
Preface

1 Specification Languages

By a specification language we understand a formal system of syntax, se-
mantics and proof rules. The syntax and semantics define a language; the
proof rules a proof system. Specifications are expressions in the language —
and reasoning over properties of these specifications is done within the proof
system.

This book [2] will present nine of the current specification languages (ASM
[40], B [5], CafeOBJ [8], CASL [33], Duration Calculus [14], RAISE (RSL) [12],
TLA+ [32], VDM (VDM-SL) [11] and Z [22]) and their logics of reasoning.

1.1 Specifications

Using a specification language we can formally describe a domain, some uni-
verse of discourse “out there, in reality”, or we can prescribe requirements to
computing systems that support activities of the domain; or we can specify
designs of computing systems (i.e., machines: hardware + software).

A specification has a meaning. Meanings can be expressed in a property-
oriented style, as in ASM, CafeOBJ, CASL and Duration Calculus, or can
be expressed in a model-oriented style, as in B, RAISE/RSL, TLA, VDM or
Z. RAISE/RSL provides a means for “slanting” a specification either way, or
some “compromise” in-between. In the property-oriented style specifications
emphasise properties of entities and functions. In the model-oriented style
specifications emphasise mathematical values like sets, Cartesians, sequences,
and maps and functions over these. (The above “compartmentalisation” is a
very rough one. The nine language chapters of this book will provide more
definitive delineations.)

Descriptions

Descriptions specify an area of, say, human activity, a domain, as it is, with
no reference to requirements to computing systems that support activities
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of the domain. Usually the domain is “loose”, entities, functions, events and
behaviours of the domain are not fully understood and hence need be loosely
described, that is, allow for multiple interpretations. Or phenomena of the
domain are non-deterministic: the value of an entity, the outcome of a function
application (i.e., an action), the elaboration of an event, or the course of a
behaviour is not unique: could be any one of several. We take behaviours to
be sets of sequences of actions and events — or of behaviours, that is multiple,
possibly intertwined behaviours.

Hence we find that some specification languages allow for expressions
of looseness, underspecification, non-determinism and/or concurrency. Since
phenomena of domains are usually not computable the specification language
must allow for the expression of non-computable properties, values and func-
tions.

Prescriptions

Prescriptions are also specifications, but now of computable properties, values,
functions and behaviours. Prescriptions express requirements to a computing
system, i.e., a machine, that is to support activities (phenomena: entities,
functions, events and behaviours) of a domain. Thus prescription languages
usually emphasise computability, but not necessarily efficiency of computa-
tions or of representation of entities (i.e., data).

Designs

On the basis of a requirements prescription one can develop the design of
a computing system. The computing system design is likewise expressed in a
specification language and specifies a machine: the hardware and software that
supposedly implement the requirements and support desired activities of the
domain. The machine, once implemented, resides in the (previously described)
domain and constitutes with that prior domain a new domain. (Usually we
think of requirements being implemented in software on given hardware. We
shall, accordingly, just use the term software design where computing systems
is the more general term.)

1.2 Reasoning

In describing domains, in prescribing requirements and in designing software
we may need to argue that the specification possess certain not immediately
obvious (i.e., not explicitly expressed) properties. And in relating requirements
prescriptions to the “background” domain, and in relating software designs to
the “background” requirements and domain, one may need to argue that the
requirements prescription stands in a certain relation to a domain description
or that the software design is correct with respect to “its” requirements under
the assumptions expressed by a domain description.

VIII
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For this we need resort to the proof system of the specification language
— as well as to other means. We consider in this prelude three such means.

Verification

Verification, in general terms, is a wide and inclusive term covering all ap-
proaches which have the aim of establishing that a system meets certain prop-
erties. Even a simple test case demonstrates a, perhaps limited, fact: that in
this case (though maybe no others) a given system achieves (or does not) a
desirable outcome.

More specifically and usually, we use the term verification for more elab-
orate and systematic mathematical techniques for establishing that systems
possess certain properties. Here, the system might be a more-or-less abstract
description (a specification) or a concrete realisation in hardware or software.
The properties may be specific emergent properties of abstract specifications;
they include general statements of, say, liveness, safety and/or termination;
and they cover the correctness of realisations or implementations of given sys-
tem specifications. In all the cases of interest to us, the system description
and the properties to be determined will be couched in a precise formal math-
ematical language. As a consequence, the results of such a verification will be
correspondingly precise and formal.

There are three forms of formal verification that are relevant to the ma-
terial covered in this book and that are, therefore, worth describing in just a
little more detail.

Inferential Verification

This approach is often simply referred to as verification despite the fact that
other approaches, such as model checking, are also such methods. Here, we
have at our disposal logical principles, a logic or proof system, which correctly
captures the framework within which the system is described. This framework
might be a programming or specification language with a semantics which lays
down, normatively, its meaning. The logical principles will (at the very least)
be sound with respect to that semantics; thus ensuring that any conclusions
drawn will be correct judgements of the language in question.

The logical principles, or fully-fledged logic, will provide means that are
appropriate for reasoning about the techniques and mechanisms that are avail-
able in the language of description. For example, many frameworks provide a
means for describing recursive systems, and appropriate induction principles
are then available for reasoning about such systems.

Inference-based methods of verification allow us to make and support gen-
eral claims about a system. These may demonstrate that an implementation
is always guaranteed to meet its specification; that it always possesses certain
characteristic properties (for example, that it is deadlock-free or maybe that it
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terminates); or that an abstract specification will always possess certain im-
plicit properties (which will, in turn, be inherited properties of any (correct)
implementation).

Model Checking

This approach to verification (see, for example, [6]) aims to automatically
establish (or provide a counterexample for) a property by direct inspection of
a model of the system in question. The model may be represented (explicitly
or implicitly) by a directed graph whose nodes are states and whose edges
are legitimate state transitions; properties may be expressed in some form of
temporal logic.

Two key issues are finiteness and the potential combinatorial explosion
of the state space. Many techniques have been developed to minimise the
search. In many cases it is not necessary to build the state graph but sim-
ply to represent it symbolically, for example by propositional formulae, and
then, using techniques such as SAT-solvers, to mimic the graph search. Par-
tial order reductions, which remove redundancies (in explicit graphs) arising
from independent interleavings of concurrent events can also be employed to
significantly reduce the size of the search space. It is also possible to simplify
the system, through abstraction, and to investigate the simpler model as a
surrogate for the original system. This, of course, requires that the original
and abstracted systems are related (by refinement) and that the abstracted
system is at least sound (if not complete) with respect to the original: that
properties true of the abstracted system are also true of the original, even if
the abstracted system does not capture all properties of the original.

Model checking has been a spectacularly successful technology by any
measure; the model checker SPIN [23], for example, detected several crucial
errors in the controller for a spacecraft [21]. Other important model checkers
are SMV [31] and FDR, based on the standard failures-divergencies model of
CSP [42].

Formal Testing

Dijkstra, in his ACM Turing Lecture in 1972, famously said: “... program test-
ing can be a very effective way to show the presence of bugs, but is hopelessly
inadequate for showing their absence” [9]. A correct contrast between informal
testing (which might demonstrate a flaw in a system) and a formal verifica-
tion (which might make a general correctness claim) was established by this
remark. More recently, however, it has become clear that there is something
to be gained by combining variations on the general theme of testing with
formal specifications and verifications. Indeed, the failure of a formal test is
a counterexample, which is as standard a mathematical result as could be
wished for (and potentially as valuable too); the problem is that when testing
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without a theoretical basis (informal testing), it is often simply unclear what
conclusion can and should be drawn from such a methodology.

A portfolio approach, in which a variety of verification methods are used,
brings benefits. In the case of formal testing, there is an interplay between
test (creation, application and analysis) and system specification: a formal
description of a system is an excellent basis for the generation (possibly auto-
matically) of test cases which, themselves, have precise properties regarding
coverage, correctness and so on. In addition, the creation of adequate test
suites is expensive and time-consuming, not to say repetitious if requirements
and specifications evolve; exploiting the precision implicit in formal specifi-
cation to aid the creation of test suites is a major benefit of formal testing
technologies.

1.3 Integration of Specification Languages

Domains, requirements or software being described, prescribed or designed,
respectively, usually possess properties that cannot be suitably specified in
one language only. Typically a variety, a composition, a “mix” of specifi-
cation notations need be deployed. In addition to, for example, either of
ASM, B, CafeOBJ, CASL, RAISE/RSL, VDM or Z, the specifier may resort
to additionally using one or more (sometimes diagrammatic) notations such
as Petri nets [27, 35, 37–39], message sequence charts [24–26], live sequence
charts [7, 19, 28], statecharts [15–18, 20], and/or some textual notations such
as temporal logics (Duration Calculus, TLA+, or LTL — for linear temporal
logic [10, 29, 30, 34, 36]).

Using two or more notations, that is, two or more semantics, requires their
integration: that an identifier a in one specification (expressed in one language)
and “the same” identifier (a) in another specification (in another language)
can be semantically related (i.e., that there is a ‘satisfaction relation’).

This issue of integrating formal tools and techniques is currently receiving
high attention as witnessed by many papers and a series of conferences: [1,3,
4, 13, 41]. The present book will basically not cover integration.1

2 Structure of Book

The book is structured as follows: In the main part, Part II, we introduce,
in alphabetic order, nine chapters on ASM, event-B, CafeOBJ, CASL, DC,
RAISE, TLA+, VDM and Z. Each chapter is freestanding: It has its own list of
references and its own pair of symbol and concept indexes. Part III introduces
just one chapter, Review, in which eight “originators” of respective specifica-
tion languages will comment briefly on the chapter on “that language”.

1 TLA+ can be said to be an integration of a temporal logic of actions, TLA,
with set-theoretical specification. The RAISE specification language has been
“integrated” with both Duration Calculus and concrete timing.
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Denmark, DK-2800 Kgs. Lyngby, Denmark (bjorner@gmail.com)
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Before going into the topic of formal specification languages let us first survey
the chain of events that led to this book as well as the notions of the specific
specification languages and their logics.

1 The Book History

Four phases characterise the work that lead to this book.

1.1 CoLogNET

CoLogNET was a European (EU) Network of Excellence. It was funded by
FET, the Future and Emerging Technologies arm of the EU IST Programme,
FET-Open scheme. The network was dedicated to furthering computational
logic as an academic discipline.

We refer to http://newsletter.colognet.org/.
One of the editors (DB) was involved in the CoLogNET effort. One of his

obligations was to propagate awareness of the logics of formal specification
languages.

1.2 CAI: Computing and Informatics

One of the editors of this book (DB) was also, for many years, an ed-
itor of CAI, the Slovak Academy journal on Computing and Informatics
(http://www.cai.sk/). The chief editors kindly asked DB to edit a special
issue. It was therefore quite reasonable to select the topic of the logics of for-
mal (methods’) specification languages and to invite a number of people to
author papers for the CAI.

The result was a double issue of CAI:
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CAI, Volume 22, 2003, No. 3

⋆ The Expressive Power of Abstract State Machines

W. Reisig [7]
Abstract: Conventional computation models assume symbolic represen-
tations of states and actions. Gurevich’s “Abstract State Machine” model
takes a more liberal position: Any mathematical structure may serve as a
state. This results in “a computational model that is more powerful and
more universal than standard computation models”.
We characterize the Abstract State Machine model as a special class of
transition systems that widely extends the class of “computable” transition
systems. This characterization is based on a fundamental Theorem of Y.
Gurevich.

⋆ Foundations of the B Method

D. Cansell, D. Méry [1]
Abstract: B is a method for specifying, designing and coding software
systems. It is based on Zermelo–Fraenkel set theory with the axiom of
choice, the concept of generalized substitution and on structuring mecha-
nisms (machine, refinement, implementation). The concept of refinement
is the key notion for developing B models of (software) systems in an in-
cremental way. B models are accompanied by mathematical proofs that
justify them. Proofs of B models convince the user (designer or specifier)
that the (software) system is effectively correct. We provide a survey of
the underlying logic of the B method and the semantic concepts related
to the B method; we detail the B development process partially supported
by the mechanical engine of the prover.

⋆ CafeOBJ: Logical Foundations and Methodologies

R. Diaconescu, K. Futatsugi, K. Ogata [2]
Abstract: CafeOBJ is an executable industrial-strength multi logic al-
gebraic specification language which is a modern successor of OBJ and
incorporates several new algebraic specification paradigms. In this paper
we survey its logical foundations and present some of its methodologies.

⋆ CASL — The Common Algebraic Specification Language:

Semantics and Proof Theory

T. Mossakowski, A.E. Haxthausen, D. Sannella, A. Tarlecki [6]
Abstract: CASL is an expressive specification language that has been
designed to supersede many existing algebraic specification languages and
provide a standard. CASL consists of several layers, including basic (un-
structured) specifications, structured specifications and architectural spec-
ifications (the latter are used to prescribe the structure of implementa-
tions). We describe a simplified version of the CASL syntax, semantics
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and proof calculus at each of these three layers and state the correspond-
ing soundness and completeness theorems. The layers are orthogonal in
the sense that the semantics of a given layer uses that of the previous
layer as a “black box”, and similarly for the proof calculi. In particular,
this means that CASL can easily be adapted to other logical systems.

CAI, Volume 22, 2003, No. 4

⋆ The Logic of the RAISE Specification Language

C. George, A.E. Haxthausen [3]
Abstract: This paper describes the logic of the RAISE Specification Lan-
guage, RSL. It explains the particular logic chosen for RAISE, and mo-
tivates this choice as suitable for a wide spectrum language to be used
for designs as well as initial specifications, and supporting imperative and
concurrent specifications as well as applicative sequential ones. It also de-
scribes the logical definition of RSL, its axiomatic semantics, as well as
the proof system for carrying out proofs.

⋆ On the Logic of TLA+

S. Merz [5]
Abstract: TLA+ is a language intended for the high-level specification of
reactive, distributed, and in particular asynchronous systems. Combining
the linear-time temporal logic TLA and classical set-theory, it provides an
expressive specification formalism and supports assertional verification.

⋆ Z Logic and Its Consequences

M.C. Henson, S. Reeves, J.P. Bowen [4]
Abstract: This paper provides an introduction to the specification lan-
guage Z from a logical perspective. The possibility of presenting Z in this
way is a consequence of a number of joint publications on Z logic that
Henson and Reeves have co-written since 1997. We provide an informal
as well as formal introduction to Z logic and show how it may be used,
and extended, to investigate issues such as equational logic, the logic of
preconditions, the issue of monotonicity and both operation and data re-
finement.

1.3 The Stara Lesna Summer School

The preparation of the many papers for the CAI lead to the desire to “crown”
the achievements of the many authors by arranging the Logics of Specification
Language Summer School at the Slovak Academy’s conference centre in Stara
Lesna, the High Tatras.

We refer to http://cswww.essex.ac.uk/staff/hensm/sssl/.
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One of the editors of the present volume (MH) coordinated with the seven
sets of authors of the CAI double issue as well as with Drs. John Fitzgerald
(VDM: The Vienna Development Method) and Michael Reichhardt Hansen
(DC: Duration Calculi) on the schedule of nine sets of lectures of 90 minutes
each during the two-week event.

The other editor (DB) was the primary organiser of the event: solicit-
ing funds, participants, and communicating with the local organiser Prof.
Branislav Rovan at the Comenius University in Bratislava.

The event took place June 6–19, 2004 at the Slovak Academy’s ideally
located conference centre in Stara Lesna, the High Tatras.

Besides being substantially sponsored by the EU’s CoLogNET effort,
much-needed support also came from UNU-IIST, the United Nations Univer-
sity’s International Institute for Software Technology (http://www.iist.unu.edu)
(located in Macau, China) and Microsoft Research (http://research.micro-
soft.com/foundations/).

Forty-four young researchers from 22 countries in Asia and Europe took
part in this seminal event.

1.4 Book Preparation

The success, so we immodestly claim, of the Summer School then lead to the
proposal to rework the CAI papers and the Summer School lecture notes into
a book. MH coordinated the first phase of this endeavour, summer 2004 to
February 2006. DB then followed up and is responsible for the minute style
editing, indexing, etc., and the compilation of the nine individual contributions
into this volume.

2 Formal Specification Languages

Here we cull from the introductions to the chapters covering respective lan-
guages — and edit these “clips”.

2.1 ASM: Abstract State Machines

ASM is a technique for describing algorithms or, more generally, discrete sys-
tems. An abstract state machine [specification] is a set of conditional assign-
ment statements. The central and new idea of ASM is the way in which
symbols occurring in the syntactic representation of a program are related to
the real-world items of a state. A state of an ASM may include any real-world
objects and functions. In particular, the ASM approach does not assume a
symbolic, bit-level representation of all components of a state. ASM is “a
computation model that is more powerful and more universal than standard
computation models”, as Yuri Gurevich, the originator of ASM, claims.
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2.2 B

Classical B is a state-based method for specifying, designing and coding soft-
ware systems. It is based on Zermelo–Fraenkel set theory with the axiom of
choice. Sets are used for data modelling. Generalised substitutions are used to
describe state modifications. The refinement calculus is used to relate models
at varying levels of abstraction. There are a number of structuring mechanisms
(machine, refinement, implementation) which are used in the organisation of
a development.

Central to the classical B approach is the idea of a software operation
which will perform according to a given specification if called within a given
precondition. A more general approach in which the notion of event is funda-
mental is also covered. An event has a firing condition (a guard) as opposed
to a precondition. It may fire when its guard is true.

2.3 CafeOBJ

CafeOBJ is an executable algebraic specification language. CafeOBJ incorpo-
rates several algebraic specification paradigms.

Equational specification and programming is inherited from OBJ and con-
stitutes the basis of CafeOBJ, the other features being somehow built “on top”
of it.

Behavioural specification characterises how objects (and systems) behave,
not how they are implemented. This form of abstraction is used in the spec-
ification and verification of software systems since it embeds other useful
paradigms such as concurrency, object-orientation, constraints, nondetermin-
ism, etc.

Preorder algebra (abbreviated POA) specification (in CafeOBJ) is based
on a simplified unlabelled version of Meseguer’s rewriting logic specification
framework for concurrent systems. POA gives a non-trivial extension of tra-
ditional algebraic specification towards concurrency. POA incorporates many
different models of concurrency, thus giving CafeOBJ a wide range of appli-
cations.

2.4 CASL

The basic assumption underlying algebraic specification is that programs are
modelled as algebraic structures that include a collection of sets of data values
together with functions over those sets. This level of abstraction is commen-
surate with the view that the correctness of the input/output behaviour of
a program takes precedence over all its other properties. Another common
element is that specifications of programs consist mainly of logical axioms,
usually in a logical system in which equality has a prominent role, describing
the properties that the functions are required to satisfy.
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Basic specifications provide the means for writing specifications in a par-
ticular institution, and provide a proof calculus for reasoning within such
unstructured specifications.

The institution underlying CASL, together with its proof calculus, involves
many-sorted basic specifications and subsorting.

Structured specifications express how more complex specifications are built
from simpler ones.

The semantics and proof calculus is given in a way that is parameterized
over the particular institution and proof calculus for basic specifications.

Architectural specifications, in contrast to structured specifications, pre-
scribe the modular structure of the implementation, with the possibility of en-
forcing a separate development of composable, reusable implementation units.

Finally, libraries of specifications allow the (distributed) storage and re-
trieval of named specifications. Since this is rather straightforward, space con-
siderations led to the omission of this layer of CASL in the present work.

2.5 DC: The Duration Calculi

Duration Calculus (abbreviated DC) is an interval logic. DC was introduced
to express and reason about models of real-time systems. A key issue in DC
is to be able to express the restriction of durations of certain undesired but
unavoidable states.

By a duration calculus we shall understand a temporal logic whose concept
of time is captured by Real, whose formula connectives include those of 2

(2P : always P ), 3 (3P : sometimes P ), → (P → Q: P implies Q [Q follows
logically from P ]), and the chop operator, ‘;’ (P ; Q: first P then Q); whose
state duration terms, P , include those of

∫
P (duration of P ), o(t1, ..., tn),

and ℓ; and whose formulas further include those of ⌈⌉ (point duration) ⌈P ⌉
(almost everywhere P ).

2.6 RAISE and RSL

The RAISE method is based on stepwise refinement using the invent and verify
paradigm. Specifications are written in RSL. RSL is a formal, wide-spectrum
specification language that encompasses and integrates different specification
styles in a common conceptual framework. Hence, RSL enables the formula-
tion of modular specifications which are algebraic or model-oriented, applica-
tive or imperative, and sequential or concurrent.

A basic RSL specification is called a class expression and consists of
declarations of types, values, variables, channels, and axioms. Specifications
may also be built from other specifications by renaming declared entities, hid-
ing declared entities, or adding more declarations. Moreover, specifications
may be parameterized.

User-declared types may be introduced as abstract sort types, as known
from algebraic specification. In addition RSL provides predicative subtypes,
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union and short record types, as known from VDM, and variant type defini-
tions similar to data type definitions in ML.

Functions may describe processes communicating synchronously with each
other via declared channels, as in CSP.

2.7 TLA and TLA+

TLA is a variant of linear-time temporal logic; it is used to specify system
behaviour. TLA+ extends TLA with data structures that are specified in (a
variant of) Zermelo-Fraenkel set theory. TLA+ does not formally distinguish
between specifications and properties: both are written as logical formulas,
and concepts such as refinement, composition of systems, or hiding of internal
state are expressed using logical connectives of implication, conjunction, and
quantification.

2.8 VDM

VDM can probably be credited as being the first formal specification language
(1974).

Classical VDM focuses on defining types over discrete values such as num-
bers, Booleans, and characters — as well as over sets, Cartesians, lists, maps
(enumerable, finite domain functions), and functions (in general); and defin-
ing applicative (“functional style specification programing”) and imperative
(“assignment and state-based specification programing”) functions over val-
ues of defined types, including pre-/post-based function specifications. Set, list
and map values can be comprehended, as in ordinary discrete mathematics.
Logical expressions include first-order predicate (quantified) expressions.

2.9 Z

Z could be said to be rather close in some aspects to VDM-SL. A main —
syntactically — distinguishing feature is, however, the schema. Schemes are
usually used in two ways: for describing the state space of a system and for
describing operations which the system may perform. From that follows a
schema calculus. Another difference from VDM is the logics.

3 The Logics

The nine main chapters of this book comprise a dazzling, and even possibly
intimidating, range of approaches; and it will be clear that the work on which
this collection is based owes a debt to many researchers, over many years,
who have struggled to find appropriate concepts, together with their formal-
isation, suitable for the task of tackling issues in the general area of system
specification.
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There are two perspectives which are useful to bear in mind when reading
this book in its entirety, or more likely in selecting chapters to study in depth.
The first is that these are studies in applied mathematics; the second that
these are practical methods in computer science.

Applied mathematics is a term with a long pedigree and it has usually been
identified with applications in, for example, physics, economics and so forth.
A naive separation would place topics such as algebra and formal logic in the
realm of pure mathematics ; however it is not the content but the motivation
that differentiates applied from pure mathematics, and the chapters of this
book illustrate many areas in which more traditionally pure topics are set
to work in an applied setting. ASM, CafeOBJ and CASL are based within
algebra, the latter two securely located within category theory, an almost
quintessential example of purely abstract mathematics; DC and TLA+ make
use of modal logic; B, VDM and Z make use of set theory and (versions
of) predicate logic; RAISE draws on ideas from set theory, logic, algebra
and beyond. In all these too, the underlying formal structures are drawn
from traditional pure mathematics, much of it from developments during the
early part of the last century in the introspective realm of metamathematics:
initially introduced in order for mathematics to take a closer look at itself.

It may have come as something of a surprise to early pioneers in alge-
bra, set theory and logic to see how such abstract topics could be usefully
harnessed to an applications area; but work over the last 30 years or so has
demonstrated beyond question that these have become an appropriate basis
for formal computer science. These chapters are a testament to, and further
stage in, that developing history.

Excellent applied mathematics, however, does not come for free: one can-
not simply select existing mathematics off the shelf and expect it to be fit
for purpose. It is necessary to combine mathematical competence with a high
level of conceptual analysis and innovation. In this book there are numerous
examples of mathematical developments which have been necessary in order
to model what have been identified as the fundamental concepts in the appli-
cations’ areas, and one might select single examples from hosts of others in
the various chapters. For example:

• in ASM one notes the analysis of states as algebras and then program
statements as transformations of algebras;

• in B one notes the central concept of generalized substitution and its in-
terpretation within a calculus of weakest preconditions;

• in CafeOBJ ones notes the introduction of behavioural specification based
on coherent hidden algebra;

• in CASL one notes the use of the institution of many-and-sub-sorted alge-
bras ;

• in DC one notes the development of continuous-time interval temporal
logic and the introduction of the concept of durations ;
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• in RAISE one notes the development of the logic RSL with its treatment
of undefined terms, imperative and concurrent features;

• in TLA+ one notes the integration of set-theoretic notions with a version
of temporal logic which includes action formulae and invariance under
stuttering;

• in VDM one notes the development of the logic of partial functions allowing
reasoning in the presence of undefined terms ;

• in Z one notes the analysis of refinement and how it is analysed with
respect to the schema calculus.

These very few observations barely scratch the surface of the wealth of con-
ceptual novelty present within these nine frameworks, but serve to illustrate
the way in which they each introduce new conceptual zoology suitable for
tackling the issues they aim to address. In doing so, they must, and do, ex-
tend the mathematical framework on which they are based, whether that be
set theory, some variety of formal logic or a framework of algebraic discourse.
And the corollaries of that, of course, are developments of new mathematics.

Turning now to the second key point. However sophisticated the formal
treatment, these are intended to be practical methods for the specification
and development of systems. The chapters each address examples and appli-
cations in various ways and to differing extent. There are, here, a wealth of
case studies and examples, both of practical applications and of theoretical
infrastructure, all of which shed light on the applicability and fecundity of the
frameworks covered. It may be worth remembering that once a perfect tool
is developed, it will certainly stand the test of time. For example, consider
a chisel : it is an ancient and very simple tool; moreover, despite centuries of
technological development elsewhere, it is still in use today, essentially un-
changed, because of that simplicity and its fitness for purpose. It has, quite
simply, never been bettered. It is also a sobering experience to compare the
simplicity of the chisel with the complexity and beauty of the wood-carvings
which are possible when the tool lies in skilled and experienced hands. This is
a good analogy: we will want to show that our specification frameworks are as
simple and straightforward as possible, and develop skills in using them which
result in applications that are significantly more complex (at least combinato-
rially) than the frameworks themselves. Have we yet, as a community, achieved
that? Almost certainly not – but the challenge is there, and current work is
mindful of these considerations. System specification is a truly monumental
topic; it is very unlikely we can ever achieve the simplicity of the chisel for our
frameworks, but we aim for the contrast: that we can employ them to rigor-
ously, securely and dependably design the large and complex systems which
are increasingly required of us. And surely, in that complexity, is there also a
certain beauty.

How this area of formal specification will further develop in the future is
a very interesting question. One imagines and hopes that the readers of this
very volume will be among those making significant contributions towards
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answering that. Even if those future frameworks little resemble the ones pre-
sented here, we can be sure of one thing: their development will require the
good taste, conceptual innovation and mathematical sophistication that we
see exemplified in this volume.
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