y 6

− X3r+10Y 7 + X3r+10Y 8 + X3r+11Y 8 + X4r+13Y 10 .

These zeta functions satisfy the functional equations

ζ�
M3×Zr,p(s)

∣∣∣
p→p−1

= (−1)r+4p(r+4
2 )−(r+9)sζ�

M3×Zr,p(s) ,

ζ≤M3×Zr,p(s)
∣∣∣
p→p−1

= (−1)r+4p(r+4
2 )−(r+4)sζ≤M3×Zr,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
M3×Zr =

α≤
M3×Zr = r + 2, with ζ≤M3

(s) having a quadruple pole at s = 2.

The zeta functions counting ideals or all subrings in M3 were first calculated
by Taylor in [57]. The second author generalised the results to M3 × Z

r for
r ∈ N.

Theorem 2.27 ([64]).

ζ�
H×M3,p(s) = ζZ4,p(s)ζp(3s − 4)2ζp(4s − 4)ζp(5s − 5)ζp(6s − 5)ζp(7s − 6)

× ζp(9s − 10)W�
H×M3

(p, p−s) ,
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where W�
H×M3

(X,Y ) is

1 − 2X4Y 5 + X5Y 5 − X4Y 6 + X4Y 7 − 2X5Y 7 + X8Y 9 − 2X9Y 9 + 3X9Y 11

− 2X10Y 11 + X9Y 12 + X10Y 13 + X13Y 14 + X14Y 15 − 2X13Y 16 + 3X14Y 16

− 2X14Y 18 + X15Y 18 − 2X18Y 20 + X19Y 20 − X19Y 21 + X18Y 22

− 2X19Y 22 + X23Y 27 .

This zeta function satisfies the functional equation

ζ�
H×M3,p(s)

∣∣
p→p−1 = −p21−14sζ�

H×M3,p(s) .

The corresponding global zeta function has abscissa of convergence α�
H×M3

= 4.

Theorem 2.28.

ζ�
H2×M3,p(s) = ζZ6,p(s)ζp(3s − 6)3ζp(4s − 6)ζp(5s − 7)ζp(6s − 7)ζp(7s − 8)

× ζp(8s − 8)ζp(8s − 14)ζp(9s − 9)ζp(9s − 14)ζp(10s − 15)

× ζp(11s − 16)ζp(12s − 21)W�
H2×M3

(p, p−s)

for some polynomial W�
H2×M3

(X,Y ) of degrees 113 in X and 85 in Y . This
zeta function satisfies the functional equation

ζ�
H2×M3,p(s)

∣∣∣
p→p−1

= p45−19sζ�
H2×M3,p(s) .

The corresponding global zeta function has abscissa of convergence α�
H2×M3

= 6.

Theorem 2.29.

ζ�
M3×M3,p(s) = ζZ4,p(s)ζp(2s − 2)ζp(3s − 4)2ζp(4s − 4)ζp(5s − 5)ζp(6s − 5)

× ζp(7s − 5)ζp(7s − 6)ζp(8s − 6)ζp(9s − 7)ζp(9s − 10)

× ζp(10s − 10)ζp(11s − 11)ζp(12s − 12)ζp(13s − 15)

× W�
M3×M3

(p, p−s)

for some polynomial W�
M3×M3

(X,Y ) of degrees 84 in X and 95 in Y . This
zeta function satisfies the functional equation

ζ�
M3×M3,p(s)

∣∣
p→p−1 = p28−18sζ�

M3×M3,p(s) .

The corresponding global zeta function has abscissa of convergence α�
M3×M3

=4.
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Theorem 2.30. Let the Lie ring M3 ×Z M3 have presentation

〈z1, z2, w1, w2, x1, x2, y : [z1, w1] = x1, [z2, w2] = x2, [z1, x1] = y, [z2, x2] = y〉 .

Then

ζ�
M3×ZM3,p(s) = ζZ4,p(s)ζp(3s − 4)2ζp(5s − 5)ζp(7s − 4)ζp(8s − 5)ζp(9s − 6)

× ζp(12s − 10)W�
M3×ZM3

(p, p−s) ,

where W�
M3×ZM3

(X,Y ) is

1 − X4Y 5 − 2X4Y 8 + X5Y 8 + X4Y 9 − 2X5Y 9 + X8Y 12 − 2X9Y 12

+ 3X9Y 13 − 2X10Y 13 + X10Y 14 + X9Y 17 + X14Y 17 + X13Y 20 − 2X13Y 21

+ 3X14Y 21 − 2X14Y 22 + X15Y 22 − 2X18Y 25 + X19Y 25 + X18Y 26

− 2X19Y 26 − X19Y 29 + X23Y 34 .

This zeta function satisfies the functional equation

ζ�
M3×ZM3,p(s)

∣∣
p→p−1 = −p21−17sζ�

M3×ZM3,p(s) .

The corresponding global zeta function has abscissa of convergence α�
M3×ZM3

= 4.

2.11 Lie Rings with Large Abelian Ideals

As we saw in Sect. 2.6, Voll has calculated ζ�
Gn,p(s) and ζ≤Gn,p(s) for all n ≥ 2.

The Lie rings Gn have an abelian ideal of corank 1 (and thus of infinite index),
and it is likely that this large ideal makes it easier to get a grasp on the
structure of the lattices of ideals/subrings. Indeed the Lie rings Mn have this
property too. In this section we consider some further Lie rings of nilpotency
class 3 with this property.

Theorem 2.31 ([64]). Let the Lie ring L(3,3) have presentation

〈z, w1, w2, x1, x2, y1, y2 : [z, w1] = x1, [z, w2] = x2, [z, x1] = y1, [z, x2] = y2〉 .

Then

ζ�
L(3,3),p

(s) = ζZ3,p(s)ζp(3s − 4)ζp(4s − 5)ζp(5s − 6)ζp(6s − 7)ζp(7s − 6)

× ζp(8s − 10)ζp(9s − 12)ζp(11s − 12)ζp(4s − 4)−1

× W�
L(3,3)

(p, p−s) ,
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where W�
L(3,3)

(X,Y ) is

1 + X3Y 3 + 2X4Y 4 − X4Y 5 + X6Y 5 + X6Y 6 − X6Y 7 + X9Y 7 − X6Y 8

+ 2X8Y 8 − X8Y 9 − X10Y 9 − X9Y 10 + X12Y 10 − X10Y 11 − X12Y 11

− X13Y 12 − X12Y 13 − X14Y 13 − 2X16Y 13 − 2X15Y 14 − X14Y 15 − X16Y 15

− X18Y 15 + 2X16Y 16 − X18Y 16 − X19Y 16 − X18Y 17 − 2X20Y 17 + X18Y 18

+ X20Y 18 − X21Y 18 + X19Y 19 − X20Y 19 − X22Y 19 + 2X20Y 20 + X22Y 20

+ X21Y 21 + X22Y 21 − 2X24Y 21 + X22Y 22 + X24Y 22 + X26Y 22 + 2X25Y 23

+ 2X24Y 24 + X26Y 24 + X28Y 24 + X27Y 25 + X28Y 26 + X30Y 26 − X28Y 27

+ X31Y 27 + X30Y 28 + X32Y 28 − 2X32Y 29 + X34Y 29 − X31Y 30 + X34Y 30

− X34Y 31 − X34Y 32 + X36Y 32 − 2X36Y 33 − X37Y 34 − X40Y 37 .

This zeta function satisfies the functional equation

ζ�
L(3,3),p

(s)
∣∣∣
p→p−1

= −p21−15sζ�
L(3,3),p

(s) .

The corresponding global zeta function has abscissa of convergence α�
L(3,3)

= 3.

The second author also considered what happens when you delete generator
y2 from the presentation above:

Theorem 2.32 ([64]). Let L(3,2) be given by the presentation

〈z, w1, w2, x1, x2, y : [z, w1] = x1, [z, w2] = x2, [z, x1] = y〉 .

Then

ζ�
L(3,2),p

(s) = ζZ3,p(s)ζp(3s − 4)ζp(4s − 4)ζp(5s − 5)ζp(5s − 6)ζp(6s − 6)

× ζp(9s − 11)W�
L(3,2)

(p, p−s) ,

where W�
L(3,2)

(X,Y ) is

1 + X3Y 3 − X4Y 5 − X6Y 7 − X7Y 7 + X8Y 7 − X8Y 8 − X9Y 9 − X10Y 9

+ X10Y 10 − X11Y 10 + X10Y 11 − X11Y 11 + X11Y 12 − X14Y 12 + X13Y 13

− X14Y 13 + X14Y 14 + X15Y 14 + X17Y 16 + X18Y 17 + X20Y 18 − X21Y 21

− X24Y 23 ,

and

ζ≤L(3,2),p
(s) = ζZ3,p(s)ζp(2s − 4)ζp(2s − 5)2ζp(3s − 7)ζp(3s − 8)ζp(4s − 10)

× ζp(5s − 12)W≤
L(3,2)

(p, p−s) ,
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where W≤
L(3,2)

(X,Y ) is

1 + X3Y 2 + X4Y 2 − X4Y 3 − X5Y 3 + X6Y 3 + X7Y 3 − 2X7Y 4 − 2X8Y 4

+ X9Y 5 − 2X10Y 5 − 3X11Y 5 + X11Y 6 + X12Y 6 − 2X13Y 6 − 3X14Y 6

+ X13Y 7 + X14Y 7 + 3X15Y 7 − 2X16Y 7 − X17Y 7 + X16Y 8 + X17Y 8

+ 2X18Y 8 + 2X18Y 9 + 2X21Y 9 + 2X21Y 10 + X22Y 10 + X23Y 10 − X22Y 11

− 2X23Y 11 + 3X24Y 11 + X25Y 11 + X26Y 11 − 3X25Y 12 − 2X26Y 12

+ X27Y 12 + X28Y 12 − 3X28Y 13 − 2X29Y 13 + X30Y 13 − 2X31Y 14

− 2X32Y 14 + X32Y 15 + X33Y 15 − X34Y 15 − X35Y 15 + X35Y 16 + X36Y 16

+ X39Y 18 .

The local zeta function counting all subrings satisfies the functional equation

ζ≤L(3,2),p
(s)
∣∣∣
p→p−1

= p15−6sζ≤L(3,2),p
(s) .

However, the local ideal zeta function satisfies no such functional equation.
The corresponding global zeta functions have abscissa of convergence α�

L(3,2)
=

α≤
L(3,2)

= 3, with ζ≤L(3,2)
(s) having a quadruple pole at s = 3.

The zeta function counting ideals was the first calculated which satisfied no
functional equation of the form (2.7).

A couple of Lie rings similar to L(3,2) were also considered. Their ideal
zeta functions also satisfy no functional equation of the form seen numerous
times before.

Theorem 2.33.

ζ�
H×L(3,2),p

(s) = ζZ5,p(s)ζp(3s − 5)ζp(3s − 6)ζp(4s − 6)ζp(5s − 7)ζp(5s − 10)

× ζp(6s − 7)ζp(6s − 10)ζp(7s − 8)ζp(7s − 12)ζp(8s − 12)
× ζp(9s − 14)ζp(9s − 17)ζp(11s − 19)ζp(13s − 20)
× ζp(13s − 23)W�

H×L(3,2)
(p, p−s)

for some polynomial W�
H×L(3,2)

(X,Y ) of degrees 150 in X and 97 in Y . This
local zeta function satisfies no functional equation. The corresponding global
zeta function has abscissa of convergence α�

H×L(3,2)
= 5.

Theorem 2.34. Let the Lie ring L(3,2,2) have presentation
〈

z, w1, w2, w3, x1, x2, x3, y :
[z, w1] = x1, [z, w2] = x2,
[z, w3] = x3, [z, x1] = y

〉
.

Then

ζ�
L(3,2,2),p

(s) = ζZ4,p(s)ζp(2s − 3)ζp(3s − 6)ζp(5s − 7)ζp(5s − 10)ζp(6s − 10)

× ζp(7s − 12)ζp(8s − 12)ζp(9s − 17)ζp(13s − 23)

× W�
L(3,2,2)

(p, p−s) ,
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where W�
L(3,2,2)

(X,Y ) is given in Appendix A on p. 181. This local zeta func-
tion satisfies no functional equation. The corresponding global zeta function
has abscissa of convergence α�

L(3,2,2)
= 4.

2.12 F3,2

On p. 40 we considered the zeta functions of the free class-2 nilpotent Lie rings.
The second author has added the zeta functions of the class-3, 2-generator
nilpotent Lie ring.

Theorem 2.35 ([64]). Let the Lie ring F3,2 have presentation

〈x1, x2, y1, z1, z2 : [x1, x2] = y1, [x1, y1] = z1, [x2, y1] = z2〉 .

Then

ζ�
F3,2,p(s) = ζZ2,p(s)ζp(3s − 2)ζp(4s − 3)ζp(5s − 4)2ζp(7s − 6)W�

F3,2
(p, p−s) ,

where W�
F3,2

(X,Y ) is

1 + X2Y 4 − X2Y 5 − X4Y 7 − X6Y 9 − X8Y 11 + X8Y 12 + X10Y 16 ,

and

ζ≤F3,2,p(s) = ζZ2,p(s)ζp(2s − 3)ζp(2s − 4)ζp(3s − 6)ζp(4s − 8)ζp(5s − 8)

× ζp(5s − 9)W≤
F3,2

(p, p−s) ,

where W≤
F3,2

(X,Y ) is

1 + X2Y 2 + X3Y 2 − X3Y 3 + X4Y 3 + 2X5Y 3 − 2X5Y 4 + 2X7Y 4 − 2X7Y 5

− 2X8Y 5 − X9Y 5 − X10Y 6 − X11Y 6 − X10Y 7 − X13Y 7 − 2X12Y 8

− X13Y 8 − X14Y 8 − X15Y 8 + X13Y 9 − X16Y 9 + X14Y 10 + X15Y 10

+ X16Y 10 + 2X17Y 10 + X16Y 11 + X19Y 11 + X18Y 12 + X19Y 12 + X20Y 13

+ 2X21Y 13 + 2X22Y 13 − 2X22Y 14 + 2X24Y 14 − 2X24Y 15 − X25Y 15

+ X26Y 15 − X26Y 16 − X27Y 16 − X29Y 18 .

These zeta functions satisfy the functional equations

ζ�
F3,2,p(s)

∣∣∣
p→p−1

= −p10−10sζ�
F3,2,p(s) ,

ζ≤F3,2,p(s)
∣∣∣
p→p−1

= −p10−5sζ≤F3,2,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
F3,2

= 2,

α≤
F3,2

= 5/2.
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Theorem 2.36 ([64]).

ζ�
F3,2×Z,p(s) = ζZ3,p(s)ζp(3s − 3)ζp(4s − 4)ζp(5s − 5)ζp(5s − 6)ζp(7s − 8)

× W�
F3,2×Z(p, p−s) ,

where W�
F3,2×Z(X,Y ) is

1 + X3Y 4 − X3Y 5 − X6Y 7 − X8Y 9 − X11Y 11 + X11Y 12 + X14Y 16 .

This zeta function satisfies the functional equation

ζ�
F3,2×Z,p(s)

∣∣∣
p→p−1

= p15−11sζ�
F3,2×Z,p(s) .

The corresponding global zeta function has abscissa of convergence α�
F3,2×Z = 3.

2.13 The Maximal Class Lie Rings M4 and Fil4

We saw above that M3 is in some sense the simplest Lie ring of nilpotency
class 3. The Lie ring M4 can be defined in a similar way, and in some sense it
is the simplest of nilpotency class 4. The Mn family of Lie rings are filiform,
in that the nilpotency class is maximal given the rank.

Theorem 2.37 ([57]). Let the Lie ring M4 have presentation

〈z, x1, x2, x3, x4 : [z, x1] = x2, [z, x2] = x3, [z, x3] = x4〉 .

Then

ζ�
M4,p(s) = ζZ2,p(s)ζp(3s − 2)ζp(5s − 2)ζp(7s − 4)ζp(8s − 5)ζp(9s − 6)

× ζp(11s − 6)ζp(12s − 7)ζp(6s − 3)−1W�
M4

(p, p−s) ,

where W�
M4

(X,Y ) is

1 + X2Y 4 − X2Y 5 + X3Y 5 − X2Y 6 + 2X3Y 6 − X3Y 7 − X5Y 9 + X6Y 10

− 2X5Y 11 − X7Y 13 − X8Y 13 + X7Y 14 − X8Y 14 − X8Y 15 − X9Y 15

+ X9Y 16 − X9Y 17 − X10Y 17 + 2X9Y 18 − X10Y 18 + X10Y 19 − 2X11Y 19

+ X10Y 20 + X11Y 20 − X11Y 21 + X11Y 22 + X12Y 22 + X12Y 23 − X13Y 23

+ X12Y 24 + X13Y 24 + 2X15Y 26 − X14Y 27 + X15Y 28 + X17Y 30 − 2X17Y 31

+ X18Y 31 − X17Y 32 + X18Y 32 − X18Y 33 − X20Y 37

and

ζ≤M4,p(s) = ζZ2,p(s)ζp(2s − 3)ζp(2s − 4)ζp(3s − 6)ζp(4s − 7)ζp(4s − 8)

× ζp(7s − 12)W≤
M4

(p, p−s) ,
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where W≤
M4

(X,Y ) is

1 + X2Y 2 + X3Y 2 − X3Y 3 + X4Y 3 + 2X5Y 3 − 2X5Y 4 + X7Y 4 − 2X7Y 5

− X8Y 5 + X9Y 5 − 2X9Y 6 − 2X10Y 6 − X11Y 6 + X10Y 7 − 2X12Y 7

− X13Y 7 + X13Y 8 − X14Y 8 − X16Y 9 + X15Y 10 + X17Y 11 − X18Y 11

+ X18Y 12 + 2X19Y 12 − X21Y 12 + X20Y 13 + 2X21Y 13 + 2X22Y 13

− X22Y 14 + X23Y 14 + 2X24Y 14 − X24Y 15 + 2X26Y 15 − 2X26Y 16

− X27Y 16 + X28Y 16 − X28Y 17 − X29Y 17 − X31Y 19 .

These zeta functions satisfy the functional equations

ζ�
M4,p(s)

∣∣
p→p−1 = −p10−14sζ�

M4,p(s) ,

ζ≤M4,p(s)
∣∣∣
p→p−1

= −p10−5sζ≤M4,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
M4

= 2,
α≤

M4
= 5/2.

Theorem 2.38 ([64]).

ζ�
M4×Z,p(s) = ζZ3,p(s)ζp(3s − 3)ζp(5s − 3)ζp(7s − 5)ζp(8s − 7)ζp(9s − 8)

× ζp(11s − 8)ζp(12s − 9)ζp(6s − 4)−1W�
M4×Z(p, p−s) ,

where W�
M4×Z(X,Y ) is

1 + X3Y 4 − X3Y 5 + X4Y 5 − X3Y 6 + 2X4Y 6 − X4Y 7 − X7Y 9 + X8Y 10

− 2X7Y 11 − X9Y 13 − X11Y 13 + X10Y 14 − X11Y 14 − X11Y 15 − X12Y 15

+ X12Y 16 − X12Y 17 − X13Y 17 + 2X12Y 18 − X13Y 18 + X14Y 19 − 2X15Y 19

+ X14Y 20 + X15Y 20 − X15Y 21 + X15Y 22 + X16Y 22 + X16Y 23 − X17Y 23

+ X16Y 24 + X18Y 24 + 2X20Y 26 − X19Y 27 + X20Y 28 + X23Y 30 − 2X23Y 31

+ X24Y 31 − X23Y 32 + X24Y 32 − X24Y 33 − X27Y 37 .

This zeta function satisfies the functional equation

ζ�
M4×Z,p(s)

∣∣∣
p→p−1

= p15−15sζ�
M4×Z,p(s) .

The corresponding global zeta function has abscissa of convergence α�
M4×Z = 3.

M4 is not the only filiform Lie ring of nilpotency class 4, up to isomorphism:

Theorem 2.39 ([64]). Let the Lie ring Fil4 have presentation

〈z, x1, x2, x3, x4 : [z, x1] = x2, [z, x2] = x3, [z, x3] = x4, [x1, x2] = x4〉 .
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Then

ζ�
Fil4,p(s) = ζZ2,p(s)ζp(3s − 2)ζp(5s − 2)ζp(7s − 4)ζp(8s − 5)ζp(9s − 6)

× ζp(10s − 6)ζp(12s − 7)W�
Fil4

(p, p−s) ,

where W�
Fil4

(X,Y ) is

1 + X2Y 4 − X2Y 5 + X3Y 5 − X2Y 6 + X3Y 6 − X3Y 7 − X5Y 9 − X5Y 10

− X6Y 11 − X6Y 12 + X6Y 13 − X7Y 13 − X8Y 13 − X8Y 14 + X7Y 15

+ X8Y 15 − 2X9Y 15 + X8Y 17 + X9Y 17 − X10Y 17 + X9Y 19 + X10Y 19

+ X11Y 20 + 2X11Y 21 − X11Y 22 + 2X12Y 22 + 2X13Y 23 − X13Y 24

+ X14Y 24 − X13Y 25 + X14Y 25 + X15Y 25 − 2X14Y 27 + 2X15Y 27

− 2X15Y 28 + X16Y 28 − X15Y 29 − X16Y 29 + X17Y 29 − 2X17Y 30 + X18Y 30

− X18Y 31 − X18Y 32 − X18Y 33 − X20Y 35 + X20Y 36 − X21Y 36 + X20Y 37

− X21Y 37 + X21Y 38 + X23Y 42 .

This local zeta function satisfies no functional equation. The corresponding
global zeta function has abscissa of convergence α�

Fil4
= 2.

Despite repeated efforts, we have been unable to calculate ζ≤Fil4,p(s). M4 is the
only Lie ring of nilpotency class 4 whose zeta function counting all subrings
we have calculated.

Theorem 2.40 ([64]).

ζ�
Fil4×Z,p(s) = ζZ3,p(s)ζp(3s − 3)ζp(5s − 3)ζp(7s − 5)ζp(8s − 7)ζp(9s − 8)

× ζp(10s − 8)ζp(12s − 9)W�
Fil4×Z(p, p−s) ,

where W�
Fil4×Z(X,Y ) is

1 + X3Y 4 − X3Y 5 + X4Y 5 − X3Y 6 + X4Y 6 − X4Y 7 − X7Y 9 − X7Y 10

− X8Y 11 − X8Y 12 + X8Y 13 − X9Y 13 − X11Y 13 − X11Y 14 + X10Y 15

+ X11Y 15 − 2X12Y 15 + X11Y 17 + X12Y 17 − X13Y 17 + X12Y 19 + X14Y 19

+ X15Y 20 + 2X15Y 21 − X15Y 22 + 2X16Y 22 + X17Y 23 + X18Y 23 − X18Y 24

+ X19Y 24 − X18Y 25 + X19Y 25 + X20Y 25 − 2X19Y 27 + 2X20Y 27

− 2X20Y 28 + X21Y 28 − X20Y 29 − X22Y 29 + X23Y 29 − 2X23Y 30 + X24Y 30

− X24Y 31 − X24Y 32 − X24Y 33 − X27Y 35 + X27Y 36 − X28Y 36 + X27Y 37

− X28Y 37 + X28Y 38 + X31Y 42 .

This zeta function satisfies no functional equation. The corresponding global
zeta function has abscissa of convergence α�

Fil4×Z = 3.
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2.14 Nilpotent Lie Algebras of Dimension ≤ 6

A complete classification of the nilpotent Lie algebras over R of dimension
≤ 6 is given in [44].2 We cannot hope to classify nilpotent Lie rings additively
isomorphic to Z

d for some d ≤ 6, but we can at least use a classification over
R to produce Lie rings over Z which are guaranteed be non-isomorphic. For
each Lie algebra, Magnin gives an R-basis and a list of nonzero Lie brackets
of the basis elements. The structure constants of each nilpotent Lie algebra
L listed in [44] are (fortunately) all in Z. Hence we can form Lie rings over Z

(or Zp) by taking the Z-span (or Zp-span) of the basis given.3

This approach has led to many new calculations of ideal zeta functions of
Lie rings of rank 6, and some others arising from a Lie ring of rank 5:

Theorem 2.41 ([64]). Let the Lie ring g5,3 have presentation

〈x1, x2, x3, x4, x5 : [x1, x2] = x4, [x1, x4] = x5, [x2, x3] = x5〉 .

Then

ζ�
g5,3×Zr,p(s) = ζZr+3,p(s)ζp(3s − (r + 3))ζp(5s − (r + 4)) ,

ζ≤g5,3,p(s) = ζZ3,p(s)ζp(2s − 4)ζp(3s − 4)ζp(3s − 6)ζp(6s − 11)ζp(6s − 12)

× W≤
g5,3

(p, p−s) ,

where W≤
g5,3(X,Y ) is

1 + X3Y 2 − X4Y 3 + X5Y 3 − X5Y 4 + X7Y 4 + X8Y 4 − 2X7Y 5 − 2X8Y 5

− X9Y 5 + X8Y 6 + X9Y 6 + X10Y 6 − X10Y 7 − 2X11Y 7 − 2X12Y 7 + X11Y 8

+ X12Y 8 − X14Y 8 − X15Y 8 + X15Y 10 + X16Y 10 − X18Y 10 − X19Y 10

+ 2X18Y 11 + 2X19Y 11 + X20Y 11 − X20Y 12 − X21Y 12 − X22Y 12 + X21Y 13

+ 2X22Y 13 + 2X23Y 13 − X22Y 14 − X23Y 14 + X25Y 14 − X25Y 15 + X26Y 15

− X27Y 16 − X30Y 18 .

These zeta functions satisfy the functional equations

ζ�
g5,3×Zr ,p(s)

∣∣∣
p→p−1

= (−1)r+5p(r+5
2 )−(r+11)sζ�

g5,3×Zr ,p(s) ,

ζ≤g5,3,p(s)
∣∣∣
p→p−1

= −p10−5sζ≤g5,3,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
g5,3

=
α≤

g5,3 = 3.

2 The classification was first given in [46], but we refer to [44] as this article is likely
to be more accessible.

3 We have permuted some of the bases of the Lie algebras from [44]; the bases we
give are those that make the calculations of the zeta functions easiest.
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Theorem 2.42.

ζ�
H×g5,3,p(s) = ζZ5,p(s)ζp(3s − 5)2ζp(5s − 6)2ζp(7s − 7)ζp(5s − 5)−1

× ζp(7s − 6)−1 .

This zeta function satisfies the functional equation

ζ�
H×g5,3,p(s)

∣∣∣
p→p−1

= p28−16sζ�
H×g5,3,p(s) .

The corresponding global zeta function has abscissa of convergence α�
H×g5,3

= 5.

Theorem 2.43.

ζ�
G3×g5,3,p(s) = ζZ6,p(s)ζp(3s − 6)ζp(3s − 7)ζp(5s − 7)ζp(5s − 8)ζp(5s − 12)

× ζp(7s − 9)ζp(7s − 14)ζp(9s − 15)ζp(11s − 16)

× W�
G3×g5,3

(p, p−s) ,

where W�
G3×g5,3

(X,Y ) is given in Appendix A on p. 182. This zeta function
satisfies the functional equation

ζ�
G3×g5,3,p(s)

∣∣∣
p→p−1

= p45−19sζ�
G3×g5,3,p(s) .

The corresponding global function has abscissa of convergence α�
G3×g5,3

= 6.

We write g6,n for a Lie ring whose presentation is taken from that of the
nth Lie algebra in the list in [44]. We have already seen several examples of
rank 6, g6,1 = L(3,2), g6,3 = F2,3, g6,4 = F2,3/〈z〉 · Z and g6,5 = U3(R2) where
R2 is the ring of integers of a quadratic number field. g6,2 = M5, whose local
zeta functions we have been unable to calculate.

Theorem 2.44 ([64]). Let the Lie ring g6,6 have presentation

〈x1, . . . , x6 : [x1, x2] = x4, [x1, x3] = x5, [x1, x4] = x6, [x2, x3] = x6〉 .

Then

ζ�
g6,6,p(s) = ζZ3,p(s)ζp(3s − 4)ζp(5s − 5)ζp(5s − 6)ζp(6s − 6)ζp(7s − 8)

× ζp(9s − 11)W�
g6,6

(p, p−s) ,

where W�
g6,6

(X,Y ) is

1 + X3Y 3 − X6Y 7 − X8Y 8 − X9Y 9 − 2X11Y 10 − X14Y 12 + X14Y 14

− X15Y 14 + X15Y 15 + X17Y 16 + X17Y 17 + X19Y 17 + X20Y 19 + X21Y 19

− X21Y 20 + X22Y 20 − X25Y 24 − X28Y 26 .

This local zeta function satisfies no functional equation. The corresponding
global zeta function has abscissa of convergence α�

g6,6
= 3.
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Theorem 2.45 ([64]). Let the Lie ring g6,7 have presentation

〈x1, . . . , x6 : [x1, x3] = x4, [x1, x4] = x5, [x2, x3] = x6〉 .

Then

ζ�
g6,7,p(s) = ζZ3,p(s)ζp(3s − 4)ζp(4s − 3)ζp(5s − 5)ζp(5s − 6)ζp(6s − 6)

× ζp(7s − 7)W�
g6,7

(p, p−s) ,

where W�
g6,7

(X,Y ) is

1 + X3Y 3 − X3Y 5 − 2X6Y 7 − X7Y 8 − X9Y 9 − X10Y 10 + X9Y 11 − X10Y 11

+ 2X10Y 12 + X12Y 14 + X13Y 14 + X13Y 15 + X16Y 16 − X16Y 19 − X19Y 21 .

This local zeta function satisfies no functional equation. The corresponding
global zeta function has abscissa of convergence α�

g6,7
= 3.

Theorem 2.46 ([64]). Let the Lie ring g6,8 have presentation

〈x1, . . . , x6 : [x1, x2] = x3 + x4, [x1, x3] = x5, [x2, x4] = x6〉 .

Then

ζ�
g6,8,p(s) = ζZ3,p(s)ζp(3s − 3)ζp(4s − 3)ζp(5s − 5)ζp(6s − 6)ζp(7s − 7)

× ζp(8s − 8)(1 + p1−s)W�
g6,8

(p, p−s) ,

where W�
g6,8

(X,Y ) is

1 − XY + X2Y 2 − X3Y 3 + X3Y 4 + X4Y 4 − 2X3Y 5 − X5Y 5 + 2X4Y 6

+ X6Y 6 − 2X5Y 7 − 2X6Y 7 + 3X6Y 8 − 4X7Y 9 + 4X8Y 10 − 4X9Y 11

− X10Y 11 + X9Y 12 + 4X10Y 12 − 4X11Y 13 + 4X12Y 14 − 3X13Y 15

+ 2X13Y 16 + 2X14Y 16 − X13Y 17 − 2X15Y 17 + X14Y 18 + 2X16Y 18

− X15Y 19 − X16Y 19 + X16Y 20 − X17Y 21 + X18Y 22 − X19Y 23 .

This zeta function satisfies the functional equation

ζ�
g6,8,p(s)

∣∣∣
p→p−1

= p15−12sζ�
g6,8,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g6,8

= 3.

Theorem 2.47 ([64]). Let the Lie ring g6,9 have presentation

〈x1, . . . , x6 : [x1, x2] = x4, [x1, x4] = x5, [x1, x3] = x6, [x2, x4] = x6〉 .
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Then

ζ�
g6,9,p(s) = ζZ3,p(s)ζp(5s − 5)ζp(6s − 6)ζp(8s − 7)ζp(8s − 8)ζp(14s − 15)

× W�
g6,9

(p, p−s) ,

where W�
g6,9

(X,Y ) is

1 + X3Y 3 + X3Y 4 − X3Y 5 + X4Y 5 + X6Y 6 + X7Y 7 − X6Y 8 − X7Y 9

+ X9Y 9 + X10Y 10 − X9Y 11 − X10Y 11 + X11Y 11 − X10Y 12 − X11Y 12

+ X12Y 12 − X11Y 13 + X13Y 13 − X12Y 14 − X13Y 14 − X13Y 15 + X13Y 16

− X14Y 16 − X15Y 16 + X16Y 16 − X16Y 17 − X16Y 18 − X17Y 18 + X16Y 19

− X18Y 19 + X17Y 20 − X18Y 20 − X19Y 20 + X18Y 21 − X19Y 21 − X20Y 21

+ X19Y 22 + X20Y 23 − X22Y 23 − X23Y 24 + X22Y 25 + X23Y 26 + X25Y 27

− X26Y 27 + X26Y 28 + X26Y 29 + X29Y 32 .

This zeta function satisfies the functional equation

ζ�
g6,9,p(s)

∣∣∣
p→p−1

= p15−12sζ�
g6,9,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g6,9

= 3.

Theorem 2.48 ([64]). Let γ ∈ Z \ {0, 1} be a squarefree integer. Let the Lie
ring g6,10(γ) have presentation

〈
x1, . . . , x6 :

[x1, x2] = x4, [x1, x4] = x6, [x1, x3] = x5,
[x2, x3] = x6, [x2, x4] = αx5 + βx6

〉
,

where

αx5 + βx6 =

{
γx5 if γ ≡ 2, 3 (mod 4),
1
4 (γ − 1)x5 + x6 if γ ≡ 1 (mod 4).

Then, if p is inert in Q(
√

γ),

ζ�
g6,10(γ),p(s) = ζZ3,p(s)ζp(3s − 3)ζp(5s − 4)ζp(5s − 5)ζp(6s − 6)

× ζp(8s − 8)ζp(8s − 6)−1ζp(10s − 8)−1 .

If p splits in Q(
√

γ) and either

• γ ≡ 1 (mod 4) and p �
1
4 (γ − 1), or

• γ �≡ 1 (mod 4),

then

ζ�
g6,10(γ),p(s) = ζZ3,p(s)ζp(3s − 3)ζp(4s − 3)ζp(5s − 5)ζp(6s − 6)ζp(7s − 7)

× ζp(8s − 8)(1 + p1−s)W�
g6,8

(p, p−s) ,
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where W�
g6,8

(X,Y ) is given above on p. 57. For all but finitely many primes,
the local zeta function satisfies the functional equation

ζ�
g6,10(γ),p(s)

∣∣∣
p→p−1

= p15−12sζ�
g6,10(γ),p(s) .

Theorem 2.49 ([64]). Let the Lie ring g6,12 have presentation

〈x1, . . . , x6 : [x1, x3] = x5, [x1, x5] = x6, [x2, x4] = x6〉 .

Then

ζ�
g6,12,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(6s − 4)ζp(7s − 5)ζp(7s − 4)−1 ,

ζ≤g6,12,p(s) = ζZ4,p(s)ζp(2s − 5)ζp(3s − 5)ζp(3s − 6)ζp(4s − 8)ζp(4s − 9)

× ζp(5s − 12)ζp(6s − 12)ζp(6s − 13)ζp(7s − 16)ζp(s − 2)−1

× W≤
g6,12

(p, p−s) ,

where W≤
g6,12(X,Y ) is given in Appendix A on p. 183. These zeta functions

satisfy the functional equations

ζ�
g6,12,p(s)

∣∣∣
p→p−1

= p15−13sζ�
g6,12,p(s) ,

ζ≤g6,12,p(s)
∣∣∣
p→p−1

= p15−6sζ≤g6,12,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
g6,12

=
α≤

g6,12 = 4.

It can easily be seen that g6,12 is the direct product with central amalgamation
of H with M3.

Theorem 2.50.

ζ�
H×g6,12,p(s) = ζZ6,p(s)ζp(3s − 6)2ζp(5s − 7)ζp(6s − 6)ζp(7s − 7)ζp(8s − 7)

× ζp(9s − 8)ζp(11s − 14)W�
H×g6,12

(p, p−s) ,

where W�
H×g6,12

(X,Y ) is

1 − X6Y 5 − X6Y 7 − X6Y 8 + X6Y 9 − 2X7Y 9 + X12Y 11 − 2X13Y 11

+ 2X13Y 12 − X14Y 12 + 2X13Y 13 − X14Y 13 + X14Y 14 + 2X13Y 15

− X14Y 15 + X14Y 16 + X20Y 16 + X14Y 17 + X20Y 18 + X20Y 19 − 2X19Y 20

+ 2X21Y 20 − X20Y 21 − X20Y 22 − X26Y 23 − X20Y 24 − X26Y 24 + X26Y 25

− 2X27Y 25 − X26Y 26 + X26Y 27 − 2X27Y 27 + X26Y 28 − 2X27Y 28

+ 2X27Y 29 − X28Y 29 + 2X33Y 31 − X34Y 31 + X34Y 32 + X34Y 33 + X34Y 35

− X40Y 40 .
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This zeta function satisfies the functional equation

ζ�
H×g6,12,p(s)

∣∣∣
p→p−1

= −p36−18sζ�
H×g6,12,p(s) .

The corresponding global zeta function has abscissa of convergence α�
H×g6,12

=6.

Theorem 2.51 ([64]). Let the Lie ring g6,13 have presentation

〈x1, . . . , x6 : [x1, x2] = x5, [x1, x3] = x4, [x1, x4] = x6, [x2, x5] = x6〉 .

Then

ζ�
g6,13,p(s) = ζZ3,p(s)ζp(3s − 4)ζp(5s − 6)ζp(6s − 4)ζp(7s − 5)ζp(9s − 8)

× W�
g6,13

(p, p−s) ,

where W�
g6,13

(X,Y ) is

1 + X3Y 3 − X4Y 7 − X7Y 9 − X8Y 10 − X11Y 12 + X12Y 16 + X15Y 19 .

This zeta function satisfies the functional equation

ζ�
g6,13,p(s)

∣∣∣
p→p−1

= p15−14sζ�
g6,13,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g6,13

= 3.

Theorem 2.52 ([64]). Let γ ∈ Z be a nonzero integer, and let g6,14(γ) have
presentation

〈x1, . . . , x6 : [x1, x3] = x4, [x1, x4] = x6, [x2, x3] = x5, [x2, x5] = γx6〉 .

Then, for all primes p not dividing γ,

ζ�
g6,14(γ),p

(s) = ζZ3,p(s)ζp(3s − 3)ζp(3s − 4)ζp(5s − 6)ζp(6s − 3)ζp(7s − 5)

× ζp(6s − 6)−1ζp(7s − 3)−1 .

If p � γ, the local zeta function satisfies the functional equation

ζ�
g6,14(γ),p(s)

∣∣∣
p→p−1

= p15−14sζ�
g6,14(γ),p(s) .

For γ = ±1, the corresponding global zeta function has abscissa of convergence
α�

g6,14(±1) = 3.

The following proposition has a routine proof which we do not repeat.

Proposition 2.53. For γ1, γ2 �= 0, let g6,14(γ1) and g6,14(γ2) be defined over
any integral domain or field R. Then g6,14(γ1) ∼= g6,14(γ2) iff γ1 = u2γ2 for
some u ∈ R∗.
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It can also be shown that the local zeta functions depend only on the power
of p dividing γ. We therefore have the following

Corollary 2.54. Let γ ∈ Z be a nonzero integer. Then g6,14(γ) � g6,14(−γ)
but ζ�

g6,14(γ)(s) = ζ�
g6,14(−γ)(s).

The classification of six-dimensional Lie algebras has also given rise to
some new calculations in nilpotency class 4. In particular, the second author
found the following:

Theorem 2.55 ([64]). Define the two Lie rings g6,15 and g6,17 by the pre-
sentations

g6,15 =
〈

x1, x2, x3, x4, x5, x6 :
[x1, x2] = x3 + x4, [x1, x4] = x5,

[x1, x5] = x6, [x2, x3] = x6

〉
,

g6,17 =
〈

x1, x2, x3, x4, x5, x6 :
[x1, x2] = x4, [x1, x4] = x5,
[x1, x5] = x6, [x2, x3] = x6

〉
.

Then

ζ�
g6,15,p(s) = ζ�

g6,17,p(s) = ζZ3,p(s)ζp(3s − 3)ζp(4s − 3)ζp(6s − 4)ζp(7s − 5)

× ζp(9s − 8)W�
g6,15

(p, p−s) , (2.10)

where W�
g6,15

(X,Y ) is

1 − X3Y 5 + X4Y 5 − X4Y 7 − X7Y 9 + X7Y 11 − X8Y 11 + X11Y 16 .

This zeta function satisfies the functional equation

ζ�
g6,15,p(s)

∣∣∣
p→p−1

= p15−16sζ�
g6,15,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g6,15

= 3.

It follows from the classification [44] that g6,15 � g6,17, but an appeal to a
classification is not an enlightening proof. To be sure, we verify

Proposition 2.56. g6,15 and g6,17 are not isomorphic.

Proof. The rank of the centraliser of the derived subring is invariant under iso-
morphism. Firstly, g′6,15 = 〈y3+y4, y5, y6〉, which has centraliser 〈y3, y4, y5, y6〉.
Secondly, g′6,17 = 〈x4, x5, x6〉, which is centralised by 〈x2, x3, x4, x5, x6〉. Thus
g6,15 � g6,17. ��

The only other calculation at nilpotency class 4 this classification leads to
is the following:
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Theorem 2.57 ([64]). Let the Lie ring g6,16 have presentation
〈

x1, x2, x3, x4, x5, x6 :
[x1, x3] = x4, [x1, x4] = x5, [x1, x5] = x6,

[x2, x3] = x5, [x2, x4] = x6

〉
.

Then

ζ�
g6,16,p(s) = ζZ3,p(s)ζp(3s − 3)ζp(5s − 4)ζp(6s − 3)ζp(7s − 5)ζp(7s − 3)−1 .

This zeta function satisfies the functional equation

ζ�
g6,16,p(s)

∣∣∣
p→p−1

= p15−17sζ�
g6,16,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g6,16

= 3.

2.15 Nilpotent Lie Algebras of Dimension 7

The Lie algebras of dimension 7 over algebraically closed fields and R were
first classified successfully by Gong [26]. Once again, the structure constants of
each Lie algebra are all rational integers. This includes the six one-parameter
families, providing we restrict the parameter to Z. Hence we can also use this
classification to obtain presentations of Z-Lie rings of rank 7.

We write gname for the Z-Lie ring corresponding to the Lie algebra with the
label (name) in [26]. For example, g1357F corresponds to (1357F) in [26]. The
digits are the dimensions of the terms in the upper-central series, and the suffix
letter (when shown) distinguishes non-isomorphic Lie algebras with the same
upper-central series dimensions. We have encountered some of these Lie rings
before, in particular g17

∼= G(3, 0), g37A
∼= G4, g37B

∼= T4, g137A
∼= M3 ×Z M3

and g247A
∼= L(3,3). Furthermore, some of them arise as direct products with

central amalgamation: g157, g257K, g1457A and g1457B are the direct products
with central amalgamation of H with g5,3, F3,2, M4 and Fil4 respectively.

We saw above that g6,15 and g6,17 are non-isomorphic yet their ideal zeta
functions are equal. Amongst those calculations in rank 7 we have so far com-
pleted, there are no less than seven pairs of normally isospectral Lie rings. We
do not provide proof that the Lie rings are non-isomorphic, instead referring
the curious reader to [26].

Theorem 2.58. Let the Lie ring g27A have presentation

〈x1, x2, x3, x4, x5, x6, x7 : [x1, x2] = x6, [x1, x4] = x7, [x3, x5] = x7〉 .

Then

ζ�
g27A,p(s) = ζZ5,p(s)ζp(3s − 5)ζp(5s − 6)ζp(7s − 10)ζp(8s − 10)−1 .

This zeta function satisfies the functional equation

ζ�
g27A,p(s)

∣∣
p→p−1 = −p21−12sζ�

g27A,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g27A

= 5.
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Theorem 2.59. Let the Lie ring g27B have presentation

〈x1, . . . , x7 : [x1, x2] = x6, [x1, x5] = x7, [x2, x3] = x7, [x3, x4] = x6〉 .

Then

ζ�
g27B,p(s) = ζZ5,p(s)ζp(5s − 5)ζp(5s − 6)ζp(7s − 10)ζp(10s − 10)−1 .

This zeta function satisfies the functional equation

ζ�
g27B,p(s)

∣∣
p→p−1 = −p21−12sζ�

g27B,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g27B

= 5.

Theorem 2.60. Let the Lie ring g37C have presentation

〈x1, . . . , x7 : [x1, x2] = x5, [x2, x3] = x6, [x2, x4] = x7, [x3, x4] = x5〉 .

Then ζ�
g37C,p(s) = ζ�

T4,p(s) (p. 45).

Theorem 2.61. Let the Lie ring g37D have presentation

〈x1, . . . , x7 : [x1, x2] = x5, [x1, x3] = x7, [x2, x4] = x7, [x3, x4] = x6〉 .

Then

ζ�
g37D,p(s) = ζZ4,p(s)ζp(3s − 5)ζp(5s − 6)ζp(6s − 10)ζp(7s − 12)W�

g37D
(p, p−s) ,

where W�
g37D

(X,Y ) is

1 + X4Y 3 + X8Y 6 + X9Y 6 − X9Y 8 − X10Y 8 − X14Y 11 − X18Y 14 .

This zeta function satisfies the functional equation

ζ�
g37D,p(s)

∣∣
p→p−1 = −p21−11sζ�

g37D,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g37D

= 4.

Theorem 2.62. Let the Lie ring g137B have presentation
〈

x1, x2, x3, x4, x5, x6, x7 :
[x1, x2] = x5, [x1, x5] = x7, [x2, x4] = x7,

[x3, x4] = x6, [x3, x6] = x7

〉
.

Then ζ�
g137B,p(s) = ζ�

M3×ZM3,p(s) (p. 48).

Theorem 2.63. Let the Lie rings g137C and g137D have presentations

g137C =
〈

x1, . . . , x7 :
[x1, x2] = x5, [x1, x4] = x6, [x1, x6] = x7,

[x2, x3] = x6, [x3, x5] = −x7

〉
,

g137D =
〈

x1, . . . , x7 :
[x1, x2] = x5, [x1, x4] = x6, [x1, x6] = x7,
[x2, x3] = x6, [x2, x4] = x7, [x3, x5] = −x7

〉
.
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Then

ζ�
g137C,p(s) = ζ�

g137D,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(5s − 5)ζp(6s − 9)ζp(7s − 4)

× ζp(9s − 6)ζp(11s − 10)ζp(12s − 10)

× ζp(16s − 11)W�
g137C

(p, p−s) ,

where W�
g137C

(X,Y ) is

1 − X4Y 8 + X5Y 8 − X9Y 8 − X5Y 9 − X9Y 11 − X10Y 12 + X9Y 13 − X10Y 13

+ X13Y 15 − X14Y 15 − X10Y 16 + X14Y 16 − X15Y 16 + X10Y 17 − X11Y 17

+ X15Y 17 + X14Y 19 − X15Y 19 + X19Y 19 + X15Y 20 + X19Y 20 + X14Y 21

+ X15Y 21 − X16Y 21 − X15Y 22 + X16Y 22 + X18Y 23 + X19Y 23 − X20Y 23

− X18Y 24 − X19Y 24 + 3X20Y 24 + X15Y 25 − X23Y 26 + X24Y 26 + X19Y 27

− X19Y 28 + X20Y 28 + X21Y 28 − X23Y 28 − X24Y 28 + X25Y 28 − X25Y 29

− X20Y 30 + X21Y 30 − X29Y 31 − 3X24Y 32 + X25Y 32 + X26Y 32 + X24Y 33

− X25Y 33 − X26Y 33 − X28Y 34 + X29Y 34 + X28Y 35 − X29Y 35 − X30Y 35

− X25Y 36 − X29Y 36 − X25Y 37 + X29Y 37 − X30Y 37 − X29Y 39 + X33Y 39

− X34Y 39 + X29Y 40 − X30Y 40 + X34Y 40 + X30Y 41 − X31Y 41 + X34Y 43

− X35Y 43 + X34Y 44 + X35Y 45 + X39Y 47 + X35Y 48 − X39Y 48 + X40Y 48

− X44Y 56 .

This zeta function satisfies the functional equation

ζ�
g137C,p(s)

∣∣
p→p−1 = −p21−17sζ�

g137C,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g137C

= 4.

Theorem 2.64. Let the Lie rings g147A and g147B have presentations

g147A =
〈

x1, . . . , x7 :
[x1, x2] = x4, [x1, x3] = x5, [x1, x6] = x7,

[x2, x5] = x7, [x3, x4] = x7

〉
,

g147B =
〈

x1, . . . , x7 :
[x1, x2] = x4, [x1, x3] = x5, [x1, x4] = x7,

[x2, x6] = x7, [x3, x5] = x7

〉
.

Then

ζ�
g147A,p(s) = ζ�

g147B,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(3s − 5)ζp(5s − 8)ζp(7s − 6)

× ζp(6s − 8)−1 .

This zeta function satisfies the functional equation

ζ�
g147A,p(s)

∣∣
p→p−1 = −p21−16sζ�

g147A,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g147A

= 4.



2.15 Nilpotent Lie Algebras of Dimension 7 65

Theorem 2.65. Let g157 have presentation

〈x1, . . . , x7 : [x1, x2] = x3, [x1, x3] = x7, [x2, x4] = x7, [x5, x6] = x7〉 .

Then

ζ�
g157,p(s) = ζZ5,p(s)ζp(3s − 5)ζp(7s − 6) .

This zeta function satisfies the functional equation

ζ�
g157A,p(s)

∣∣
p→p−1 = −p21−15sζ�

g157A,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g157

= 5.

Theorem 2.66. Let the Lie ring g247B have presentation

〈x1, . . . , x7 : [x1, x2] = x4, [x1, x3] = x5, [x1, x4] = x6, [x3, x5] = x7〉 .

Then

ζ�
g247B,p(s) = ζZ3,p(s)ζp(3s − 4)ζp(4s − 3)ζp(5s − 5)ζp(5s − 6)ζp(6s − 5)

× ζp(6s − 6)ζp(7s − 6)ζp(7s − 7)ζp(8s − 7)ζp(8s − 8)
× ζp(9s − 10)ζp(9s − 11)ζp(10s − 9)ζp(10s − 11)ζp(11s − 10)

× ζp(11s − 12)ζp(12s − 12)ζp(13s − 13)ζp(s − 1)−2

× ζp(2s − 2)−1W�
g247B

(p, p−s)

for some polynomial W�
g247B

(X,Y ) of degrees 123 in X and 128 in Y . This
zeta function satisfies the functional equation

ζ�
g247B,p(s)

∣∣
p→p−1 = −p21−15sζ�

g247B,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g247B

= 3.

Theorem 2.67. Let the Lie rings g257A and g257C have presentations

g257A = 〈x1, . . . , x7 : [x1, x2] = x3, [x1, x3] = x6, [x1, x5] = x7, [x2, x4] = x6〉 ,

g257C = 〈x1, . . . , x7 : [x1, x2] = x3, [x1, x3] = x6, [x2, x4] = x6, [x2, x5] = x7〉 .

Then

ζ�
g257A,p(s) = ζ�

g257C,p(s) = ζZ4,p(s)ζp(3s − 5)ζp(5s − 6)ζp(5s − 8)ζp(7s − 9)

× W�
g257A

(p, p−s) ,

where

W�
g257A

(X,Y ) = 1 + X4Y 3 − X9Y 8 − X13Y 10 .

This zeta function satisfies no functional equation. The corresponding global
zeta function has abscissa of convergence α�

g257A
= 4.
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Theorem 2.68. Let the Lie ring g257B have presentation

〈x1, . . . , x7 : [x1, x2] = x3, [x1, x3] = x6, [x1, x4] = x7, [x2, x5] = x7〉 .

Then

ζ�
g257B,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(4s − 4)ζp(5s − 6)ζp(6s − 9)ζp(7s − 9)

× ζp(8s − 10)ζp(12s − 15)W�
g257B

(p, p−s) ,

where W�
g257B

(X,Y ) is

1 − X4Y 5 + X5Y 5 − 2X9Y 8 − X9Y 9 − X13Y 10 + X13Y 11 − X14Y 11

+ 2X13Y 12 − 2X14Y 12 + X14Y 13 − X15Y 13 + 2X18Y 15 − X19Y 15

+ X18Y 16 + 2X19Y 17 − X20Y 17 + X23Y 18 − X22Y 19 + X23Y 19 − X23Y 20

+ 2X24Y 20 + X24Y 21 + X28Y 22 − X27Y 23 − X28Y 23 + X29Y 23 − 2X28Y 24

+ X29Y 24 − X33Y 27 − X33Y 28 − X33Y 29 − X38Y 30 + X37Y 32 + X42Y 35 .

This zeta function satisfies no functional equation. The corresponding global
zeta function has abscissa of convergence α�

g257B
= 4.

Theorem 2.69. Let g257K have presentation

〈x1, . . . , x7 : [x1, x2] = x5, [x1, x5] = x6, [x2, x5] = x7, [x3, x4] = x7〉 .

Then

ζ�
g257K,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(4s − 4)ζp(5s − 5)ζp(6s − 5)ζp(7s − 6)

× ζp(7s − 8)ζp(9s − 10)W�
g257K

(p, p−s) ,

where W�
g257K

(X,Y ) is

1 − X4Y 5 − X5Y 7 − X8Y 9 − X8Y 10 + X8Y 11 − X10Y 11 + X9Y 12

+ X12Y 13 − X13Y 13 + X13Y 14 + 2X13Y 15 − X14Y 15 − X13Y 16 + 2X14Y 16

+ X14Y 17 − X14Y 18 + X15Y 18 + X18Y 19 − X17Y 20 + X19Y 20 − X19Y 21

− X19Y 22 − X22Y 24 − X23Y 26 + X27Y 31 .

This zeta function satisfies the functional equation

ζ�
g257K,p(s)

∣∣
p→p−1 = −p21−14sζ�

g257K,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g257K

= 4.

Theorem 2.70. Let the Lie ring g1357A have presentation
〈

x1, . . . , x7 :
[x1, x2] = x4, [x1, x4] = x5, [x1, x5] = x7,
[x2, x3] = x5, [x2, x6] = x7, [x3, x4] = −x7

〉
.
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Then

ζ�
g1357A,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(5s − 5)ζp(7s − 6) .

This zeta function satisfies the functional equation

ζ�
g1357A,p(s)

∣∣
p→p−1 = −p21−19sζ�

g1357A,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g1357A

= 4.

Theorem 2.71. Let the Lie rings g1357B and g1357C have presentations

g1357B =
〈

x1, . . . , x7 :
[x1, x2] = x4, [x1, x4] = x5, [x1, x5] = x7

[x2, x3] = x5, [x3, x4] = −x7, [x3, x6] = x7

〉
,

g1357C =

〈
x1, . . . , x7 :

[x1, x2] = x4, [x1, x4] = x5, [x1, x5] = x7,
[x2, x3] = x5, [x2, x4] = x7,
[x3, x4] = −x7, [x3, x6] = x7

〉
.

Then

ζ�
g1357B,p(s) = ζ�

g1357C,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(5s − 5)ζp(7s − 4)ζp(9s − 6)

× ζp(11s − 10)ζp(16s − 11)W�
g1357B

(p, p−s) ,

where W�
g1357B

(X,Y ) is

1 − X4Y 8 + X5Y 8 − X5Y 9 − X9Y 11 + X9Y 12 − X10Y 12 − X10Y 16

+ X10Y 17 − X11Y 17 + X14Y 19 − X15Y 19 + X15Y 20 + X15Y 25 + X19Y 27

− X19Y 28 + X21Y 28 − X25Y 36 .

This zeta function satisfies no functional equation. The corresponding global
zeta function has abscissa of convergence α�

g1357B
= 4.

Theorem 2.72. Let the Lie rings g1357G and g1357H have presentations

g1357G =
〈

x1, . . . , x7 :
[x1, x2] = x3, [x1, x4] = x6, [x1, x6] = x7

[x2, x3] = x5, [x2, x5] = x7

〉
,

g1357H =

〈
x1, . . . , x7 :

[x1, x2] = x3, [x1, x4] = x6, [x1, x6] = x7,
[x2, x3] = x5, [x2, x5] = x7, [x2, x6] = x7,

[x3, x4] = −x7

〉
.

Then

ζ�
g1357G,p(s) = ζ�

g1357H,p(s) = ζZ3,p(s)ζp(3s − 4)ζp(4s − 3)ζp(5s − 5)ζp(5s − 6)

× ζp(6s − 6)ζp(7s − 4)ζp(7s − 7)ζp(8s − 5)
× ζp(9s − 6)ζp(10s − 9)ζp(11s − 8)ζp(12s − 10)

× ζp(12s − 11)W�
g1357G

(p, p−s)

where W�
g1357G

(X,Y ) is given in Appendix A on p. 184. This zeta function
satisfies no functional equation. The corresponding global zeta function has
abscissa of convergence α�

g1357G
= 3.
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Theorem 2.73. Let g1457A have the presentation

〈x1, . . . , x7 : [x1, x2] = x5, [x1, x5] = x6, [x1, x6] = x7, [x3, x4] = x7〉 .

Then

ζ�
g1457A,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(4s − 4)ζp(5s − 5)ζp(7s − 4)ζp(9s − 6)

× ζp(10s − 9)ζp(11s − 10)ζp(12s − 10)ζp(15s − 10)

× ζp(16s − 11)W�
g1457A

(p, p−s) ,

where W�
g1457A

(X,Y ) is given in Appendix A on p. 186. This zeta function
satisfies the functional equation

ζ�
g1457A,p(s)

∣∣
p→p−1 = −p21−18sζ�

g1457A,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g1457A

= 4.

Theorem 2.74. Let g1457B have presentation
〈

x1, . . . , x7 :
[x1, x2] = x5, [x1, x5] = x6, [x1, x6] = x7,

[x2, x5] = x7, [x3, x4] = x7

〉
.

Then

ζ�
g1457B,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(4s − 4)ζp(5s − 5)ζp(7s − 4)ζp(9s − 6)

× ζp(10s − 9)ζp(11s − 10)ζp(12s − 10)ζp(16s − 11)

× W�
g1457B

(p, p−s) ,

where W�
g1457B

(X,Y ) is given in Appendix A on p. 187. This zeta function
satisfies no functional equation. The corresponding global zeta function has
abscissa of convergence α�

g1457B
= 4.


