
 Preface

 Goals

 Keeping up with new developments in most areas of computing requires familiarity

with basic logical concepts. In particular, your success in most aspects of software

development significantly depends on your ability to reason correctly, to communi-

cate your reasoning, and to understand and evaluate the reasoning of others. These

abilities are critical for anyone who does feasibility analysis, systems analysis,

problem specification, database design or management, program design, coding,

testing, verification, problem diagnosis, documentation, software maintenance, or

research in any of these areas.

 If you know little about how logic can be used in software development and if

you want to know more, then this book may be of use to you. After reading it you

should be better able to reason about software development, to communicate your

reasoning, to distinguish between good and bad reasoning, and to read professional

literature, which presumes knowledge of elementary logic.

 On the other hand, if you think that your own logical abilities are good enough,

but that many other people are sadly deficient in these abilities, then please give

copies of this book to those who need it.

 Overview and Features

 Applications of logic to software development are emphasized throughout.

Examples involving program instructions are expressed in pseudocode so that the

book makes no use of any particular programming language. It is divided into three

parts. Part I is about language and logical form. It explains how to find and repre-

sent the logical forms of statements expressed in English. It shows how to use a

subset of English, here called logical English , to represent both the meanings and

logical forms of statements. Logical English is intermediate between informal but

meaningful English and the largely meaningless and severely abstract notations

commonly used in formal logic, and used here in Part III. This intermediate role

v

vi Preface

resembles the role of pseudocode. Like pseudocode, logical English is still recog-

nizable English. And like pseudocode, it is a helpful bridge between informal

English and a highly formal notation. They differ in that logical English is used to

express statements and conditions while pseudocode is used to express instructions.

Part I ends by describing how to use logical English to clarify and express data

structure definitions, problem specifications, and conditions in instructions.

 Part II is about truth in the ordinary “material” sense of that term. It shows how

to use truth tables to determine the truth or falsity of a complex statement built

using connectives such as “not”, “and”, “or”, and “if…then…” if you know the

truth or falsity of its component statements. Truth conditions for statements involv-

ing the quantifiers “all” and “some” are also described. Following that, several

computer-related applications of this material are discussed. The final chapter

shows how to apply truth value calculations to forward and backward tracing of

program execution.

 Part III is about “logical” truth. Logical truth is a generalization of material truth.

It involves ignoring the meanings and material truth values of individual statements

and focusing only on their logical forms. Much of what is known about how to rea-

son correctly can best be stated in terms of logical forms. For example, the state-

ment form “P or not P” is logically true. As a result, no matter what statement is

used in place of P, the resulting statement of the form “P or not P” is materially

true.

 This part also explains and shows how to test statements for logical equivalence,

logical implication, and logical redundancy, and how to test arguments for validity

and soundness. It also explains how to use rules of inference to make proofs. It then

describes how to apply these concepts to problem specifications. This is followed

by a proof that no computer program that solves the problem of determining

whether any arbitrarily selected program will halt with any arbitrarily selected input

can be written. That bad news is followed by the good news that it is possible,

though difficult, to prove that a program is correct relative to a problem specifica-

tion, without doing any testing. Examples showing how to do this in simple cases

are given. The last chapter briefly discusses some topics not covered here, e.g. logic

testing and quantum computing. It includes a few pointers to additional sources of

information about these topics.

 Suggested Uses

 This book is designed to be used by computer professionals and students who want

to study on their own without an instructor. It is also suitable as the primary text for

instructor led introductory courses on logic for students who are studying any of the

computing disciplines. Earlier versions of much of this material were class tested

in a college level course I teach on logic and its applications to computing. In addi-

tion, the three parts of the book can be the basis for three or more short professional

development courses.

vi

Preface vii

 Target Audiences

 Students and professionals who expect to be involved with any aspect of software

development are the target audiences for this book. No prior knowledge of formal

logic is assumed. Some knowledge of software development is assumed.

 Audience Resources

 Many examples as well as many practice exercises, along with solutions to half of

them, are included here. Solutions to all the exercises can be had by instructors at

 http://www.springer.com/978-1-84800-081-0

 Readers can contact me at http://www.logicforsoftwaredevelopment.com . I

intend to post corrections to newly discovered errors, pointers to additional

resources, logic jokes, and other related information there.

 Readers are also urged to use the email link there to send error reports and con-

structive suggestions for improving this book.

 Acknowledgements

 I am grateful to the monks, administrators, staff, and faculty at Belmont Abbey

College for providing me an environment in which it was possible to write this

book. Special thanks, and some commiseration, are due to my students in CS325

who suffered through earlier drafts of much of this material.

 Gene Lauver and Bill Seltzer, who have many years of experience in real-world

computing, found numerous errors, made many helpful suggestions, and even

worked many of the exercises “for fun”. Without their help, this book would have

been noticeably less useful.

 Finally, several anonymous reviewers made helpful suggestions. Wayne Wheeler

and Catherine Brett at Springer, UK, provided enthusiastic, cheerful, patient, and

professional editorial support.

 Robert Lover

 Charlotte , NC

 vii

 Chapter 2
 Compound Statements

 This chapter describes logical English for statements that are made from one or

more simpler statements. Such statements are called compound statements. They

are formed using words and phrases called statement connectives. Some of those

connectives are said to be truth functional . Logical English abbreviations for the

most important truth functional statement connectives are introduced here. The role

of parentheses to reduce ambiguity is also discussed. After studying this material

you should be able to transform truth functional compound statements between

(ordinary) English and logical English and use parentheses and conventions for

dropping them.

 Outline

 2.1 Truth functional connectives

 2.2 Statements with multiple connectives

 2.3 Parenthesis dropping conventions

 2.1 Truth Functional Connectives

 Definition 1 . A statement connective is a word or phrase used to construct complex
statements out of simpler statements.

 Example 1 . The statement connective “not” and the statement “John is tall.” can be
used to construct the more complex statement “John is not tall.” The connective
“and” can be used with the statements “John is tall” and “Carol is thin.” to form the
statement “John is tall and Carol is thin.”

R. Lover, Elementary Logic: For Software Development, 13

DOI: 10.2007/978-1-84800-082-7, © Springer 2008

14 2 Compound Statements

 There are many statement connectives in English. The ones that are impor-

tant here are said to be ‘truth functional’. A statement connective is truth func-

tional if and only if the truth value (true or false) of a compound statement

made using it can be determined from knowledge of just the truth values of its

component statements, without knowing anything about their meanings. Truth

functionality will be discussed in detail in later chapters. In logical English

symbols are often used in place of truth functional connectives. Several differ-

ent sets of symbols for connectives are in common use. The set that will be used

here is described below.

 Approximate English Meaning Logic Symbol Name of Symbol

 not ~ tilde

 and ∧ up wedge

 inclusive or (i.e. and/or) ∨ wedge

 if…then… → right arrow

 if and only if ↔ double arrow

 In the following definition L represents the statement on the left, and R repre-

sents the statement on the right. Note that L and R can themselves be atomic or

compound.

 Definition 2 . Suppose L and R represent statements. Then:

 (a) ‘Not R’ is called the negation of R , abbreviated ‘(~R)’.

 (b) ‘L and R’ is called the conjunction of L with R , abbreviated ‘(L ∧ R)’. L and R

are its conjuncts .

 (c) ‘L or R’ is called the disjunction of L with R , abbreviated ‘(L ∨ R)’. L and R

are its disjuncts .

 (d) ‘If L then R’ is called the conditional of L with R , abbreviated ‘(L → R)’. L is

called the antecedent of the conditional, and R is called the consequent of the

conditional.

 (e) ‘L if and only if R’ is called the biconditional (or the equivalence) of L with R ,

abbreviated ‘(L ↔ R)’. L and R are its components .

 Recall that in Chapter 1 atomic statements could be represented in logical

English by single capital letters followed by a list of names and definite descrip-

tions in parentheses. In this chapter we are not concerned with the names and

descriptions. Consequently, here both atomic and compound statements will often

be represented by single capital letters of the alphabet, without lists in parentheses.

The use of single capital letters without lists in parentheses is not necessary. It is

simply a space saving measure. Moreover, it is not necessary to use the abbrevia-

tions given above for sentential connectives. In real life, things are usually more

complicated than in the examples given here and space saving may be less impor-

tant than remembering what abbreviation goes with which English statement. In

those cases you may be better off using less abbreviated notations.

2.1 Truth Functional Connectives 15

 Example 2 . Logical English for connectives

 Grammatical

 category English Logical English

 atomic statement John is asleep. A

 S(j)

 JSleep

 atomic statement Today is Monday. M

 Mon

 atomic statement d = 7. D

 D7

 negation John is not asleep. (~A)

 (not A)

 (~S(j))

 (~JSleep)

 conjunction John is asleep and today is Monday. (A ∧ M)

 (S(j) ∧ Mon)

 (A and M)

 (JSleep ∧ Mon)

 conditional If today is Monday then d = 7. (M → D)

 (Mon → D7)

 conditional If John is asleep then today is Monday. (A → M)

 (If A then M)

 (JSleep → Mon)

 equivalence John is asleep if and only if today is Monday. (A ↔ M)

 (Jsleep ↔ Mon)

 Learning to represent the logical structure of compound English statements using

logical English is best done by seeing many examples and then practicing yourself.

 Example 3 . Logical English for different English statements

 Recall that in English there are usually many different ways to say approximately the

same thing, i.e. there are many sentences that have approximately the same meaning.

Consequently, even if two sentences have slightly different meanings, they may be rep-

resented by the same logical English abbreviation, provided that the difference in mean-

ing does not affect truth values. For example, ‘It is raining but I am dry.’ can be

represented by the same abbreviation as ‘It is raining and I am dry.’ because the slight

difference in meaning between the two sentences has no affect on how the truth value

of either depends on the truth value of ‘It is raining’ and the truth value of ‘I am dry’.

 Suppose that M represents ‘Today is Monday.’ and T represents ‘Taxes are due.’

Some sentences that can be represented by ‘(~M)’ are:

 (a) Today is not Monday.

 (b) It is not the case that today is Monday.

 (c) It is false that today is Monday.

16 2 Compound Statements

 Some English statements that can be represented by ‘(M ∧ T)’ are:

 (a) Today is Monday and taxes are due.

 (b) It is the case that today is Monday and that taxes are due.

 (c) Today is Monday even though taxes are due.

 (d) Although today is Monday, taxes are due.

 (e) Today is Monday but taxes are due.

 (f) Today is Monday although taxes are due.

 Note that ‘Taxes are due and today is Monday’ would be represented by (T ∧ M),

not by (M ∧ T). The order in which things are said is often important and should

be preserved where possible, even when the meaning of two differently ordered

abbreviations is the same.

 Some English sentences that can be represented by ‘(M ∨ T)’ are:

 (a) Today is Monday or taxes are due.

 (b) It is the case that today is Monday or that taxes are due.

 (c) Either today is Monday or taxes are due or both.

 In English there are two logically different uses of ‘or’, the inclusive use and the

exclusive use. Some languages have two separate words for these two meanings. In

logical English the word ‘or’ and the symbol ‘∨’ are used to represents the inclusive

use where ‘P ∨ Q’ means ‘P or Q or both P and Q’. The English word ‘xor’ is

sometimes used to represent the exclusive sense of ‘or’ as in ‘P or Q but not both

P and Q’. It can also be expressed by ‘(P ∨ Q) ∧ ~(P ∧ Q)’.

 Some English sentences that can be represented by ‘(M → T)’ are:

 (a) If today is Monday then taxes are due.

 (b) If today is Monday, taxes are due.

 (c) Provided that today is Monday, taxes are due.

 (d) Taxes are due if today is Monday.

 (e) In case today is Monday, taxes are due.

 In general, if ‘(M → T)’ is true then we say that M is a sufficient condition for

T and that T is a necessary condition for M. Some more English sentences that can

be represented by ‘(M → T)’ are:

 (f) Today being Monday is a sufficient condition for taxes to be due.

 (g) Taxes being due is a necessary condition for today to be Monday.

 Some English sentences that can be represented by ‘(M ↔ T)’ are:

 (a) Today is Monday if and only if taxes are due

 (b) Today’s being Monday is a necessary and sufficient condition for taxes being due.

 (c) Today is Monday just in case taxes are due.

2.2 Statements with Multiple Connectives 17

 2.2 Statements with Multiple Connectives

 Ambiguity can result when a statement has more than one connective if the scope

to which each connective applies is not clear. For example, a statement of the form

‘P and Q or R’ could be understood as ‘P and (Q or R)’ or as ‘(P and Q) or R’.

These two forms are not equivalent. Parentheses can be used to disambiguate

otherwise ambiguous statement forms. In logic parentheses are used in the same

way they are used in mathematics, i.e. work from the inside out.

 Example 4 . Statements with multiple connectives

 English Logical English

 Today is Monday. M

 Taxes are due. T

 Today is Friday. F

 Joe is happy. H

 Joe is broke. B

 (a) Today is Monday or Today is Friday, but not both. ((M ∨ F) ∧ ~(M ∧ F))

 (b) If today is Monday then today is not Friday. M → (~F))

 (c) If today is not Monday then Joe is not happy. ((~M) → (~H))

 (d) Joe is happy if and only if taxes are not due. (H ↔ (~T))

 (e) If Joe is happy and Joe is broke then taxes are not due. ((H ∧ B) → (~T))

 (f) If Joe is broke then Joe is happy just in case today

is Friday.

 (B → (H ↔ F))

 (g) If today is neither Monday nor Friday then Joe

is neither happy nor broke.

 (((~M) ∧ (~F)) → ((~H) ∧ (~B)))

 Exercise 1 . For each part, identify the missing grammatical category and use the
logic notation described below to transform the English statements into logical
English.

 Grammatical category English Logical English

 atomic statement a = 3. A

 atomic statement b = 5. B

 atomic statement a + b = 8. C

 (a) not (a = 3).

 (b) not (b = 5).

 (c) a = 3 and b = 5.

 (d) a = 3 or b = 5.

 (e) If a = 3 then b = 5.

 (f) a = 3 if and only if b = 5.

 (g) If a = 3 or b = 5 then a + b = 8.

 (h) not not b = 5.

 (i) If a not = 3 and b not = 5 then

 a + b not = 8.

18 2 Compound Statements

 A single statement expressed in English can be represented in logical English

in different ways, depending on how much detail is represented. Each of the logi-

cal English representations shown below is correct. Which one to use depends

upon how much detail is relevant at the time.

 Example 5 . Alternative representations

 English Logical English representations

 Jack will leave early if and only if the boss is not here. L (minimal detail)

 (J ↔ B) (more detail)

 (J ↔ (~E)) (yet more detail)

 (LeaveEarly(j) ↔ (~Here(b))

 If transformation from English to logical English is so indeterminate, you

might wonder why anyone would do it. The short answer is that it is for the

same reason we do accounting with Arabic numerals and mathematical symbols

rather than writing it all out longhand in English. Imagine writing “A deposit of

thirty seven dollars and eighty two cents added to a previous balance of two

hundred forty dollars and seventeen cents gives a new balance of ….” in order

to balance your checkbook. The mathematical notation, even though it is not

unique and it takes time to learn to use, makes doing mathematics much much

easier. Using logical English notation has similar advantages if you want to

clearly express and reason correctly about almost anything, including comput-

ing related issues.

 2.3 Parenthesis Dropping Conventions

 Because complex English statements can lead to logical English expressions having

confusingly many pairs of parentheses, it is often helpful to use parenthesis drop-

ping conventions similar to those used in mathematics. Recall for example that in

mathematics exponentiation has higher precedence than multiplication and division

and they have higher precedence than addition and subtraction. In other words,

exponentiation is done before multiplication and division which are done before

addition and subtraction, so that 3 + 5 * 7 means 3 + (5 * 7) and not (3 + 5) * 7.

Similarly, 3 2 + 7 * 5 2 means (3 2) + (7 * (5 2)).

 LE Rule 3. In addition to the parenthesis dropping conventions of mathematics, the

following parenthesis dropping conventions (also called precedence rules) will be

used for logical English.

 (a) ~ has the highest precedence of all.

 (b) ∧ , ∨ , →, and ↔ have successively lower precedence.

 (c) Matching pairs of parentheses can be removed if doing so does not cause ambi-

guity as to how to restore them. In particular, the outermost pair of parentheses

may be removed.

2.3 Parenthesis Dropping Conventions 19

 Example 6 . Application of LE Rule 3.

 Fully parenthesized With parentheses dropping conventions Part of LE3 used

 (a) (~A) ~A c

 (b) (~(~A)) ~~A c twice

 (c) ((~A) ∨ (~B)) (~A) ∨ (~B)

 ~A ∨ ~B

 c

 a

 (d) (((~A) ∨ (~B)) → (~C)) ((~A) ∨ (~B)) → (~C)

 (~A) ∨ (~B) → (~C)

 ~A ∨ ~B → ~C

 c

 b

 a

 (e) (~A) ∨ ((~B) → (~C)) ~A ∨ (~B → ~C)

 but not ~A ∨ ~B → ~C

 a

 not allowed!

 (f) ((A ∧ B) ∨ C) (A ∧ B) ∨ C

 A ∧ B ∨ C

 c

 b

 (g) (A ∧ (B ∨ C)) A ∧ (B ∨ C) c

 (h) (A ∨ (B ∨ (C ∨ D))) A ∨ (B ∨ (C ∨ D))

 but not A ∨ B ∨ C ∨ D

 c

not allowed

 (i) (((A ∨ B) ∨ C) ∨ D) ((A ∨ B) ∨ C) ∨ D c

 (j) (~(A ∨ (B ↔ C))) ~(A ∨ (B ↔ C)) c

 (k) ((((~A) ∧ B) → C) ↔ D) (((~A) ∧ B) → C) ↔ D

 ((~A ∧ B) → C) ↔ D

 (~A ∧ B → C) ↔ D

 ~A ∧ B → C↔D

 c

 a

 b

 b

 (l) (~(A ∧ (B → (C ↔ D)))) ~(A ∧ (B → (C ↔ D))) c

 Exercise 2 . Fully restore parentheses to the following logical English notations.
Suggestion: work from highest to lowest precedence, in steps.

 (a) P ∨ Q ∧ R

 (b) P ∧ Q ∨ R

 (c) P → Q ∨ R

 (d) P ∨ Q → R

 (e) (P ∨ Q) ∨ R

 (f) P ∨ (Q ∨ R)

 (g) ~P → ~Q ∨ R

 (h) ~(P → Q) ∨ R

 (i) ~P ∧ Q ∨ R → S ↔ T

 (j) P ↔ Q → R ∨ S ∧ ~T

 Exercise 3 . Use the following statement letters to transform each of the English
statements below into logical English. Use parenthesis dropping.

 English Logical English

 The program compiled correctly. P

 The file was sorted. S

 The file was corrupted. C

 There was an error in the sort routine. E

20 2 Compound Statements

 English Logical English

 The program ran correctly. R

 The error flag was set at line 4008. F

 a < b L

 (a) If the program ran correctly then the file was sorted.

 (b) If there was an error in the sort routine then the file was not sorted.

 (c) If the error flag was set at line 4008 then the file was corrupted.

 (d) The program compiled correctly and the file was sorted just in case the program ran correctly

and there was no error in the sort routine.

 (e) A sufficient condition for the file being corrupted is that the error flag was set at line

4008.

 (f) A necessary condition for the file being corrupted is that the error flag was set at line

4008.

 (g) A necessary and sufficient condition for the file being corrupted is that the error flag was set

at line 4008.

 (h) The file was sorted unless the program did not run correctly.

 (i) If the program compiled correctly and the file was sorted then the program ran correctly or

a < b.

 (j) a < b if and only if the program did not run correctly or the error flag was not set at line

4008.

 (k) If a < b and the file was sorted correctly then the program ran correctly if and only if there

was not an error in the sort routine.

 Exercise 4 . Use the following statement letters to transform each of the Logical
English statements below into English.

 Logical English English

 P The program compiled correctly.

 S The file was sorted.

 C The file was corrupted.

 E There was an error in the sort routine.

 R The program ran correctly.

 F The error flag was set at line 4008.

 L

 (a) R → P

 (b) ~~R

 (c) ~P → ~R

 (d) F → L

 (e) C ∨ E → ~P

 (f) P ∧ ~S → C

 a < b.

 Exercise 5 . Use the following statement letters to transform each of the English

statements below into logical English.

2.3 Parenthesis Dropping Conventions 21

 English Logical English

 6 is a domain value of the problem. S

 1 is a domain value of the problem. O

 0 is the solution value of the problem. N

 The domain data is sorted small to large. A

 The domain data is sorted large to small. D

 (a) If 1 is a domain value of the problem then the domain data is not sorted small to large or large

to small.

 (b) If the domain data is sorted small to large then the domain data is not sorted large to small.

 (c) If a domain value of the problem is not 6 and is not 1 then the domain data is not sorted.

 (d) If 6 is a domain value of the problem then 1 is not a domain value of the problem.

 (e) If the domain data is sorted large to small or small to large then the solution value of the

problem is 0.

 (f) If the domain data is not sorted large to small and not sorted small to large then the solution

value of the problem is 0.

 (g) A sufficient condition for the solution value of the problem to be 0 is that a domain value of

the problem is 6 if and only if the domain data is sorted small to large.

 (h) If a domain value of the problem is 6 then 0 is not the solution value of the problem unless

the domain data is sorted small to large.

 Exercise 6 . Use the following statement letters to transform each of the logical
English statements below into English.

 Logical English English

 S 6 is a domain value of the problem.

 O 1 is a domain value of the problem.

 N 0 is the solution value of the problem.

 A The domain data is sorted small to large.

 D

 (a) N ∨ ~N

 (b) A ↔ ~D

 (c) S → ~O

 (d) ~S ∧ ~O → ~N

 (e) N → S ∨ O

 (f) ~(S ∧ O) → ~S ∨ ~O

 The domain data is sorted large to small.

