
Preface

Evolutionary Computation (EC) has become an important and timely method-
ology of problem solving among many researchers working in the area of
computational intelligence. The population based collective learning process,
self adaptation and robustness are some of the key features of evolutionary
algorithms when compared to other global optimization techniques. Evolu-
tionary Computation has been widely accepted for solving several important
practical applications in engineering, business, commerce, etc. As the opti-
mization problems to be tackled in the future will be growing in terms of
complexity and volume of data, we can envision a rapidly growing role of the
EC over the passage of time.

Evolutionary design of intelligent systems is gaining much popularity
due to its capabilities in handling several real world problems involving op-
timization, complexity, noisy and non-stationary environment, imprecision,
uncertainty and vagueness. This edited volume is aimed to present the latest
state-of-the-art methodologies in ’Engineering Evolutionary Intelligent Sys-
tems’. This book deals with the theoretical and methodological aspects, as well
as various EC applications to many real world problems originating from sci-
ence, technology, business or commerce. This volume comprises of 15 chapters
including an introductory chapter which covers the fundamental definitions
and outlines some important research challenges. These fifteen chapters are
organized as follows.

In the first Chapter, Abraham and Grosan elaborate on various schemes
of evolutionary design of intelligent systems. Generic hybrid evolutionary in-
telligent system architectures are presented with a detailed review of some of
the interesting hybrid frameworks already reported in the literature.

Oh and Pedrycz introduce an advanced architecture of genetically opti-
mized Hybrid Fuzzy Neural Networks (gHFNN) resulting from a synergistic
usage of the genetic optimization-driven hybrid system generated by combin-
ing Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN).
FNNs support the formation of the premise part of the rule-based struc-
ture of the gHFNN. The consequence part of the gHFNN is designed using

XIV Preface

PNNs. The optimization of the FNN is realized with the aid of a standard
back-propagation learning algorithm and genetic optimization.

In the third Chapter, Oh and Pedrycz introduce Self-Organizing Neu-
ral Networks (SONN) that is based on a genetically optimized multilayer
perceptron with Polynomial Neurons (PNs) or Fuzzy Polynomial Neurons
(FPNs). In the conventional SONN, an evolutionary algorithm is used to ex-
tend the main characteristics of the extended Group Method of Data Handling
(GMDH) method, that utilizes the polynomial order as well as the number of
node inputs fixed at the corresponding nodes (PNs or FPNs) located in each
layer during the development of the network. The genetically optimized SONN
(gSONN) results in a structurally optimized structure and comes with a higher
level of flexibility in comparison to the one encountered in the conventional
SONN.

Kim and Park discuss a new design methodology of the self-organizing
technique which builds upon the use of evolutionary algorithms. The self-
organizing network dwells on the idea of group method of data handling. The
order of the polynomial, the number of input variables, and the optimal num-
ber of input variables and their selection are encoded as a chromosome. The
appropriate information of each node is evolved accordingly and tuned grad-
ually using evolutionary algorithms. The evolved network is a sophisticated
and versatile architecture, which can construct models from a limited data set
as well as from poorly defined complex problems.

In the fifth Chapter, Ramanathan and Guan propose the Recursive
Pattern-based Hybrid Supervised (RPHS) learning algorithm that makes use
of the concept of pseudo global optimal solutions to evolve a set of neural
networks, each of which can solve correctly a subset of patterns. The pattern-
based algorithm uses the topology of training and validation data patterns to
find a set of pseudo-optima, each learning a subset of patterns.

Ramanathan and Guan improve the RPHP algorithm (as discussed in
Chapter 5) by using a combination of genetic algorithm, weak learner and
pattern distributor. The global search component is achieved by a cluster-
based combinatorial optimization, whereby patterns are clustered according
to the output space of the problem. A combinatorial optimization problem is
therefore formed, which is solved using evolutionary algorithms. An algorithm
is also proposed to use the pattern distributor to determine the optimal num-
ber of recursions and hence the optimal number of weak learners suitable for
the problem at hand.

In the seventh Chapter, Markowska-Kaczmar proposes two methods of
rule extraction referred to as REX and GEX. REX uses propositional fuzzy
rules and is composed of two methods REX Michigan and REX Pitt. GEX
takes an advantage of classical Boolean rules. The efficiency of REX and
GEX were tested using different benchmark data sets coming from the UCI
repository.

Tushar and Pratihar deals with Takagi and Sugeno Fuzzy Logic Con-
trollers (FLC) by focusing on their design process. This development by

Preface XV

clustering the data based on their similarity among themselves and then
cluster-wise regression analysis is carried out, to determine the response equa-
tions for the consequent part of the rules. The performance of the developed
cluster-wise linear regression approach; cluster-wise Takagi and Sugeno model
of FLC with linear membership functions and cluster-wise Takagi and Sugeno
model of FLC with nonlinear membership functions are illustrated using two
practical problems.

In the ninth Chapter, Prosperi and Ulivi propose fuzzy relational mod-
els for genotypic drug resistance analysis in Human Immunodeficiency Virus
type 1 (HIV-1). Fuzzy logic is introduced to model high-level medical lan-
guage, viral and pharmacological dynamics. Fuzzy evolutionary algorithms
and fuzzy evaluation functions are proposed to mine resistance rules, to
improve computational performance and to select relevant features.

Azzini and Tettamanzi present an approach to the joint optimization of
neural network structure and weights, using backpropagation algorithm as a
specialized decoder, and defining a simultaneous evolution of architecture and
weights of neural networks.

In the eleventh Chapter, Dempsey et al. present grammatical genetic
programming to generate radial basis function networks. Authors tested
the hybrid algorithm considering several benchmark classification problems
reporting on encouraging performance obtained there.

In the sequel Cha et al. propose neural-genetic model to wave-induced
liquefaction, which provides a better prediction of liquefaction potential. The
wave-induced seabed liquefaction problem is one of the most critical issues for
analyzing and designing marine structures such as caissons, oil platforms and
harbors. In the past, various investigations into wave-induced seabed lique-
faction have been carried out including numerical models, analytical solutions
and some laboratory experiments. However, most previous numerical studies
are based on solving complicated partial differential equations. The neural-
genetic simulation results illustrate the applicability of the hybrid technique
for the accurate prediction of wave-induced liquefaction depth, which can also
provide coastal engineers with alternative tools to analyze the stability of
marine sediments.

In the thirteenth Chapter, Quintero and Pierre propose a multi-population
Memetic Algorithm (MA) with migration and elitism to solve the problem of
assigning cells to switches as a design step of large-scale mobile networks. Be-
ing well-known in the literature to be an NP-hard combinatorial optimization
problem, this task requires the recourse to heuristic methods, which can prac-
tically lead to good feasible solutions, not necessarily optimal, the objective
being rather to reduce the convergence time toward these solutions. Compu-
tational results reported on an extensive suite of extensive tests confirm the
efficiency and the effectiveness of MA to provide good solutions in compar-
ison with other heuristics well-known in the literature, especially those for
large-scale cellular mobile networks.

XVI Preface

Alba and Dorronsoro solve the Capacitated Vehicle Routing Problem
(CVRP) of 160 instances using a Cellular genetic algorithm (cGA) hybridized
with a problem customized recombination operation, an advanced muta-
tion operator integrating three mutation methods, and an inclusion of two
well-known local search algorithms formulated for routing problems.

In the last Chapter, Achtnig investigates the use of Particle Swarm Opti-
mization (PSO) in dealing with optimization problems of very high dimension.
It has been found that PSO with some of the concepts originating from
evolutionary algorithms, such as a mutation operator, can in many cases sig-
nificantly improve the performance of the PSO. Further improvements have
been reported with the addition of a random constriction coefficient.

We are very much grateful to all the authors of this volume for sharing
their expertise and presenting their recent research findings. Our thanks go
to the referees for their outstanding service and a wealth of critical yet highly
constructive comments. The Editors would like to thank Dr. Thomas Ditzinger
(Springer Engineering In house Editor, Studies in Computational Intelli-
gence Series), Professor Janusz Kacprzyk (Editor-in-Chief, Springer Studies
in Computational Intelligence Series) and Ms. Heather King (Editorial Assis-
tant, Springer Verlag, Heidelberg) for the editorial assistance and excellent
collaboration during the development of this volume.

We hope that the reader will share our excitement and find the volume
‘Engineering Evolutionary Intelligent Systems’ both useful and inspiring.

Trondheim, Norway Ajith Abraham
Cluj-Napoca, Romania Crina Grosan
Alberta, Canada Witold Pedrycz

Genetically Optimized Hybrid Fuzzy Neural
Networks: Analysis and Design of Rule-based
Multi-layer Perceptron Architectures

Sung-Kwun Oh and Witold Pedrycz

Summary. In this study, we introduce an advanced architecture of genetically
optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive
design methodology supporting their construction. A series of of numeric experi-
ments is included to illustrate the performance of the networks. The construction
of gHFNN exploits fundamental technologies of Computational Intelligence (CI),
namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture
of the gHFNNs results from a synergistic usage of the genetic optimization-driven
hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polyno-
mial Neural Networks (PNN). In this tandem, a FNN supports the formation of the
premise part of the rule-based structure of the gHFNN. The consequence part of
the gHFNN is designed using PNNs. The optimization of the FNN is realized with
the aid of a standard back-propagation learning algorithm and genetic optimization.
We distinguish between two types of the fuzzy rule-based FNN structures showing
how this taxonomy depends upon the type of a fuzzy partition of input variables.
As to the consequence part of the gHFNN, the development of the PNN dwells
on two general optimization mechanisms: the structural optimization is realized via
GAs whereas in case of the parametric optimization we proceed with a standard
least square method-based learning. Through the consecutive process of such struc-
tural and parametric optimization, an optimized PNN is generated in a dynamic
fashion.

To evaluate the performance of the gHFNN, the models are experimented with
several representative numerical examples. A comparative analysis demonstrates
that the proposed gHFNN come with higher accuracy as well as superb predictive
capabilities when comparing with other neurofuzzy models.

1 Introductory remarks

Recently, a lot of attention has been devoted towards advanced techniques
of modeling complex systems inherently associated with nonlinearity, high-
order dynamics, time-varying behavior, and imprecise measurements. It is
anticipated that efficient modeling techniques should allow for a selection
of pertinent variables and in this way help cope with dimensionality of the
problem at hand. The models should be able to take advantage of the existing
S.-K. Oh and W. Pedrycz: Genetically Optimized Hybrid Fuzzy Neural Networks: Analysis

and Design of Rule-based Multi-layer Perceptron Architectures, Studies in Computational

Intelligence (SCI) 82, 23–57 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

24 S.-K. Oh and W. Pedrycz

domain knowledge (such as a prior experience of human observers or process
operators) and augment it by available numeric data to form a coherent data-
knowledge modeling entity. The omnipresent modeling tendency is the one
that exploits techniques of Computational Intelligence (CI) by embracing
fuzzy modeling [1–6], neurocomputing [7], and genetic optimization [8–10].
Especially the two of the most successful approaches have been the hybridiza-
tion attempts made in the framework of CI [11,12]. Neuro-fuzzy systems are
one of them [13–20]. A different approach to hybridization leads to genetic
fuzzy systems. Lately to obtain a highly beneficial synergy effect, the neural
fuzzy systems and the genetic fuzzy systems hybridize the approximate infer-
ence method of fuzzy systems with the learning capabilities of neural networks
and evolutionary algorithms [21].

In this study, we develop a hybrid modeling architecture, called genet-
ically optimized Hybrid Fuzzy Neural Networks (gHFNN). In a nutshell, a
gHFNN is composed of two main substructures driven by genetic optimiza-
tion, namely a rule-based Fuzzy Neural Network (FNN) and a Polynomial
Neural Network (PNN). From a standpoint of rule-based architectures (with
their rules assuming the general form “if antecedent then consequent”), one
can regard the FNN as an implementation of the antecedent (or premise)
part of the rules while the consequent part is realized with the aid of PNN.
The resulting gHFNN is an optimized architecture designed by combining the
conventional Hybrid Fuzzy Neural Networks (HFNN [19,20,34,35]) with ge-
netic algorithms (GAs). The conventional HFNNs exhibits FNN architecture
treated as the premise part while the PNN structures are used in common as
the conclusion part of HFNNs. In this study, the FNNs come with two kinds of
network architectures, namely fuzzy-set based FNN and fuzzy-relation based
FNN. The topology of the network proposed here relies on fuzzy partitions
realized in terms of fuzzy sets or fuzzy relations that its input variables are
considered separately or simultaneously. Each of them is placed into the two
main categories according to the type of fuzzy inference, namely the simplified
and linear fuzzy inference. Moreover the PNN structure is optimized by GAs,
that is, a genetically optimized PNN (gPNN) is designed and the gPNN is
applied to the consequence part of gHFNN. The gPNN that exhibits a flexi-
ble and versatile structure is constructed on a basis of PNN [14,15] and GAs
[8–10]. gPNN leads to the effective reduction of the depth of the networks as
well as the width of the layer, and the avoidance of a substantial amount of
time-consuming iterations for finding the most preferred networks in conven-
tional PNN. In this network, the number of layers and number of nodes in
each layer are not predetermined (unlike in case of most neural-networks) but
can be generated in a dynamic fashion. The design procedure applied in the
construction of each layer of the PNN deals with its structural optimization
involving the selection of optimal nodes (or PNs) with specific local charac-
teristics (such as the number of input variables, the order of the polynomial,
and a collection of the specific subset of input variables) and addresses specific
aspects of parametric optimization.

Genetically Optimized Hybrid Fuzzy Neural Networks 25

The study is organized in the following manner. First, Section 2 delivers
a brief introduction to the architecture of the conventional HFNN. In Section
3, we discuss a structure of the genetically optimized HFNN (gHFNN) and
elaborate on the development of the networks. The detailed genetic design
of the gHFNN model comes with an overall description of a detailed design
methodology of the gHFNN presented in Section 4. In Section 5, we report on
a comprehensive set of experiments. Finally concluding remarks are covered
in Section 6.

2 The architecture of conventional Hybrid Fuzzy Neural
Networks (HFNN)

The conventional HFNN architecture combined with the FNN and PNN is
visualized in Figs. 1–3 [19,20,34,35]. Let us recall that the fuzzy inference
(both simplified and linear) -based FNN is constructed with the aid of the
space partitioning realized by not only fuzzy set defined for each input variable
but also fuzzy relations that effectively capture an ensemble of input variables.
These networks arise as a synergy between two other general constructs such
as FNN and PNN. Based on the different PNN topologies (see Table 1), the
HFNN embraces two kinds of architectures, namely a basic and modified one.
Moreover for each architecture of the HFNN, we identified two cases; refer to
Fig. 1 for the overall taxonomy.

According to the alternative position of two connection points (interface)
in case of th usage of FS FNN shown in Fig. 2, we realize a different com-
bination of FNN and PNN while forming the HFNN architecture. Especially
when dealing with the interface of FNN realized by means of PNNs, we note
that if input variables to PNN used in the consequence part of HFNN are less
than three (or four), the generic type of HFNN does not generate a highly
versatile structure. As visualized in Figs. 1–3, we identify also two types of
the topology, namely a generic and advanced type. Observe that in Figs. 2–3,
zi’(Case 2) in the 2nd layer or higher indicates that the polynomial order of

Simplified
fuzzy inference

Linear
fuzzy inference

Generic
type

Advanced
type

Basic

Modified

case 1
case 2
case 1
case 2

Basic

Modified

case 1
case 2
case 1
case 2

Generic type
Basic HFNN

Generic type
Modified HFNN

Advanced type
Basic HFNN

Advanced type
Modified HFNN

Premise part(FNN) Consequence part(PNN)

I n
 t

e
r f

 a
 c

 e

Fig. 1. Overall diagram for generating the conventional HFNN architecture

26 S.-K. Oh and W. Pedrycz

x1

x2

A11

A12

A21

A22

ŷ

Layer 2
Layer 3 Layer 1

Layer kw

x1

x2

N

N

N

N

Layer 4

Layer 1

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

••• PD
PD

PD

Partial Description
(Polynomial Neuron)

xp

xq
zi=f(xp,xq)

Partial Description
(Polynomial Neuron)

xp

xq

zi=f(xp,xq) - Case 1

zi'=f '(xp,xq) - Case 2

Partial Description
(Polynomial Neuron)xp zi=f(xp)

Consequence part(PNN)

Generic Type

Partial Description
(Polynomial Neuron)xp

zi=f (xp) - Case 1

zi'=f '(xp) - Case 2

•••

PD PD

PD

PD

PD

PD

PD

PD

••

Advanced Type

N

N

N

N

∑

∑

fi

ŷPD
PD

PD

Premise part(FNN)

Layer 5

PD

PD

PD

PD

PD

PD

NOP

NOP

NOP

NOP

NOP

NOP

NOP

aijA11

A12

A21

A22

(a) Basic HFNN with simplified fuzzy
inference

Partial Description

(Polynomial Neuron)

xp

xq

zi = f (xp,xq)

Partial Description

(Polynomial Neuron)
xp zi= f (xp)

Consequence part(PNN)

Generic Type

Partial Description

(Polynomial Neuron)
xp

zi= f (xp) - Case 1

zi'= f '(xp) - Case 2

Advanced Type

fi

aij

Layer 2
Layer 1

N Π

Π

Π

Π

Π

Π

Π

Π

N

∑

∑

x1 wsij

wij

wsij

wij

1

N

N

∑

∑

xi 1

Premise part(FNN)

N

N

∑

∑

x1 1

N

N

∑

∑

x i 1

∑

∑

Layer 5

ŷ

Layer 1

Layer k

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

••• PD

PD

PD

PD

Partial Description

(Polynomial Neuron)

xp

xq

zi= f (xp,xq,xr) - Case 1

zi '= f '(xp,xq,x r) - Case 2xr

•••

PD PD
PD

PD

PD

PD

••

ŷPD

PD

PD

PD

PD

PD

PD

PD

PD

PD

NOP

NOP

NOP

NOP

NOP

NOP

Layer 3 Layer 4

(b) Modified HFNN with linear fuzzy
inference

Fig. 2. FS HFNN architecture combined with FS FNN and PNN

ŷ

Layer 1

Layer k

•••

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

••

PD

PD

PD

PD

PD

PD

PD

PD

••

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

••• PD
PD

PD

Partial Description
(Polynomial Neuron)

xp

xq

zi=f (xp,xq)
Partial Description

(Polynomial Neuron)

xp

xq

zi=f(xp,xq) - case 1

zi'=f '(xp,xq) - case 2

ŷPD
PD

PD

Partial Description
(Polynomial Neuron)

xp zi=f(xp)

Consequence part(PNN)Premise part(FR_FNN)

Generic Type

Advanced Type

Partial Description
(Polynomial Neuron)

xp

zi=f(xp) - case 1

zi'=f '(xp) - case 2

Layer 2
Layer 3

x1

x2

NΠ

Π

Π

Π

Π

Π

Π

Π

N

N

N

Layer 4

Layer 1 Layer 5

A11

A12

A21

A22

w

x1

x2

N

N

N

N

A11

A12

A21

A22

fi

fi

NOP

NOP

NOP

NOP

••

NOP

NOP

NOP

NOP

••

(a) Basic HFNN with simplified fuzzy
inference

Partial Description

(Polynomial Neuron)

xp

xq
zi=f (xp,xq)

Partial Description

(Polynomial Neuron)
xp zi=f (xp)

Consequence part(SOPNN)Premise part(FR_FNN)

Generic Type

Advanced Type

Partial Description

(Polynomial Neuron)
x p

zi=f(xp) - case 1

zi'=f '(xp) - case 2

fi

fi

NΠ
Π
Π Π

Π

Π

Π

Π

Π

Π

Π

Π

Π

Π
Π
Π

N
N
N

x1

xi

1 ∑
w0j

wij

Layer 2
Layer 1

Layer 5

∑

∑

∑

N
N
N
N

x1

xi

1 ∑
w0j

wij

∑

∑

∑

ŷ

Layer 1

Layer k

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

••• PD

PD

PD

PD

Partial Description

(Polynomial Neuron)

xp

xq

zi=f (xp,xq,xr) - case 1

zi'=f '(xp,xq,xr) - case 2xr

•••

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

••

PD

PD

PD

PD

PD

PD

PD

PD

••

NOP

NOP

NOP

NOP

••

NOP

NOP

NOP

NOP

•• ŷPD

PD

PD

PD

Layer 3 Layer 4

(b) Modified HFNN with linear fuzzy
inference

Fig. 3. FR HFNN architecture combined with FR FNN and PNN

Genetically Optimized Hybrid Fuzzy Neural Networks 27

Table 1. Taxonomy of various PNN architectures

Layer of PNN No. of input
variables

of polynomial

Order of
Polynomial

PNN architecture

(1) p = q : Basic PNN

lst layer p Type P a) Type P = Type Q: Case1

b) Type P�=Type Q: Case2

(2) p �=q : Modified PNN

2nd or higher q Type Q a) Type P = Type Q: Case1

layer b) Type P �= Type Q: Case2

(p= 2,3,4,5, q =2,3,4,5 ; P= 1,2,3, Q= 1,2,3)

the PD of each node has a different type in comparison with zi of the lst layer.
The “NOP” node states that the Ath node of the current layer is the same as
the node positioned in the previous layer (NOP stands for “no operation”).
An arrow to the NOP node is used to show that the same node moves from
the previous layer to the current one.

3 The architecture and development of genetically
optimized HFNN (gHFNN)

In this section, we elaborate on the architecture and a development process of
the gHFNN. This network emerges from the genetically optimized multi-layer
perceptron architecture based on fuzzy set or fuzzy relation-based FNN, PNN
and GAs. In the sequel, gHFNN is designed by combining the conventional
Hybrid Fuzzy Neural Networks (HFNN) with GAs. These networks result as
a synergy between two other general constructs such as FNN [24,32] and PNN
[14,15].

First, we briefly discuss these two classes of models by underlining their
profound features in sections 3.1 and 3.2, respectively.

3.1 Fuzzy neural networks based on genetic optimization

We consider two kinds of FNNs (viz. FS FNN and FR FNN) based on two
types of fuzzy inferences, namely, simplified and linear fuzzy inferences. The
structure of the FNN is the same as the used in the premise of the conventional
HFNN. The FNN is designed by using space partitioning realized in terms of
the individual input variables or an ensemble of all variables. Its each topology
is concerned with a granulation carried out in terms of fuzzy sets defined
in each input variable or fuzzy relations that capture an ensemble of input
variables respectively. The fuzzy partitions formed for each case lead us to the
topologies visualized in Figs. 4–5.

28 S.-K. Oh and W. Pedrycz

x1

ŷ

µ1j

w1j

xi

xm

µij

wij

µmj

wmj

Layer 2 Layer 3
Layer 4

Layer 1 Layer 5

Layer 6

f1(x1)

fi
(xi

)

fm(xm)

N

N

N

N

N

N

N

N

N

Σ

Σ

Σ

Σ

(a) Simplified fuzzy inference (Scheme I)

x1

ŷ

µ12

µ11
N

N
∑

Π

Π

Π

Π

∑

∑

ws11

ws12

w12

w11

∑

1

Cy11

Cy12

xi

µij N

N
∑

∑

∑

1
Cyij

wsij

wij

IF

THEN

Layer 2 Layer 3
Layer 4

Layer 1 Layer 5

Layer 6

f1(x1)

fi (xi)

(b) Linear fuzzy inference (Scheme II)

Fig. 4. Topology of FS FNN by using space partitioning in terms of individual
input variables

µi wi
µi

fi
NΠ

Π

Π

Π

Π

Π

Π

Π

Π N

N

N

N

N

N

N

N

∑

x1

xk

ŷ

Layer 2

Layer 3 Layer 4

Layer 1

Layer 5

Layer 6

(a) Simplified fuzzy inference (Scheme I)

NΠ

Π

Π

Π

Π

Π

Π

Π

N

N

N

∑

x1

xk

ŷ

µi µi

w0i

w1i

wki

Cyi

fi

1
∑

∑

∑

∑

IF

THEN

Layer 1
Layer 2 Layer 3 Layer 4 Layer 5

Layer 6

(b) Linear fuzzy inference (Scheme II)

Fig. 5. Topology of FR FNN by using space partitioning in terms of an ensemble
of input variables

Genetically Optimized Hybrid Fuzzy Neural Networks 29

The notation in these figures requires some clarification. The “circles” de-
note units of the FNN while “N” identifies a normalization procedure applied
to the membership grades of the input variable xi. The output fi(xi) of the
“
∑

” neuron is described by some nonlinear function fi. Not necessarily fi is
a sigmoid function encountered in conventional neural networks but we allow
for more flexibility in this regard. Finally, in case of FS FNN, the output of
the FNN ŷ is governed by the following expression;

ŷ = f1(x1) + f2(x2) + · · · + fm(xm) =
m∑

i=1

fi(xi) (1)

with m being the number of the input variables (viz. the number of the outputs
fi’s of the “

∑
” neurons in the network). As previously mentioned, FS FNN is

affected by the introduced fuzzy partition of each input variable. In this sense,
we can regard each fi given by fuzzy rules as shown in Table 2(a). Table
2(a) represents the comparison of fuzzy rules, inference result and learning
for two types of FNNs. In Table 2(a), Rj is the j-th fuzzy rule while Aij

denotes a fuzzy variable of the premise of the corresponding fuzzy rule and
represents membership function µij . In the simplified fuzzy inference, ωij is
a constant consequence of the rules and, in the linear fuzzy inference, ωsij

is a constant consequence and ωij is an input variable consequence of the
rules. They express a connection (weight) existing between the neurons as we
have already visualized in Fig. 4. Mapping from xi to fi(xi) is determined
by the fuzzy inferences and a standard defuzzification. The inference result
for individual fuzzy rules follows a standard center of gravity aggregation. An
input signal xi activates only two membership functions, so inference results
can be written as outlined in Table 2(a) [23,24]. The learning of FNN is realized
by adjusting connections of the neurons and as such it follows a standard
Back-Propagation (BP) algorithm [23,24]. The complete update formulas are
covered in Table 2(a). Where η is a positive learning rate and α is a positive
momentum coefficient. The case of FR FNN, see Table 2(b), is carried out in
a same manner as outlined in Table 2(a) (the case of FS FNN).

The task of optimizing any model involves two main phases. First, a class
of some optimization algorithms has to be chosen so that it meets the re-
quirements implied by the problem at hand. Secondly, various parameters of
the optimization algorithm need to be tuned in order to achieve its best per-
formance. Along this line, genetic algorithms (GAs) viewed as optimization
techniques based on the principles of natural evolution are worth consider-
ing. GAs have been experimentally demonstrated to provide robust search
capabilities in problems involving complex spaces thus offering a valid solu-
tion to problems requiring efficient searching. It is instructive to highlight the
main features that tell GA apart from some other optimization methods: (1)
GA operates on the codes of the variables, but not the variables themselves.
(2) GA searches optimal points starting from a group (population) of points
in the search space (potential solutions), rather than a single point. (3) GA’s

30 S.-K. Oh and W. Pedrycz

Table 2. Comparison of simplified with linear fuzzy inference-based FNNs

(a) In case of using FS FNN

Structure Simplified fuzzy inference
(Scheme I)

Linear fuzzy inference
(Scheme II)

R1 : If xi is Ai1 then Cyi1 = ωi1 R1 : · · · then Cyi1 = ωsi1 + xiωi1

...
...

Fuzzy rules Rj : If xi is Aij then Cyij = ωij Rj : · · · then Cyij = ωsij + xiωij

...
...

Rz : If xi is Aiz then Cyiz = ωiz Rz : · · · then Cyiz = ωsiz + xiωiz

Inference
result

fi(xi) =

z∑

j=1

µij(xi) · ωij

z∑

j=1

µij(xi)

= µik · (xi)ωik

+ µik(xi) · ωik+1

ŷ =
n∑

i=1

fi(xi)

fi(xi) =

z∑

j=1
(µij(xi) · (ωsij + xiωij))

z∑

j=1
µij(xi)

= µik(xi) · (ωsik + xiωik)

+ µik+1(xi)

· (ωsik+1 + xiwik+1)

ŷ =
n∑

i=1

fi(xi)

Learning
∆ωij = 2 · η · (yp − ŷp) · µij(xi)

+ α(ωij(t) − ωij(t − 1))

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∆ωsij = 2 · η · (y − ŷ) · µij

+ α(ωsij (t) − ωsij(t − 1))

∆ω = 2 · η · (y − ŷ) · µij · xi

+ α(ωij (t) − ωij(t − 1))

(b) In case of using FR FNN

Structure fuzzy inference Linear

R1 : If x1 is A11, · · · , and xk is Ak1

...
Premise part Ri : If x1 is A1i, · · · , and xk is Aki

...
Fuzzy Rn : If x1 is A1n, · · · , and xk is Akn

rules then Cy1 = ω1 then Cy1 = ω01 + ω11 · x1 + · · ·+ ωk1 · xk

Consequence
part

...
...

then Cyi = ωi then Cyi = ω0i + ω1i · x1 + · · · + ωki · xk

...
...

then Cyn = ωn then Cyn = ω0n +ω1n ·x1 + · · ·+ωkn ·xk

(continued)

Genetically Optimized Hybrid Fuzzy Neural Networks 31

Table 2. (Continued)

Inference result

ŷ =

n∑

i=1

fi

=
n∑

i=1

µ̄i · ωi

=
n∑

i=1

µi · ωi
n∑

i=1

µi

ŷ =

n∑

i=1

fi

=
n∑

i=1

µ̄i · (ω0i + ω1i · x1 + ωki · xk)

=
n∑

i=1

µi · (ω0i + ω1i · x1 + ωki · xk)
n∑

i=1

µi

Learning

∆ωi = 2 · η · (y − ŷ) · µ̄i

+ α(ωi(t)

− ωi(t − 1))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∆ω0i = 2 · η · (y − ŷ) · µ̄i + α(ω0i(t)

− ω0i(t − 1))

∆ωki = 2 · η · (y − ŷ) · µ̄i · xk

+ α(ωki(t) − ωki(t − 1))

search is directed only by some fitness function whose form could be quite
complex; we do not require its differentiability [8–10].

In order to enhance the learning of the FNN, we use GAs to adjust learning
rate, momentum coefficient and the parameters of the membership functions
of the antecedents of the rules [19,20,34,35].

3.2 Genetically optimized PNN (gPNN)

As underlined, the PNN algorithm is based upon the GMDH [22] method and
utilizes a class of polynomials such as linear, quadratic, modified quadratic,
etc. to describe basic processing realized there. By choosing the most signif-
icant input variables and an order of the polynomial among various types of
forms available, we can obtain the best one - it comes under a name of a
partial description (PD). It is realized by selecting nodes at each layer and
eventually generating additional layers until the best performance has been
reached. Such a methodology leads to an optimal PNN structure [14,15].

In addressing the problems with the conventional PNN (see Fig. 6), we
introduce a new genetic design approach; in turn we will be referring to these
networks as genetically optimized PNN (to be called “gPNN”). When we
construct PNs of each layer in the conventional PNN, such parameters as
the number of input variables (nodes), the order of polynomial, and input
variables available within a PN are fixed (selected) in advance by the designer.
This could have frequently contributed to the difficulties in the design of the
optimal network. To overcome this apparent drawback, we resort ourselves to
the genetic optimization, see Figs. 8–9 of the next section for more detailed
flow of the development activities.

The overall genetically-driven structural optimization process of PNN is
shown in Fig. 7. The determination of the optimal values of the parame-
ters available within an individual PN (viz. the number of input variables,

32 S.-K. Oh and W. Pedrycz

••

z1

z2

z3

z4

•

•

•

PN

PN

PN

PN

• PN

PN

PN

PN

PN

PN

PN

PN

PN

••

PN

Polynomial Neuron(PN)

zp

zq

z

Polynomial order

2

Input variables

Partial Description(PD) : Type 2

f̂

Polynomial Neural Networks

zp, zq

c0+ c1zp+ c2zq+ c3z2p + c4z2q + c5zpzq

Fig. 6. A general topology of the PN-based PNN: note a biquadratic polynomial
occurring in the partial description

E

Selection of the no.

of input variables

Selection of

input variables

Selection of the

polynomial order

PNs Selection

Genetic

design

Layer

Generation

1st

layer

S S

E : Entire inputs, S : Selected PNs, zi : Preferred outputs in the ith stage (zi = z1i, z2i, ..., zWi)

Selection of the no.

of input variables

Selection of

input variables

Selection of the

polynomial order

PNs Selection

Layer

Generation

2nd stage

z1 z2

1st stage

Genetic

design

2nd

layer

Fig. 7. Overall genetically-driven structural optimization process of PNN

the order of the polynomial, and input variables) leads to a structurally and
parametrically optimized network. As a result, this network is more flexible
as well as it exhibits simpler topology in comparison to the conventional PNN
discussed in the previous research [14,15].

For the optimization of the PNN model, GAs uses the serial method of bi-
nary type, roulette-wheel used in the selection process, one-point crossover in
the crossover operation, and a binary inversion (complementation) operation
in the mutation operator. To retain the best individual and carry it over to
the next generation, we use elitist strategy [8,9].

Genetically Optimized Hybrid Fuzzy Neural Networks 33

GAs

Simplified
&

Linear
fuzzy inference

G
en

et
ic

al
ly

 o
pt

im
iz

ed
 H

yb
rid

 F
uz

zy
 N

eu
ra

l
N

et
w

or
ks

 (g
H

F
N

N
)

Premise part(FNN) Consequence part(gPNN)

In
te

rf
ac

e

GAs

La
ye

r g
en

er
at

io
n

S : Selected PNs, zi : Outputs of the ith layer, xj : Input variables of the jth layer (j = i + 1)

PN

PN

PN

PN

1st layer

GAs

La
ye

r g
en

er
at

io
n

2nd layer

S SMembership
parameters PN

PN

PN

PN

x2= z1 x3= z2

Fig. 8. Overall diagram for generation of gHFNN architecture

3.3 Optimization of gHFNN topologies

The topology of gHFNN is constructed by combining fuzzy set or fuzzy
relation-based FNN for the premise part of the gHFNN with PNN being used
as the consequence part of gHFNN. These networks emerge through a syn-
ergy between two other general constructs such as FNNs and gPNNs. In what
follows, the gHFNN is composed of two main substructures driven by genetic
optimization; see Figs. 8–9. The role of FNNs arising at the premise part is
to support learning and interact with input as well as granulate the corre-
sponding input space (viz. converting the numeric data into their granular
representatives emerging at the level of fuzzy sets). Especially, two types of
fuzzy inferences-based FNN (viz. FS-FNN or FR-FNN) realized with the fuzzy
partitioning of individual input variables or an ensemble of input variables
are considered to enhance the adaptability of the hybrid network architec-
ture. One should stress that the structure of the consequent gPNN is not
fixed in advance but becomes dynamically organized during a growth process.
In essence, the gPNN exhibits an ability of self-organization. The gPNN algo-
rithm can produce an optimal nonlinear system by selecting significant input
variables among dozens of those available at the input and forming various
types of polynomials. Therefore, for the very reason we selected FNN and
gPNN in order to design the gHFNN architecture.

One may consider some other hybrid network architectures such as a com-
bination of FNNs and MLPs as well as ANFIS-like models combined with
MLPs. While attractive on a surface, such hybridization may lead to several
potential problems: 1) The repeated learning and optimization of each of the
contributing structure (such as ANFIS and MLP) may result in excessive
learning time as well as generate quite complex networks for relatively simple
systems and 2) owing to its fixed structure, it could be difficult to generate
the flexible topologies of the networks that are required to deal with highly
nonlinear dependencies.

34 S.-K. Oh and W. Pedrycz

START

Configuration of input variables for consequence GAs
& initial information and gPNN nsequence part

Initialization of population

Generation of a PN by a
chromosome in population

Evaluation of PNs(Fitness)

Elitist strategy &
Selection of PNs(W)

Stop
condition

Stop
condition

Generate a layer of gPNN
A layer consists of optimal PNs

selected by GAs

Reproduction

Roulette-wheel selection
One-point crossover

Invert mutation
The outputs of the preserved PNs
serve as new inputs to the next

layer

gHFNN
gHFNN is organized by FS_FNN

and layers with optimal PNs

Yes

No

Yes

No

END

Computing activation degrees
of linguistic labels

Normalization of an activation
degree of the rule

Multiplying the normalized
activation degrees of rules by

connection weight

1

2

Connection
Point ?

Fuzzy inference
for output of the rules

Output of FS_FNN/FR_FNN

GAs

Premise part of gHFNN :
FNN

Consequence part of gHFNN :
gPNN

A
gj

us
tm

en
t

of
 p

ar
am

et
er

s
of

 M
F

 u
si
ng

 G
A

s
&

 c
on

ne
ct

io
n

w
ei

gh
t

us
in

g
B
P

x1 = z1, x2 = z2, ..., xW = zW

Fig. 9. Overall design flowchart of the gHFNN architecture

4 The algorithms and design procedure of genetically
optimized HFNN (gHFNN)

In this section, we elaborate on the algorithmic details of the design method
by considering the functionality of the individual layers in the network archi-
tectures. The design procedure for each layer in the premise and consequence
of gHFNN comprises of the following steps:

Genetically Optimized Hybrid Fuzzy Neural Networks 35

4.1 The premise of gHFNN: in case of FS FNN

[Layer 1] Input layer: The role of this layer is to distribute the signals to the
nodes in the next layer.
[Layer 2] Computing activation degrees of linguistic labels: Each node in
this layer corresponds to one linguistic label (small, large, etc.) of the input
variables in layer 1. The layer determines a degree of satisfaction (activation)
of this label by the input.
[Layer 3] Normalization of a degree activation (firing) of the rule: As de-
scribed, a degree of activation of each rule was calculated in layer 2. In this
layer, we normalize the activation level by using the following expression.

µ̄ij =
µij

n∑

j=1

µij

=
µik

µik + µik+1
= µik (2)

where n is the number of membership function for each input variable. An
input signal xi activates only two membership functions simultaneously and
the sum of grades of these two neighboring membership functions labeled by
k and k + 1 is always equal to 1, that is µik(xi) + µik+1(xi) = 1, so that this
leads to a simpler format as shown in (2) [23,24].
[Layer 4] Multiplying a normalized activation degree of the rule by connection
(weight): The calculated activation degree at the third layer is now calibrated
through the connections, that is

aij = µ̄ij × Cyij = µij × Cyij (3)
{

Simplified : Cyij = ωij

Linear : Cyij = ωsij + ωij · xi

(4)

If we choose CP (connection point) 1 for combining FS FNN with PNN as
shown in Fig. 10, aij is given as the input variable of the PNN. If we choose
CP 2, fi(xi) corresponds to the input signal to the output layer of FNN viewed
as the input variable of the PNN.
[Layer 5] Fuzzy inference for output of the rules: Considering Fig. 4, the
output of each node in the 5th layer of the premise part of gHFNN is inferred

x1

ŷ

µ1j

w1j

µij

wij

aijN

N
∑

∑

xi

N

N
∑

CP 1

CP 2

fi(xi)

Fig. 10. Connection points used for combining FS FNN (Simplified) with gPNN

36 S.-K. Oh and W. Pedrycz

by the center of gravity method [23,24]. If we choose CP 2, fi is the input
variable of gPNN that is the consequence part of gHFNN

Simplified : fi(xi) =

z∑

j=1

aij

z∑

j=1

µij(xi)
=

z∑

j=1

µij(xi) · ωij

z∑

j=1

µij(xi)

= µik(xi) · ωik + µik+1(xi) · ωik+1

(5)

Linear : fi(xi) =

z∑

j=1

aij

z∑

j=1

µij(xi)
=

z∑

j=1

µij(xi) · (ωsij + xiωij)

z∑

j=1

µij(xi)

= µik(xi) · ωik + µik+1(xi) · ωik+1

(6)

[Output layer of FNN] Computing output of basic FNN: The output becomes
a sum of the individual contributions from the previous layer, see (1)

The design procedure for each layer in FR FNN is carried out in a same
manner as the one presented for FS FNN.

4.2 The consequence of gHFNN: in case of gPNN combined
with FS FNN

[Step 1] Configuration of input variables: Define input variables: xi’s (i = 1,
2, · · · , n) to gPNN of the consequent structure of gHFNN. If we choose
the first option to combine the structures of FNN and gPNN (CP 1), aij ,
which is the output of layer 4 in the premise structure of the gHFNN,
is treated as the input of the consequence structure of gHFNN, that is,
x1 = a11, x2 = a12, · · ·xn = aij(n = i × j). For the second option of com-
bining the structures (viz. CP 2), we have x1 = f1, x2 = f2, · · · , xn =
fm(n = m).
[Step 2] Decision of initial information for constructing the gPNN structure:
We decide upon the design parameters of the PNN structure and they include
that a) Stopping criterion, b) Maximum number of input variables coming
to each node in the corresponding layer, c) Total number W of nodes to
be retained (selected) at the next generation of the gPNN, d) Depth of the
gPNN to be selected to reduce a conflict between overfitting and generalization
abilities of the developed gPNN, and e) Depth and width of the gPNN to be
selected as a result of a tradeoff between accuracy and complexity of the
overall model. It is worth stressing that the decisions made with respect to
(b)–(e) help us avoid building excessively large networks (which could be quite
limited in terms of their predictive abilities).
[Step 3] Initialization of population: We create a population of chromosomes
for a PN, where each chromosome is a binary vector of bits. All bits for each
chromosome are initialized randomly.

Genetically Optimized Hybrid Fuzzy Neural Networks 37

[Step 4] Decision of PN structure using genetic design: This concerns the
selection of the number of input variables, the polynomial order, and the
input variables to be assigned in each node of the corresponding layer. These
important decisions are carried out through an extensive genetic optimization.

When it comes to the organization of the chromosome representing a PN,
we divide the chromosome into three sub-chromosomes as shown in Fig. 12.

The 1st sub-chromosome contains the number of input variables, the 2nd

sub-chromosome involves the order of the polynomial of the node, and the
3rd sub-chromosome (remaining bits) contains input variables coming to the
corresponding node (PN). In nodes (PNs) of each layer of gPNN, we adhere to
the notation of Fig. 11. ‘PNn’ denotes the nthPN (node) of the corresponding
layer, ‘N’ denotes the number of nodes (inputs or PNs) coming to the cor-
responding node, and ‘T’ denotes the polynomial order in the corresponding
node. Each sub-step of the genetic design of the three types of the parameters
available within the PN is structured as follows.
[Step 4-1] Selection of the number of input variables (1st sub-chromosome)

Sub-step 1) The first 3 bits of the given chromosome are assigned to the
binary bits for the selection of the number of input variables.

Sub-step 2) The selected 3 bits are decoded into a decimal.
Sub-step 3) The above decimal value is converted into [1 N] and rounded

off. N denotes the maximal number of input variables entering the
corresponding node (PN).

Sub-step 4) The normalized integer value is then treated as the number
of input variables (or input nodes) coming to the corresponding node.

[Step 4-2] Selection of the order of polynomial (2nd sub-chromosome)

Sub-step 1) The 3 bits of the 2nd sub-chromosome are assigned to the
binary bits for the selection of the order of polynomial.

Sub-step 2) The 3 bits are decoded into a decimal format.
Sub-step 3) The decimal value obtained is normalized into [1 3] and

rounded off.
Sub-step 4) The normalized integer value is given as the polynomial order.

a) The normalized integer value is given as 1 ⇒ the order of polyno-
mial is Type 1

N T

xj

xi
z

No. of inputs
Polynomial order(Type T)

nth Polynomial Neuron(PN)

PNn

Fig. 11. Overall diagram for generation of gHFNN architecture

38 S.-K. Oh and W. Pedrycz

i) Bits for the selection of

the no. of input variables

Decoding

(Decimal)

Normalization

(less than

Max)

iii) Bits for the

selection of input

variables

ii) Bits for the selection

of the polynomial order

1 0 1 1 1 1 10 10 1 1

1 1 0 1 1 1
1 r

Decoding

(Decimal)

Decoding

(Decimal)

Normalization

(1 ~ n(or W))

Decision of

input variables
Selection of

the order of

polynomial
(Type 1~Type 3)

Selection of

no. of input

variables(r)
Selection of input

variables

Related bit items

Genetic

Design

Selected PN

Decoding

(Decimal)

Normalization

(1 ~ 3)
Normalization

(1 ~ n(or W))

Decision of

input variables

Bit structure of sub-

chromosome divided

for each item

Selection of node (PN) structrue by chromosome

PN

Fig. 12. Overall design flowchart of the gHFNN architecture

Table 3. Different forms of regression polynomial forming a PN

������������
Order of
the polynomial

Number
of inputs

2 3 4

1 (Type 1) Bilinear Trilinear Tetralinear

2 (Type 2) Biquadratic-1 Triquadratic-1 Tetraquadratic-1

2 (Type 3) Biquadratic-2 Triquadratic-2 Tetraquadratic-2

The following types of the polynomials are used;

• Bilinear = c0 + c1x1 + c2x2

• Biquadratic-1 (Basic) = Bilinear +c3x
2
1 + c4x

2
2 + c5x1x2,

• Biquadratic-2 (Modified) =Bilinear +c3x1x2

b) The normalized integer value is given as 2 ⇒ the order of poly-
nomial is Type 2

c) The normalized integer value is given as 3 ⇒ the order of polyno-
mial is Type 3

Genetically Optimized Hybrid Fuzzy Neural Networks 39

[Step 4-3] Selection of input variables (3rd sub-chromosome)

Sub-step 1) The remaining bits are assigned to the binary bits for the
selection of input variables. binary bits for the selection of the number
of input variables.

Sub-step 2) The remaining bits are divided by the value obtained in step
4-1.

Sub-step 3) Each bit structure is decoded into a decimal.
Sub-step 4) The decimal value obtained is normalized into [1 n (or W)]

and rounded off. n is the overall system’s inputs in the 1st layer, and W
is the number of the selected nodes in the 2nd layer or higher.

Sub-step 5) The normalized integer values are then taken as the selected
input variables while constructing each node of the corre-
sponding layer. Here, if the selected input variables are multiple-dupli-
cated, the multiple-duplicated input variables are treated as a single
input variable.

[Step 5] Estimation of the coefficients of the polynomial assignedto the se-
lected node and evaluation of a PN: The vector of coefficients is derived by
minimizing the mean squared error between yi and ŷ [14,15]. To evaluate the
approximation and generalization capability of a PN produced by each chro-
mosome, we use the following fitness function (the objective function is given
in Section 5).

fitness function =
1

1 + Objective function
(7)

[Step 6] Elitist strategy and Selection of nodes (PNs) with the best predictive
capability: The nodes (PNs) obtained on the basis of the calculated fitness
values (F1,F2,· · · ,Fz) are rearranged in a descending order. We unify the nodes
with duplicated fitness values (viz. in case that one node is the same fitness
value as other nodes) among the rearranged nodes on the basis of the fitness
values. We choose several PNs (W) characterized by the best fitness values.
For the elitist strategy, we select the node that has the highest fitness value
among the generated nodes.
[Step 7] Reproduction: To generate new populations of the next generation,
we carry out selection, crossover, and mutation operation using genetic infor-
mation and the fitness values. Until the last generation, this step carries out
by repeating steps 4–7.
[Step 8] Construction of a corresponding layer of consequence part of gHFNN:
Individuals evolved by GAs produce optimal PNs, W. The generated PNs
construct their corresponding layer for the design of consequence part of
gHFNN.
[Step 9] Check the termination criterion: The termination condition builds a
sound compromise between the high accuracy of the resulting model and its
complexity as well as generalization abilities. [Step 10] Determine new input
variables for the next layer: If the termination criterion has not been met, the

40 S.-K. Oh and W. Pedrycz

model is expanded. The outputs of the preserved nodes (z1,z2, · · · , zW) serves
as new inputs to the next layer (x1,x2, · · · , xW). Repeating steps 3–10 carries
out the gPNN.

5 Experimental studies

In this section, the performance of the gHFNN is illustrated with the aid
of some well-known and widely used datasets. In the first experiment, the
network is used to model a three-input nonlinear function [1,13,19,25,28,29]. In
the second simulation, an gHFNN is used to model a time series of gas furnace
(Box-Jenkins data) [2–6,26,30–35]. Finally we use gHFNN for NOx emission
process of gas turbine power plant [27,29,32]. The performance indexes (object
function) used here are: (9) for the three-input nonlinear function and (8) for
both gas furnace process and NOx emission process.
i) Mean Squared Error (MSE)

E(PI or EPI) =
1
n

n∑

p=1

(yp − ŷp)2 (8)

ii) Mean Magnitude of Relative Error (MMRE)

E(PI or EPI) =
1
n

n∑

p=1

|yp − ŷp|
yp

× 100(%) (9)

Genetic algorithms use binary type, roulette-wheel as the selection operator,
one-point crossover, and an invert operation in the mutation operator. The
crossover rate of GAs is set to 0.75 and probability of mutation is equal to
0.065. The values of these parameters come from experiments and are very
much in line with typical values encountered in genetic optimization.

5.1 Nonlinear function

In this experiment, we use the same numerical data as in [1,13,19,25,28,29].
The nonlinear function to be determined is expressed as

y = (1 + x0.5
1 + x−1

2 + x−1.5
3)2 (10)

We consider 40 pairs of the original input-output data. The performance index
(PI) is defined by (9). 20 out of 40 pairs of input-output data are used as
learning set; the remaining part serves as a testing set.

Table 4 summarizes the list of parameters related to the genetic opti-
mization of the network. Design information for the optimization of gHFNN
distinguishes between information of two networks such as the premise FNN
and the consequent gPNN. First, a chromosome used in genetic optimization

Genetically Optimized Hybrid Fuzzy Neural Networks 41

Table 4. Parameters of the optimization environment and computational effort

(a) In case of using FS FNN

Generation 100
Population size 60

Gas Elite population size (W) 30

String length
Premise structure (FNN) 10 (per one variable)

Consequence structure (PNN) 3 + 3 + 24

No. of entire system inputs 3
Learning iteration 1000

Learning rate Simplified 0.039
Premise tuned Linear 0.335

(FS FNN) Momentum Simplified 0.004
gHFNN Coefficient tuned Linear 0.058

No. of rules 6
No. of entire CP 1 6

Consequence inputs CP 2 3
(gPNN) Maximal layer 5

No. of inputs to be selected (N) 1 ≤ N ≤ 4 (Max)
Type(T) 1 ≤ T ≤ 3

N, T : integer

(b) In case of using FR FNN

Generation 150
Population size 100

Gas Elite population size (W) 50

String length
Premise structure (FNN) 10 (per one variable)

Consequence structure (PNN) 3 + 3 + 28

No. of entire system inputs 3
Learning iteration 1000

Learning rate Simplified 0.309
Premise tuned Linear 0.879

gHFNN (FS FNN) Momentum Simplified 0.056
Coefficient tuned Linear 0.022

No. of rules 8
No. of entire inputs 8

Consequence Maximal layer 5
(gPNN) No. of inputs to be selected (N) 1 ≤ N ≤ 4 (Max)

Type (T) 1 ≤ T ≤ 3

N, T : integer

of the premise FNN contains the vertices of 2 membership functions of each
system input (here, 3 system input variables have been used), learning rate,
and momentum coefficient. The numbers of bits allocated to a chromosome
are equal to 60, 10, and 10, respectively, that is 10 bits is assigned to each
one variable. The parameters such as learning rate, momentum coefficient,
and membership parameters are tuned with the help of genetic optimization

42 S.-K. Oh and W. Pedrycz

of the FNN as shown in Table 4. Next, in case of the consequent gPNN, a
chromosome used in the genetic optimization consists of a string including 3
sub-chromosomes. The numbers of bits allocated to each sub-chromosome are
equal to 3, 3, and 24/28, respectively. The population size being selected from
the total population size, 60/100 is equal to 30/50. The process is realized as
follows. 60/100 nodes (PNs) are generated in each layer of the network. The
parameters of all nodes generated in each layer are estimated and the network
is evaluated using both the training and testing data sets. Then we compare
these values and choose 30/50 PNs that produce the best (lowest) value of
the performance index. The number of inputs to be selected is confined to a
maximum of four entries. The order of the polynomial is chosen from three
types, that is Type 1, Type 2, and Type 3.

Tables 5(a) and (b) summarize the results of the genetically optimized
HFNN architectures when exploiting two kinds of FNN (viz. FS FNN and
FR FNN) based on each fuzzy inference method. In light of the values of
Table 5(a) reported there, we distinguish with two network architectures such
as the premise FNN and the overall gHFNN. First, in case of the premise
FNN, the network comes in the form of two fuzzy inference methods. Here,
the FNN uses two membership functions for each input variable and has six
fuzzy rules. In this case, as mentioned previously, the parameters of the FNN
are optimized with the aid of GAs and BP learning. When considering the
simplified fuzzy inference-based FNN, the minimal value of the performance
index, that is PI =5.217 and EPI =5.142 are obtained. In case of the linear
fuzzy inference-based FNN, the best results are reported in the form of the
performance index such that PI =2.929 and EPI =3.45.

Next the values of the performance index of output of the gHFNN depend
on each connection point based on the individual fuzzy inference methods.
The values of the performance index vis-à-vis choice of number of layers of
gHFNN related to the optimized architectures in each layer of the network
are shown in Table 5.

That is, according to the maximal number of inputs to be selected
(Max = 4), the selected node numbers, the selected polynomial type (Type
T), and its corresponding performance index (PI and EPI) were shown when
the genetic optimization for each layer was carried out. For example, in case
when considering simplified fuzzy inference and connection point 2 of FS FNN
in Table 5(a), let us investigate the 2nd layer of the network (shadowed in
Table 5(a)). The fitness value in layer 2 attains its maximum for Max = 4
when nodes 8, 7, 4, 11 (such as z8, z7, z4, z11) occur among preferred nodes
(W) chosen in the previous layer (the 1st layer) are selected as the node inputs
in the present layer. Furthermore 4 inputs of Type 2 (linear function) were
selected as the results of the genetic optimization, refer to Fig. 13(b). In the
“Input No.” item of Table 5, a blank node marked by period (·) indicates
that it has not been selected by the genetic operation. The performance of
the conventional HFNN (called “SOFPNN” in the literature [19], which is
composed of FNN and PNN with 4 inputs-Type 2 topology) was quantified

Genetically Optimized Hybrid Fuzzy Neural Networks 43

Table 5. Parameters of the optimization environment and computational effort

(a) In case of using FS FNN

Premise part
CP

Consequence part
PI EPIFuzzy No. of rules

PI EPI Layer
No. of

Input No. T
Inference (MFs) inputs

Simplified
6

(2 + 2 + 2)
5.21 5.14

1 4 6 2 5 3 2 2.070 2.536
2 4 4 9 7 15 3 0.390 0.896

01 3 3 28 7 18 · 3 0.363 0.642
4 4 5 1 7 19 1 0.350 0.539
5 2 5 3 · · 2 0.337 0.452
1 3 3 1 2 · 2 2.706 3.946
2 4 8 7 4 11 2 0.299 0.517

02 3 3 15 5 14 · 3 0.299 0.467
4 3 5 3 24 · 3 0.299 0.412
5 3 14 25 1 · 2 0.299 0.398

Linear
6

(2 + 2 + 2)
2.92 3.45

1 4 3 2 6 5 2 0.667 0.947
2 4 1 7 28 15 2 0.087 0.315

01 3 4 28 9 1 14 2 0.0029 0.258
4 4 16 23 3 22 2 0.0014 0.136
5 4 11 12 20 7 1 0.0014 0.112
1 3 2 1 3 · 2 0.908 1.423
2 4 16 1 2 7 2 0.113 0.299

02 3 4 15 2 28 24 3 0.029 0.151
4 4 5 15 20 24 3 0.010 0.068
5 3 12 3 7 · 3 0.0092 0.056

(b) In case of using FR FNN

Premise part Consequence part
PI EPIFuzzy No. of rules

PI EPI Layer
No. of

Input No. T
Inference (MFs) inputs

Simplified
8

(2 × 2 × 2)
3.997

1 4 5 6 4 7 1 8.138 10.68
2 4 2 45 49 25 2 0.382 2.316

3.269 3 4 42 9 40 49 3 0.313 1.403
4 3 36 16 33 · 1 0.311 0.734
5 3 43 45 28 · 2 0.309 0.610

Linear
8

(2 × 2 × 2)
2.069

1 4 6 1 5 7 2 0.423 4.601
2 4 49 4 44 34 3 0.184 2.175

2.518 3 2 43 2 · · 2 0.105 1.361

4 3 33 44 5 · 3 0.063 0.761
5 3 41 26 42 · 4 0.039 0.587

by the values of PI equal to 0.299 and EPI given as 0.555, whereas under
the condition given as similar performance, the best results for the proposed
network related to the output node mentioned previously were reported as
PI = 0.299 and EPI = 0.517. In the sequel, the depth (the number of lay-
ers) as well as the width (the number of nodes) of the proposed genetically
optimized HFNN (gHFNN) can be lower in comparison to the “conventional
HFNN” (which immensely contributes to the compactness of the resulting
network), refer to Fig. 13. In what follows, the genetic design procedure at
stage (layer) of HFNN leads to the selection of the preferred nodes (or PNs)

44 S.-K. Oh and W. Pedrycz

PF2

PF3

PF4

PF5

PF6

PF7

PF9

PF10

PF11

PF1

A
11

A
12

A
21

A
22

A
31

A
32

x
1

x
2

x
3

PF13

PF15

PF2

PF4

PF7

PF8

PF9

PF10

PF11

PF12

PF13

PF1

PF14

PF15

PF17

PF19

PF21

PF22

PF23

PF24

PF25

PF26

PF28

PF16

PF29

PF30

PF3

PF5

PF6

PF7

PF15

PF18

PF19

PF20

PF24

PF1

PF25

PF27

PF29

PF30

PF12

PF14

PF29

PF2

PF6

PF8

PF20

PF15

PF9

PF13

ŷ

w
N

N

N

N

N

N

(a) Conventional optimized HFNN
(called “SOFPNN”)

y

PN4

PN7

PN8

PN11

PN11

2

1

1
24

2

2

2 2

x1

x2

x3

N

N

N

N

N

N

∑

∑

∑

3

^

(b) Genetically optimized HFNN with
FS FNN

Fig. 13. Comparison of the proposed model architecture (gHFNN) and the
conventional model architecture (SOFPNN [19])

y
4 2

1 2

3 1

1 2

PN1

PN2

PN7

PN24

PN16

1 3

∑

∑

∑

x
1

x
2

x
3

N Π

Π

Π

Π

Π

Π

N

∑
∑

1

N

N

∑
∑

1

N

N

∑
∑

1

^

(a) 2 layers (PNN)

y∧PN 29

3 3

PN 3

3 1
PN 7

4 3
PN 12

3 2

PN 5

4 2

PN 24

4 3
PN 25

4 3

PN 7

4 3

PN 21

4 2

PN 15

4 3
PN 20

4 2

PN 15

2 2
PN 16

1 2
PN 17

1 3

PN 2

3 1

PN 7

1 2

PN 13

1 3

PN 12

2 1

PN 8

2 1

PN 11

2 2

PN1

1 3

PN 5

2 1

PN 10

1 2

PN 3

2 3

PN 6

3 2

PN 28

4 2
PN 29

4 2
PN 30

4 2

PN 7

4 2

PN 14

4 2

PN 27

4 2

PN 26

4 2

PN 15

4 2

PN 24

4 2

PN 5

4 2

PN 12

4 2

PN 17

4 2

PN 9

4 2

PN 13

4 2

PN 2

4 2

PN 1

4 2

PN 3

4 2

PN 29

4 3

∑

∑

∑

x1

x2

x3

N Π

Π

Π

Π

Π

Π

N

∑
∑

1

N

N

∑
∑

1

N

N

∑
∑

1

(b) 5 layers (PNN)

Fig. 14. Optimal topology of genetically optimized HFNN for the nonlinear function
(In case of using FS FNN)

with optimal local characteristics (such as the number of input variables, the
order of the polynomial, and input variables). In addition, when considering
linear fuzzy inference and CP2, the best results are reported in the form of
the performance index such as PI = 0.113 and EPI = 0.299 for layer 2, and
PI = 0.0092 and EPI = 0.056 for layer 5. Their optimal topologies are shown
in Figs. 14 (a) and (b). Figs. 15(a) and (b) depict the optimization process by
showing the values of the performance index in successive cycles of both BP
learning and genetic optimization when using each linear fuzzy inference-based
FNN. Noticeably, the variation ratio (slope) of the performance of the network
changes radically around the 1st and 2nd layer. Therefore, to effectively reduce

Genetically Optimized Hybrid Fuzzy Neural Networks 45

200 400 600 800 1000 100 200 300 400 500

1

2

3

4

5

6

7

8

Pe
rf

or
m

an
ce

 In
de

x

GenerationIteration

Premise part;
FNN Consequence part;

gPNN

: PI
: E_PI

PI = 2.929

E_PI = 3.45

PI = 0.0092
E_PI = 0.056

50

1st layer

2nd layer

3rd layer

4th layer

5th layer

PI = 0.113
E_PI = 0.299

(a) In case of FS FNN (linear)

Pe
rf

or
m

an
ce

 In
de

x

GenerationIteration
200 400 800 1000 150 300

2

4

6

8

10

12

14

16

Premise part;
FNN

Consequence part;
gPNN

: PI
: E_PI PI = 2.518

E_PI = 2.069

PI = 0.039
E_PI = 0.587

1st layer

2nd layer

3rd layer

4th layer

5th layer

450 600 75050 600

(b) In case of FR FNN (linear)

Fig. 15. Optimization procedure of HFNN by BP learning and GAs

a large number of nodes and avoid a substantial amount of time-consuming
iterations concerning HFNN layers, the stopping criterion can be taken into
consideration. Referring to Figs. 14 and 15 it becomes obvious that we can
optimize the network up to maximally the 2nd layer.

Table 6 covers a comparative analysis including several previous models.
Sugeno’s model I and II were fuzzy models based on linear fuzzy inference
method while Shin-ichi’s models formed fuzzy rules by using learning method
of neural networks. The study of literature [29] is based on fuzzy-neural net-
works using HCM clustering and evolutionary fuzzy granulation. SOFPNN
[19] is a network being called the “conventional HFNN” in this study. The
proposed genetically optimized HFNN (gHFNN) comes with higher accuracy
and improved prediction capabilities.

5.2 Gas furnace process

We illustrate the performance of the network and elaborate on its development
by experimenting with data coming from the gas furnace process. The time
series data (296 input-output pairs) resulting from the gas furnace process
has been intensively studied in the previous literature [2-6,30-35]. The delayed
terms of methane gas flow rate, u(t) and carbon dioxide density, y(t) are used
as system input variables such as u(t-3), u(t-2), u(t-1), y(t-3), y(t-2), and y(t-
1). We use two types of system input variables of FNN structure, Type I and
Type II to design an optimal model from gas furnace data. Type I utilize two
system input variables such as u(t-3) and y(t-1) and Type II utilizes 3 system
input variables such as u(t-2), y(t-2), and y(t-1). The output variable is y(t).

Table 7 summarizes the computational aspects related to the genetic
optimization of gHFNN.

46 S.-K. Oh and W. Pedrycz

Table 6. Performance analysis of selected models

Model PI EPI No. of rules

Linear model [25] 12.7 11.1

GMDH [25,28] 4.7 5.7

Sugeno’s [1,25]
Fuzzy model I 1.5 2.1 3
Fuzzy model II 1.1 3.6 4

Shin-ichi’s [13]
FNN Type 1 0.84 1.22 8(23)
FNN Type 2 0.73 1.28 4(22)
FNN Type 3 0.63 1.25 8(23)

FNN [29]
Simplified 2.865 3.206 9(3 + 3 + 3)

Linear 2.670 3.063 9(3 + 3 + 3)

Multi-FNN [29]
Simplified 0.865 0.956 9(3 + 3 + 3)

Linear 0.174 0.689 9(3 + 3 + 3)

SOFPNN [19]
BFPNN 0.299 0.555 6 rules/5th layer

MFPNN 0.116 0.360 8 rules/5th layer

FS FNN
Simplified 5.21 5.14 6(2 + 2 + 2)

Linear 2.92 3.45 6(2 + 2 + 2)

FR FNN
Simplified 3.997 3.269 8(2 × 2 × 2)

Linear 2.069 2.518 8(2 × 2 × 2)

Proposed model
Simplified

0.299 0.517 6 rules/2nd layer

gHFNN 0.299 0.398 6 rules/5th layer

(FS FNN)
Linear

0.113 0.299 6 rules/2nd layer
0.0092 0.056 6 rules/5th layer

gFPNN Simplified 0.309 0.610 8 rules/5th layer

(FR FNN) Linear 0.039 0.587 8 rules/5th layer

The GAs-based design procedure is carried out in the same manner as in
the previous experiments. Table 8 includes the results of the overall network
reported according to various alternatives concerning various forms of FNN
architecture, types of fuzzy inference and location of the connection point.
When considering the simplified fuzzy inference-based FS FNN with Type I
(4 fuzzy rules), the minimal value of the performance index, that is PI = 0.035
and EPI = 0.281 are obtained. In case of the linear fuzzy inference-based
FS FNN with Type I (4 fuzzy rules), the best results are reported with the
performance index such that PI = 0.041 and EPI = 0.267. When using Type II
(6 fuzzy rules), the best results (PI = 0.0248 and EPI = 0.126) were obtained
for simplified fuzzy inference and linear fuzzy inference, respectively (in the
second case we have PI = 0.0256 and EPI = 0.143). In case of using FR FNN
and Type II, the best results are given as the performance index such that
PI = 0.026, EPI = 0.115 and PI = 0.033, EPI = 0.119 for simplified and
linear fuzzy inference respectively.

When using FS FNN and Type I, Fig. 16 illustrates the detailed optimal
topology of the gHFNN with 3 layers of PNN; the network comes with the
following values: PI = 0.017 and EPI = 0.267. The proposed network enables
the architecture to be a structurally optimized and gets simpler than the

Genetically Optimized Hybrid Fuzzy Neural Networks 47

Table 7. Computational aspects of the optimization of gHFNN

(a) In case of using FS FNN

GAs

Generation 150
Population size 60

Elite population size (W) 30

String length
Premise structure (FNN) 10 (per one variable)

Consequence structure (PNN) 3 + 3 + 24

No. of entire system inputs 2
Learning iteration 300

Premise
Learning rate tuned

Simplified 0.0014
(FNN) Linear 0.0052

Momentum Simplified 0.0002
Coefficient tuned Linear 0.0004

gHFNN No. of rules 4/6

No. of system inputs
CP 1 4/6

Consequence CP 2 2/3
(Gpnn) Maximal layer 5

No. of inputs to be selected (N) 1 ≤ N ≤ 4 (Max)
Type (T) 1 ≤ T ≤ 3

N, T : integer
(b) In case of using FR FNN and Type II

GAs

Generation 150
Population size 60

Elite population size (W) 30

String length
Premise structure (FNN) 10 (per one variable)

Consequence structure (PNN) 3+3+24

No. of entire system inputs 3
Learning iteration 500

Premise
Learning rate tuned

Simplified 0.0524
(FNN) Linear 0.0144

Momentum Simplified 0.00086
Coefficient tuned Linear 0.00064

gHFNN No. of rules 4/8
No. of entire inputs 4/8

Consequence Maximal layer 5
(Gpnn) No. of inputs to be selected (N) 1 ≤ N ≤ 4 (Max)

Type (T) 1 ≤ T ≤ 3

N, T : integer

conventional HFNN. Fig. 17(a) illustrates the optimization process by visu-
alizing the performance index in successive cycles (iteration and generation).
It also shows the optimized network architecture when taking into considera-
tion HFNN based on linear fuzzy inference and CP1, refer to Table 8(a) and
Fig. 16. As shown in Figs. 17(a) and (b), the variation ratio (slope) of the
performance of the network is almost the same around the 2nd through 5th

layer.

48 S.-K. Oh and W. Pedrycz

Table 8. Performance index of HFNN for the gas furnace

(a) In case of using FS FNN and Type I

Premise part
CP

Consequence part
PI EPIFuzzy No. of rules

PI EPI Layer
No. of

Input No. T
Inference (MFs) inputs

1 2 3 1 · · 3 0.025 0.328
2 4 24 11 30 18 2 0.024 0.269

01 3 3 9 10 23 · 2 0.020 0.265
Simplified 4 0.035 0.281 4 4 7 13 27 20 2 0.019 0.262

(2 + 2) 5 3 1 10 7 · 2 0.018 0.254
1 2 1 2 · · 3 0.024 0.328
2 4 1 4 5 7 3 0.021 0.282

02 3 3 29 27 26 · 2 0.020 0.270
4 3 15 13 21 · 3 0.019 0.268
5 4 8 4 20 13 2 0.018 0.265

1 4 4 2 1 3 3 0.019 0.292
2 4 7 12 2 10 2 0.018 0.271

01 3 4 20 21 5 3 2 0.017 0.267
Linear 4 0.041 0.267 4 3 22 13 29 · 2 0.016 0.263

(2 + 2) 5 4 25 18 27 9 3 0.015 0.258
1 2 1 2 · · 3 0.027 0.310
2 3 4 6 5 · 2 0.021 0.279

02 3 4 6 14 7 1 2 0.018 0.270
4 3 15 3 2 · 2 0.018 0.263
5 3 16 6 14 · 2 0.016 0.259

(b) In case of using FR FNN and Type II

Premise part Consequence part
PI EPIFuzzy No. of rules

PI EPI Layer
No. of

Input No. T
Inference (MFs) inputs

1 4 2 5 6 7 2 0.021 0.124
2 3 26 15 16 · 2 0.019 0.115

Simplified 8 0.026 0.115 3 3 21 3 27 · 2 0.018 0.114
(2 × 2 × 2) 4 3 24 3 18 · 2 0.018 0.111

5 4 13 12 29 20 1 0.018 0.109

1 4 6 5 2 8 1 0.083 0.146
2 4 21 18 6 9 2 0.028 0.116

Linear 8 0.033 0.119 3 4 4 24 5 6 2 0.022 0.110
(2 × 2 × 2) 4 3 28 4 5 · 2 0.021 0.106

5 3 21 18 25 · 1 0.021 0.104

Table 9 contrasts the performance of the genetically developed network
with other fuzzy and fuzzy-neural networks reported in the literature. It be-
comes obvious that the proposed genetically optimized HFNN architectures
outperform other models both in terms of their accuracy and generalization
capabilities.

Genetically Optimized Hybrid Fuzzy Neural Networks 49

yPN20

PN21

PN23

PN24

PN18

PN13

PN16

PN20

PN21

PN3

PN 5

u(t-3)
N

N

∑

Π

Π

Π

Π

∑
1

y(t-1)
N

N

∑
∑

1

PN2

PN1

3 3

4 2

4 2

4 2

4 2
4 2

3 2

4 3

3 33

3 1

3 1

1 2

3 2

3 2

2 3

2 2

PN5

PN 4

PN29

^

Fig. 16. Genetically optimized HFNN (gHFNN) with FS FNN (linear)

100 200 300 150 300 450 600 750

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rf

or
m

an
ce

 In
de

x

Premise part;
FNN

Consequence part;
gPNN

PI = 0.041

E_PI = 0.267

PI = 0.015

E_PI = 0.258

Iteration Generation

: PI
: E_PI

1st layer

2nd layer

3rd layer

4th layer

5th layer

30

PI = 0.017

E_PI = 0.267

(a) In case of using FS FNN (linear) with
Type I

Pe
rf

or
m

an
ce

 In
de

x

Iteration Generation
30 200 400 500 150 300 450 600 750

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

PI = 0.033

E_PI = 0.119

PI = 0.0211

E_PI = 0.104

Premise part;
FR_FNN

Consequence part;
gPNN

: PI
: E_PI

1st layer

2nd layer

3rd layer

4th layer

5th layer

(b) In case of using FR FNN (linear)
and Type II

Fig. 17. Optimization procedure of HFNN by BP learning and GAs

5.3 NOx emission process of gas turbine power plant

NOx emission process is modeled using the data of gas turbine power plant
coming from a GE gas turbine power plant located in Virginia, US.

The input variables include AT (Ambient Temperature at site), CS (Com-
pressor Speed), LPTS (Low Pressure Turbine Speed), CDP (Compressor
Discharge Pressure), and TET (Turbine Exhaust Temperature). The output
variable is NOx [27,29,32]. The performance index is defined by (8). We con-
sider 260 pairs of the original input-output data. 130 out of 260 pairs of
input-output data are used as learning set; the remaining part serves as a

50 S.-K. Oh and W. Pedrycz

Table 9. Performance analysis of selected models

Model PI EPI No. of rules

Kim, et al.’s model [30] 0.034 0.244 2

Lin and Cunningham’s mode [31] 0.071 0.261 4

Fuzzy

Min-Max [5]
Simplified

0.022 0.335 4(2 × 2)
0.022 0.336 6(3 × 2)

Linear
0.024 0.358 4(2 × 2)
0.020 0.362 6(3 × 2)

GAs [5]
Simplified 0.023 0.344 4(2 × 2)

Linear 0.018 0.264 4(2 × 2)

Complex [2]
Simplified 0.024 0.328 4(2 × 2)

Linear 0.023 0.306 4(2 × 2)
Hybrid [4] Simplified 0.024 0.329 4(2 × 2)

(GAs+Complex) Linear 0.017 0.289 4(2 × 2)

HCM [3]
Simplified 0.755 1.439 6(3 × 2)

Linear 0.018 0.286 6(3 × 2)

HCM+GAs [3]
Simplified

0.035 0.289 4(2 × 2)
0.022 0.333 6(3 × 2)

Linear
0.026 0.272 4(2 × 2)
0.020 0.2642 6(3 × 2)

Neural Networks [3] 0.034 4.997

Oh’s Adaptive FNN [6]
0.021 0.332 9(3 × 3)
0.022 0.353 4(2 × 2)

FNN [32]
Simplified 0.043 0.264 6(3 + 3)

Linear 0.037 0.273 6(3 + 3)

Multi-FNN [33]
Simplified 0.025 0.274 6(3 + 3)

Linear 0.024 0.283 6(3 + 3)

SOFPNN
Generic [34] 0.017 0.250 4 rules/5th layer

Advanced [35] 0.019 0.264 6 rules/5th layer

FS FNN
Simplified

0.035 0.281 4(2 + 2)
0.024 0.126 6(2 + 2 + 2)

Linear
0.041 0.267 4(2 + 2)
0.025 0.143 6(2 + 2 + 2)

FR FNN
Simplified

0.024 0.329 4(2 × 2)
0.026 0.115 8(2 × 2 × 2)

Linear
0.025 0.265 4(2 × 2)

Proposed model 0.033 0.119 8(2 × 2 × 2)

Simplified
0.018 0.254 4 rules/5th layer

gHFNN 0.018 0.112 6 rules/5th layer

(FS FNN)
Linear

0.015 0.258 4 rules/5th layer

0.018 0.110 6 rules/5th layer

Simplified
0.017 0.250 4 rules/5th layer

gHFNN 0.018 0.109 8 rules/5th layer

(FR FNN)
Linear

0.016 0.249 4 rules/5th layer
0.021 0.104 8 rules/5th layer

Genetically Optimized Hybrid Fuzzy Neural Networks 51

testing set. Using NOx emission process data, the regression model is

y = −163.77341− 0.06709 x1 + 0.00322 x2 + 0.00235 x3

+ 0.26365 x4 + 0.20893 x5 (11)

And it comes with PI = 17.68 and EPI = 19.23. We will be using these results
as a reference point when discussing gHFNN models. Table 10 summarizes

Table 10. Summary of the parameters of the optimization environment

(a) In case of using FS FNN

Generation 150
Population size 100

GAs Elite population size 50

String length
Premise structure 10 (per one variable)

Consequence CP 1 3 + 3 + 70
structure CP 2 3 + 3 + 35

No. of entire system inputs 5
Learning iteration 1000

Premise
Learning rate tuned

Simplified 0.052
(FNN) Linear 0.034

Momentum Simplified 0.010
Coefficient tuned Linear 0.001

gHFNN No. of rules 10(2 + 2 + 2 + 2 + 2)

No. of system inputs
CP 1 10
CP 2 5

Consequence Maximal layer 5
(gPNN) No. of inputs to be CP 1 1 ≤ N ≤ 10 (Max)

selected (N) CP 1 1 ≤ N ≤ 5 (Max)
Type (T) 1 ≤ T ≤ 3

N, T : integer

(b) In case of using FR FNN and Type II

GAs

Generation 150
Population size 100

Elite population size (W) 50

String length
Premise structure (FNN) 10 (per one variable)

Consequence structure (PNN) 3 + 3 + 105

No. of entire system inputs 5
Learning iteration 1000

Premise
Learning rate tuned

Simplified 0.568
Linear 0.651

Momentum Simplified 0.044
Coefficient tuned Linear 0.064

gHFNN No. of rules 32(2 × 2 × 2 × 2 × 2)
No. of entire inputs 32

Consequence Maximal layer 5
(Gpnn) No. of inputs to be selected (N) 1 ≤ N ≤ 15 (Max)

Type (T) 1 ≤ T ≤ 3

N, T : integer

52 S.-K. Oh and W. Pedrycz

the parameters of the optimization environment. The parameters used for
optimization of this process modeling are almost the same as used in the
previous experiments.

Table 11 summarizes the detailed results. When using FS FNN, the best
results for the network are obtained when using linear fuzzy inference and CP

Table 11. Parameters of the optimization environment and computational effort

(a) In case of using FS FNN

Premise part
CP

Consequence part
PI EPIFuzzy No. of rules

PI EPI Layer
No. of

Type
Inference (MFs) inputs

1 7 2 0.916 2.014
2 6 2 0.623 1.430

01 3 9 1 0.477 1.212
4 10 1 0.386 1.077

Simplified 10 22.331 19.783 5 4 2 0.337 1.016
(2 + 2 + 2 + 2 + 2) 1 5 2 1.072 2.220

2 5 2 0.176 0.291
02 3 5 3 0.105 0.168

4 3 2 0.060 0.113
5 4 2 0.049 0.081

1 9 2 0.023 0.137
2 5 2 0.0095 0.044

01 3 9 1 0.0057 0.029
4 2 2 0.0057 0.027

Linear 10 8.054 12.147 5 9 1 0.0045 0.026
(2 + 2 + 2 + 2 + 2) 1 5 2 2.117 4.426

2 5 2 0.875 1.647
02 3 5 2 0.550 1.144

4 5 3 0.390 0.793
5 3 2 0.340 0.680

(b) In case of using FR FNN

Premise part Consequence part
PI EPIFuzzy No. of rules

PI EPI Layer
No. of

Type
Inference (MFs) inputs

1 13 2 0.149 0.921
Simplified 32 2 12 1 0.065 0.189

(2 × 2 × 2 × 2 × 2) 0.711 1.699 3 11 1 0.046 0.134
4 8 1 0.044 0.125
5 3 3 0.041 0.111

1 10 2 0.205 1.522
Linear 32 2 13 1 0.049 0.646

(2 × 2 × 2 × 2 × 2) 0.079 0.204 3 3 3 0.028 0.437
4 12 1 0.023 0.330
5 3 3 0.019 0.286

Genetically Optimized Hybrid Fuzzy Neural Networks 53
Pe

rf
or

m
an

ce
 In

de
x

Premise part;
FNN

Consequence part;
gPNN

PI = 8.054

E_PI = 12.147

PI = 0.0045
E_PI = 0.026

GenerationIteration

: PI
: E_PI

1st layer

2nd layer

3rd layer

4th layer

5th layer

200 400 600 800 1000 150 300 450 600 750

5

10

15

20

25

(a) Premise and consequence part

Pe
rf

or
m

an
ce

 In
de

x

Consequence part;
gPNN

PI = 0.0095

E_PI = 0.044

PI = 0.0045

E_PI = 0.026

Generation

: PI
: E_PI

1st layer

2nd layer

3rd layer

4th layer

5th layer

150 300 450 600 750

0.05

0.1

0.15

0.2

0.25

0.3

(b) Consequence part (extended)

Fig. 18. Optimal procedure of gHFNN with FS FNN (linear) by BP and GAs

1 with Type 1 (linear function) and 9 nodes at input; this network comes with
the value of PI equal to 0.0045 and EPI set as 0.026. In case of using FR FNN
and simplified fuzzy inference, the most preferred network architecture have
been reported as PI = 0.041 and EPI = 0.111. As shown in Table 11 and
Fig. 18, the variation ratio (slope) of the performance of the network changes
radically at the 2nd layer. Therefore, to effectively reduce a large number of
nodes and avoid a large amount of time-consuming iteration of gHFNN, the
stopping criterion can be taken into consideration up to maximally the 2nd

layer.
Table 12 covers a comparative analysis including several previous fuzzy-

neural network models. The experimental results clearly reveal that the
proposed approach and the resulting model outperform the existing networks
both in terms of better approximation and generalization capabilities.

6 Concluding remarks

In this study, we have introduced a class of gHFNN driven genetic optimization
regarded as a modeling vehicle for nonlinear and complex systems. The ge-
netically optimized HFNNs are constructed by combining FNNs with gPNNs.
In contrast to the conventional HFNN structures and their learning, the pro-
posed model comes with two kinds of rule-based FNNs (viz. FS FNN and
FR FNN based on two types of fuzzy inferences) as well as a diversity of lo-
cal characteristics of PNs that are extremely useful when coping with various
nonlinear characteristics of the system under consideration.

54 S.-K. Oh and W. Pedrycz

Table 12. Performance analysis of selected models

Model PI EPI No. of rules

Regression model [32] 17.68 19.23

Ahn et al. [27]
FNN 5.835
AIM 8.420

FNN [32]
Simplified 6.269 8.778 30(6 + 6 + 6 + 6 + 6)

Linear 3.725 5.291 30(6 + 6 + 6 + 6 + 6)

Multi-FNN [33]
Simplified 2.806 5.164 30(6 + 6 + 6 + 6 + 6)

Linear 0.720 2.025 30(6 + 6 + 6 + 6 + 6)

FS FNN
Simplified 22.331 19.783 10(2 + 2 + 2 + 2 + 2)

Linear 8.054 12.147 10(2 + 2 + 2 + 2 + 2)

FR FNN
Simplified 0.711 1.699 32(2 × 2 × 2 × 2 × 2)

Linear 0.079 0.204 32(2×2×2×2×2)
Proposed model

Simplified
0.176 0.291 10 rules/2nd layer

gHFNN 0.049 0.081 10 rules/5th layer

(FS FNN)
Linear

0.0095 0.044 10 rules/2nd layer

0.0045 0.026 10 rules/5th layer

Simplified
0.065 0.189 32 rules/2nd layer

gHFNN 0.041 0.111 32 rules/5th layer

(FR FNN)
Linear

0.049 0.646 32 rules/2nd layer

0.019 0.286 32 rules/5th layer

The comprehensive design methodology comes with the parametrically as
well as structurally optimized network architecture. A few general notes are
worth stressing: 1) as the premise structure of the gHFNN, the optimization of
the rule-based FNN hinges on genetic algorithms and back-propagation (BP)
learning algorithm: The GAs leads to the auto-tuning of vertexes of mem-
bership function, while the BP algorithm helps produce optimal parameters
of the consequent polynomial of fuzzy rules through learning; 2) the gPNN
that is the consequent structure of the gHFNN is based on the technologies
of the extended GMDH algorithm and GAs: The extended GMDH method
is comprised of both a structural phase such as a self-organizing and evolu-
tionary algorithm and a parametric phase driven by the least square error
(LSE)-based learning. Furthermore the PNN architecture is optimized by the
genetic optimization that leads to the selection of the optimal nodes (or PNs)
with local characteristics such as the number of input variables, the order of
the polynomial, and a collection of the specific subset of input variables. In
this sense, we have constructed a coherent development platform in which all
components of CI are fully utilized. In the sequel, a variety of architectures
of the proposed gHFNN driven to genetic optimization have been discussed.
The model is inherently dynamic - the use of the genetically optimized PNN
(gPNN) of consequent structure of the overall network is essential to the gener-
ation process of the “optimally self-organizing” network by selecting its width
and depth. The series of experiments helped compare the network with other
models through which we found the network to be of superior quality.

Genetically Optimized Hybrid Fuzzy Neural Networks 55

7 Acknowledgement

This work has been supported by KESRI(I-2004-0-074-0-00), which is funded
by MOCIE (Ministry of commerce, industry and energy).

References

1. Kang G, Sugeno M (1987) Fuzzy modeling. Trans Soc Instrum Control Eng
23(6cr):106–108

2. Oh SK, Pedrycz W (2000) Fuzzy identification by means of auto-tuning algo-
rithm and its application to nonlinear systems. Fuzzy Sets Syst 115(2):205–230

3. Park BJ, Pedrycz W, Oh SK (2001) Identification of fuzzy models with the aid of
evolutionary data granulation. IEE Proc-Control Theory Appl 148(5):406–418

4. Oh SK, Pedrycz W, Park BJ (2002) Hybrid identification of fuzzy rule-based
models. Int J Intell Syst 17(1):77–103

5. Park BJ, Oh SK, Ahn TC, Kim HK (1999) Optimization of fuzzy systems by
means of GA and weighting factor. Trans Korean Inst Electr Eng 48A(6):789–
799 (In Korean)

6. Oh SK, Park CS, Park BJ (1999) On-line modeling of nonlinear process sys-
tems using the adaptive fuzzy-neural networks. Trans Korean Inst Electr Eng
48A(10):1293–1302 (In Korean)

7. Narendra KS, Parthasarathy K (1991) Gradient methods for the optimization
of dynamical systems containing neural networks. IEEE Trans Neural Netw
2:252–262

8. Goldberg DE (1989) Genetic algorithms in search, optimization & machine
learning. Addison-wesley, Reading

9. Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolution
Programs. Springer, Berlin Heidelberg Newyork

10. Holland JH (1975) Adaptation in natural and artificial systems. The University
of Michigan Press, Ann Arbour

11. Pedrycz W, Peters JF (1998) Computational intelligence and software engineer-
ing. World Scientific, Singapore

12. Computational intelligence by programming focused on fuzzy neural networks
and genetic algorithms. Naeha, Seoul (In Korean)

13. Horikawa S, Furuhashi T, Uchigawa Y (1992) On fuzzy modeling using fuzzy
neural networks with the back propagation algorithm. IEEE Trans Neural Netw
3(5):801–806

14. Oh SK, Pedrycz W (2002) The design of self-organizing polynomial neural
networks. Inf Sci 141(3–4):237–258

15. Oh SK, Pedrycz W, Park BJ (2003) Polynomial neural networks architecture:
Analysis and Design. Comput Electr Eng 29(6):653–725

16. Ohtani T, Ichihashi H, Miyoshi T, Nagasaka K (1998) Orthogonal and successive
projection methods for the learning of neurofuzzy GMDH. Inf Sci 110:5–24

17. Ohtani T, Ichihashi H, Miyoshi T, Nagasaka K (1998) Structural learning
with M-Apoptosis in neurofuzzy GMHD. In: Proceedings of the 7th IEEE
International Conference on Fuzzy Systems:1265–1270

56 S.-K. Oh and W. Pedrycz

18. Ichihashi H, Nagasaka K (1994) Differential minimum bias criterion for neuro-
fuzzy GMDH. In: Proceedings of 3rd International Conference on Fuzzy Logic
Neural Nets and Soft Computing IIZUKA’94:171–172

19. Park BJ, Pedrycz W, Oh SK (2002) Fuzzy polynomial neural networks: hybrid
architectures of fuzzy modeling. IEEE Trans Fuzzy Syst 10(5):607–621

20. Oh SK, Pedrycz W, Park BJ (2003) Self-organizing neurofuzzy networks based
on evolutionary fuzzy granulation. IEEE Trans Syst Man and Cybern A
33(2):271–277

21. Cordon O et al. (2004) Ten years of genetic fuzzy systems: current framework
and new trends. Fuzzy Sets Syst 141(1):5–31

22. Ivahnenko AG (1968) The group method of data handling: a rival of method of
stochastic approximation. Sov Autom Control 13(3):43–55

23. Yamakawa T (1993) A new effective learning algorithm for a neo fuzzy neuron
model. 5th IFSA World Conference:1017–1020

24. Oh SK, Yoon KC, Kim HK (2000) The Design of optimal fuzzy- eural networks
structure by means of GA and an aggregate weighted performance index. J
Control, Autom Syst Eng 6(3):273–283 (In Korean)

25. Park MY, Choi HS (1990) Fuzzy control system. Daeyoungsa, Seoul (In Korean)
26. Box G.EP, Jenkins GM (1976) Time series analysis, forecasting, and control,

2nd edn. Holden-Day, SanFransisco
27. Ahn TC, Oh SK (1997) Intelligent models concerning the pattern of an air

pollutant emission in a thermal power plant, Final Report, EESRI
28. Kondo T (1986) Revised GMDH algorithm estimating degree of the complete

polynomial. Trans Soc Instrum Control Eng 22(9):928–934
29. Park HS, Oh SK (2003) Multi-FNN identification based on HCM clustering and

evolutionary fuzzy granulation. Int J Control, Autom Syst 1(2):194–202
30. Kim E, Lee H, Park M, Park M (1998) A simply identified sugeno-type fuzzy

model via double clustering. Inf Sci 110:25–39
31. Lin Y, Cunningham III GA (1997) A new approach to fuzzy-neural modeling,

IEEE Trans Fuzzy Syst 3(2):190–197
32. Oh SK, Pedrycz W, Park HS (2003) Hybrid identification in fuzzy-neural

networks. Fuzzy Sets Syst 138(2):399–426
33. Park HS, Oh SK (2000) Multi-FNN identification by means of HCM cluster-

ing and its optimization using genetic algorithms. J Fuzzy Logic Intell Syst
10(5):487–496 (In Korean)

34. Park BJ, Oh SK, Jang SW (2002) The design of adaptive fuzzy polynomial
neural networks architectures based on fuzzy neural networks and self-organizing
networks. J Control Autom Syst Eng 8(2):126–135 (In Korean)

35. Park BJ, Oh SK (2002) The analysis and design of advanced neurofuzzy
polynomial networks. J Inst Electron Eng Korea 39-CI(3):18–31 (In Korean)

36. Park BJ, Oh SK, Pedrycz W, Kim HK (2005) Design of evolutionally optimized
rule-based fuzzy neural networks on fuzzy relation and evolutionary optimiza-
tion. International Conference on Computational Science. Lecture Notes in
Computer Science 3516:1100–1103

37. Oh SK, Park BJ, Pedrycz W, Kim HK (2005) Evolutionally optimized fuzzy
neural networks based on evolutionary fuzzy granulation. Lecture Notes in
Computer Science 3483:887–895

38. Oh SK, Park BJ, Pedrycz W, Kim HK (2005) Genetically optimized hybrid
fuzzy neural networks in modeling software data. Lecture Notes in Artificial
Intelligence 3558:338–345

Genetically Optimized Hybrid Fuzzy Neural Networks 57

39. Zadeh NN, Darvizeh A, Jamali A, Moeini A (2005) Evolutionary design of
generalized polynomial neural networks for modeling and prediction of explosive
forming process. J Mater Process Technol 164(15):1561–1571

40. Delivopoulos E, Theocharis JB (2004) A modified PNN algorithm with optimal
PD modeling using the orthogonal least squares method. Inf Sci 168(3):133–170

