
Preface

Many-particle physics is at work whenever we delve into the rich phenomenology of
the real world, or into laboratory experiments. Nevertheless, our physical descrip-
tion of nature is mostly built upon single-particle theories. For instance, Kepler’s
laws provide a basic understanding of our solar system, many features of the pe-
riodic table can be understood from the solution of a single hydrogen atom, and
even complicated microprocessors with an unbearable number of electrons float-
ing through millions of transistors can be developed based on the effective single-
particle models of semiconductor physics. These approaches are successful because
quite often interactions affect physical systems in a perturbative way. Classical per-
turbation theory yields corrections to a planet’s orbit due to other planets, quantum
chemistry relies on various approximation schemes to deal with complicated atoms
and small molecules, and solid state theory uses weakly interacting quasiparticles
as elementary excitations. This fortunate situation changes, however, when we try
to understand more complex or strongly interacting systems, or when we try to ex-
plore the nature of matter itself. Condensates of cold bosonic atoms, for example,
show subtle many-particle effects, strongly correlated fermions may give rise to
high-temperature superconductivity, and the way quarks build up elementary par-
ticles (hadronization) is a highly non-trivial few-body problem. Another example
are quantum computers, which many scientist envision as a replacement for our
present-day microprocessors, and which exploit the entanglement property of quan-
tum many-particle states. Last but not least, we mention the complexity of fusion
plasmas, which some day may help feeding our ever-growing hunger for new energy
resources. Unfortunately, even the most sophisticated analytical approaches largely
fail to describe such systems. Hence, at present, unbiased numerical investigations
provide the most reliable tool to address these problems. This is the point where the
expert use of large-scale computers comes into play.

The increasing importance of computational many-particle physics calls for a
comprehensive introduction into this rapidly developing field suitable for graduate
students and young researchers. Therefore, we decided to organize a summer school
on “Computational Many-Particle Physics” in September 2006, during the 550th
anniversary of the University Greifswald. Generously sponsored by the Wilhelm
and Else Heraeus Foundation and hosted by the Max-Planck-Institute for Plasma
Physics and the Institute for Physics, we brought together more than 40 students
and 20 distinguished scientists working on such diverse fields as fusion plasmas,
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statistical physics, solid state theory and high performance computing. The present
Lecture Notes summarize and extend the material showcased over a 2-week period
of tightly scheduled tutorials, seminars and exercises. The emphasis is on a very ped-
agogical and systematic introduction to various numerical concepts and techniques,
with the hope that the reader may quickly start to program himself. The spectrum of
the numerical methods presented is very broad, covering classical as well as quan-
tum few- and many-particle systems. The trade-off between the number of particles,
the complexity of the underlying microscopic models and the importance of the in-
teractions determine the choice of the appropriate numerical approach. Therefore,
we arranged the book along the algorithms and techniques employed, rather than on
the physics applications, which we think is more natural for a book on numerical
methods.

We start with methods for classical many-particle systems. Here, molecular dy-
namics approaches trace the motion of individual particles, kinetic approaches work
with the distribution functions of particles and momenta, while hybrid approaches
combine both concepts. A prominent example is the particle-in-cell method typi-
cally applied to model plasmas, where the time evolution of distribution functions is
approximated by the dynamics of pseudo-particles, representing thousands or mil-
lions of real particles. Of course, at a certain length scale the quantum nature of
the particles becomes important. As an attempt to close the gap between classi-
cal and quantum systems, we outline a number of semi-classical (Wigner-function,
Boltzmann- and Vlasov-equation based) approaches, which in particular address
transport properties. The concept of Monte Carlo sampling is equally important
for classical, statistical and quantum physical problems. The corresponding chap-
ters therefore account for a substantial part of the book and introduce the major
stochastic approaches in application to very different physical situations. Focussing
on solids and their properties, we continue with ab initio approaches to the elec-
tronic structure problem, where band structure effects are taken into account with
full detail, but Coulomb interactions and the resulting correlations are treated ap-
proximately. Dynamical mean field theories and cluster approaches aim at improv-
ing the description of correlations and bridge the gap to an exact numerical treatment
of basic microscopic models. Exact diagonalization of finite systems gives access
to their ground-state, spectral and thermodynamic properties. Since these methods
work with the full many-particle Hamiltonian, the study of a decent number of par-
ticles or larger system sizes is a challenging task, and there is a strong demand
to circumvent these limitations. Along this line the density matrix renormalization
group represents a clever technique to restrict the many-particle Hilbert space to
the physically most important subset. Finally, all the discussed methods heavily
rely on the use of powerful computers, and the book would be incomplete without
two detailed chapters on parallel programming and optimization techniques for high
performance computing.

Of course, the preparation of such a comprehensive book would have been im-
possible without support from many colleagues and sponsors. First of all, we thank
the lecturers and authors for their engagement, enthusiasm and patience. We are
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greatly indebted to Milena Pfafferott and Andrea Pulss for their assistance during
the editorial work and the fine-tuning of the articles. Jutta Gauger, Beate Kemnitz,
Thomas Meyer and Gerald Schubert did an invaluable job in the organization of the
summer school. Finally, we acknowledge financial support from the Wilhelm and
Else Heraeus foundation, the Deutsche Forschungsgemeinschaft through SFB 652
and TR 24 and the Helmholtz-Gemeinschaft through COMAS.
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Classical molecular dynamics (MD) is a well established and powerful tool in vari-
ous fields of science, e.g. chemistry, plasma physics, cluster physics and condensed
matter physics. Objects of investigation are few-body systems and many-body sys-
tems as well. The broadness and level of sophistication of this technique is docu-
mented in many monographs and reviews, see for example [1, 2]. Here we discuss
the extension of MD to quantum systems (QMD). There have been many attempts
in this direction which differ from each other, depending on the type of system un-
der consideration. One variety of QMD has been developed for condensed matter
systems. This approach is reviewed e.g. in [3] and will not be discussed here. In
this contribution we deal with unbound electrons as they occur in gases, fluids or
plasmas. Here, a quite successful strategy is to replace classical point particles by
wave packets [3, 4, 5, 6]. This method, however, struggles with problems related
to the dispersion of such a wave packet and difficulties to properly describe strong
electron-ion interaction and bound-state formation. We try to avoid these restric-
tions by an alternative approach: We start the discussion of quantum dynamics by a
general consideration of quantum distribution functions.

2.1 Quantum Distribution Functions

There exists a variety of different representations of quantum mechanics including
the so-called Wigner representation which involves a class of functions depending
on coordinates and momenta. In the classical limit, the Wigner distribution func-
tion fW turns into the phase space distribution f known from classical statistical
mechanics. In contrast to f , the Wigner function may be non-positive as a conse-
quence of the coordinate-momentum (Heisenberg) uncertainty. This will lead to a
modification of the particle trajectories which is discussed in Sect. 2.3. An impor-
tant property of the distribution functions is that they can be used to compute the
expectation value of an arbitrary physical observable 〈A〉, defined by the operator
Â(p̂, q̂) [7]

〈A〉(t) =
∫

dp dq AW(p, q) fW(p, q, t) , 1 =
∫

dp dq fW(q, p, t) , (2.1)

where AW(p, q) is a scalar function. For simplicity we considered the one-
dimensional (1D) case; the generalization to higher dimensions and N particles
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is straightforward by re-defining the coordinate and momentum as vectors, q =
{q1, . . . , qN}, p = {p1, . . . ,pN}. fW is defined via the nonequilibriumN -particle
density operator ρ̂ in coordinate representation (i.e. the density matrix),

fW(p, q, t) =
1

2π�

∫
dν

〈
q +

ν

2
|ρ̂| q − ν

2

〉
e−iνp , (2.2)

and AW(p, q) is analogously defined from the coordinate representation of Â.
We now consider the time evolution of the wave function under the influence of

a general Hamiltonian of the form

Ĥ =
N∑

j=1

p̂2
i

2m
+

N∑

i=1

Ṽ (qi) +
∑

i<j

V (qi, qj) , (2.3)

where Ṽ (qi) and V (qi, qj) denote an external and an interaction potential, respec-
tively. The equation of motion for fW has the form [8, 7] (see also Sect. 2.3)

∂fW

∂t
+

p

m
·∇qfW =

∞∫

−∞
ds fW (p− s, q, t) ω̃ (s, q, t) , (2.4)

where the function

ω̃ (s, q, t) =
2
π�2

∫
dq′V (q − q′, t) sin

(
2sq′

�

)
(2.5)

takes into account the non-local contribution of the potential energy in the quantum
case. Equivalently, expanding the integral around q′ = 0, (2.4) can be rewritten by
an infinite sum of local potential terms

∂fW

∂t
+
p

m

∂fW

∂q
=

∞∑

n=0

(�/(2i))2n

(2n+ 1)!

(
∂2n+1V

∂q2n+1
,
∂2n+1fW

∂p2n+1

)
, (2.6)

where (∂2n+1V /∂q2n+1, ∂2n+1fW/∂p
2n+1) denotes the scalar product of two vec-

tors which for an N -particle system contain 3N components.
If the potential does not contain terms higher than second order in q, i.e.

∂nV /∂qn|n≥3 = 0, (2.6) reduces to the classical Liouville equation for the dis-
tribution function f :

∂f

∂t
+

p

m

∂f

∂q
=
∂V

∂q

∂f

∂p
. (2.7)

The Wigner function must satisfy a number of conditions [9], therefore, the initial
function fW(q, p, 0) cannot be chosen arbitrarily. Even if fW(q, p, t) satisfies the
classical equation (2.7) it nevertheless describes the evolution of a quantum distri-
bution because a properly chosen initial function fW(q, p, 0) contains, in general, all
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powers of �. In particular, the uncertainty principle holds for averages of operators
calculated with fW(q, p, 0) and fW(q, p, t).

One can rewrite (2.6) in a form analogous to the classical Liouville equation
(2.7) by replacing V by a new effective potential Veff defined as

∂Veff

∂q

∂fW

∂p
=
∂V

∂q

∂fW

∂p
− �

2

24
∂3V

∂q3
∂3fW

∂p3
+ · · · . (2.8)

Equation (2.7) can be efficiently solved with the method of characteristics, see
e.g. [10]. This is the basis of our QMD approach where an ensemble of classical
(Wigner) trajectories is used to solve (numerically) the quantum Wigner-Liouville
equation (2.4) which will be discussed in Sect. 2.3. The time-dependence of the tra-
jectories is given by the classical equations of motion

∂q

∂t
=

p

m
,

∂p

∂t
= −∂Veff(p, q, t)

∂q
. (2.9)

Of course, a direct solution of (2.9) with the definition (2.8) is only useful if the
series is rapidly converging and there is only a small number of non-zero terms.

Clearly there is a principle difficulty with this approach if the series of terms
with the potential derivatives is not converging. This is the case, e.g., for a Coulomb
potential (at zero distance). There are at least three solutions to this problem. The
first one is to solve the Wigner-Liouville equation by Monte Carlo (MC) techniques
[11, 12, 13, 14], which is discussed below in Sect. 2.3. The second one is to replace
the original potential on the r.h.s. of (2.8) by some model potential having a finite
number of nonzero derivatives, see e.g. [15]. The third approach is to perform a
suitable average of Veff , e.g. over a thermal ensemble of particles. This has been
done both for external potentials and also for two particle interaction. The use of an
effective quantum pair potential in classical MD is discussed in Chap. 1.

2.2 Semiclassical Molecular Dynamics

2.2.1 Quantum Pair Potentials

In order to obtain an effective pair potential which is finite at zero interparticle dis-
tance, we consider (2.4) for two particles. Assuming further thermodynamic equi-
librium with a given temperature kBT = 1/β, spatial homogeneity and neglect-
ing three-particle correlations, one can solve for the two-particle Wigner function
fW,12 = F eq

12(r1, p1, r2, p2, β) ≈ F eq
12(r1 − r2, p1, p2, β).

This is now rewritten as in the canonical case [7], F eq
12(r1 − r2, p1, p2, β) ≡

F eq
1 (p1, β)F eq

2 (p2, β) exp(−βV qp
12 ), which defines the desired quantum pair poten-

tial V qp
12 .

The first solution for V qp
12 was found by Kelbg in the limit of weak coupling

[16, 17, 18]. It has the form of (2.10) with γij → 1, for details and references see
[10, 19]. The Kelbg potential, or slightly modified versions, is widely used in nu-
merical simulations of dense plasmas [4, 5, 20, 21, 22]. It is finite at zero distance
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which correctly captures basic quantum diffraction effects preventing any diver-
gence. However, the absolute value at r = 0 is incorrect which has lead to the
derivation of further improved potentials, see [10, 19, 23] and references therein.
Here we use the improved Kelbg potential (IKP),

Φ (rij , β) =
qiqj
rij

{
1− e−r

2
ij/λ

2
ij +
√
π

rij
λijγij

(
1− erf

[
γij

rij
λij

])}
, (2.10)

where rij = |rij |, xij = rij/λij , λ2
ij = �

2β/(2μij) and μ−1
ij = m−1

i + m−1
j ,

which contains additional free parameters γij that can be obtained from a fit to the
exact solution of the two-particle problem [19].

2.2.2 Molecular Dynamics Simulations

We have performed extensive MD simulations of dense partially ionized hydrogen
in thermodynamic equilibrium using different IKP for electrons with different spin
projections. To properly account for the long-range character of the potentials, we
used periodic boundary conditions with the standard Ewald procedure, see Chap. 1.
The number of electrons and protons wasN = 200. For our MD simulations we use
standard Runge-Kutta or Verlet algorithms (see Chap. 1) to solve Newton’s equa-
tions (2.9), where Veff is replaced by the IKP. Because of the temperature depen-
dence of the IKP we applied a temperature scaling at every time step for all com-
ponents separately (for protons and two sorts of electrons) to guarantee a constant
temperature of all components in our equilibrium simulations. In each simulation
the system was equilibrated for at least 104 MD steps, only after this the observ-
ables have been computed.

In Fig. 2.1 we show the internal energy per atom as a function of temperature for
two densities and compare it to path integral Monte Carlo (PIMC) results [19, 24].
The density is given by the Brueckner parameter rs = r̄/aB , where r̄ is the average
interparticle distance and aB denotes the Bohr radius. For high temperatures and
weak coupling, Γ = e2/(r̄kBT ) < 1 for the fully ionized plasma, the two simu-
lations coincide within the limits of statistical errors. If we use the original Kelbg
potential, at temperatures below 300 000 K (approximately two times the binding
energy), the MD results start to strongly deviate from the PIMC results. In con-
trast the IKP fully agrees with the PIMC data even at temperatures far below the
hydrogen binding energy (1 Ry), where the plasma is dominated by atoms, which
is a remarkable extension of semi-classical MD into the theoretically very difficult
regime of moderate coupling, moderate degeneracy and partial ionization.

Interestingly, even bound states can be analyzed in our simulations by following
the electron trajectories. At T < 1 Ry, we observe an increasing number of electrons
undergoing strong deflection (large-angle scattering) on protons and eventually per-
forming quasi-bound trajectories. Most of these electrons remain bound only for a
few classical orbits and then leave the proton again. Averaged over a long time, our
simulations are able to reveal the degree of ionization of the plasma. For temper-
atures below approximately 50 000 K, which is close to the binding energy of hy-
drogen molecules, the simulations cannot be applied. Although we clearly observe
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Fig. 2.1. Internal energy per hydrogen atom at rs = 4 and rs = 6 versus temperature, MD
results are compared to restricted PIMC simulations [19, 24]

molecule formation (see below), there also appear clusters of several molecules
which is unphysical under the present conditions and is caused by the approximate
two-particle treatment of quantum effects in the IKP. This turns out to be the reason
for the too small energy at low temperatures (see Fig. 2.1).

Let us now turn to a more detailed analysis of the spatial configuration of the
particles. In Fig. 2.2 the pair distribution functions of all particle species with the
same charge are plotted at two densities. Consider first the case of T = 125 000 K
(upper panels). For both densities all functions agree qualitatively showing a de-
pletion at zero distance due to Coulomb repulsion. Besides, there are differences
which arise from the spin properties. Electrons with the same spin show a Coulomb
hole around r = 0 which is broader than the one of the protons due to the Pauli
principle with additional repulsion of electrons with the same spin projection. This
trend is reversed at low temperatures (see middle panel), which is due to the for-
mation of hydrogen atoms and molecules. In this case, electrons, i.e., their classical
trajectories, are spread out around the protons giving rise to an increased probability
of close encounters of two electrons belonging to different atoms compared to two
protons.

Now, let us compare electrons with parallel and electrons with anti-parallel
spins. In all cases, we observe a significantly increased probability to find two elec-
trons with opposite spin at distances below one Bohr radius, which is due to the
missing Pauli repulsion. This trend increases when the temperature is lowered be-
cause of increasing quantum effects. Before analyzing the lowest temperature in
Fig. 2.2, let us consider the electron-proton (e-p) distributions. Multiplying these
functions by r2 gives essentially the radial probability density Wep(r) = r2gep(r),
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Fig. 2.2. Electron-electron (e-e) and proton-proton (p-p) pair distribution functions for a cor-
related hydrogen plasma with rs = 4 (left row) and rs = 6 (right row) for T = 125 000 K,
61 250 K and 31 250 K (from top to bottom) [19]

which is plotted in Fig. 2.3. At low temperatures this function converges to the
ground state probability density of the hydrogen atom Wep(r) = r2|ψ|21s(r) influ-
enced by the surrounding plasma. Here, lowering of the temperature leads towards
the formation of a shoulder around 1.4aB for rs = 4 and 1.2aB for rs = 6 which
is due to the formation of hydrogen atoms; this is confirmed by the corresponding
quasi-bound electron trajectories. At this temperature, the observed most probable
electron distance is slightly larger than one aB as in the atom hydrogen ground state.
Of course, classical MD cannot yield quantization of the bound electron motion, but
it correctly reproduces (via averaging over the trajectories) the statistical properties
of the atoms, such as the probability density averaged over the energy spectrum.

At 62 500 K and rs = 6 (right middle part of Fig. 2.2) the simulations show a
first weak signature of molecule formation – see the maximum of the p-p distri-
bution function around r = 2aB and the maximum of the distribution function of
electrons with anti-parallel spins around r = 1.5aB . Upon further lowering of the
temperature by a factor of two (lower panel of Fig. 2.2) the p-p functions exhibit a
clear peak very close to r = 1.4aB, the theoretical p-p separation inH2. At the same
time, also the e-e functions have a clear peak around r = 0.5aB, the two electrons
are concentrated between the protons. In contrast, in the case of parallel spins, no
molecules are formed, the most probable electron distance is around r = 1.2aB .
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Fig. 2.3. Electron-proton (e-p) pair distribution functions multiplied by r2 as function of e-p
distance at rs= 4 (top) and rs = 6 (bottom) at four temperatures [19]

2.2.3 Molecular Dynamics Results for Dynamical Quantities

We now extend the analysis to the dynamical properties of a hydrogen plasma in
equilibrium using the fluctuation-dissipation theorem. The time-dependent micro-
scopic density of plasma species α is defined as

ρα(r, t) =
Nα∑

i=1

δ[r − rαi (t)] , (2.11)

with the Fourier components

ρα(k, t) =
Nα∑

i=1

eik·rα
i (t) , (2.12)

where rαi (t) denotes the trajectory of particle i obtained in the simulation. We now
define the three partial density-density time correlation functions (DDCF) between
sorts α and η as

Aαη(k, t) =
1

Nα +Nη
〈ρα(k, t)ρη(−k, 0)〉 , (2.13)

where, due to isotropy, k = k. Here 〈ρα(k, t)ρη(−k, 0)〉 denotes averaging along
the trajectories by shifting the time interval and keeping the difference equal to t.



48 V. S. Filinov et al.

Note also, that Aαη(k, t) = Aηα(k, t) for all pairs α and η. In addition to the
spin-resolved electron functions we can also consider the spin averaged correlation
function A(k, t) = A↑↑(k, t) +A↓↑(k, t).

We have performed a series of simulation runs of equilibrium fluctuations in
hydrogen plasmas with coupling parameters Γ and electron degeneracy parameters
χe = ρΛ3

e with the electron de Broglie wavelength Λe = �/
√

2πmekBT ranging
from zero (classical system) to one (quantum or degenerate system). The electron
DDCF for Γ = 1 and χe = 1 are plotted in Fig. 2.4 for four values of the di-
mensionless wavenumber q = kr̄. The correlation functions (↑↑ and ↓↑) have two
characteristic features – a highly damped, high-frequency part and a weakly damped
low-frequency tail. The latter originates from slow ionic motion whereas the high-
frequency part is related to oscillations with frequencies close to the electron plasma
frequency ωpl. On the other hand, the time scale of the ion motion is determined
by the ion plasma frequency ωipl =

√
4πρiZ2

i e
2/mi, the ratio of the two time

scales is
√
mi/me ≈ 43. The slow proton oscillations are clearly seen in the proton

DDCF, shown in Fig. 2.5. To resolve the proton oscillations the whole simulation
(including the electron dynamics) has to extend over several proton plasma periods
Tp = 2π/ωipl thereby resolving the fast electronic motions as well, which sets the
numerical limitation of the calculation.

The temporal Fourier transform of the DDCF yields another very important
quantity – the dynamic structure factor, Sα,η(ω, q), which allows one to analyze,
e.g., the dispersion of the coupled electron and proton oscillations. Fig. 2.6 shows
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Fig. 2.4. Electron DDCF (2.13) multiplied by (N↑
e + N↓

e ) for Γ = 1 and χe = 1 for four
wave vectors. Upper (middle) panel: Correlation functions for parallel (antiparallel) spins.
Bottom: Spin-averaged function [25]
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Fig. 2.6. Ion-acoustic wave dispersion in a dense hydrogen plasma. Lines correspond to
weighted linear fits to the MD data (symbols). The scatter of the data is due to the limited
particle number N and simulation time and can be systematically reduced. Also, smaller
q-values require larger N [25]
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dispersion results for the collective proton oscillations, for the electron modes see
[22, 24], which follow from the peak positions of Sii(ω, q). Fig. 2.6 shows the
peak frequency versus wave number, i.e. the dispersion of longitudinal ion-acoustic
waves, ω(q) = vMD q, where vMD denotes our MD result for the phase veloc-
ity. This can be compared to the familiar analytical expression for an ideal two-
temperature (Te � Ti) plasma vs =

√
ZikBTe/mi, where vs is the ion sound

velocity. We observe deviations of about 10% for weak degeneracy χe < 0.5, and
about 10% for large degeneracy χe ≥ 1, which are due to nonideality (correlations)
and quantum effects, directly included in our simulations. For further details on this
method see [6, 24, 25].

Thus semiclassical MD is a powerful approach to correlated quantum plasmas.
Thermodynamic and dynamic properties are accurately computed if accurate quan-
tum pair potentials, such as the IKP, are used.

2.3 Quantum Dynamics

Let us now discuss the method of Wigner trajectories in more detail. As we
have seen, the Wigner function W (to avoid confusion, in this section we rename
fW →W ) in (2.2) is the Fourier transform of the non-diagonal elements of the den-
sity matrix which, for a pure state, is ρ

(
q + ν

2 , q −
ν
2

)
= ψ(q + ν

2 , t)ψ
∗(q − ν

2 , t),
where the N−particle wave functions satisfy the Schrödinger equation with an ini-
tial condition

i�
∂ψ

∂t
= Ĥψ , ψ (t0) = ψ0 (q) , (2.14)

which contains the Hamiltonian (2.3); recall that q is a vector of dimension Nd. By
taking the time derivative of W in (2.2) and substituting ∂ψ/∂t in the l.h.s of the
Schrödinger equation we recover (2.4), after integrating by parts. For convenience,
on both sides we add the contribution of the classical force, F (q) = −∇qV (q),
which leads to a new function ω which differs from ω̃ in (2.4) by an additional term,
the last term in (2.16),

∂W

∂t
+

p

m
·∇qW + F (q) ·∇pW =

∞∫

−∞
ds W (p− s, q, t) ω (s, q, t) , (2.15)

ω (s, q, t) =
2

(π�2)Nd

∫
dq′V (q − q′, t) sin

(
2sq′

�

)
+ F (q) ·∇sδ (s) . (2.16)

In the classical limit (�→ 0), the r.h.s of (2.15) vanishes and we obtain the classical
Liouville equation

∂W

∂t
+

p

m
·∇qW + F (q) ·∇pW = 0 . (2.17)

The solution of (2.17) is known and can be expressed by the Green function [9]
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G(p, q, t; p0, q0, t0) = δ [p− p(t; t0, p0, q0)] δ [q − q(t; t0, p0, q0)] , (2.18)

where p(τ) and q(τ) are the phase space trajectories of all particles, which are the
solutions of Hamilton’s equations with the initial conditions at τ = t0 = 0,

dq̄
dτ

=
p̄(τ)
m

; q̄(0) = q0,

dp̄
dτ

= F (q̄(τ)); p̄(0) = p0. (2.19)

Using the Green function, the time-dependent solution of the classical Liouville
equation takes the form

W (p, q, t) =
∫

dp0 dq0 G(p, q, t; p0, q0, 0) W0(p0, q0) . (2.20)

With this result, it is now possible to construct a solution also for the quantum
case. To this end we note that it is straightforward to convert (2.15) into an integral
equation

W (p, q, t) =
∫

dp0 dq0 G(p, q, t; p0, q0, 0) W0(p0, q0)

+

t∫

0

dt1
∫

dp1 dq1 G(p, q, t; p1, q1, t1)

×
∞∫

−∞
ds1 ω(s1, q1, t1) W (p1 − s1, q1, t1) , (2.21)

which is exact and can be solved efficiently by iteration [10, 11]. The idea is to
replace the unknown function W under the integral in (2.21) by an approximation.
The first approximation is obtained by solving (2.21) to lowest order, i.e. by neglect-
ing the integral term completely. This gives the first order result for W which can
again be substituted for W in the integral in (2.21) and so on. This way we can sys-
tematically derive improved approximations for W . The procedure leads to a series
of terms of the following general form,

W (p, q, t) = W (0)(p, q, t) +W (1) (p, q, t) +

t∫

0

dt1
∫

d1 G(p, q, t; 1, t1)

×
t1∫

0

dt2
∫

d2 G(p1 − s1, q1, t1; 2, t2)

×
∞∫

−∞
ds2 ω(s2, q2, t2) W (p2 − s2, q2, t2) , (2.22)
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where we have introduced the notations n ≡ qn, pn, dn ≡ dqndpn and

W (0)(p, q, t) =
∫

d0 G(p, q, t; 0, 0)W0(0) ,

W (1) (p, q, t) =

t∫

0

dt1

∞∫

−∞
d1 G(p, q, t; 1, t1)

∞∫

−∞
ds1 ω(s1, q1, t1)

×
∫

d0 G(p1 − s1, q1, t1; 0, 0)W0(0) . (2.23)

The terms W (0) and W (1) are the first of an infinite series. To shorten the notation,
all higher order terms are again summed up giving rise to the last term in (2.22).
Below we will give also the third term,W (2), but first we discuss the physical inter-
pretation of each contribution.

W (0)(p, q, t), as it follows from the Green function G(p, q, t; p0, q0, 0), de-
scribes the propagation of the Wigner function along the classical characteristics,
i.e., the solutions of Hamilton’s equations (2.19) in the time interval [0, t]. It is worth
mentioning, that this first term describes both classical and quantum effects, due to
the fact that the initial Wigner function W0(p0, q0), in general, contains all powers
of Planck’s constant � contained in the initial state wave functions. These are quan-
tum diffraction and spin effects, depending on the quality of the initial function.

The second and third terms on the r.h.s. of (2.22) describe additional quan-
tum corrections to the time evolution of W (p, q, t) arising from non-classical time
propagation, in particular, the Heisenberg uncertainty principle. Let us consider
the term W (1)(p, q, t) in more detail. It was first proposed in [11]. Later on it
was demonstrated that the multiple integral (2.23) can be calculated stochasti-
cally by Monte Carlo techniques [12, 13, 14]. For this we need to generate an
ensemble of trajectories in phase space. To each trajectory we ascribe a specific
weight, which gives its contribution to (2.23). For example, let us consider a tra-
jectory which starts at point {p0, q0, τ = 0}. This trajectory acquires a weight
equal to the value W0(p0, q0). Up to the time τ = t1 the trajectory is defined
by the Green function G(p1 − s1, q1, t1; p0, q0, 0). At τ = t1, as it follows from
(2.23), the weight of this trajectory must be multiplied by the factor ω(s1, q1, t1),
and simultaneously a perturbation in momentum takes place: (p1 − s1) → p1.
As a result the trajectory becomes discontinuous in momentum space, but con-
tinuous in the coordinate space. Obviously this is a manifestation of the Heisen-
berg uncertainty of coordinates and momenta. Now the trajectory consists of two
parts – two classical trajectories which are the solutions of (2.19), which are sep-
arated, at τ = t1 by a momentum jump of magnitude s1. What about the value
s1 of the jump and the time moment t1? Both appear under integrals with a cer-
tain probability. To sample this probability adequately, a statistical ensemble of
trajectories should be generated, further the point in time t1 must be chosen ran-
domly in the interval [0, t], and the momentum jump s1 randomly in the interval
[−∞,+∞]. Finally, also different starting points {p0, q0} of trajectories at τ = 0
must be considered due to the integration

∫
dp0dq0. Considering a sufficiently large
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number of trajectories of such type we can accurately calculate W (1) (p, q, t) –
the first correction to the classical evolution of the quantum distribution function
W (0)(p, q, t).

Let us now take into account the third term in (2.22). We substitute, instead of
W (p2 − s2, q2, t2), its integral representation, using (2.21). As a result we get for
this term

W (2)(p, q, t) =

t∫

0

dt1
∫

d1G(p, q, t; 1, t1)

∞∫

−∞
ds1 ω(s1, q1, t1)

×
t1∫

0

dt2
∫

d2 G(p1 − s1, q1, t1; 2, t2)
∞∫

−∞
ds2 ω(s2, q2, t2)

×
∫

d0G(p2 − s2, q2, t2; 0, 0) W0(0) . (2.24)

If we apply the stochastic interpretation of the integrals, as we did above for
W (1) (p, q, t), this term can be analogously calculated using an ensemble of clas-
sical trajectories with two momentum jumps taking place at time moments τ = t1
and τ = t2, and with a weight function multiplied by the factors ω(s1, q1, t1) and
ω(s2, q2, t2), respectively.

Applying the above procedure several times, we can get the higher order correc-
tion terms. As a result, W (p, q, t) will be expressed as an iteration series, with each
term of the series representing a contribution of trajectories of a definite topological
type – with one, two, three, etc. momentum jumps. In Fig. 2.7 we show an example
of trajectories contributing to the terms W (0), W (1) and W (2).

t0 = 0

P

W
(p

0,
 q

0)

G(p2 – s2, q2, t2; p0, q0, 0) G(p1 – s1, q1, t1; p0, q0, 0) G(p, q, t; p0, q0, 0)

W
(p

, q
 ,t

)

t2 t1 t

t

W(2)

W(1)

S1

S1

S2

W(0)

(p2 – s2) p2 (p1 – s1) p1

Fig. 2.7. Illustration of the iteration series. Three types of trajectories are shown: Without
(top curve), with one (middle) and with two (lower) momentum jumps
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As was noted in Sect. 2.1 the Wigner function allows us to compute the quantum-
mechanical expectation value of an arbitrary one-particle operator Â. Using the idea
of iteration series (2.22), we obtain an iteration series also for the expectation value

〈Â〉(t) =
∫

dpdq A(p, q)W (p, q, t) = 〈Â〉(0)(t) + 〈Â〉(1)(t) + . . . , (2.25)

where different terms correspond to different terms in the series for W . The series
(2.25) maybe computed much more efficiently than the one for W since the result
does not depend on coordinates and momenta anymore.

Certainly, in the iteration series it is possible to take into account only a finite
number of terms and contributions of a limited number of trajectories. Interestingly,
it is not necessary to compute the individual terms iteratively. Instead, all relevant
terms can be calculated simultaneously using the basic concepts of MC methods
[26]. An important task of the MC procedure will be to generate stochastically the
trajectories which give the dominant contribution to the result, for details see [10].

2.4 Time Correlation Functions in the Canonical Ensemble

So far we have considered the dynamics of pure states where the density matrix
ρ, which is the matrix representation of the density operator ρ̂, is defined by a
single wave function ψ. However, at finite temperature ρ is, in general, defined
by an incoherent superposition of wave functions (mixed states). Here we con-
sider the canonical ensemble as the most common one. Time correlation func-
tions CFA(t) = 〈F (0)A(t)〉 are among the most important quantities in statistical
physics which describe transport properties, such as diffusion, dielectric properties,
chemical reaction rates, equilibrium or non-equilibrium optical properties. An ex-
ample has already been considered in Sect. 2.2 – the density-density auto-correlation
function (2.13). Here we use a more general expression for the quantum correlation
function of two quantitiesA and F given by the operators F̂ and Â. In the canonical
ensemble the averaging is performed by a trace with the canonical density opera-
tor ρ̂eq = Z−1 exp(−βĤ), with β = 1/kBT , and the correlation function has the
form [27]

CFA(t) =
1
Z

Tr
(
F̂ eiĤt∗β Â e−iĤtβ

)
, (2.26)

where Ĥ is the Hamiltonian (2.3), tβ is a complex time argument tβ = t − iβ/2
which absorbs ρ̂eq, Z = Trρ̂eq is the partition function, and we use � = 1.

The time correlation function can now be computed by first writing (2.26) in
coordinate representation and then transforming to the Wigner picture, using the
Weyl representation of F̂ and Â,
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CFA(t) =
1
Z

∫
dq1dq2dq3dq4

〈
q1|F̂ |q2

〉〈
q2|eiĤt∗β |q3

〉

×
〈
q3|Â|q4

〉〈
q4|e−iĤtβ |q1

〉

=
∫

dp1dq1dp2dq2 F (p1, q1) A(p2, q2) W (p1, q1; p2, q2; t;β) ,

(2.27)

whereW (p1, q1; p2, q2; t;β) is now a generalization of the Wigner function which is
defined as double Fourier transformation of the product of two non-diagonal matrix
elements of the density operator

W (p1, q1; p2, q2; t;β) =
1

Z(2π)2Nd

∫
dξ1dξ2 eip1ξ1 eip2ξ2

×
〈
q1 −

ξ1
2

∣∣∣eiĤt∗β
∣∣∣ q2 +

ξ2
2

〉〈
q2 −

ξ2
2

∣∣∣e−iĤtβ
∣∣∣ q1 +

ξ1
2

〉
. (2.28)

Calculating the partial time derivatives of the function W it can be shown that the
function W satisfies a system of two Wigner-Liouville equations [12, 13]

∂W

∂t
+

p1

m
·∇q1W + F (q1) ·∇p1W = I1 ,

∂W

∂t
+

p2

m
·∇q2W + F (q2) ·∇p2W = I2 , (2.29)

where on the r.h.s. we have two collision integrals

I1 =

∞∫

−∞
ds1 W (p1 − s1, q1; p2, q2; t;β) ω (s1, q1, t) ,

I2 =

∞∫

−∞
ds2 W (p1, q1; p2 − s2, q2; t;β) ω (s2, q2, t) , (2.30)

and the function ω (s, q, t) is defined in the same way as in the microcanonical
ensemble, see (2.16).

2.4.1 Initial Conditions for the Wigner-Liouville Equation

Using (2.28) at t = 0, we find that the initial value of the Wigner function is given
by the integral

W0(1; 2; 0;β) =
1

Z(2π)2Nd

∫
dξ1dξ2 eip1ξ1 eip2ξ2

×
〈
q1 −

ξ1
2

∣∣∣e−βĤ/2
∣∣∣ q2 +

ξ2
2

〉〈
q2 −

ξ2
2

∣∣∣e−βĤ/2
∣∣∣ q1 +

ξ1
2

〉
(2.31)

with 1 = q1, p1 and 2 = q2, p2.
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Let us now exploit the group property of the density operator ρ̂ and the high
temperature approximation for the matrix elements of 〈q′|ρ̂|q〉 (see Chap. 13)

e−βĤ =
[
e−β/MĤ

]M

〈
q′
∣∣∣e−β/(2M)Ĥ

∣∣∣ q′′
〉
≈

〈
q′
∣∣∣e−β/(2M)K̂

∣∣∣ q′′
〉〈

q′
∣∣∣e−β/(2M)Û

∣∣∣ q′′
〉
. (2.32)

Then we obtain

W0(1; 2; 0;β) ≈ 1
Z(2π�)2Nd

∫
dq′1 . . . dq

′
M dq′′1 . . . dq

′′
Me−

∑M
m=2Km−∑M

m=1 Um

×
∫

dξ1eip1ξ1/�

〈
q′M

∣∣∣e−βK̂/(2M)
∣∣∣ q1 +

ξ1
2

〉〈
q1 −

ξ1
2

∣∣∣e−βK̂/(2M)
∣∣∣ q′′1

〉

×
∫

dξ2eip2ξ2/�

〈
q′′M

∣∣∣e−βK̂/(2M)
∣∣∣ q2 +

ξ2
2

〉〈
q2 −

ξ2
2

∣∣∣e−βK̂/(2M)
∣∣∣ q′1

〉
,

(2.33)

where Km = (π/λ2
M )

[
(q′m − q′m−1)

2 + (q′′m − q′′m−1)
2
]

and Um = (β/(2M))
[U(q′m) + U(q′′m)]. Here we have assumed that M � 1, and λ2

M = 2π�
2β/(mM)

denotes the thermal de Broglie wave length corresponding to the inverse temperature
β/(2M). A direct calculation of the last two factors in (2.33) gives

∫
dξ1eip1ξ1/�

〈
q′M

∣∣∣e−βK̂/(2M)
∣∣∣ q1 +

ξ1
2

〉〈
q1 −

ξ1
2

∣∣∣e−βK̂/(2M)
∣∣∣ q′′1

〉

=
〈
q′M

∣∣∣e−βK̂/(2M)
∣∣∣ q

〉
φ(p; q′M , q1)

〈
q
∣∣∣e−βK̂/(2M)

∣∣∣ q1
〉
, (2.34)

where

φ (p; q′M , q1) = (2λ2
M )Nd/2e−(pλM/�+iπ(q′−q′′)/λM )2/(2π) (2.35)

The final result for the Wigner function at t = 0 can be written as

W (1; 2; 0;β) ≈
∫

dq′1 . . . dq
′
M dq′′1 . . . dq

′′
M Ψ(1; 2; q′1 . . . q

′
M ; q′′1 . . . q

′′
M ; 0;β)

×φ(p2; q′M , q
′′
1 ) φ(p1; q′′M , q

′
1) , (2.36)

where

Ψ(p1, q1; p2, q2; q′1 . . . q
′
M ; q′′1 . . . q

′′
M ;β) =

1
Z

e−
∑M+1

m=1 Km−∑M
m=1 Um . (2.37)

Here we have introduced the notation {q′0 ≡ q1; q′′0≡q2} and {q′M+1 ≡ q2; q′′M+1 ≡
q1}. Fig. 2.8 illustrates the simulation idea. Two closed loops with the set of points
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q2

q1''

qM'' q1

qM'

q1'

e

e

t–

t+ t+

t–

Fig. 2.8. Two closed loops illustrating the path integral representation of two electrons in the
density matrices in (2.33). Two special points, (p1, q1) and (p2, q2), are starting points for
two dynamical trajectories propagating forward and backward in time

show the path integral representation of the density matrices in (2.33). The left
chain of points, i.e. {q1, q′1, . . . , q′M , q2, q′′1 , . . . , q′′M} characterizes the path of a sin-
gle quantum particle. The chain has two special points (p1, q1) and (p2, q2). As it
follows from (2.28) and (2.29) these points are the original points for the Wigner
function, the additional arguments arise from the path integral representation. As
we show in the next section, we can consider these points as starting points for two
dynamical trajectories propagating forward and backward in time, i.e. t → t+ and
t→ t−. The Hamilton equations for the trajectories are defined in the next section.

2.4.2 Integral Equations

The solution follows the scheme explained before. The only difference is that we
now have to propagate two trajectories instead of one,

dq̄1
dτ

=
p̄1(τ)
2m

, q̄1(0) = q01 ,

dp̄1

dτ
=

1
2
F [q̄1(τ)] , p̄1(0) = p0

1 ,

dq̄2
dτ

= − p̄2(τ)
2m

, q̄2(0) = q02 ,

dp̄2

dτ
= −1

2
F [q̄2(τ)], p̄2(0) = p0

2 . (2.38)

The first (second) trajectory propagates forward (backward). Let us substitute ex-
pressions for F [q̄1(τ)], p̄1(τ),F [q̄2(τ)] and p̄2(τ) from (2.38) into (2.29) and sub-
tract the second equation from the first. As a result, on the l.h.s. we obtain a full
differential of the Wigner function. After multiplication by the factor 1/2 and inte-
gration over time, the integral equation for the Wigner function takes the form
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W (p1, q1; p2, q2; t;β) =
∫

dp0
1dq

0
1dp0

2dq
0
2

×G(p1, q1, p2, q2, t; p0
1, q

0
1 , p

0
2, q

0
2 , 0)W (p0

1, q
0
1 ; p

0
2, q

0
2 ; 0;β)

+

t∫

0

dτ
∫

dp1
1dq

1
1 dp1

2dq
1
2 G(p1, q1, p2, q2, t; p1

1, q
1
1 , p

1
2, q

1
2 , τ)

×
∞∫

−∞
ds dη ϑ(s, q11 ; η, q

1
2 ; τ) W (p1

1 − s, q11 ; p1
2 − η, q12 ; τ ;β) , (2.39)

where ϑ(s, q11 ; η, q12 ; τ) = [ω(s, q11)δ(η) − ω(η, q12)δ(s)]/2. The dynamical Green
functionG is defined as G(p1, q1, p2, q2, t; p0

1, q
0
1 , p

0
2, q

0
2 , 0)=δ[p1− p̄1(τ ; p0

1, q
0
1 , 0)]

δ[q1 − q̄1(τ ; p0
1, q

0
1 , 0)]δ[p2 − p̄2(τ ; p0

2, q
0
2 , 0)]δ[q2 − q̄2(τ ; p0

2, q
0
2 , 0)]. Let us de-

note the first term on the r.h.s. of (2.39) as W (0)(p1, q1; p2, q2; t;β). This term
represents the Wigner function of the initial state propagating along classical tra-
jectories (characteristics – solutions of (2.38)). Using the approach applied for
the microcanonical ensemble, we obtain expressions for W (1)(p1, q1; p2, q2; t;β),
W (2)(p1, q1; p2, q2; t;β), . . . and represent W (p1, q1; p2, q2; t;β) as iteration se-
ries. In this case, we can calculate this also with an ensemble of trajectories using
the quantum dynamics MC approach described in [28]. As a result the expression
for the time correlation function (2.27) can be rewritten as

CFA(t) =
∫

dp1dq1 dp2dq2F (p1, q1)A(p2, q2)W (p1, q1; p2, q2; t;β)

=
(
φ(P )|W (0)(P ;β)

)
+

∞∑

i=1

(
φ(P )|W (i)(P ;β)

)
, (2.40)

where
(
φ(P )|W (i)(P ;β)

)
denotes the integral in the phase space {p1, q1, p2, q2}

(now we consider a 2N -particle system), and φ(P ) = F (p1, q1)A(p2, q2).
An illustrative example for the calculations of the time correlation functions

CFA is the momentum-momentum autocorrelation function CPP (t) for a 1D sys-
tem of interacting electrons in an array of fixed random scatterers at finite tempera-
ture [28]. This system is of high interest because at zero temperature it shows An-
derson localization if e-e interaction is neglected. It is a long standing question what
the effect of e-e interaction on localization will be. The present method is, in princi-
ple, well suited to answer this question. In [28] the first applications of the method
to an 1D system at finite temperature have been presented showing that Coulomb
e-e interaction has the trend to enhance the mobility of localized electrons [10, 28].

2.5 Discussion

We have presented a general idea how to extend the powerful method of molecular
dynamics to quantum systems. First, we discussed semi-classical MD, i.e., classical
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MD with accurate quantum pair potentials. This method is very efficient and allows
to compute thermodynamic properties of partially ionized plasmas for temperatures
above the molecule binding energy (i.e. as long as three and four particle correla-
tions can be neglected). Further, frequency dependent quantities, e.g., the plasmon
spectrum, are computed correctly for ω < ωpl. Further progress is possible if more
general quantum potentials are derived.

In the second part, we considered methods for a rigorous solution of the quantum
Wigner-Liouville equation for theN -particle Wigner function. Results were derived
for both, a pure quantum state and a mixed state (canonical ensemble). Although this
method is by now well formulated, it is still very costly in terms of CPU time, so
that practical applications are only starting to emerge. Yet, we expect that, due to its
first principle character, Wigner function QMD will become increasingly important
for a large variety of complex many-body problems.

This work is supported by the Deutsche Forschungsgmeinschaft through SFB
TR 24 and in part by Award No. Y2-P-11-02 of the U.S. Civilian Research and
Development Foundation for the Independent States of the Former Soviet Union
(CRDF) and of Ministry of Education and Science of Russian Federation, and
RF President Grant NS-3683.2006.2 for governmental support of leading scientific
schools.
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