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Elementary Penetration Theory

2.1 Introductory Comments

This chapter is intended to provide a qualitative understanding of the stop-
ping and scattering of charged particles in matter and to acquaint the reader
with some of the problems to be solved and suitable tools for their solution.
Most of the actual estimates given for specific quantities will be improved
or generalized in later chapters. This should not keep the novice from going
rather carefully through the material.

The ideas described here have been developed early in the past century
to describe the penetration of alpha and beta particles through matter. They
have since then been applied to a much wider variety of particles at higher and
lower energies than those accessible with the products of natural radioactive
decay.

In order to appreciate the validity of the approach taken, have a look at
a classical cloud-chamber photograph of the trajectories of alpha particles in
air, Fig. 1.1 on page 4. The trajectories are essentially straight lines of almost
equal length, of the order of a few centimeters in a gas at atmospheric pressure.
Once in a while a trajectory is observed to be bent. Although the process of
stopping and scattering is the result of the interaction of the alpha particle
with a great number of atoms and therefore must be a statistical process,
statistical fluctuations seem to be small and angular deflections rare in the
case depicted in Fig. 1.1.

In this chapter, unless otherwise stated, general theoretical considerations
are illustrated on an alpha particle moving through a layer of gas that is much
thinner than the total length of the trajectory, essentially along a straight line
and with very small variation in velocity. Basic concepts introduced include
cross section, stopping force and straggling, range, single and multiple scat-
tering, and others. Estimates of these quantities will be based on classical
mechanics, much in the way performed in early studies in this field (Ruther-
ford, 1911, Thomson, 1912, Darwin, 1912, Bohr, 1913, 1915).
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28 2 Elementary Penetration Theory

2.2 Collision Statistics

2.2.1 Definition of Cross Section

The concept of a cross section is of paramount importance in all penetration
theory. It is appropriate, therefore, to spend some time on ways of defining
and determining this parameter.

Macroscopically the cross section of a target is the area within which it
can be hit by some bullet. For example, a spherical target with a radius a
offers a cross section πa2 to a point projectile.

Microscopically we have to come to an agreement on what to mean by say-
ing that a target has been hit by a projectile. In view of the great variety of
possible projectiles and targets it is desirable to find a broad definition. Let us
say that a target has been hit if the interaction of the projectile with the tar-
get has had some specific measurable effect. This means that the magnitude
of a given cross section does not only depend on the target, the projectile, and
their relative velocity, but also on the physical effect that we decided to mon-
itor. Consequently we talk about scattering cross sections, absorption cross
sections, energy-loss cross sections, ionization cross sections, cross sections for
specific nuclear reactions, and many others.

Most often in penetration phenomena, the target is an atom or a molecule.
In the present chapter we shall also refer to nuclei and/or electrons when
talking about targets.

Fig. 2.1. Statistical definition of a cross section: One microscopic target bombarded
by a beam

For fundamental and practical reasons there is no way of experimentally
determining microscopic cross sections by bombarding one atom with one
projectile only. Instead we utilize the statistical information extracted from
a large number of bombardments. In that context, we talk about the stopping
medium and the beam. A stopping medium consists of a macroscopic number
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of target particles in some arbitrary configuration, such as a random assem-
bly of molecules in an ideal gas or a regular structure of atoms in a crystal.
A beam consists of a large number of projectiles. Ideally, all projectiles have
the same initial state and velocity, but this is not a necessary requirement. We
may also talk about a beam when dealing with alpha or beta particles emitted
isotropically from a radioactive source. More important is the initial require-
ment that individual projectiles only interact with the stopping medium and
not with each other ; this can be achieved by letting individual bombardments
be well separated in time. In other words, we consider penetration phenomena
in the limit of low beam current here.

Let some microscopic target be bombarded by a beam of projectiles spread
homogeneously over an area S (Fig. 2.1). If σA is the cross section for some
process A – such as ionization of the projectile particle – then, σA/S is the
fraction of all projectiles that undergo the process A by interacting with the
target particle, provided that the number of projectiles is large enough to
make statistical fluctuations vanishingly small.

If the beam has a current density J [projectiles/time/area], then

JS × σA

S
= JσA (2.1)

is the number of events A induced by the beam per unit time.

Fig. 2.2. Macroscopic target consisting of randomly placed microscopic targets at
number density N , bombarded by a beam
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Consider next a stopping medium with a number density N [targets per
volume] within a volume V = Sx (Fig. 2.2). According to (2.1) the number of
events A induced per unit time by the beam is given by

N × Sx× JσA = JS ×NxσA. (2.2)

Here, JS is the number of projectiles per unit time; hence, NxσA is the mean
number of events per projectile. If the target is thin enough so that NxσA � 1,
that number becomes identical with the probability PA for a projectile to
undergo an event A while interacting with the stopping medium, i.e.,

PA = NxσA for NxσA � 1. (2.3)

Thus, cross sections are measured most conveniently with gas targets or thin
foils where either N or x is small, respectively.

Eqs. (2.1–2.3) are roughly equivalent, and each of them serves an important
purpose. Eq. (2.1) is the most basic one, dealing with one target particle only;
it will be employed in theoretical determinations of cross sections from the
equations of motion. Eq. (2.2) is most closely related to measurable quantities
and is therefore utilized when cross sections are determined experimentally.
Eq. (2.3) applies to probability statements about what happens to a projectile
during passage through some small path element x; it serves as the starting
point of penetration theory.

We shall encounter situations where (2.2) and (2.3) are not valid: It has
been assumed in the step from from (2.1) to (2.2) that a scattering event is
not influenced by the presence of other target particles. That assumption need
not be fulfilled.

There is one major difference between the conventional macroscopic con-
cept of a cross section and the present, statistical one. When you fire a bullet
at some macroscopic target you will usually hit it if you have aimed at the
right area and you won’t if you have not. This is not so in the microscopic
world governed by quantum effects. When defining a microscopic cross section
as above you may be dealing with a product of some geometric cross section
σg and a probability pA,

σA = σg × pA. (2.4)

The problem with (2.4) is that it may be hard to obtain independent infor-
mation on σg and pA. All you obtain from (2.2) is the product of the two
quantities, and σg may not even be defined. If you have an idea about the
magnitude of σg, you may, however, determine pA from (2.4), and that way
you get some understanding of whether or not σA corresponds to a well-defined
area within which the projectile has to aim in order to initiate an event A
with a reasonable degree of certainty.

There is a wide range of penetration phenomena where we do not need
independent information on either σg or pA. In cases where such information
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is important, a more precise separation of the geometric factor than in (2.4)
needs to be made. This point will come up in particular in Chapter 8.

2.2.2 Multiple Collisions; Poisson’s Formula

In the preceding paragraph the probability for a collision event during a pas-
sage was assumed to be small. In penetration phenomena we deal most often
with projectiles undergoing many collisions in an individual passage. There-
fore we need some statistical information on the number of events in case PA

as given by (2.3) is not small.
Let us illustrate the situation geometrically (Fig. 2.2) by associating a

‘black area’ σA to each target particle. The number of events A is equal to
the number of times a projectile hits such a black area. Then, (2.3) can be
written in the form

PA =
NSx× σA

S
=

total black area
total area

(2.5)

provided that PA � 1 and that the target particles do not shadow each other
systematically as, e.g., in a crystal. If the number of target particles NSx
increases, e.g., due to increasing thickness x at constant number density N , the
total black area will increase to the point where individual black areas overlap
appreciably; ultimately, for NxσA � 1, the entire area appears black. This
implies that the probability for a projectile to undergo at least one event A is
essentially equal to 1, but the actual number of events may be substantially
larger.

Let us ask for the probability Pn for the projectile to initiate precisely n
events A during its passage through the medium. In our geometrical picture
this is the same as asking for the probability for n individual black areas to
overlap with the trajectory of a given beam particle. Alternatively, we may
associate a cylindrical volume

v = xσA (2.6)

with each trajectory and try to find the probability for n target particles to
be located within one such volume. The latter question is a standard problem
in kinetic gas theory: Given an ideal gas of average density N , what is the
probability to find precisely n gas molecules within some specified volume v
at any instant of time? The answer is given by the Poisson distribution,

Pn =
(Nv)n

n!
e−Nv. n = 0, 1, 2 . . . (2.7)

If you are unfamiliar with Poisson’s formula you may wish to consult Appendix
A.2.1 for an elementary derivation. The main assumptions entering into (2.7)
are the following:
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– the positions of any two or more gas molecules are uncorrelated, and
– the sample volume v must be small compared with the total volume filled

with gas.

The latter assumption allows to consider the number of available atoms as
practically unlimited; then one easily verifies the relationships:

∞∑

n=0

Pn = 1 (2.8)

and
∞∑

n=0

nPn = 〈n〉 = Nv, (2.9)

the brackets indicating an average. For the variance one finds1

(n− 〈n〉)2 = 〈n〉. (2.10)

Eq. (2.10) is a central property of the Poisson distribution. It implies that the
relative fluctuation

(n− 〈n〉)2
〈n〉2 =

1
〈n〉 (2.11)

goes to zero in the limit of large 〈n〉.
Let us now go back to the statistics of collision events. In order that

(2.7) be applicable we must require that the positions of target particles be
uncorrelated, i.e., that target particles act as if they were the constituents of
an ideal gas. This may be an essential restriction; we shall come back to this
point in Chapter 8. The requirement that v be small compared with the size
of the container implies that σA � S, cf. (2.6); this is generously satisfied in
case of a macroscopic area S.

By combining (2.6) with (2.9) we find the average number of events A to
be given by

〈n〉 = NxσA (2.12)

and, from (2.10), the fluctuation

(n− 〈n〉)2 = 〈n〉 = NxσA. (2.13)

Eq. (2.12) generalizes (2.2) to the case where 〈n〉 is not small. As an additional
benefit we also have found an expression for the fluctuation in the number of
events, (2.13).

1 Notations < · · · > or · · · are utilized synonymously to indicate averages, depen-
dent on readability.
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The probability P0 for no event at all follows from (2.7) and (2.12) for
n = 0,

P0 = e−NxσA . (2.14)

This is called Lambert & Beer’s law and governs absorption phenomena.
In case of NxσA � 1 we find that

Pn 	
⎧
⎨

⎩

1 −NxσA for n = 0
NxσA for n = 1
0 for n ≥ 2

(2.15)

up to first order in NxσA. Thus (2.7) goes over into (2.3) in the limit where
the probability for double events is vanishingly small, cf. (A.19) and (A.20)
in Appendix A.2.1.

The Poisson distribution is discussed in mathematical terms in standard
texts on probability theory (Feller, 1968). Its significance to kinetic gas theory
was pointed out by v. Smoluchowski (1904), and the connection to penetration
theory was drawn by Bohr (1915).

2.2.3 Energy Loss

Consider now specifically the process of energy loss by a charged particle
moving through a stopping medium; in order to be sure that the collision
events be distributed according to Poisson’s formula, assume the medium to
be a gas for the time being.

On account of the conclusions drawn from Fig. 1.1, ignore initially all
angular scattering of the projectile. In colliding with the atoms or molecules
of the gas a projectile may transfer part of its kinetic energy to those atoms
and thus suffer a decrease in velocity. The observation of nearly equal track
lengths (Fig. 1.1) indicates that the typical energy lost in a single encounter
is small compared with the projectile energy.

Assume that the projectile can lose energy in discrete bits of Tj, with
j = 1, 2 . . ., and that Tj � E for all j, where E is the projectile energy. Tj

might represent the excitation levels above the ground state of a target atom
or molecule.

While penetrating a layer of thickness Δx which is assumed small com-
pared with the total penetration depth, a projectile loses an amount of energy
ΔE given by

ΔE =
∑

j

njTj , (2.16)

where nj is the number of collisions of type j, each leading to an energy
transfer Tj.

In order to find the average energy loss 〈ΔE〉 and its fluctuation for a great
number of projectiles, let us employ the statistical arguments outlined in the
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previous section with the one addition that we now deal with a spectrum of
energy transfers Tj rather than one single possible event A.

For the average energy loss 〈ΔE〉 we find from (2.16) that

〈ΔE〉 =
∑

j

〈nj〉Tj . (2.17)

Introducing the energy-loss cross section σj for a quantum Tj according to
(2.1) we find from (2.12)

〈nj〉 = NΔxσj (2.18)

and hence,

〈ΔE〉 = NΔx
∑

j

Tjσj . (2.19)

Here,

S =
∑

j

Tjσj (2.20)

is the stopping cross section, and the ratio

〈ΔE〉
Δx

= NS = N
∑

j

Tjσj (2.21)

is called the stopping force or stopping power2. While the stopping force is
a property of the stopping medium, the stopping cross section is a microscopic
quantity. In the literature one frequently finds the symbol S used for the
stopping force rather than the stopping cross section. This should cause little
confusion since the former has the dimension of [energy/length] while the
latter is an [energy×area].

As defined by (2.21) the stopping force is a positive quantity. This is not
a universal convention in the literature but reasonable to the extent that
energy loss rather than gain is in focus. However, the function dE/dx to be
introduced below in (2.34) must be taken negative whenever the projectile
energy decreases with time or pathlength.

2.2.4 Energy-Loss Straggling

Consider now the mean-square fluctuation Ω2 in energy loss ΔE. According
to (2.16) and (2.17) we have
2 Evidently, the term ‘stopping force’ is in agreement with common nomenclature,

while ‘stopping power’ would be the correct term for the energy loss per unit
time. Nevertheless, the latter term has been in use for almost a century and is
only slowly disappearing from the literature. Cf. Sigmund (2000).
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ΔE − 〈ΔE〉 =
∑

j

(nj − 〈nj〉)Tj (2.22)

and therefore

Ω2 = (ΔE − 〈ΔE〉)2 =
∑

j,l

(nj − 〈nj〉)(nl − 〈nl〉)TjTl; (2.23)

Now take the terms j = l and j �= l separately. For j = l,

(nj − 〈nj〉)2 = 〈nj〉 = NΔxσj (2.24)

when the Poisson relation (2.13) applies and (2.18) is inserted. For j �= l, split
the average of the product into the product of averages

(nj − 〈nj〉)(nl − 〈nl〉) = nj − 〈nj〉 × nl − 〈nl〉 (2.25)

because of the statistical independence of different types of collision events;
since nj − 〈nj〉 = 0, drop all terms with j �= l in (2.23) and find

Ω2 =
∑

j

〈nj〉T 2
j = NΔx

∑

j

T 2
j σj . (2.26)

In analogy with the stopping cross section, introduce the straggling parameter

W =
∑

j

T 2
j σj , (2.27)

which has the dimension of [energy2×area]. Just as the stopping cross section
it is a microscopic property.

A word of caution is indicated with respect to the validity of the relations
(2.19) and (2.26). Although these expressions are formally similar, (2.19) is
much more general than (2.26). Little can go wrong with the derivation of
(2.19); we shall see later that the stopping force is to some extent independent
of the structure of the stopping medium. Conversely, not only was explicit
use made of the Poisson relationship (2.13) in the derivation of (2.26), but
also were collisions leading to different energy transfers Tj and Tl assumed
statistically independent. The latter assumption is readily justified in a dilute
stopping medium provided that the ion has no memory, i.e., does not undergo
changes in state that may influence the stopping cross section. On the other
hand, if the medium were closely packed like a solid or a liquid, there would
be a more or less pronounced anticorrelation between collisions leading to
different energy transfers; such effects will be analyzed in Chapter 8 and it
will be found that straggling is sensitive to the structure of the stopping
medium.



un
co
rre

cte
d
pr
oo
f
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2.2.5 Differential Cross Section

Let us finally go over to the case of a continuous spectrum of energy loss in
individual encounters; such a spectrum applies, e.g., to ionizing collisions with
an atom, collisions with a molecule leading to dissociation, etc. You may then
apply the present description in a heuristic sense, i.e., make the replacement

σj → dσ
dT

ΔTj (2.28)

and let the interval size ΔTj be sufficiently small to replace the sums in (2.20)
and (2.27) by integrals. In short-hand notation this yields

S =
∫

Tdσ, (2.29)

W =
∫

T 2dσ, (2.30)

where

dσ =
dσ(T )

dT
dT (2.31)

is called the differential energy-loss cross section and the integrations extend
over the spectrum of possible energy transfers. According to (2.3) the quantity

dP = Nxdσ (2.32)

is the probability for a projectile to undergo a collision with energy loss3

(T, dT ) when interacting with the stopping medium under single-collision con-
ditions, i.e., sufficiently small N and/or x.

2.2.6 Range

Up till now the layer thickness was assumed small compared with the pene-
tration depth of the projectile. This made it possible to assume the projectile
energy E to be essentially constant. In general the differential cross section
and hence the microscopic parameters S and W will depend on energy. This
energy dependence is essential for the understanding of the stopping of a pro-
jectile down to zero energy.

Consider first the case where the fluctuation in energy loss is negligibly
small, as appears to be the case in Fig. 1.1. This implies that the projectile
energy is a well-defined function of the penetration depth x,

3 The symbol (T, dT ) indicates the interval limited by T and T + dT . Similarly,
(Ω, d2Ω) indicates a solid angle d2Ω around the unit vector Ω, and (r, d3r) in-
dicates a volume element d3r = dxdydz located at a vector distance r from the
origin.
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E = E(x) (2.33)

which obeys the differential equation

dE
dx

= −NS(E) (2.34)

that follows from (2.21). The minus sign accounts for the decrease in projectile
energy. Equation (2.34) has the solution

x =
∫ E0

E(x)

dE′

NS(E′)
(2.35)

in implicit form, where E0 = E(0) is the initial energy. In particular, the total
path length or range R is found by setting E(x) = 0, i.e.,

R =
∫ E0

0

dE′

NS(E′)
. (2.36)

This estimate of the range, based on the continuous-slowing-down-approxima-
tion (csda) (2.34), is valid only in the case of negligible straggling; (2.36) is not
strictly identical with the average range when statistical fluctuations become
significant.

An estimate of the fluctuation Ω2
R in range – valid for small Ω2

R – can
be found as follows. When slowing down from E to some energy E − ΔE,
the projectile travels a path length Δx 	 ΔE/NS(E) on the average; the
corresponding fluctuation is of the order of Ω2

x 	 Ω2/(dE/dx)2; this follows
most easily by dimensional arguments. Insertion of Ω2 from (2.26) and (2.27)
as well as (2.34) and Ωx yields

Ω2
x 	 NW (E)ΔE

[
NS(E)

]3 (2.37)

for the fluctuation in projectile path length during slowing down from E to E−
ΔE. Consequently, the fluctuation in total range Ω2

R is found by integration
down to zero energy,

Ω2
R 	
∫ E0

0

dE′ NW (E′)
[
NS(E′)

]3 . (2.38)

If a precise meaning is to be assigned to (2.38) some detailed information on
the shape of the statistical distributions of energy loss and range is needed.
This point will be considered in Chapter 8 and Volume II.

There is little in the substance of the present section that cannot be
found in the review by Bohr (1948). Historically, the most important step
was the experience that alpha and beta rays, unlike gamma rays, lose energy
gradually rather than getting absorbed. That observation appears to date
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back to Sklodowska-Curie (1900), while the notion of stopping power may be
found with Bragg and Kleeman (1905). At the same time and independently,
Leithäuser (1904) demonstrated that cathode rays lose energy in penetrating
thin metal foils. The first attempt to relate the stopping force to an atomic
stopping cross section dates back to Thomson (1912). Extensive range calcu-
lations were made by Darwin (1912). The treatment of fluctuations in energy
loss and range dates back to Bohr (1915).

2.3 Electronic and Nuclear Stopping

2.3.1 General Considerations

The present section serves as a first qualitative orientation on the dominating
mechanisms of energy loss. This problem will have to be treated again and
again as we dig deeper into the field.

Let us keep to the case of a charged particle penetrating through a gaseous
stopping medium. At moderate velocities a projectile may experience a change
in speed in a collision with an individual gas atom or molecule by means of
the following processes:

– excitation or ionization of target particles,
– transfer of energy to center-of-mass motion of target atoms,
– changes in the internal state of the projectile, and
– emission of radiation.

In a rough manner the first process may be characterized as a loss of
projectile energy into kinetic and potential energy of target electrons while
the second process deals essentially with energy transfer to target nuclei; note
that the mass, and therefore the kinetic energy of target atoms or molecules,
is essentially contained in the nuclei. Therefore the first process is usually
called ‘electronic energy loss’ and the second ‘nuclear energy loss’. One may
also refer to electronic energy loss as the transfer of internal energy to the
target particle as opposed to nuclear energy loss as the transfer of center-
of-mass energy. Therefore one may find the notions of inelastic and elastic
energy loss, although the reader may be inclined to assign a different meaning
to those concepts, depending on background. Those familiar with neutron or
photon scattering may call a scattering event elastic if the incident particle
does not suffer energy loss; the present notion of elastic collisions implies
only that energy is not transferred into internal degrees of freedom of the
target or projectile. Moreover, one may be inclined to call a collision event
inelastic whenever it is not elastic, and consequently split the collision cross
section into an elastic and an inelastic contribution. That is certainly a most
reasonable concept. Nevertheless, in the stopping literature, many authors
tend to split the energy loss in an individual event into an elastic and an
inelastic contribution, thereby calling the nuclear energy loss elastic and the
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electronic one inelastic, but it may take some time to realize that this is what
those authors do. In order to minimize confusion I shall avoid the notion of
an inelastic collision as much as possible and most often talk about nuclear
and electronic energy loss or stopping.

Coming back to the above classification of energy-loss processes, ignore
changes in the projectile state for the time being. The estimates put forward
presently refer to a penetrating point charge. Emission of radiation, espe-
cially bremsstrahlung, is a rather different process which becomes important
at projectile speeds approaching the velocity of light.

In principle, various processes at the nuclear or subnuclear level would
have to be incorporated into the above classification scheme. Whether or
not this is important does not only depend on the velocity range and the
projectile-target combination in question but also on the reader’s motivation
to study penetration phenomena: If the interest is in nuclear or high-energy
physics, this book may be consulted for information on atomic phenomena
that influence penetration properties important in the analysis of nuclear or
high-energy processes. If, on the other hand, the interest is in atomic, solid-
state, or biological phenomena, nuclear processes may have to be included as
an energy sink (or source) if important, along with all other pertinent effects.
Initially we shall concentrate on electronic and nuclear energy loss.

In case of doubt, you may do well by defining energy loss of a charged
particle as the loss in kinetic energy of its center-of-mass in the laboratory
frame of reference. For an ion carrying electrons, you may, alternatively, op-
erate with the loss of kinetic energy of the nucleus. The difference between
the two definitions is less than 0.1 %, i.e., below the accuracy of available
experimental techniques.

Fig. 2.3. A ‘soft’ scattering event with momentum transfer P⊥ perpendicular to
the beam direction

2.3.2 Momentum and Energy Transfer in Free-Coulomb Collision

For a first qualitative orientation, oversimplify a gaseous stopping medium and
treat it as an ideal-gas mixture of free nuclei and electrons. The elementary
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collision event is, then, the interaction of the projectile, i.e., a point charge e1

with mass m1 moving with velocity v, with a target particle of mass m2 and
charge e2; the target particle can be either a nucleus or an electron. m2 will
turn into a capital M2 for a nucleon and into m for an electron.

In accordance with Fig. 1.1 on page 4, ignore events leading to a substantial
change in projectile velocity; the projectile will be considered to cause an
external force that imparts momentum to a target particle that is initially at
rest. The collision event is sketched in Fig. 2.3. If the target particle receives
only a small momentum it can be considered stationary for the duration of
the collision and the momentum transfer is given by

ΔP =
∫ ∞

−∞
dtF(t), (2.39)

where F(t) is the Coulomb force4

F (t) =
e1e2

p2 + (vt)2
(2.40)

between the two point charges as a function of time t. Splitting the force into
components parallel and normal to the projectile velocity v (Figure 2.4) we
find

ΔP‖ = e1e2

∫ ∞

−∞
dt

vt

(p2 + v2t2)3/2
= 0 (2.41)

and

ΔP⊥ = e1e2

∫ ∞

−∞
dt

p

(p2 + v2t2)3/2
=

2|e1e2|
pv

, (2.42)

where p, the impact parameter, is the distance between the straight-line trajec-
tory and the initial position of the target. It has been assumed for convenience
that this distance is reached at time t = 0.

Equations (2.41) and (2.42) constitute a special case of the momentum
approximation in classical scattering theory. It can be understood as the first
term in a perturbation expansion in powers of the interaction between two par-
ticles5. Because of the symmetry of the Coulomb interaction the longitudinal
momentum transfer ΔP‖ vanishes to first order, cf. (2.41). Hence momentum
is only transferred normal to the projectile velocity in that approximation.

We may find an estimate for the effective collision time τ from the expres-
sion

ΔP⊥ 	 Fmax τ (2.43)

4 From now on electromagnetic quantities will be taken in Gaussian units. Pertinent
relationships have been collected in Appendix A.1.1.

5 This expansion will be discussed in more detail in Appendix A.3.1.
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Fig. 2.4. Time dependence of the force parallel and perpendicular to the beam
direction according to (2.41) and (2.42)

where Fmax is the force at closest approach (t = 0) and directed normal to
the initial velocity. With Fmax = |e1e2|/p2 and by comparison to (2.42) one
finds

τ 	 2p
v
, (2.44)

i.e., the two particles interact effectively over a length 	 2p of the incoming
trajectory. This has been indicated by the stipled lines in Fig. 2.3. Note that
the Coulomb force has half its maximum value at a distance p

√
2.

Fig. 2.5. Differential cross section and
impact parameter
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From (2.42) follows

T =
ΔP 2

⊥
2m2

	 2e2
1e

2
2

m2v2p2
(2.45)

for the energy T lost to particle 2 as a function of impact parameter p. In
order that such a collision lead to an energy transfer in an interval (T, dT ),
the projectile must aim at a cross-sectional area

dσ = 2πpdp = |d(πp2)
dT

|dT (2.46)

around the target (Fig. 2.5). By differentiation of (2.45) one finds

dσ 	 2π
e2
1e

2
2

m2v2

dT
T 2

. (2.47)

Eq. (2.47) is more accurate than (2.45) from which it was derived. In fact it is
an exact version of Rutherford’s cross section for Coulomb scattering except
for the fact that no upper limit for T is specified by (2.45). A more rigorous
derivation of Rutherford’s law for classical nonrelativistic scattering will be
given in Chapter 3; at present, remember that for a head-on collision (p = 0)
between a projectile of initial velocity v and a target of initial velocity zero,
the conservation laws of energy and momentum, applied to one-dimensional
motion, require the final velocity of the target to be

vmax =
2m1

m1 + m2
v. (2.48)

This yields a maximum energy transfer

Tmax = m2v
2
max/2 = γE (2.49)

with

γ =
4m1m2

(m1 + m2)2
, (2.50)

where E = m1v
2/2.

2.3.3 Stopping and Straggling: Preliminary Estimates

When (2.47) is inserted into (2.29) and (2.30) on p. 36 one finds

S 	 2π
e2
1e

2
2

m2v2
ln

Tmax

Tmin
; (2.51)

W 	 2π
e2
1e

2
2

m2v2
(Tmax − Tmin). (2.52)
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A lower integration limit corresponding to a truncation of the interaction
(2.45) at large impact parameters p was introduced in order to remove an
apparent divergence from the stopping cross section. Ways of specifying such
a cutoff will be discussed in sections 2.3.4 and 2.3.7.

Let us first consider a situation where all energy loss to electrons is ignored.
Take N to be the number density of nuclei of charge e2 = Z2e and mass
m2 = M2. e is the elementary charge and Z2 the atomic number. Then,
according to (2.19) and (2.26),

〈ΔE〉n 	 NΔx× 4πe2
1Z

2
2e

2

M2v2
Ln, (2.53)

〈(ΔE − 〈ΔE〉)2〉n 	 NΔx× 4πe2
1Z

2
2e

2m2
1

(m1 + M2)2
, (2.54)

where the subscript ‘n’ indicates nuclear energy loss. In (2.53), the abbrevia-
tion

Ln =
1
2

ln
(
Tmax

Tmin

)

n

(2.55)

has been introduced while in (2.54), Tmin has been dropped.
Next, consider the opposite case where all energy loss to nuclei is ignored.

With a number density NZ2 of electrons (mass m, charge −e) one finds cor-
respondingly

〈ΔE〉e 	 NΔx× 4πe2
1e

2Z2

mv2
Le, (2.56)

〈(ΔE − 〈ΔE〉)2〉e 	 NΔx× 4πe2
1e

2Z2m
2
1

(m1 + m)2
, (2.57)

where the subscript ‘e’ indicates electronic energy loss.
Finally, take the ratios of equivalent quantities for nuclear and electronic

stopping,

〈ΔE〉n
〈ΔE〉e 	 m

M2
Z2

Ln

Le
, (2.58)

〈(ΔE − 〈ΔE〉)2〉n
〈(ΔE − 〈ΔE〉)2〉e 	 (

m1 + m

m1 + M2
)2Z2. (2.59)

The ratio of the mean energy losses, (2.58), is obviously dominated by the
factor mZ2/M2 which is less than 10−3. Regardless of the accurate values
of Tmax and Tmin the ratio of logarithms will not compensate for this large
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difference unless Le is close to zero. That case will show up only at low pro-
jectile velocities where target electrons cannot be considered free.

Thus, under the present somewhat oversimplified assumptions, the mean
energy loss is heavily dominated by the electronic contribution for both light
and heavy point charges, despite the fact that the maximum energy transfer
from a heavy projectile to a nucleus is many times larger than that to an
electron. In order to appreciate the physical origin of this very central conclu-
sion, note that the mean energy loss receives a substantial contribution from
rather gentle collisions of the type sketched in Fig. 2.3 on page 39. While the
average momentum transferred to target electrons does not differ dramatically
from the average momentum transferred to target nuclei because forces are
comparable, a pronounced difference occurs in transferred energy, cf. (2.45),
where the mass enters into the denominator.

Next, consider the ratio of fluctuations, (2.59). If the projectile is an elec-
tron (m1 = m), that ratio becomes 4Z2(m/M2)2 which is ∼ 10−7 or less.
Thus, electronic processes dominate even more strongly than in case of the
mean energy loss. For a heavy projectile on the other hand, m1 = M1, the
ratio is less than 1 for M1 � M2 but may exceed 1 for M1 ≥ M2.

The physical reason for the significance of nuclear energy losses in strag-
gling is to be found in the high-energy-loss tail of the Rutherford spectrum
(2.47). Evidently that tail is more important in the integral

∫
T 2dσ than in∫

Tdσ. The presence of this tail makes it a rather delicate task to estimate
the actual shape of an energy loss profile. Substantial effort will be devoted
to this task in Chapter 9.

The dominating role of the electronic stopping force in the penetration of
alpha and beta rays was recognized in the earliest investigations into the field
and became the basis of Thomson’s stopping model where stopping and ion-
ization were treated essentially synonymously (Thomson, 1912). With regard
to stopping force and straggling, the present discussion does not go beyond
what can be found in the monographs by Bohr (1948) and especially Bonderup
(1981).

2.3.4 Adiabatic Limit to Electronic Stopping

According to (2.58) the stopping force on a point charge is essentially elec-
tronic. From (2.56) we obtain the electronic stopping cross section

Se =
4πZ2e

2
1e

2

mv2
Le (2.60)

where Le = 1
2 ln(Tmax/Tmin)e. A quantity L defined by (2.60) is called a stop-

ping number. Consequently, Le denotes the electronic stopping number. For
a heavy projectile, m1 � m, (2.49) and (2.50) yield

(Tmax)e = 2mv2. (2.61)
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In this section an estimate of the lower limit Tmin of energy transfer will be
derived.

Note first that Tmin is strictly zero in the case of a free, isolated target
electron. Thus, the long-range Coulomb interaction causes a logarithmic di-
vergence of the stopping cross section. There are two most obvious ways of
removing this artifact, taking into account the binding of electrons to the
atoms or molecules in a neutral stopping medium, or to consider screening of
the Coulomb interaction. Let us consider binding here.

Offhand one might be inclined to incorporate electronic binding forces by
merely inserting the lowest electronic excitation energy of a target atom or
molecule for (Tmin)e or, as suggested by Thomson (1912), the lowest ionization
energy. While this is justified for a qualitative estimate, it turned out that the
argument of Bohr (1913, 1915), based on the simple picture of a spring force
between electron and nucleus does not only lead to a different quantitative
result but also has a very close quantal analog.

Bohr treated the individual target electron as a classical harmonic oscil-
lator with a resonance angular frequency of, say, ω0. When an external force
F acts on such an oscillator during a limited period of time τ , the exchange
of momentum depends essentially on the magnitude of τ compared with the
oscillation period 2π/ω0. For τ � 2π/ω0, the oscillator takes up an impulse
∼ F × τ just as if it were a free particle; this effect may be experienced by
giving a push with a hammer to the steel ball of a pendulum. Conversely, for
τ � 2π/ω0, the oscillator tends to respond adiabatically to the external force
and it will tend to calm down as the disturbance vanishes even in the absence
of damping forces. Thus, the takeup of momentum will be much smaller than
that experienced by an otherwise equivalent free particle.

The duration of the force acting on a target electron from a moving pro-
jectile is given approximately by (2.44) for a soft collision; hence an effective
adiabatic cutoff occurs at an impact parameter where 2p/v � 2π/ω0, i.e.,
pmax will be of the order of

pmax ∼ v

ω0
(2.62)

apart from a numerical constant that has to be determined by a more accurate
calculation. Eq. (2.62) specifies Bohr’s adiabatic radius.

Combining (2.62) with (2.45) we obtain6

Tmin ∼ 2e2
1e

2ω2
0

mv4
(2.63)

or

L =
1
2

ln
Tmax

Tmin
= ln

Cmv3

|e1e|ω0
(2.64)

6 The subscript ‘e’ will be dropped when there is no doubt that we deal with
electronic stopping.
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with a yet undetermined constant C which is ∼ 1 but will be evaluated in
Sect. 4.5.1.

2.3.5 Relativistic Extension

While relativistic effects play a role in particle penetration on all levels, most
of the phenomena discussed in this book are observable equally well at non-
relativistic and relativistic velocities. Hence, relativity may affect quantitative
details but – with very few exceptions – is not the essential aspect. Therefore
the strategy will be followed to present nonrelativistic treatments and add
pertinent relativistic corrections where appropriate.

The present section serves the purpose to extend the simple treatment of
Coulomb scattering discussed in Sect. 2.3.2 to relativistic velocities. Appendix
A.3.2 recapitulates pertinent formulas from special relativity.

On the basis of the Lorentz transformation for electromagnetic fields (cf.
Appendix A.3.2) one finds the following relativistic extensions of (2.41) and
(2.42)7,

ΔP‖ = e1e2

∫ ∞

−∞
dt

γvvt

(p2 + (γvvt)2)3/2
= 0 (2.65)

and

ΔP⊥ = e1e2

∫ ∞

−∞
dt

γvp

(p2 + (γvvt)2)3/2
=

2|e1e2|
pv

, (2.66)

where

γv =
1

√
1 − v2/c2

. (2.67)

It is seen that there is no change in the momentum transfer at a given impact
parameter, even though the maximum force has been enhanced by a factor
γv. This implies that the collision time in (2.43) has become smaller by the
same factor, i.e.,

τ 	 2p
γvv

(2.68)

instead of (2.44). This leads to a change in the adiabatic radius (2.62)

pmax ∼ γvv

ω0
(2.69)

7 An attempt has been made to use a notation that should prevent the reader from
mixing up the symbol γv in (2.65 – 2.67) with the quantity γ defined in eq. (2.50).
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which in turn affects the minimum energy transfer (2.63) in an electronic
collision,

Tmin ∼ 2e2
1e

2ω2
0

mγ2
vv

4
. (2.70)

In order to find the maximum energy transfer in a binary collision between
a heavy particle and an electron, look at a central collision in a reference frame
in which the projectile is at rest. Here the electron moves with a velocity −v
before and v after the collision. This implies a momentum P ′ = mγvv and
a total energy E′

tot = mγvc
2. Lorentz transformation into the laboratory

system yields the energy in the laboratory frame,

Etot = γv(E′
tot + vP ′) (2.71)

and, hence, an energy transfer

Tmax = Etot −mc2 = 2mγ2
vv

2. (2.72)

This results in a stopping number

L =
1
2

ln
Tmax

Tmin
= ln

Cmγ2
1v

3

|e1e|ω0
(2.73)

instead of (2.64). It is a preliminary estimate which will be modified in
Sect. 4.2.3.

2.3.6 Validity of Classical-Orbit Picture

So far, moving particles have been assigned classical orbits, and the limitations
imposed by quantum mechanics were barely mentioned. The tacit justification
of this procedure lies in the fact that we have been dealing with Coulomb
interaction only; indeed, the differential cross section for scattering of two
point charges on each other is known to be identical with Rutherford’s law
when calculated on the basis of nonrelativistic quantum mechanics (Gordon,
1928). This will be shown in Chapter 3. Hence, even though the actual state of
motion will differ from classical Kepler orbits, the difference may be argued to
be immaterial since the energy-loss spectrum in an individual collision event
is unaffected by quantal corrections.

This simplifying feature need no longer be true

– when the force between the particles is not Coulomb-like,
– in the presence of binding forces, and
– at relativistic velocities.

Any of these three situations may occur in penetration phenomena. In addi-
tion we shall also need to consider spatial correlations in collision problems.
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For all these reasons an estimate of the range of validity of the classical-orbit
picture is needed.

From the point of view of penetration theory for swift charged particles
it is most often the gentle collisions leading to small energy transfers that
are considered most representative. Not only are those events by far the most
frequent ones – as is seen from (2.47) – they also offer a number of challenges
due to their long-range nature that suggests the possibility of collective effects
in dense stopping media. Nevertheless close collisions, although rare, do occur
and are not insignificant as is evidenced by the occurrence of Tmax in the
expressions for stopping force and straggling.

In the present context gentle collisions are considered mainly since we
know already that binding corrections play a role in the determination of the
lower limit Tmin of the energy-loss spectrum in (2.60), and hence that the
assumption of free-Coulomb scattering becomes invalid in that limit.

Go back once again to Fig. 2.5 on page 41. In order to estimate the limi-
tations of a classical orbit we may try to find the lateral spreading of a wave
packet centered around the straight projectile path depicted there.

According to Williams (1945) and Bohr (1948) the physical situation is as
follows. One may try to pin down an impact parameter p with an uncertainty
δp by constructing a Gaussian wave packet with a lateral spread δp, thereby
introducing a transverse momentum δP1 of the order of

δP1 ∼ �

2δp
(2.74)

according to the Heisenberg uncertainty principle8. At the same time an un-
certainty in the impact parameter results in an uncertainty in momentum
transfer, δP2 according to (2.42),

δP2 ∼ δp |d(ΔP⊥)
dp

| =
2|e1e2|
p2v

× δp, (2.75)

where ΔP⊥ follows from (2.42). The uncertainty principle implies that these
two uncertainties are uncorrelated. We may estimate the total uncertainty
from the sum of squares,

δP 2 ∼ δP 2
1 + δP 2

2 . (2.76)

This quantity takes on its minimum value when δp2 is chosen to be

δp2
min =

�p2v

4|e1e2| (2.77)

and δPmin becomes, then,

δPmin ∼
√

2|e1e2|�
p2v

. (2.78)

8 Appendix A.4.1 reviews Gaussian wave packets for the interested reader.
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In order that the momentum transfer at a given impact parameter p± δpmin

be well-defined we have to require that

δPmin

ΔP⊥
∼
√

�v

2|e1e2| � 1 (2.79)

In the notation of Bohr (1948) this reads

κ =
2|e1e2|

�v
� 1 (2.80)

or

v � 2v0

∣
∣
∣
e1e2

e2

∣
∣
∣ , (2.81)

where the Bohr velocity v0 = e2/� = c/137 is the orbital speed of an electron
in the ground state of a hydrogen atom, c being the speed of light in vacuum
(Appendix A.1.2).

If the target particle is an electron, (2.81) reads

v � 2Z1v0. (2.82)

For low charge numbers Z1 the limit imposed by (2.82) is rather severe. For
alpha particles it lies at 1.6 MeV.

Now, the whole description of a projectile interacting with a target electron
at rest can only be meaningful provided that

v � v0, (2.83)

i.e., if the projectile speed substantially exceeds some characteristic orbital
velocity of the target electrons which has been set to be the Bohr velocity
v0. For low charge numbers, (2.82) is in direct conflict with (2.83). We may
therefore conclude that the theory of electronic stopping for electrons and
positrons is intrinsically quantal. Conversely, for heavier particles, and in par-
ticular for heavy ions with e1 � e, (2.82) specifies a velocity range within
which the assumptions underlying Bohr’s classical stopping formula (2.64)
are approximately valid.

2.3.7 Screening in Nuclear Stopping

There were good reasons to ignore nuclear stopping for a while. After all,
electronic energy loss appears to dominate the stopping force on point charges
by more than three orders of magnitude. This estimate, however, is based on
the assumption that the nuclear stopping force does not diverge, i.e., that
some mechanism is going to limit the Coulomb interaction between projectile
and target nucleus to a finite range.
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The keyword is screening. Indeed, if the stopping medium consists of neu-
tral atoms or molecules, the Coulomb force between a point charge and a nu-
cleus comes into action only when the point charge penetrates the electron
shells. Thus, an effective maximum impact parameter (pmax)n for nuclear col-
lisions is equivalent to a representative radius a of the atomic or molecular
electron cloud. Let us be satisfied for the moment with the statement that a
is of the order of or less than the Bohr radius a0 (cf. Appendix A.1.2).

Why don’t we use Bohr’s adiabaticity limit to find (pmax)n as was done in
electronic stopping? After all, nuclei are bound to each other in molecules and
solids, approximately by oscillator forces. Well, in order that such an adiabatic
limit be significant, it has to be smaller than a0, or

v ≤ a0ω = v0
�ω

2R
(2.84)

according to (2.62), where ω is an effective binding frequency. Here, R is
the Rydberg energy, R = 13.6 eV. (Appendix A.1.2). For typical vibrational
frequencies of atoms in molecules, �ω lies in the range around or below 0.1
eV; hence, nuclear collisions become adiabatic at projectile speeds that are
at least two orders of magnitude lower than what we considered so far. Note
that an alpha particle at a velocity v = v0 carries a kinetic energy of about
100 keV (cf. problem 1.1 on page 22).

Incidentally, for nuclear stopping the condition for validity of the classical-
orbit picture, (2.81) reads

v � 2Z1Z2v0. (2.85)

This is less stringent than (2.82) because of the occurrence of Z2 ≥ 1. We may
conclude that nuclear collisions may follow the laws of classical mechanics over
a considerably wider range of projectiles and speeds than what was found for
electronic collisions.

Let us get back to screening and insert (pmax)n = a into (2.45). This yields
an effective minimum energy loss in nuclear collisions,

(Tmin)n =
2

M2v2

e2
1Z

2
2e

2

a2
(2.86)

or

Ln =
1
2

ln
(
Tmax

Tmin

)

n

	 ln 2ε, (2.87)

where

ε =
M2

M1 + M2

Ea

e1Z2e
(2.88)
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and M2 is the nuclear mass. ε is a dimensionless measure of the projectile
energy that is of central significance in nuclear stopping (Lindhard et al.,
1968).

2.4 Multiple Scattering

2.4.1 Small-Angle Approximation

Stopping and scattering are closely related phenomena in particle penetra-
tion. Strictly speaking you cannot deal with one and ignore the other. From
a formal point of view it might look appealing to treat both phenomena at
the same time, representing longitudinal and transverse changes in velocity,
respectively. Yet the dominating processes will turn out to differ in the two
cases. This discourages a joint treatment from a physical point of view. In-
stead one may come a long way by treating the change in projectile speed as
independent of the changes in direction of motion.

Switch over to scattering and ignore all energy loss for a while. As in
the case of stopping we normally deal with a sequence of events in particle
penetration. Thus, the equivalent of stopping theory is the theory of multiple
scattering. The formal treatment will largely turn out to be a generalization
of the statistical theory of stopping into two dimensions.

Let us again take our starting point at the experimental fact demonstrated
in Fig. 1.1 on page 4 that the trajectories of alpha particles are essentially
straight lines. This means that small-angle scattering events appear to domi-
nate.

One may at different stages ascribe different meanings to the notion of a
‘small’ angle. The term small-angle approximation, however, will consistently
imply that the respective angle, say, θ, is small in an absolute sense so that
the relations

sin θ 	 θ; cos θ 	 1 (2.89)

hold within some prescribed accuracy.
Let us then have a look at the trajectory of an alpha particle, sketched

schematically in Fig. 2.6. If all energy loss is ignored, the motion under a series
of small-angle scattering events can be characterized by the projection on
a plane perpendicular to the initial direction of motion. Introducing spherical
polar coordinates v, α and χ and applying the small-angle approximation we
find the expression

v = (v cosα, v sinα cosχ, v sinα sinχ)
≈ v(1, α cosχ, α sinχ) (2.90)

for the velocity vector of the projectile if the initial direction of motion is
directed along the x-axis. Thus, pertinent information on the direction of
motion is contained in a two-dimensional vector α,
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Fig. 2.6. Trajectory of an alpha particle during multiple scattering (schematically).
α denotes the angle between the scattered particle and the initial beam direction
and φ the scattering angle in an individual event

α = (α cosχ, α sinχ) (2.91)

which represents the lateral component of a unit vector pointing in the in-
stantaneous direction of motion of the projectile.

2.4.2 Statistics

Now let the projectile be able to undergo a discrete spectrum of scatterings at
such vectorial angles φj , j = 1, 2 . . ., and let the cross sections for these events
be σj . If, during an individual passage, the projectile undergoes nj deflections
at angle φj , the final direction of motion is determined by the vector

α =
∑

j

njφj (2.92)

perpendicular to the initial velocity. This relation is a two-dimensional analog
of (2.16). Consequently, averages can be found in the same way as in the
treatment of energy loss.

In particular, the average deflection follows by analogy with (2.19),

〈α〉 = NΔx
∑

j

φjσj . (2.93)

This quantity will most often be zero, namely whenever the scattering centers
look azimuthally symmetric to the projectile; then σj will be independent
of the azimuth of the scattering angle φj , and the sum (or integral) (2.93)
vanishes according to (2.91) since

∫ 2π

0 dχ cosχ =
∫ 2π

0 dχ sinχ = 0.
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Next, the mean-square deflection angle follows by analogy to (2.23) and
(2.26),

(α − 〈α〉)2 = NΔx
∑

i

φ2
iσi = 〈α2〉, (2.94)

and this quantity is nonzero if only one σi �= 0. Here the first identity is
general while the second implies azimuthal symmetry.

As in Sect. 2.2.3 we go over to continuum notation and write (2.94) in the
form

〈α2〉 = NΔx

∫
φ2dσ (2.95)

where dσ as given by

dσ = K(φ)d2φ (2.96)

is the differential cross section for scattering into the solid angle (φ, d2φ). In
the considered case of azimuthal symmetry we have K(φ) ≡ K(φ), where φ
is the polar scattering angle.

While the overall number of scattering events undergone by a projectile
during a passage is typically a large number, the situation becomes different
when attention is limited to large scattering angles. Indeed, take the proba-
bility

P (α∗) = Nx

∫

φ>α∗
dσ (2.97)

for a scattering event by an angle exceeding some lower limit α∗; (2.97) is
a straight application of (2.3). Figure 1.1 on page 4 indicates that for alpha
particles, P (α∗) must be a small number (� 1) if α∗ exceeds a few degrees.
Therefore, in situations like this the distribution F (α)× 2παdα of projectiles
after passage through a layer Δx must approach the single-event limit

F (α) ⇒ NΔxK(α) (2.98)

for α � α∗. A rough estimate of the limiting angle α∗ is given by the angle
which makes the probability (2.97) equal to unity, i.e.,

NΔx

∫

φ>α∗
dσ = 1. (2.99)

This may be taken to set a limit between single and multiple scattering; it is
seen that α∗ as given by (2.99) depends on the thickness Δx: The larger Δx
the larger α∗.

As a first approximation the following qualitative shape (Fig. 2.7) arises
for the multiple-scattering distribution F(α). At angles α � α∗, where many
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Fig. 2.7. Multiple scattering distribution for heavy projectiles in the model of
Williams (1940). Units refer to a quantitative model to be discussed in Volume II.
See text

individual deflections contribute to the final value of F(α), one may assume
a Gaussian profile with a width given by (2.95)

〈α2〉 = NΔx

∫

φ<α∗
φ2dσ; (2.100)

in the opposite end, at angles α � α∗, (2.98) holds.
The above treatment which dates back to Williams (1940) gives a first

qualitative orientation. It is often quite reliable. However, a more comprehen-
sive treatment is available and will be discussed in Volume II.

2.4.3 Nuclear and Electronic Scattering

The present section serves the purpose of providing a qualitative estimate of
the relative significance of nuclear and electronic collisions in multiple scat-
tering. The treatment will follow that of energy loss in Sect. 2.2.3 on page 33.

The angle of deflection φ at impact parameter p follows from the momen-
tum transfer

φ ∼ ΔP⊥
m1v

=
√

m2T

m1E
(2.101)

by means of (2.45). Therefore (2.95) reads

〈α2〉 = NΔx

∫
m2T

m1E
dσ =

m2

m1E
〈ΔE〉, (2.102)
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where 〈ΔE〉 is given by (2.19), or 〈ΔE〉 = NΔxS. Equation (2.102) holds for
one target species at a time, i.e., the nuclear and electronic contributions read

〈α2〉n =
M2

m1E
〈ΔE〉n (2.103)

and

〈α2〉e =
m

m1E
〈ΔE〉e, (2.104)

respectively. These rough estimates – which ignore the upper limit α∗ that was
introduced in (2.97) – show that the ratio of nuclear to electronic multiple-
scattering widths is of the order of

〈α2〉n
〈α2〉e ∼ Z2

Ln

Le
(2.105)

by means of (2.58).
For heavy target atoms where Z2 � 1, the nuclear contribution dominates

clearly. Moreover, the nuclear stopping number Ln normally exceeds the elec-
tronic one when the projectile is an ion or another heavy particle – because
of the large difference between (Tmax)n and (Tmax)e. This results in a pre-
dominantly nuclear multiple-scattering distribution even when the target is
light.

The situation is even clearer in the limit of single collisions, α � α∗. Since
the momentum transferred to an electron in a single collision cannot exceed
2mv a heavy projectile can be scattered from an electron at most by an angle
∼ 2m/M1. This angle – less than 0.1 degree – is frequently within the multiple-
scattering limit α∗. Hence, single scattering of heavy projectiles (m1 � m)
is determined by nuclear contributions with the exception of extremely small
scattering angles. Another exception is the case of channeling (Fig. 1.3 on
page 6) where nuclear scattering events are suppressed.

Let us finally write down the scattering cross section in the small-angle
approximation. According to (2.42) and (2.91) we have

φ ∼ |e1e2|
pE

(2.106)

and therefore

dσ ∼
∣
∣
∣
∣
d(πp2)

dφ

∣
∣
∣
∣ ∼

e2
1e

2
2

E2

2πφdφ
φ4

. (2.107)

In the single-collision limit the probability for a scattering event (α, dα) is
then determined by (2.98), i.e.,

F (α1) 2παdα 	 NΔx 2π
e2
1e

2

E2
Z2

2

dα
α3

(2.108)
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for 2m/m1 ≤ α � 1, where Z2e is the nuclear charge. For α ≤ 2m/M1, target
electrons contribute to the scattering cross section. In that case the factor Z2

2

due to the target charge is to be replaced by Z2 since there are Z2 electrons
per nucleus. Hence, the effective scattering cross section due to both nuclei
and electrons reads

dσ 	 e2
1e

2Z2(Z2 + 1)
E2

2πφdφ
φ4

(2.109)

for α < 2m/m1.
The treatment presented here applies to the nonrelativistic regime as it

stands. Extension to the relativistic regime is straightforward since the central
quantity, the transverse momentum transfer (2.42) is unaffected by relativity.
Therefore, the only noticeable change at this level is the replacement of the
projectile momentum m1v in (2.101) by m1γvv, i.e.,

m1 → γvm1 (2.110)

in all relations on small-angle multiple scattering.

2.5 Estimates

2.5.1 Alpha Particles

Now let us interpret the qualitative features of the cloud-chamber photograph
shown in Fig. 1.1 on page 4. Within the spirit of this chapter we do not aim
at high accuracy but rather try to find simple order-of-magnitude estimates.

Start with the range. It is found by insertion of the electronic stopping
cross section (2.60) into (2.36) and integrating. This yields very roughly

R ∼ mE2

M1 4πNZ2e2
1e

2

{
1
Le

}
, (2.111)

where the brackets indicate an average over the trajectory. Note that Le varies
rather slowly with E.

Next get an order-of-magnitude estimate of the range straggling from
(2.38) which reads

Ω2
R

R2
∼ 2m

M1

{L−3
e }

{L−1
e }2

; (2.112)

This shows that ΩR/R ∼ 10−2 for alpha particles, a result that is consistent
with Fig. 1.1 and shows that the continuous-slowing-down-approximation is
quite accurate in this case.

Next get an order-of-magnitude estimate of the multiple-scattering angle
by setting Δx = R in (2.103), i.e., look at the angular spread of an initially
well-collimated beam over the entire trajectory,



un
co
rre

cte
d
pr
oo
f

2.5 Estimates 57

〈α2〉 =
mZ2

2M1

{
Ln

Le

}
. (2.113)

It is seen that whatever the accurate value of the weighted average {Ln/Le},
the factor mZ2/2M1 ∼ Z2/15000 will make sure that 〈α2〉 is a small quantity
for an alpha particle. This explains why visible portions of the particle tracks
in Fig. 1.1 are essentially straight lines.

Finally, according to (2.108) for Δx = R, the probability for a large-angle
scattering event over the entire trajectory is of the order of

NR
πe2

1e
2Z2

2

E2
∼ mZ2

16M1

{
1
Le

}
. (2.114)

This shows that even for heavy target nuclei only a minute fraction, less than
10−2 of the alpha particles, will undergo a major deflection over the main part
of their range.

2.5.2 Preview: Energy and Z1 dependence

Figure 2.8 gives you an impression of what we have learned so far and where
we are going. Theoretical stopping cross sections for H, Ar and U ions in Si,
found from reliable sources, have been plotted over a wide range of beam
energies. All stopping cross sections show the characteristic v−2 dependence,
modified by the logarithmic variation of the stopping number at high but
nonrelativistic energies. In that energy regime, Sn lies more than three orders
of magnitude below Se.

However, both Se and Sn go through maxima at lower energies and then
decrease according to some power-law dependence on the beam energy. Ev-
idently, such maxima must exist, because a particle cannot lose more than
its total kinetic energy, but their locations differ dramatically, and no easy
estimate of their location and height emerges from what we have learned up
till now.

For both Ar and U, there is a low-energy regime where Sn dominates,
while this is not expected for hydrogen ions. The height of the maximum in
Se varies over almost three orders of magnitude from H to U, but note that
the factor is signifcantly smaller than 922, the ratio of the respective values
of Z2

1 .
Also, note that Se starts to increase again at relativistic energies, ∼ 1

GeV. The importance of relativistic collision kinematics was recognized right
from the beginning (Bohr, 1915).

Finally, experimental data from ∼ 25 different sources have been included
in case of H-Si, a comparatively well-studied ion-target combination. You may
note that at energies above the peak position there is excellent agreement
both between different sets of experimental data and between experiment and
theory. Discrepancies occur at lower speeds.
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Fig. 2.8. Electronic and nu-
clear stopping cross sections for
H in Si, Ar in Si and U in
Si versus beam energy per nu-
cleon. Sn evaluated according
to Lindhard et al. (1968). Se

from ICRU (1993) for H-Si, from
ICRU (2005) for Ar-Si and for U-
Si computed from binary theory
(Sigmund and Schinner, 2002).
Experimental data from numer-
ous sources compiled by Paul
(2005). Note the different ab-
scissa scales

2.6 Electron and Positron Penetration

Several of the explicit results quoted above for stopping and scattering pa-
rameters have been derived for projectile masses exceeding the electron mass,
i.e., for ions, mesons etc. This implies that the maximum energy transfer to
a target electron is close to 2mv2 according to (2.61). This does not apply to
a positron where the maximum energy transfer is

Tmax =
m

2
v2. (2.115)

However, it does not make much sense to insert this into (2.64), because the
classical scheme has a very limited range of validity. Instead, we just note that
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the stopping force on a positron is smaller than that on a proton at the same
projectile speed.

Fig. 2.9. Trajectories of beta particles.
From Gentner et al. (1954)

For penetrating electrons a further complication is caused by the indistin-
guishability of a scattered projectile electron from an ejected target electron
in case of substantial energy transfer. In applications of particle penetration
theory it is then necessary to consider the possible effects of both electrons
emerging from a collision. The stopping force is, then, no longer defined in
a strict sense. On a less rigorous basis, one may define the mean energy loss
as the difference between the initial electron energy and the mean energy of
an electron emerging with energy greater than E/2 = mv2/4 from an inter-
action, i.e.,

S =
∫ E/2

Tmin

Tdσ(T ) +
∫ E

E/2

(E − T )dσ(T ). (2.116)

This may be rewritten in the form

S =
∫ E

Tmin

Tdσ(T ) +
∫ E

E/2

(E − 2T )dσ(T ) (2.117)

or, for Coulomb scattering,

Selectron =
4πZ2e

4

mv2

(
Lpositron +

1
2
− ln 2

)
(2.118)

Electrons and positrons behave dramatically differently from heavy parti-
cles with regard to angular deflection. This is most easily seen from (2.113)
and (2.114) where replacement of the heavy projectile mass M1 by m in the
denominators implies an increase by a factor of � 2000 in both 〈α2〉 and the
mean number of large-angle scattering events over the length R of the trajec-
tory. This means that the slowing down of electrons and positrons is much
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like a diffusive motion. This is illustrated in Fig. 2.9 which differs qualita-
tively from Fig. 1.1 on page 4. The origin of this difference is the long range
of an electron or positron compared with that of a heavy particle at the same
energy, while the scattering probabilities over a given track length are compa-
rable. If this appears puzzling, it might help to note that the stopping force
depends on the projectile speed while the cross section for angular deflection
depends on the energy.

Finally, note that collisions with electrons may give rise to substantial
angular deflection, unlike what was found for heavy projectiles. Therefore
the expression (2.109), valid only at very small scattering angles for heavy
projectiles, has a much wider range of validity for electrons or positrons. It is,
however, still a small-angle formula.

2.7 Discussion and Outlook

It may be appropriate at this stage to summarize points where the theory as
outlined up till now needs improvement.

Most of all, the arguments presented in Sects. 2.3.4 and 2.3.6 indicate
that an evaluation of the electronic stopping force on the basis of a classical
electron theory is questionable, at least at high velocities and for low-charge
projectiles. Bethe’s theory, which will be discussed in Chapter 4, avoids several
oversimplifications that entered the estimates discussed above. In particular
the incorporation of electronic binding, discrete electron states, zero-point
motion of electrons, and the interaction between electrons within a target
atom or molecule are all effects that at least in principle are taken fully and
properly into account in a quantum theory of the interaction between a moving
point charge and an atom or molecule.

Next, from the treatment in Sect. 2.3.4 it follows that a penetrating
charged particle effectively interacts with target electrons up to a distance
equal to Bohr’s adiabatic radius, (2.62). Thus, in condensed matter, even at
moderately high speed, the projectile may simultaneously interact with a large
number of electrons, i.e., the medium may experience substantial polarization.
It is to be expected that a proper theory of charged-particle stopping has to
account for collective excitations, in particular so for high-speed particles and
in dense matter such as solids and liquids.

With increasing projectile speed various relativistic effects cannot be ig-
nored. Although the basic theory is a straight extension of what has been
described in Sects. 2.3.3 and 2.3.4 (Bohr, 1915), the topic has been postponed
to Chapters 5 and 6 for stopping and Volume II for scattering.

More complex are those effects that originate in the fact that moving parti-
cles need not be point charges, especially ions at moderate and low velocities.
Indeed, ions with high atomic numbers are usually not fully stripped, and the
interaction of an ion carrying an electron cloud with the atoms of the stopping
medium can be quite complex, in particular at velocities near or below the
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orbital velocities of target electrons. The quantum state of a moving ion may
undergo changes during a passage, and electron capture and loss processes
add to the complexity of the problem. An attempt to discuss some of these
problems will be postponed to Volume II when a number of prerequisites will
be available.

Nuclear collisions have been treated in a very rough manner in this chapter
and mainly from the point of view of its implications to multiple scattering.
The reader may have recognized from the discussion in Sect. 2.3.7 that the
truncation of nuclear stopping becomes effective at velocities far below those
where electronic stopping drops off. This indicates that nuclear stopping dom-
inates at the lowest velocities, but even an order-of-magnitude estimate of this
effect requires a more careful discussion of atomic screening. Nuclear scatter-
ing and stopping will be studied in Volume II.

Some of the statistical aspects of particle penetration need clarification
and specification. The practical limits to Poisson statistics are not clear at
this point. In particular it is not obvious to what extent a disordered solid
or a liquid can be regarded as a gas at high pressure with respect to the
stopping and scattering of ions. Information is needed on the shape of energy-
loss and multiple-scattering distributions, and some statistical information on
the combined effect of stopping and scattering is desirable. The conditions for
separation of electronic from nuclear stopping and scattering are not clear.
Finally, the statistics of ion ranges needs to be discussed.

Problems

2.1. The mean number 〈n〉 of ionizations produced by an alpha particle slow-
ing down to rest from an initial energy E is given with good accuracy by the
expression9 〈n〉 = E/W , where W is a measure of the energy spent in the
creation of an ion pair, i.e., a free electron and a positive ion. W is always
greater than the first ionization potential (why?). For atmospheric air, it is
empirically given as W = 29.6 eV (ICRU, 1979). Find 〈n〉 = E/W for the
case depicted in Fig. 1.1 on page 4 and give a rough estimate of the number
of ions produced per micrometer travelled pathlength.

2.2. Repeat the derivation of (2.1–2.3) in the reverse order by starting at
(2.3).

2.3. Consult your favored textbooks in classical and quantum mechanics on
how they define cross sections and try to reconcile this with the arguments that
lead to (2.1–2.3). Most discussions in textbooks refer to particular processes
and lead to only one of the three relations.

2.4. Verify the validity of (2.8–2.10) and derive corresponding relations for
the cumulants (n− 〈n〉)ν for ν = 3, 4, 5.
9 This formula will be derived in Volume III.
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2.5. The expression

〈
(n− 〈n〉)2〉1/2

〈n〉 (2.119)

is sometimes called the relative width of a distribution. The ratio
〈
(n− 〈n〉)3〉

〈(n− 〈n〉)2〉3/2
(2.120)

is called the skewness, and the ratio
〈
(n− 〈n〉)4〉

〈(n− 〈n〉)2〉2 (2.121)

is called the curtosis. Determine all three quantities for the Poisson distribu-
tion.

2.6. Apply a graphics program to generate plots of the Poisson distribution for
0.01 < 〈n〉 < 100 at reasonable intervals. Also include gaussian distributions
with mean value and variance both given by 〈n〉 and draw conclusions from
the degree of agreement.

2.7. Try to estimate the variance in the number of ionizations made by an
alpha particle, referring to Fig. 1.1 and Problem 2.1, assuming Poisson-like
distribution. Your result overestimates the fluctuation. We shall see in volume
III that the distribution is non-poissonian and that the variance is reduced by
a numerical factor, the ‘Fano factor’.

2.8. Extract an order-of-magnitude estimate for the stopping cross section of
an alpha particle from Fig. 1.1 by assuming S to be energy-independent.

2.9. Use (2.36) in conjunction with Fig. 1.1 to estimate the range of an alpha
particle in liquid air.

2.10. Extract an order-of-magnitude estimate of Ω2
R from Fig. 1.1, use the re-

sult of problem 2.9 to extract an order-of-magnitude value of W , and compare
your result with the appropriate predictions given in Sect. 2.3.3.

2.11. Determine values of the following quantities in gaussian units,

– an electric field of 1 V/m,
– a voltage of 1 V,
– a magnetic field of 1 T,
– a charge of 1 C and
– a current of 1 A,

2.12. Write down Rutherford’s law for the scattering of two point charges on
each other in
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– SI units,
– gaussian units and
– atomic units.

2.13. Derive a criterion for the range of validity of (2.42) by estimating the
pathlength travelled by the hit particle during the collision time τ , assuming
constant acceleration in accordance with Fmax. Require that pathlength to be
small compared to the impact parameter.

2.14. You will most likely be unable to find (2.47) in your classical-mechanics
text10. Instead of the energy transfer T , the running variable is usually the
center-of-mass scattering angle Θ. Find the relation between the two variables
and the relation between the two corresponding differential cross sections11.

2.15. Equation (2.45) is an approximate form of an exact relation which, in
terms of the center-of-mass scattering angle Θ instead of T , is derived in
standard textbooks of classical mechanics. Locate the exact relation in your
favored text and use the result of problem 2.14 to transform it into T = T (p).
Find out which quantity you have to assume small in order to arrive at (2.45)
as a limit, and verify that this is consistent with what has been assumed in
the derivation of (2.45).

2.16. Derive (2.47) from the exact relation T = T (p) which you found in
problem 2.15 and identify the reason why both the approximate and the exact
relation lead to the same differential cross section.

2.17. Verify the validity of each of (2.48 - 2.50) either by consulting a classical-
mechanics text or by writing down conservation laws of energy and momentum
for a linear collision.

2.18. Referring to Fig. 2.4, try to analyse how the projectile can slow down,
i.e., lose momentum in the beam direction, despite the fact that momentum
is transferred to the target electron perpendicular to its velocity.

2.19. Make a model to illustrate the adiabatic limit by explicitly evaluating
the energy transferred to a linear classical harmonic oscillator by a force F (t)
of some adopted shape. Try a) a simple pulse with F = const over some time
interval τ , b) a triangular pulse, c) a lorentzian, and d) a gaussian. Use the
Green function of the classical harmonic oscillator. If you are unfamiliar with
this concept, consult Appendix A.2.5 first or check (4.6) in chapter 4. Express
all results in terms of the transferred momentum

∫∞
−∞ F (t)dt to a free electron,

define appropriate effective collision times, and compare the results.

10 A notable exception is the book of Landau and Lifshitz (1960).
11 The reader who has difficulties solving problems 2.14–2.17 may wish to study

Chapter 3 first.
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2.20. Go carefully through the various steps leading to (2.79). Try to general-
ize the estimate by adopting an arbitrary relation between the scattering angle
φ(p) of the projectile in the laboratory system and the impact parameter.

2.21. Use three-dimensional graphics to illustrate (2.80). Include the limit
expressed by (2.83).

2.22. Check a few texts on quantum theory and atomic physics for what they
write about screening. Find expressions for the electron density as a function
of the distance from the nucleus. If necessary, take an average over the angular
variables. Extract representative values of the screening radius a.

2.23. Devise a simple estimate showing that �ω0 for typical vibrational fre-
quencies in molecules lies in the range around or below 0.1 eV, as mentioned
in the beginning of Sect. 2.3.7.

2.24. Derive (2.85) from the results of Sect. 2.3.6.

2.25. Go explicitly through the steps leading to (2.93) and (2.94) and make
sure that no other complications arise from the vectorial nature of the scat-
tering angles than those mentioned in the text.

2.26. The cross sections listed in the end of Sect. 2.4.3 are all divergent at
small angles. Verify that these divergencies are equivalent with the 1/T 2 di-
vergence of the Rutherford cross section expressed as a function of energy
transfer. What is it that causes an integral like (2.100) to converge at small
angles?

2.27. Verify (2.115).

2.28. Discuss qualitatively possible differences between electrons and positrons
regarding scattering and stopping.
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