
Preface

This book emanated from many discussions about collaborative research
among the editors. The discussions have focussed on using signal process-
ing methods for knowledge extraction and information fusion in a number
of applications from telecommunications to renewable energy and biomedi-
cal engineering. They have led to several successful collaborative efforts in
organizing special sessions for international conferences and special issues of
international journals. With the growing interest from researchers in different
disciplines and encouragement from Springer editors Alex Greene and Katie
Stanne, we were spurred to produce this book.

Knowledge extraction and information fusion have long been studied in
various areas of computer science and engineering, and the number of applica-
tions for this class of techniques has been steadily growing. Features and other
parameters that describe a process under consideration may be extracted
directly from the data, and so it is natural to ask whether we can exploit digi-
tal signal processing (DSP) techniques for this purpose. Problems where noise,
uncertainty, and complexity play major roles are naturally matched to DSP.
This synergy of knowledge extraction and DSP is still under-explored, but has
tremendous potential. It is the underlying theme of this book, which brings
together the latest research in DSP-based knowledge extraction and informa-
tion fusion, and proposes new directions for future research and applications.
It is fitting, then, that this book touches on globally important applications,
including sustainability (renewable energy), health care (understanding and
interpreting biomedical signals) and communications (extraction and fusing
of information from sensor networks).

The use of signal processing in data and sensor fusion is a rapidly growing
research area, and we believe it will benefit from a work such as this, in
which both background material and novel applications are presented. Some
of the chapters come from extended papers originally presented at the special
sessions in ICANN 2005 and KES 2006. We also asked active researchers in
signal processing with specializations in machine learning and multimodal
signal processing to make contributions to augment the scope of the book.
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This book is divided in four parts with four chapters each.

Collaborative Signal Processing Algorithms

Chapter 1 by Jelfs et al. addresses hybrid adaptive filtering for signal modality
characterization of real-world processes. This is achieved within a collabora-
tive signal processing framework which quantifies in real-time, the presence
of linearity and nonlinearity within a signal, with applications to the analysis
of EEG data. This approach is then extended to the complex domain and the
degree of nonlinearity in real-world wind measurements is assessed.

In Chap. 2, Hirata et al. extend the wind modelling approaches to address
the control of wind farms. They provide an analysis of the wind features which
are most relevant to the local forecasting of the wind profile. These are used
as prior knowledge to enhance the forecasting model, which is then applied to
the yaw control of a wind turbine.

A collaborative signal processing framework by means of hierarchical adap-
tive filters for the detection of sparseness in a system identification setting
is presented in Chap. 3, by Boukis and Constantinides. This is supported
by a thorough analysis with an emphasis on unbiasedness. It is shown that
the unbiased solution corresponds to existence of a sparse sub-channel, and
applications of this property are highlighted.

Chapter 4 by Zhang and Chambers addresses the estimation of the rever-
beration time, a difficult and important problem in room acoustics. This is
achieved by blind source separation and adaptive noise cancellation, which in
combination with the maximum likelihood principle yields excellent results in
a simulated high noise environment. Applications and further developments
of this strategy are discussed.

Signal Processing for Source Localization

Kuh and Zhu address the problem of sensor network localization in Chap. 5.
Kernel methods are used to store signal strength information, and complex
least squares kernel regression methods are employed to train the parameters
for the support vector machine (SVM). The SVM is then used to estimate
locations of sensors, and to track positions of mobile sensors. The chap-
ter concludes by discussing distributed kernel regression methods to perform
localization while saving on communication and energy costs.

Chapter 6, by Lenz et al., considers adaptive localization in wireless net-
works. They introduce an adaptive approach for simultaneous localization and
learning based on theoretical propagation models and self-organizing maps, to
demonstrate that it is possible to realize a self-calibrating positioning system
with high accuracies. Results on real-world DECT and WLAN groups support
the approach.
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In Chap. 7, Host-Madsen et al. address signal processing methods for
Doppler radar heart rate monitoring. This provides unobtrusive and ubiqui-
tous detection of heart and respiration activity from distance. By leveraging
recent advances in signal processing and wireless communication technologies,
the authors explore robust radar monitoring techniques through MIMO sig-
nal processing. The applications of this method include health monitoring and
surveillance.

Obradovic et al. present the fusion of onboard sensors and GPS for real-
world car navigation in Chap. 8. The system is based on the position estimate
obtained by Kalman filtering and GPS, and is aided by corrections pro-
vided by candidate trajectories on a digital map. In addition, fuzzy logic is
applied to enhance guidance. This system is in operation in a number of car
manufacturers.

Information Fusion in Imaging

In Chap. 9, Chumerin and Van Hulle consider the detection of independently
moving objects as a component of the obstacle detection problem. They show
that the fusion of information obtained from multiple heterogeneous sensors
has the potential to outperform the vision-only description of driving scenes.
In addition, the authors provide a high-level sensor fusion model for detection,
classification, and tracking in this context.

Aghajan, Wu, and Kleihorst address distributed vision networks for human
pose analysis in Chap. 10. This is achieved by collaborative processing and
data fusion mechanisms, and under a low bandwidth communication con-
straint. The authors employ a 3D human body model as the convergence
point of the spatiotemporal and feature fusion. This model also allows the
cameras to interact and helps the evaluation of the relative values of the
derived features.

The application of information fusion in E-cosmetics is addressed by
Tsumura et al. in Chap. 11. The authors develop a practical skin color analysis
and synthesis (fusion) technique which builds upon both the physical back-
ground and physiological understanding. The appearance of the reproduced
skin features is analysed with respect to a number of practical constraints,
including the imaging devices, illuminants, and environments.

Calhoun and Adalı consider the fusion of brain imaging data in Chap. 12.
They utilize multiple image types to take advantage of the cross information.
Unlike the standard approaches, where cross information is not taken into
account, this approach is capable of detecting changes in functional magnetic
resonance imaging (fMRI) activation maps. The benefits of the information
fusion strategy are illustrated by real-world examples from neurophysiology.

Knowledge Extraction in Brain Science

Chapter 13, by Mandic et al. considers the “data fusion via fission” approach
realized by empirical mode decomposition (EMD). Extension to the complex
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domain also helps to extract knowledge from processes which are strongly
dependent on synchronization and phase alignment. Applications in real-world
brain computer interfaces, e.g., in brain prosthetics and EEG artifact removal,
illustrate the usefulness of this approach.

In Chap. 14, Rutkowski et al. consider some perceptual aspects of the
fusion of information from multichannel EEG recordings. Time–frequency
EMD features, together with the use of music theory, allow for a convenient
and unique audio feedback in brain computer and brain machine (BCI/BMI)
interfaces. This helps to ease the understanding of the notoriously difficult to
analyse EEG data.

Cao and Chen consider the usefulness of knowledge extraction in brain
death monitoring applications in Chap. 15. They combine robust principal
factor analysis with independent component analysis to evaluate the statistical
significance of the differences in EEG responses between quasi-brain-death
and coma patients. The knowledge extraction principles here help to make a
binary decision on the state of the consciousness of the patients.

Chapter 16, by Golz and Sommer, addresses a multimodal approach to the
detection of extreme fatigue in car drivers. The signal processing framework
is based on the fusion of linear (power spectrum) and nonlinear (delay vec-
tor variance) features, and knowledge extraction is performed via automatic
input variable relevance detection. The analysis is supported by results from
comprehensive experiments with a range of subjects.

London, Danilo Mandic
October 2007 Martin Golz

Anthony Kuh
Dragan Obradovic
Toshihisa Tanaka
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Wind Modelling and its Possible Application
to Control of Wind Farms

Yoshito Hirata, Hideyuki Suzuki, and Kazuyuki Aihara

Because of global warming and oil depletion, the number of wind turbines is
increasing. Wind turbines commonly have a horizontal axis, but some wind
turbines have a vertical axis. A problem of wind turbines with horizontal
axis is that we need to face them towards the wind for maximising energy
production. If the geography around a wind turbine is complicated, then the
wind direction keeps changing. Thus, if one can predict the wind direction
to some extent, then one may generate more electricity by controlling wind
turbines according to the prediction.

In this chapter, we discuss how to model the wind. First, we formulate a
problem and clarify which properties of the wind we need to predict. Second,
we discuss the characteristics for time series of the wind. Third, we model the
wind based on the knowledge and predict it. We prepare different models for
predicting wind direction and absolute wind speed. Finally, we apply the pre-
diction and simulate control of a wind turbine. Since we integrate predictions
for wind direction and absolute wind speed to obtain an optimal control, the
whole scheme can be regarded as heterogeneous fusion.

2.1 Formulating Yaw Control for a Wind Turbine

There are three purposes for predicting the wind in applications of wind tur-
bine. The first purpose is to estimate energy production by wind turbines in
the future. By estimating the energy production, we can prepare other sources
of energy production to meet the demand. The time scale of the prediction
for this purpose ranges from 30min to some days and the prediction can be
done by either a medium-range weather forecasts [20] or time series predic-
tion [2–4]. The second purpose is to avoid gusts. For this purpose, the time
scale of prediction is on the order of seconds. A Markov chain [12–14, 18] is
effective for the prediction of this purpose. The third purpose is to generate
more electricity. On this chapter, we focus on this third purpose.
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There are two types of wind turbines. The major one has a horizontal axis,
while the minor one has a vertical axis. The horizontal axis is more popular
because it can attain better efficacy.

There are several factors one may control in a wind turbine with a horizon-
tal axis. The examples include the direction of wind turbine (yaw angle), pitch
angles, and speeds of rotations. Although mechanical details could be differ-
ent, the problems for controlling these factors can be written mathematically
in a similar way. As an example, we formulate a problem of yaw control.

In yaw control, the net benefits we can get are divided into two parts: the
first part is benefits we may obtain; the second part is costs for controls. The
unit of the net benefits is a currency: yen, US dollars, UK pounds, or other
currencies. The benefits we may obtain from the energy production correlates
with the amount of energy production. Thus, they are shown by using a power
curve, a function f(u) that returns the amount of energy produced given a
wind speed u. Here the wind speed is perpendicular to the face of the rotor.
Let vt be the absolute wind speed at time t, θt, the wind direction, and ϕ(t),
the direction of the wind turbine. We also denote a set of vt, θt, ϕ(t) by v, θ
and ϕ, respectively. Then, the benefits b(ϕ, v, θ) from time k to k+K can be
written as

k+K∑

t=k+1

f(vt cos(θt − ϕ(t))). (2.1)

Since we have freedom for choosing the scale of the currency, we scale the
currency in a way that the maximum electricity generated within 2 s yields a
unit of the currency.

The costs for the yaw control include the electricity we need, replacements
of devices due to stress, fatigue, and friction, and others coming from unknown
sources. The term of the costs is a function of the orbit ϕ, wind speed v, and
wind direction θ. Therefore, we denote it by c(ϕ, v, θ). In the simulations
shown later, we assume that c(ϕ, v, θ) can be written as

C1

k+K∑

t=k+1

|ϕ(t)− ϕ(t− 1)|

+ C2

k+K∑

t=k+1

|(ϕ(t) − ϕ(t− 1))− (ϕ(t− 1)− ϕ(t− 2))| (2.2)

+ C3

k+K∑

t=k+1

|ϕ(t) − θt|.

The first term depends on how much we turn a wind turbine. The second
term depends on how much we change the angular velocity of wind turbine.
The third term depends on the difference between the directions of the wind
and the wind turbine.
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The net benefits can be written as b(ϕ, v, θ) − c(ϕ, v, θ). By replacing vt

and θt with their predictions v̂t and θ̂t, a problem of yaw control can be written
as

min
ϕ
b(ϕ, v̂, θ̂)− c(ϕ, v̂, θ̂). (2.3)

The above problem means that for yaw control, we need to predict the
wind direction and absolute wind speed for the duration of K.

2.2 Characteristics for Time Series of the Wind

To predict the future wind, we need to know its properties. In this section,
we discuss the characteristics of the wind.

2.2.1 Surrogate Data

To characterise the data sets, we used surrogate data analysis [21–25]. Surro-
gate data analysis is hypothesis testing. At the beginning of the analysis, one
decides a null-hypothesis. Then we generate a set of random data that are
consistent with the null-hypothesis. These random data are used for obtain-
ing a confidence interval of a test statistic. If the value of the test statistic
obtained from the original data is within the confidence interval, then one
cannot reject the null-hypothesis. Otherwise, one rejects the null-hypothesis.

Common null-hypotheses are non-serial dependence [21], linearity [22, 25],
and periodic orbits with uncorrelated noise [24]. In this chapter, we use the
first two since the third surrogate has meaning when a time series is pseudo-
periodic.

2.2.2 Results

In this section, we used a data set of the wind measured on 25 August 2004
at the top of a building in Institute of Industrial Science, The University of
Tokyo. The measurement was of 50Hz and it has three components, namely,
the east wind, the north wind, and the upward wind. Part of data set is shown
in Fig. 2.1.

First we preprocessed the data set. We divided a data set of the east and
north winds into 36 segments of scalar time series of length 10,000. Then
we matched the beginning and the end of time series [23] to avoid artefacts
their mismatch may cause. By applying the method of Kennel [15] with four-
dimensional embedding space with a uniform delay of 2 s, we confirmed the
stationarity for 10 segments out of 36 segments. We used the delay of 2 s
because this is a time scale we are interested in the later part of this chap-
ter. We used the four-dimensional embedding space because in most cases
we tested, the false nearest neighbour method [16] showed that with four-
dimensional embedding space, the ratio of the false nearest neighbours is less
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Fig. 2.1. Part of data set used in surrogate data analysis

than 1%. We had to exclude nonstationary segments since nonstationarity
might cause a spurious rejection [26].

Second, we used random shuffle surrogates [21] for testing serial depen-
dence. We used the Wayland statistic [27] for the test statistic. We used the
embedding dimensions between 1 and 12. We generated 39 random shuffle sur-
rogates and thus the significant level for each embedding dimension was 5%.
To make the significant level of the multiple tests 1%, we need to have more
than or equal to three rejections out of 12 embedding dimensions. We found
that all the ten stationary segments have serial dependence. But a peculiar
feature is that the Wayland statistic for the original data is greater than that
for the random shuffle surrogates [5] (see Fig. 2.2). This may be interpreted
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Fig. 2.2. Surrogate test for serial dependence. The crosses show the values obtained
from the actual data set and the solid lines, the minimum and maximum for 39
random shuffle surrogates
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that the original data are less deterministic than the random shuffle surro-
gates while this interpretation should be wrong. After testing some models,
we found that this strange phenomenon could happen if an original data set
is contaminated with either observational noise or dynamical noise [5]. The
common characteristic between these two possible causes is that a time series
has small fluctuations around trends. Thus, the wind may be considered as
small fluctuations with long-term trends.

Third, we tested the nonlinearity. We generated iterative amplitude
adjusted Fourier transform surrogates [22] and compared the original data
sets and their surrogates with the Wayland statistic of the original data. We
found a rejection in a multiple test for three segments out of 10 stationary
segments. The number of rejections is significantly higher than the chance
level. Thus the wind may be assumed to be a nonlinear process.

2.3 Modelling and Predicting the Wind

In the previous section, we discussed that a nonlinear model is appropriate
for modelling the wind. In this section, we build a model and evaluate its
performance by a prediction error.

2.3.1 Multivariate Embedding

In most cases, nonlinear time series analysis starts with delay embedding. Let
xi(t) be the ith observable at time t. Let x(t) represent whole the state at
time t. Then, we choose

(xi(t), xi(t− τ), xi(t− 2τ), · · · , xi(t− (κ− 1)τ)). (2.4)

If κ is sufficiently large, then this vector gives an embedding, meaning that
the vector and x(t) is one-to-one and the associated tangent space at each
point is also one-to-one. For the comparison later, we call this vector uniform
embedding.

In practice, Judd and Mees [10] extended the notion of delay embedding
and defined the following vector:

(xi(t− τ1), xi(t− τ2), · · · , xi(t− τκ)). (2.5)

They call this vector non-uniform embedding. The method of Judd and
Mees [10] fits a linear model and chooses the vector that minimises description
length, an information criterion.

The non-uniform embedding was extended to multivariate time series by
Garcia and Almeida [1]. Namely, one tries to construct a vector which looks
like

(xi1(t− τ1), xi2(t− τ2), . . . , xiκ(t− τκ)). (2.6)
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Their method is based on the extension of false nearest neighbour method [16],
a standard method for estimating the embedding dimension. In this chapter,
we used the extension [8] of Judd and Mees [10], another method for obtaining
an non-uniform embedding from a multivariate time series, since the method
gives, within a shorter time, a non-uniform embedding which is as reasonable
as the method of Garcia and Almeida.

2.3.2 Radial Basis Functions

The model we built was a radial basis function model since it can approximate
any continuous function relatively well. We use xi(t) for showing a reconstruc-
tion for the ith coordinate at time t. Then a radial basis function model can
be written as

xi(t+ 1) = δi + αi · xi(t) +
∑

l

βi,l exp
[
−‖x

i(t)− γi,l‖2
2ν2

]
, (2.7)

where δi, αi, βi,l, γi,l, and ν are parameters for the model. The centres of
the radial basis functions were chosen using the technique of chaperons [9].
In this technique, one chooses a set of points from observations and adds
Gaussian noise to them, whose standard deviation is 30% of that of the data.
We prepared 100 radial basis functions using this technique. We also set ν to
the standard deviation of the time series.

Since we have already decided γi,k and ν, now our model is a pseudo-linear
model and the remaining parameters may be decided by the least squares
solution. But a simple application of the least squares solution will face the
problem of overfitting. To avoid overfitting, we decided the remaining param-
eters for the radial basis function model as prescribed by Judd and Mees [9]
using the Normalised Maximum Likelihood [19] for a model selection criterion.
To explain the details, first let us define the Normalised Maximum Likelihood.

First we need to define a set of basis functions. In this chapter, the set is
made of the 100 radial basis functions and linear terms. Suppose that now we
have a number P of basis functions {ζj : j ∈ F}, where F = {1, 2, . . . , P} is
the set of indices for all the basis functions. Let D be the biggest delay among
{τi}. The length of given time series is denoted by N . Define Ñ = N −D. Let
V be the Ñ × P matrix whose (q, r) component is the value for the rth basis
function at time q, i.e.,

V =

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ1(xi(D)) ζ2(xi(D)) · · · ζP (xi(D))
...

...
ζ1(xi(t)) ζ2(xi(t)) · · · ζP (xi(t))

...
...

ζ1(xi(N − 1)) ζ2(xi(N − 1)) · · · ζP (xi(N − 1))

⎞

⎟⎟⎟⎟⎟⎟⎠
. (2.8)
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Denote a set of indices for basis functions by B. Thus, it holds that B ⊂ F .
Let us denote by VB the matrix that is formed from the columns of V with
indices in B = {j1, . . . , jJ}, i.e.,

VB =

⎛

⎜⎜⎜⎜⎜⎜⎝

ζj1(xi(D)) ζj2 (xi(D)) · · · ζjJ (xi(D))
...

...
ζj1(xi(t)) ζj2(xi(t)) · · · ζjJ (xi(t))

...
...

ζj1 (xi(N − 1)) ζj2(xi(N − 1)) · · · ζjJ (xi(N − 1))

⎞

⎟⎟⎟⎟⎟⎟⎠
. (2.9)

Let us also define ξ as

ξ = (xi(D + 1), . . . , xi(t+ 1), . . . , xi(N))T . (2.10)

Here ‘T’ shows the transposition of matrix.
Let λB be the least squares solution for ξ ≈ VBλB . Then the prediction

error eB can be written as eB = ξ − VBλB. When minimising the squared
error eTBeB, we can find the solution by

λB = (V T
B VB)−1V T

B ξ. (2.11)

Define R by

R =
1
Ñ

(VBλB)TVBλB. (2.12)

Then the Normalised Maximum Likelihood [19] for a set of p basis functions
B is given by

L(B) =
Ñ − p

2
ln
eTBeB

Ñ
+
p

2
lnR− lnΓ

(
Ñ − p

2

)
− lnΓ

(p
2

)
− ln p. (2.13)

Here Γ shows the Gamma function.
Using the Normalised Maximum Likelihood and these notations, we can

write down the algorithm proposed in [9] for selecting an optimal set of basis
functions in the following way:

1. Normalise V so that each column has unit length.
2. Let B and B′ be empty sets.
3. Obtain the prediction error. If B′ is empty, then eB′ = ξ. If not, then
eB′ = ξ − VB′λB′ . Here λB′ can be obtained using the formula of (2.11).

4. Find the basis function that matches the prediction error best. Let µ =
V TeB′ . Then the biggest component of µ corresponds to the best basis
function matching to the prediction error. Let g be the index for the best
matching basis function. Let B′ ← B′ ∪ {g}.

5. Find the basis function in B′ that least contributes to making the error
small. Let h be the index for the basis function whose corresponding λB′

is the smallest. If g �= h, then B′ ← B′\{h} and go to Step 3.
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6. If B is empty or L(B′) < L(B), then set B ← B′ and go back to Step 3.
7. The chosen B is the optimal set of basis functions.

We used the above algorithm for deciding δi, αi, and βi,l. Namely, for basis
functions which are not selected, we set the corresponding components to 0.
For selected basis functions, we use values obtained from the above fitting.

2.3.3 Possible Coordinate Systems

There are two possible coordinate systems for representing a wind vector. The
first one is the polar coordinate system. The second one is the rectangular
coordinate system. The problem of the polar coordinate system is how to
represent the wind direction. The wind direction has a value between 0◦ and
360◦, which is on a ring. If one tries to show the wind direction using a
value in an interval, then one has to split the ring somewhere and it causes
discontinuity. As a result, the wind direction cannot be predicted well [6].
Thus, the rectangular coordinate system is better than the polar coordinate
system for predicting the wind direction.

2.3.4 Direct vs. Iterative Methods

The model now at our hands predicts a step ahead. However, as discussed
in Sect. 2.1, we need to predict the wind direction and absolute wind speed
for a certain range of time. There are two options for it: The first option is
to prepare several models each of which has a different prediction step. This
approach is called a direct method. The second option is to use a model for
predicting a step ahead several times and realise a multiple step prediction.
This approach is called an iterative method.

There are some discussions on which model is better on a certain occa-
sion [11, 17]. Generally speaking, when we have a good one-step prediction,
then an iterative method is better. Otherwise, a direct method might be bet-
ter. Judd and Small [11] proposed a mixture of direct and iterative methods.
In their method, one first uses an iterative method and predicts the future
values. This step is called φ-step since the one-step model is shown using φ.
Then one uses a corrector ψ that makes the prediction more accurate. This
step is called ψ-step due to the notation of the corrector. As a total, the
method is called the ψφ method.

2.3.5 Measurements of the Wind

The data sets we used were measured at about 1 m high on the campus of the
Institute of Industrial Science, The University of Tokyo. We used two identical
anemometers which record the east, the north, and the upward winds with
50Hz. We measured the wind for nine different days between September 2005
and May 2006. On some days, we placed the two anemometers 5 m apart in



2 Wind Modelling and its Possible Application to Control of Wind Farms 31

(a)

re
la

tiv
e 

pr
ed

ic
tio

n 
er

ro
r

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25

prediction step [s]

(b)

prediction step [s]
0 5 10 15 20 25

0.86

0.88

0.9

0.92

0.94

re
la

tiv
e 

pr
ed

ic
tio

n 
er

ro
r

(c)

re
la

tiv
e 

pr
ed

ic
tio

n 
er

ro
r

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25

prediction step [s]

(d)

re
la

tiv
e 

pr
ed

ic
tio

n 
er

ro
r

prediction step [s]
0 5 10 15 20 25

0.9

0.92

0.94

0.96

0.98

1

(e)

re
la

tiv
e 

pr
ed

ic
tio

n 
er

ro
r

0.9

1

1.1

1.2

1.3

1.4

0 5 10 15 20 25

prediction step [s]

(f)

re
la

tiv
e 

pr
ed

ic
tio

n 
er

ro
r

prediction step [s]
0 5 10 15 20 25

0.8

0.85

0.9

0.95

1

1.05

Fig. 2.3. Means of root mean square errors for the compared combinations of
methods relative to those of persistent prediction. (a) and (b) are cases where the
additional observation was at upstream. (c) and (d) are cases where the additional
observation was at downstream. (e) and (f) are cases where the additional obser-
vation was nearby but at neither downstream nor upstream. (a), (c), and (e) show
root mean square errors for the wind direction, and (b), (d), and (f), those for the
absolute wind speed. In each part, the solid line shows the case of polar coordinates
with the direct method, the dotted line, that of rectangular coordinates with the
direct method, and the broken line, that of rectangular coordinates with the ψφ
method
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the north–south direction. On the other days, we placed them 5m apart in
the east–west direction. Since we are interested in the dynamics of 2 s order,
we took the moving average of 2 s and resampled it by 2 s.

We used measurements taken from the two points for predicting the wind
at one of them as we can expect better prediction by doing this [7].

2.3.6 Results

In the previous sections, we argued that there are two coordinate systems
and two possible methods for the prediction. Thus, theoretically there are
four possible combinations. In this section, however, we compare three of
them, namely, the polar coordinates with the direct method, the rectangular
coordinates with the direct method, and the rectangular coordinates with the
ψφ method, since the polar coordinates with an iterative method does not
provide good prediction since they have to use the prediction of the wind
direction several times.

In Fig. 2.3, we compared the performances of the three combinations of
the methods by the prediction error for each method relative to that for the
persistent prediction, where we used the value of 2 s before as a prediction.

When we predicted the wind direction, the rectangular coordinates with
the ψφ method achieved smaller mean prediction errors than the other two
combinations (Fig. 2.3a, c, e). We interpret this results as follows: Because
the wind direction takes a value on the ring, the polar coordinates are not a
good idea for representing the wind direction. By using the ψφ method, we
can make the prediction errors smaller compared to the direct prediction.

When we predicted the absolute wind speed (Fig. 2.3b, d, f), the polar
coordinates with the direct method gave the smallest mean prediction error
for all cases except for short prediction steps of the case where the additional
observation was at upstream. We think that the polar coordinates were better
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Fig. 2.4. Power curve used for the simulation
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Fig. 2.5. Results of simulations for energy production. (a), (c), and (e) show the
histograms of ratios of expected net benefits for the combination of the proposed
prediction methods to those for the persistent prediction. (b), (d), and (f) show
the histograms of ratios of expected costs for controlling a wind turbine based on
the proposed prediction to those based on the persistent prediction. (a) and (b)
are cases where the additional observation was at upstream. (c) and (d) are cases
where the additional observation was at downstream. (e) and (f) are cases where
the additional observation was nearby but at neither downstream nor upstream
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for predicting the absolute wind speed because the polar coordinates represent
what we want to predict directly.

2.4 Applying the Wind Prediction to the Yaw Control

In Sect. 2.3, we observed that the wind direction was predicted well when the
rectangular coordinates with the ψφmethod was used, while the absolute wind
speed was predicted well when the polar coordinates and the direct method
were used. In this section, we compared the combination of these methods
with the persistent prediction in expected energy.

From the actual data, we predicted the wind directions and absolute wind
speeds for prediction steps between 2 and 24 s. Then we fed the predictions
to the model of wind turbine presented in Sect. 2.1 and decided the control
policy. For estimating energy production, we used the actual wind data.

We used a power curve shown in Fig. 2.4 for the simulation. We set C1 =
C2 = C3 = 0.01.

We used the polar coordinates with the direct method and the rectangular
coordinates with the ψφ method for predicting the absolute wind speed and
the wind direction, respectively. This combination is the best, based on the
results of Sect. 2.3. We compared the results with the case where we used the
persistent prediction for both the absolute wind speed and the wind direction.

The results were shown in Fig. 2.5. The median of ratio of the expected
net benefits for the proposed prediction to those for the persistent prediction
is greater than 1. The median of ratio of the expected control costs for the
proposed prediction to those for the persistent prediction is smaller than 1.
These results mean that the proposed prediction works well for controlling a
wind turbine. The above observations were always true and do not depend on
the place of the additional observation point much.

2.5 Conclusions

In this chapter, we showed it is possible that wind modelling may help to
increase energy production. To show this, we first formulated the problem for
controlling the yaw angle of a wind turbine and found that we need to predict
the wind direction and the absolute wind speed for a certain range of the
future. Next, we investigated the properties of time series of the wind using
surrogate data analysis. We showed that the time series always have serial
dependence and they sometimes have nonlinearity. We also argued that times
series of the wind may be characterised by small fluctuations with trends.
These findings are positive signs for the prediction. Then, we modelled the
wind and found that the wind direction is predicted well by the rectangular
coordinates and the ψφ method, and the absolute wind speed is predicted well
if one uses the polar coordinates and the direct method. Finally, we applied
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the prediction of the wind to the simulation of wind turbine control. We found
that the nonlinear prediction can potentially increase the energy production.
An important point is that although our gain of information is small in terms
of the root mean square error, it is big enough for controlling a wind turbine
optimally.

We feel that the methods discussed here could be useful for controlling a
small wind turbine since a small wind turbine can be directed with a small
force very quickly, and in the scale of a small wind turbine, the wind at the
edges of the blades is not so much different from that at the centre.

The focus of this chapter has been that a heterogeneous data fusion strat-
egy is useful for controlling a wind turbine, and therefore the models of
turbine, stress, fatigue, and friction used are synthetic. Although these models
are not guaranteed to provide a feasible and safe solution for a real wind tur-
bine, we believe that they are sufficiently realistic to illustrate the proposed
framework.
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