
Preface

This book aims to cover major methodological and theoretical developments
in the field of stochastic global optimization. This field includes global random
search and methods based on probabilistic assumptions about the objective
function.

We discuss the basic ideas lying behind the main algorithmic schemes,
formulate the most essential algorithms and outline the ways of their theoret-
ical investigation. We try to be mathematically precise and sound but at the
same time we do not often delve deep into the mathematical detail, referring
instead to the corresponding literature. We often do not consider the most gen-
eral assumptions, preferring instead simplicity of arguments. For example, we
only consider continuous finite dimensional optimization despite the fact that
some of the methods can easily be modified for discrete or infinite-dimensional
optimization problems.

The authors’ interests and the availability of good surveys on particular
topics have influenced the choice of material in the book. For example, there
are excellent surveys on simulated annealing (both on theoretical and im-
plementation aspects of this method) and evolutionary algorithms (including
genetic algorithms). We thus devote much less attention to these topics than
they merit, concentrating instead on the issues which are not that well doc-
umented in literature. We also spend more time discussing the most recent
ideas which have been proposed in the last few years.

We hope that the text of the book is accessible to a wide circle of readers
and will be appreciated by those interested in theoretical aspects of global
optimization as well as practitioners interested mostly in the methodology.
The target audience includes graduate students and researchers in operations
research, probability, statistics, engineering (especially mechanical, chemical
and financial engineering). All those interested in applications of global opti-
mization can also benefit from the book.

The structure of the book is as follows. In Chapter 1, we discuss general
concepts and ideas of global optimization in general stochastic global opti-
mization in particular. In Chapter 2, we describe basic global random search
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algorithms, study them from different view-points and discuss various prob-
abilistic and statistical aspects associated with these algorithms. In Chap-
ter 3, we discuss and study several more sophisticated global optimization
techniques including random and semi-random coverings, random multistart,
stratified sampling schemes, Markovian algorithms and finally the methods of
generations. In Chapter 4, techniques based on the use of statistical models
about the objective function are studied. The Introduction and Chapter 1 are
written by both co-authors. Chapters 2 and 3 are written by A.Zhigljavsky,
Chapter 4 is written by A.Z̆ilinskas.

A.Zhigljavsky is grateful to his colleagues at Cardiff University (V.Savani,
V.Reynish, E.Hamilton) who helped with typing and editing the manuscript
and patiently tolerated his monologues on different aspects of global optimiza-
tion. He is also grateful to his long-term friends and collaborators Luc Pron-
zato and Henry Wynn for stimulating discussions and to his former colleagues
from St.Petersburg University – M.Chekmasov, V.Nevzorov, S.Ermakov, and
especially to M.Kondratovich, V.Nekrutkin and A.Tikhomirov. Significant
parts of Sects. 2.4, 2.5 and 3.3 are based on the joint work of A.Zhiglajvsky
and M.Kondratovich; Sect. 3.4 is fully based on the results of V.Nekrutkin
and A.Tikhomirov who very much helped with writing a summary of their
results.

A.Z̆ilinskas thanks the Institute of Mathematics and Informatics at Vilnuis
for facilitating his work on the book, and J.Mockus for introducing him to the
field of global optimization many years ago. The work by A.Z̆ilinskas has been
partly supported by the Lithuanian State Science and Studies Foundation.
The material on one-dimensional algorithms included into Chapter 4 is based
mainly on joint publications by A.Z̆ilinskas and J.Calvin. Before starting work
on the book, the authors invited Jim Calvin to become a co-author. Although
he rejected our invitation in view of his involvement in other projects, we
consider him a virtual co-author of the mentioned part of the book.

Both authors thank Rebecca Haycroft and Julius Z̆ilinskas as well as the
two referees for their careful reading of the manuscript and constructive re-
marks. Especially, the authors are very grateful to the editor of the series
Panos Pardalos for his encouragement with this project.

Cardiff, Vilnuis Anatoly Zhigljavsky
Antanas Zilinskas˘
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Global Random Search: Fundamentals and
Statistical Inference

2.1 Introduction to Global Random Search

In this section, we formulate and discuss basic assumptions concerning the fea-
sible region and the objective function, introduce a general scheme of global
random search algorithms and provide a general result establishing conver-
gence of global random search algorithms.

2.1.1 Main Assumptions

Consider a general minimization problem

f(x) → min
x∈A

with objective function f(·) and feasible region A. We shall always assume
that the minimum value m = minx∈A f(x) is attained in A. In general, f(·)
may have more than one minimizer x∗.

Let us formulate other common assumptions about A and f(·). Most of
these assumptions will be assumed true throughout this chapter and the next.

Assumptions concerning the feasible region A:

C1: A is a bounded closed subset of Rd (d ≥ 1);
C2: vol(A) > 0, where ‘vol(·)’ denotes the volume (or d-dimensional Lebesgue

measure) of a set;
C3: A is a finite union of the sets defined by a finite number of the inequality-

type constraints gi(x) ≤ 0, where the functions gi(·) defining the con-
straints are continuously differentiable (however, we do not need to know
the explicit forms of these functions);

C4: there exist constants c>0 and ε0 >0 such that for at least one minimizer
x∗ and all ε, 0 < ε < ε0, we have vol(B(x∗, ε)) ≥ cεd; that is, at least a
uniformly constant proportion of a ball in Rd with centre at x∗ and small
radius must intersect A;
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C5: the structure of A is simple enough for distribution sampling algorithms
on A and some of its subsets, to be of acceptable complexity.

These conditions are satisfied for an extremely wide class of practically in-
teresting sets A. We do not require, in particular, for A to be a cube; moreover,
neither convexity nor connectivity for A are generally required.

Conditions C1 and C2 are very simple and natural (note that Condi-
tion C1 implies vol(A) <∞ so that 0 < vol(A) <∞). Conditions C3 and C4
are needed to avoid difficulties at the boundaries of A. Thus, Condition C3
prevents fractal boundaries and Condition C4 helps avoid the configurations
where random search algorithms would almost certainly fail. An example of
such a configuration is shown in Figure 2.1. For such a configuration, simple
random search algorithms (which are not using local descents) will not be able
to approach the minimizer x∗ as the path to this point is ‘too narrow’.

*
ox

A

Fig. 2.1. An example of a disallowed combination of the set A and the minimizer x∗.

Of course, Condition C4 can be substituted with the following simpler
but somewhat stronger condition on A:

C4′: there exist constants c > 0 and ε0 > 0 such that vol(B(x, ε)) ≥ cεd for
all x ∈ A and all ε, 0 < ε < ε0.

Assumptions concerning the objective function f(·):

C6: f(·) can be evaluated at any point of A without error (note, however,
that we allow evaluation errors in Sects. 2.1.4, 3.5 and in some general
discussions);

C7: the number of minimizers x∗ is finite.

As a condition additional to C7, we shall sometimes assume that the minimizer
x∗ is unique.
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Rather than demanding continuity of f(x) for all x ∈ A, we shall demand
the following two weaker conditions:

C8: function f(·) is bounded and piece-wise continuous on A;
C9: there exists δ0 > 0 such that for all 0 < δ ≤ δ0 the sets

W (δ) = {x ∈ A : f(x) ≤ m + δ}

are closed and f(x) is continuous for all x ∈ W (δ0).

Note that if the objective function f(·) is continuous for all x ∈ A then
Condition C9 holds for all δ0 (and, in view of Condition C1, Condition C8
also holds).

The sets W (δ) and their behaviour as δ → 0 (an example)

The boundaries of the sets W (δ) are the level sets of f(·):

∂W (δ) = {x ∈ A : f(x) = m + δ} = f−1(m + δ) .

These level sets can be easily visualized when d ≤ 2; see e.g. Fig. 1.2 and
Fig. 2.2, where the contour-plot of the function

g(x, y) = f3,3(x) + f5,5(y) + f3,3(x)f5,5(y), (x, y) ∈ [0, 1]× [0, 1] , (2.1)

is provided; the function f(k,l)(·) is defined below in (2.2).
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Fig. 2.2. Contour-plot of the function g(x, y) defined in (2.1); the minimum value of
this function is equal to 0 and is achieved at the global minimizer (x∗, y∗) = ( 5

9
, 18

25
).

Let A = [0, 1] and let k ≥ 2 and l ≥ 2 be some integers. The function
f(k,l)(·) is defined as
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f(k,l)(x) =





1− 1
2

(
sin lkπ x

(k−1)(l−1)

)2

for x ∈
[
0, (k−1)(l−1)

kl

]

1−
(
sin lkπ x

l−1

)2

for x ∈
[

(k−1)(l−1)
kl , l−1

l

]

1− 1
2 (sin lπ x)2 for x ∈ [

l−1
l , 1

]
.

(2.2)

As illustrations, the functions f(12,5)(x) and f(3,5)(x) are depicted in Figs. 1.1
and 3.2(A), respectively.

For all integers k, l ≥ 2, the functions f(k,l)(x) are continuously differ-
entiable in A = [0, 1] and have three local minima. These local minima are
achieved at the points:

x(1) =
(k − 1)(l − 1)

2k l
, x(2) =

(2k − 1)(l − 1)
2k l

, and x(3) = 1− 1
2l

with the point x∗ = x(2) being the global minimizer. The values of the function
f(k,l)(·) at these points are

f(k,l)(x(1)) = f(k,l)(x(3)) =
1
2

, f(k,l)(x(2)) = 0 .

Despite the fact that the functions f(k,l)(x) are continuously differentiable,
the problem of finding x∗ is very difficult when k is large. Indeed, the com-
plexity of the problem of global optimization is very much related to the rate
of decrease of the ratio vol(W (δ))/vol(A) as δ decreases. Thus, for large k,
the complexity of the function f(k,l)(x) defined in (2.2) is expressed in terms
of the values of vol(W (δ)) which are small even for moderately large values
of δ; for instance,

vol(W (0.5)) =
l − 1
2kl

<
1
2k

.

In fact, for f(·) = f(k,l)(·), we can easily compute vol(W (δ)) for all δ:

vol(W (δ))=





0 if δ ≤ 0
l−1
kl

(
1− 2

π arcsin
√

1−δ
)

if 0≤δ≤ 1
2 ,

1− 2
πkl ((l−1) arcsin

√
1−δ+(kl−l+1) arcsin

√
2−2δ) if 1

2 <δ≤1,
1 if δ ≥ 1.

For general f(·), the rate of convergence of vol(W (δ))/vol(A) to zero as
δ → 0 is studied in Sect. 2.5.3. In particular, it is shown in that section that if
Conditions C7, C8 and C9 hold and if additionally for each global minimizer
x∗ the objective function f(·) is locally quadratic in the neighbourhood of x∗,
then there exists a constant c > 0 such that

vol(W (δ)) = cδd/2(1 + o(1)) as δ → 0 . (2.3)

This means that the rate of convergence of vol(W (δ)) to zero as δ → 0 is the
same for a very broad class of objective functions. Of course, the complexity
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of the function f(·) is also related to the value of the constant c in (2.3) and
the range of values of δ, where the asymptotic relation (2.3) can be applied.

In a particular case of f(·) = f(k,l)(·), we have

vol(W (δ)) =
2(l − 1)

√
δ

klπ

(
1 +

δ

6
+ O

(
δ2

))
, δ → 0 .

2.1.2 Formal Scheme of Global Random Search Algorithms

In a general global random search algorithm, a sequence of random points
x1, x2, . . . , xn is generated where for each j, 1 ≤ j ≤ n, the point xj has some
probability distribution Pj . For each j ≥ 2, the distribution Pj may depend
on previous points x1, . . . , xj−1 and the results of the objective function eval-
uations at these points (the function evaluations may not be noise-free). The
number of points n, 1 ≤ n ≤ ∞ (the stopping rule) can be either determin-
istic or random and may depend on the results of function evaluation at the
points x1, . . . , xn. For convenience, we shall refer to this general scheme as
Algorithm 2.1.

Algorithm 2.1.

1. Generate a random point x1 according to a probability distribution P1

on A; evaluate the objective function at x1; set iteration number j = 1.
2. Using the points x1, . . . , xj and the results of the objective function eval-

uation at these points, check whether j = n; that is, check an appropriate
stopping condition. If this condition holds, terminate the algorithm.

3. Alternatively, generate a random point xj+1 according to some probability
distribution Pj+1 and evaluate the objective function at xj+1.

4. Substitute j + 1 for j and return to step 2.

In the algorithm which is often called ‘pure random search’ all the dis-
tributions Pj are the same (that is, Pj = P for all j) and the points xj are
independent. In Markovian algorithms the distribution Pj+1 depends only on
the previous point xj and its function value f(xj). There is also a wide class
of global random search algorithms where the distributions are not updated
at each iteration but instead after a certain number of points have been gen-
erated. We can formally write down this scheme as follows.

Algorithm 2.2.

1. Choose a probability distribution P1 on the n1−fold product set A×. . .×A,
where n1≥1 is a given integer. Set iteration number j = 1.

2. Obtain nj points x
(j)
1 , . . . , x

(j)
nj in A by sampling from the distribution Pj.

Evaluate the objective function f(·) at these points.
3. Check a stopping criterion.
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4. Using the points x
(i)
l(i) (l(i)=1, . . . , ni; i=1, . . . , j) and the objective func-

tion values at these points, construct a probability distribution Pj+1 on
the nj+1−fold product set A×. . .×A, where nj+1 is some integer that may
depend on the search information.

5. Substitute j+1 for j and return to Step 2.

Of course, if nj = 1 (for all j) in Algorithm 2.2 then it becomes Algo-
rithm 2.1. On the other hand, Algorithm 2.1 allows more freedom in defining
the distributions of points where f(·) is evaluated and therefore can seem to
be more general than Algorithm 2.2. Thus, the difference between Algorithms
2.1 and 2.2 is purely formal; sometimes one form is more convenient and in
other cases the other form is more natural.

There are two important issues to deal with while constructing global ran-
dom search algorithms (in either form, Algorithm 2.1 or 2.2):

(i) choosing the stopping rule n, and
(ii) choosing the way of constructing the distributions Pj .

Consider issue (i). Commonly, a fixed number of points is generated (that
is, the total number of points n is fixed). A more sophisticated approach
would be to estimate the closeness of the current record value of the objective
function f(·) to its minimum value m = min f . This can be done in different
ways. Any of the deterministic approaches (based, for example, on the use
of Lipschitz constant estimates) can be applied. An enormous advantage of
many global random search algorithms is related to the fact that because
of the randomness of the points where f(·) is evaluated, probabilistic and
statistical considerations can be applied to infer about the closeness of the
current record value of f(·) to the minimum m; many of these considerations
can be used in defining the stopping rule. A large part of the present chapter
is devoted to these probabilistic and statistical considerations.

Issue (ii) concerns the construction of the distributions Pj (here by ‘con-
struction’ we do not mean ‘giving an analytic formula’ but rather ‘formulating
an algorithm for sampling from the distribution’). This is the issue of how we
use prior information about f(·) and the information we obtain in the process
of the search, as well as how we compromise between the globality and locality
of our search. The former problem (of extracting and using information about
f) is complex and versatile; significant parts of this chapter and the next deal
with it. The latter problem is potentially simpler, it was briefly considered in
Sect. 1.1.3.

2.1.3 Convergence of Global Random Search Algorithms

In the early stages of development of global random search theory (in the nine-
teen seventies and eighties), a number of papers were published establishing
sufficient conditions for convergence (in probability and with probability one)
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of random search algorithms; see, for example, [63, 188, 229]. The main idea
in most of these, and in many other results on convergence of global random
search algorithms, is the classical, in probability theory, ‘zero-one law’, see
e.g. [226]. The following simple theorem stated and proved in [273], Sect. 3.2,
illustrates this technique in a very general setup.

Let us consider a general global random search algorithm in the form of
Algorithm 2.1, where the point xj has some distribution Pj which may de-
pend on previous points x1, . . . , xj−1 and the results of the objective function
evaluation at these points.

Theorem 2.1. Let the objective function f(·) satisfy Condition C7, x∗ be
a global minimizer of f(·) and let f(·) be continuous in the vicinity of x∗.
Assume that

∞∑

j=1

qj(ε) = ∞ (2.4)

for any ε > 0, where

qj(ε) = inf Pj(B(x∗, ε)) , (2.5)

with B(x∗, ε)={x∈A : ||x−x∗|| ≤ ε}; the infimum in (2.5) is taken over all
possible previous points and the results of the objective function evaluations
at them. Then, for any δ > 0, the sequence of points xj with distributions Pj

falls infinitely often into the set W (δ)={x ∈ A : f(x)−m≤δ}, with probability
one.

Proof is given in Sect. 2.7; it is a simplified version of the proof given
in [273].

Note that Theorem 2.1 holds in the general case where evaluations of
the objective function f(·) can be noisy (and the noise is not necessarily
random). If the function evaluations are noise-free, then the conditions of the
theorem ensure that the sequence {xn} converges to the set A∗ = {arg min f}
of global minimizers with probability one; similarly, the sequence of records
yon = minj≤n f(xj) converges to m = min f with probability one.

If for a particular sequence {xj} we have

∞∑

j=1

Pj(B(x∗, ε)) < ∞ ,

then the Borel-Cantelli lemma (see e.g. [226]) implies that the points x1, x2, . . .
fall into B(x∗, ε) only a finite number of times, with probability one. Moreover,
looking at the family of functions (2.2), we conclude that (2.4) cannot be
improved upon for a wide enough class F of objective functions. That is, if
(2.4) is not satisfied then there exists f ∈ F such that for any n, none of the
points x1, . . . , xn fall into B(x∗, ε) with any fixed probability γ, 0 < γ < 1.
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Since the location of x∗ is not known a priori, the following simple sufficient
condition for (2.4) can be used:

∞∑

j=1

inf Pj(B(x, ε)) = ∞ (2.6)

for all x ∈ A and ε > 0.
In practice, a very popular rule for selecting probability measures Pj ’s is

Pj+1 = αj+1P + (1− αj+1)Qj , (2.7)

where 0 ≤ αj+1 ≤ 1, P is the uniform distribution on A (extension to other
probability distributions P is straightforward) and Qj is an arbitrary proba-
bility measure on A which may depend on the results of the evaluation of the
objective function at the points x1, . . . , xj . For example, sampling from Qj

may correspond to performing several iterations of a local descent from the
current record point xoj .

Sampling from the distribution (2.7) corresponds to taking a uniformly
distributed random point in A with probability αj+1 and sampling from Qj

with probability 1− αj+1.
If the probability measures Pj in Algorithm 2.1 are chosen according to

(2.7), then a simple and rather weak condition

∞∑

j=1

αj = ∞ (2.8)

is sufficient for (2.4) and (2.6) to hold.
The rate of convergence of the global random search algorithms, repre-

sented in the form of Algorithm 2.1 with distributions Pj chosen according to
(2.7) and (2.8), is discussed at the end of Sect. 2.2.2.

2.1.4 Random Errors in Observations

Many global random search algorithms can easily be modified so that they
can be used in the case where there are random errors in the observations of
the objective function values. To give an example, several versions of the ‘sim-
ulated annealing’ algorithm considered in Sect. 3.3.2, have been devised for
optimizing objective functions corrupted by noise, even before the simulated
annealing algorithms became widely known. The corresponding algorithms are
often called global (or multiextremal) stochastic approximation algorithms,
see [260, 277] and [273], Sects. 3.3.3 and 3.3.4. The theoretical study of these
algorithms is often related to the study of stochastic differential equations and
in particular to the study of diffusion processes, see e.g. [142].

Providing the globality of search (see Sect. 1.1.3) is simple whether or not
there are errors in observations. What is not that simple is recognizing the
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neighbourhood of the global minimizer and making local steps (as it is difficult
to estimate gradients of the objective function). However, many statistical
and heuristic arguments can be employed for monitoring the arrival at the
neighbourhood of the global minimizer (see e.g. Sect. 4.1 in [273]).

Rather than further developing this topic (which is not particularly chal-
lenging), we briefly consider a different problem related to the fact that there
are random errors in observations of f(·). This is the problem of estimating
the values of the objective function and its gradients in the case where the dis-
tribution of noise is known. We assume that the objective function is specified
as the expectation

f(x) = Exg(x, Y ) =
∫

g(x, y)φx(y)dy, (2.9)

where g(x, y) is a known function and φx(·) is the density of the random
variable Y ; note that the random variable Y = Yx and the density φx(·) may
depend on x.

Assuming that the integral in (2.9) cannot be evaluated analytically, a
natural way of approximating it is to use the following Monte Carlo estimator

f(x) ∼= 1
n

n∑

i=1

g(x, Y (i)
x ) (2.10)

where {Y (1)
x , . . . , Y

(n)
x } is a sample from a distribution with density φx(·).

Assume that there exists a density π(·) such that φx(y) = 0 whenever
π(y) = 0 so that the ratio

wx(y) = φx(y)/π(y)

is well defined. Then, to estimate f(x), we can use the method known as the
importance sampling:

f(x) ∼= 1
n

n∑

i=1

g(x, Y (i))wx(Y (i)) (2.11)

where {Y (1), . . . , Y (n)} is a sample from a distribution with density π(·). Note
that this sample does not have to be independent or even random; it can be,
for instance, a stratified sample, a MCMC sample or even a quasi-random
sample, see Sects. 3.1, 3.2.1 and 3.3.2.

The main advantage of using (2.11) over (2.10) is the fact that we can
use the same sample {Y (1), . . . , Y (n)} for estimating values of f(x) for all
required values of the argument x. Moreover, using the same sample we can
approximate the components of the gradient

∇f(x) =
(
∂f(x)/∂x(1), . . . , ∂f(x)/∂x(d)

)
, x = (x(1), . . . , x(d)) .

Indeed, the j-th derivative ∂f(x)/∂x(j) can be written as
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∂f(x)
∂x(j)

=
∫ (

wx(y)
∂g(x, y)
∂x(j)

+ g(x, y)
∂wx(y)
∂x(j)

)
π(y)dy

and approximated by

∂f(x)
∂x(j)

∼= 1
n

n∑

i=1

(
wx(Y (i))

∂g(x, Y (i))
∂x(j)

+ g(x, Y (i))
∂wx(Y (i))

∂x(j)

)
, (2.12)

where {Y (1), . . . , Y (n)} is the same sample as above. Similarly one can ap-
proximate higher-order derivatives of f(·).

The method based on (2.10) is often called the many-samples method as
it requires a new sample Y

(1)
x , . . . , Y

(n)
x for every function evaluation. The

method based on (2.11) and (2.12) is called the single-sample method as it only
uses one sample to estimate all required function values and its derivatives.
The single-sample method has numerous advantages over the more traditional
many-samples method, see [92] for references and more discussion.

2.2 Pure Random and Pure Adaptive Search Algorithms

Pure random search (PRS for short) is the simplest global random search
algorithm. It consists of taking a sample of n independent random points
xj (j = 1, . . . , n) in A and evaluating the objective function f(·) at these
points. Studying this algorithm is relatively simple. However, knowing the
properties of this algorithm is very important as PRS is a component of many
other random search algorithms. Additionally, PRS is often a bench-mark for
comparing properties of other global optimization algorithms (not necessarily
random search ones).

In this section, we also consider a version of PRS which is called ‘pure
adaptive search’ and generalize it to the ‘pure adaptive search of order k’.

2.2.1 Pure Random Search and the Associated c.d.f.

The algorithm

PRS is an algorithm where n random points xj (j = 1, . . . , n) are generated
and the objective function f(·) at these points is evaluated. The points xj are
i.i.d.r.v. in A with common distribution P . Here n is a stopping rule which is
not necessarily a fixed number (typically, however, it is a fixed number); P is
some given probability measure on A, not necessarily uniform (although the
case where P is uniform is the main special case).

The probability distribution P should be simple enough to sample from
and must not be much different from the uniform measure on A (otherwise
PRS may lose the property of being a global optimization algorithm). It is
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often enough to assume that the distribution P is equivalent to the uniform
distribution on A, see Condition C10 below.

Of course, PRS can be represented in the form of Algorithm 2.1, with
Pj = P for all j = 1, . . . , n and independent points x1, . . . , xn.

The most common estimators (of course, they can only be used where the
evaluations of f(·) are noise-free) of the minimum m = min f and the mini-
mizer x∗ = arg min f are respectively the record values yon = min1≤j≤n f(xj)
and the corresponding record points xon which satisfy f(xon) = yon. We shall
see below that the estimator yon of m can often be significantly improved.

The c.d.f. of major importance

As a result of the application of PRS we obtain an independent sample
Xn = {x1, . . . , xn} from a distribution P on A. Additionally, we obtain an in-
dependent sample Yn = {y1, . . . , yn} of the objective function values at these
points. The elements yj = f(xj) of the sample Yn are i.i.d.r.v. with the c.d.f.

F (t) = Pr{x ∈ A : f(x) ≤ t} =
∫

f(x)≤t

P (dx) . (2.13)

Fig. 2.3 displays the c.d.f. (2.13) for the case where the distribution P is
unform on A = [0, 1] and the objective function f(x) = f(k,l)(x) is as defined
in (2.2) with l = 5 and k = 2, 5 and 20.
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Fig. 2.3. Graphs of the c.d.f. (2.13) when P is uniform on [0, 1] and f(x) = f(k,l)(x)
is as defined in (2.2) with l = 5 and k = 2, 5, 20.

Assumption about the distribution P

Additional to the assumptions formulated in Sect. 2.1.1 we shall need an
assumption about the probability distribution P . We shall assume that P is
equivalent to the standard Lebesque measure on A; that is, we assume the
following condition:
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C10: the probability distribution P has a density p(x) such that
c(1) ≤ p(x) ≤ c(2) for all x ∈ A and some positive constants c(1), c(2).

Condition C10, along with condition C4 of Sect. 2.1.1, implies that for
every minimizer x∗ we have

P (B(x∗, ε)) ≥ cεd for some c > 0 and all 0 < ε ≤ 1; (2.14)

here, as usual, B(x∗, ε) = {z ∈ A : ||x∗ − z|| ≤ ε}. As a consequence, we
obtain, in particular, that the elements of the sample X belong to the vicinity
of x∗ with positive probability.

General properties of the c.d.f. (2.13)

The c.d.f. (2.13) is of major importance in studying PRS as well as some
associated global random search algorithms. This is related to the fact that

F (t) = P (W (t−m)) for all t ≥ m, (2.15)

where W (δ) = {x ∈ A : f(x) ≤ m + δ}, δ ≥ 0. Therefore, for t ≥ m, F (t)
has the interpretation of the probability that a random point xi distributed
according to P falls into the set W (t−m).

If the probability measure P is uniform on A, then the representation
(2.15) can be written in the form

F (m + δ) = vol(W (δ))/vol(A) . (2.16)

The importance of the ratio in the r.h.s. of (2.16) has already been discussed
at the end of Sect. 2.1.1. Furthermore, as we shall see below, the behaviour of
F (m + δ) for small δ > 0 is a very important characteristic of the efficiency
of PRS and, more generally, of the complexity of the objective function f(·).

Since the set W (δ) is empty for δ < 0, we have F (t) = 0 for t < m.
In view of Conditions C7 and C10 we also have F (m) = 0. On the other
hand, the inequality (2.14) and Condition C9 imply that F (t) > 0 for all
t > m. Moreover, Conditions C1–C4 and C7–C9 imply that the c.d.f. F (t) is
continuous at t = m.

Certain properties of the c.d.f. F (·), see Sect. 2.3, are different depending
on whether this c.d.f. is continuous or not. In addition to Conditions C8 and
C10, to guarantee the continuity of F (·) defined in (2.15) we have to assume
that vol(f−1(t)) = 0 for all t, where

f−1(t) = {x ∈ A : f(x) = t} .

That is, F (·) is continuous if the volume of every level set of f(·) is zero.
Let η denote a random variable with c.d.f. F (·). The fact that F (m) = 0

and F (t) > 0 for all t > m is equivalent to the statement that the essential
infimum of η is equal to m:
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F (m) = 0 and F (t) > 0 for all t > m ⇐⇒ ess inf η = m.

Finally, let M = supx∈A f(x). Condition C8 implies that M < ∞. For the
c.d.f. F (·), this means that F (M) = 1 and correspondingly, F (t) = 1 for all
t ≥ M = sup f . The value of M is never important; however, it is sometimes
important that the random variable η is concentrated on a bounded interval.

Poisson process representation

Let us follow [44] and give a representation of PRS through a Poisson process.
Assume that vol(A)=1 and the distribution P is uniform on A. Let x0 be
an internal point of A (for instance, x0 is one of the global minimizers of f).
Define a sequence of point processes Nn on B by

Nn(B) =
n∑

j=1

1B(n1/d(xj − x0)) , B ∈ B ,

where 1B(·) is the indicator function

1U (z) =
{

1 if z ∈ U
0 otherwise.

That is, for a fixed measurable set B, Nn(B) is defined as the number of
points among x1, . . . , xn that belong to the set x0 + n−1/dB. The sequence
of point processes Nn converges in distribution (as n → ∞) to N , a Poisson
point process with intensity 1 defined on A. For this process,

Pr{N(B) = k} =
[vol(B)]k

k!
exp(−vol(B)), k ≥ 0, B ∈ B;

additionally, for disjoint B1, . . . , Bi ∈ B, the values N(Bj) (j = 1, . . . , i) are
independent random variables.

Therefore, a suitably normalized point process of observations near x0

looks like a standard Poisson point process. This does not give us new results
about the rate of convergence of PRS but permits us to look at the algorithm
from a different prospective.

2.2.2 Rate of Convergence of Pure Random Search

Let us consider a PRS where xj (j = 1, . . . , n) are i.i.d.r.v. distributed accord-
ing to P and let the stopping rule n be a fixed number. In this section, our
aim is to study the rate of convergence of PRS. We assume that all conditions
of Sect. 2.1 concerning the feasible region A and the objective function f(·)
are satisfied.
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Rate of convergence to a neighbourhood of a global minimizer

Let ε > 0 be fixed, x∗ = arg min f be a global minimizer of f(·) and let our
objective be hitting the set

B = B(x∗, ε, ρ) = {x ∈ A : ρ(x, x∗) ≤ ε}

with one or more of the points xj (j = 1, . . . , n). Let us regard the event
‘a point xj hits the set B’ as success and the alternative event as a failure.
Then PRS generates a sequence of independent Bernoulli trials with a success
probability P (B); Conditions C4 and C5 of Sect. 2.1 imply that P (B)>0 for
all ε>0.

A sequence of independent Bernoulli trials is perhaps the most celebrated
sequence in the probability theory. Below, we use some well-known results
concerning this sequence to obtain results concerning the rate of convergence
of PRS.

For fixed j, we have

Pr{xj ∈ B} = P (B) . (2.17)

Therefore,

Pr{xj /∈ B} = 1− P (B), for all j .

In view of the independence of xj ,

Pr{x1 /∈ B, . . . , xn /∈ B} = (1− P (B))n

and therefore

Pr{xj ∈ B for at least one j, 1 ≤ j ≤ n} = 1− (1− P (B))n
. (2.18)

Since P (B) > 0, this probability tends to one as n →∞.
Let τB be a random moment of first hitting the set B. Then the average

number of PRS iterations required for reaching B is

EτB =
1

P (B)
.

Typically, P (B) is very small even if ε is not small (see below) and the
rate of convergence of the probability (2.18) to one is very slow. Additionally,
if P (B) is small then EτB is large.

Taking n ≈ 1/P (B) is not enough to guarantee that B is reached with
high probability. Indeed, for small x > 0 we have

(1− x)
1
x ∼= e−1 ∼= 0.36788

and therefore for n = d1/P (B)e
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1− (1− P (B))n ∼= 0.63212 as P (B) → 0 .

To achieve a probability of 0.95 for the r.h.s. of (2.18) we need to almost triple
this value:

1− (1−P (B))n ∼= 1− 1
e3
∼= 0.950213 for n = d3/P (B)e as P (B) → 0 .

Furthermore, let us assume that we are required to reach the set B with
probability at least 1 − γ for some 0 < γ < 1. This gives us the following
inequality for n:

1− (1− P (B))n ≥ 1− γ .

Solving it we obtain

n ≥ n(γ) =
ln γ

ln (1− P (B))
. (2.19)

Since we assume that P (B) is small, ln (1− P (B)) ∼= −P (B), and we can
replace (2.19) with

n ≥ − ln γ

P (B)
; (2.20)

that is, we need to make at least d− ln γ/P (B)e evaluations in PRS to reach
the set B with probability 1− γ.

Note that

Pr{xj ∈ B(x∗, ε, ρ) for at least one j, 1 ≤ j ≤ n} = Pr
{

min
1≤j≤n

ρ(xj , x∗) ≤ ε

}

and therefore the discussion above can be considered as a discussion about
the rate of convergence in probability of the sequence

min
1≤j≤n

ρ(xj , x∗)

to zero, as n →∞.

Rate of convergence with respect to function values

If we want to study the rate of convergence with respect to the function values,
that is, of

yon −m = min
1≤j≤n

|f(xj)−m| as n →∞ ,

then in the above study we have to replace the set B = B(x∗, ε, ρ), with the
set
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W (δ) = {x ∈ A : f(x)−m ≤ δ}

with some δ > 0. In particular, we have EτW (δ) = 1/P (W (δ)),

Pr {yon −m ≤ δ} = 1− (1− P (W (δ)))n → 1 as n →∞,

and in order to reach the set W (δ) with probability 1−γ, we need to perform
approximately − ln γ/P (W (δ)) iterations of PRS.

In view of (2.16), these formulae can be expressed in terms of the c.d.f.
F (·). We have, in particular,

Pr {yon −m ≤ δ} = 1− (1− F (m + δ))n
, EτW (δ) = 1/F (m + δ) ,

and to reach W (δ) with probability 1− γ, we need to perform approximately
− ln γ/F (m + δ) iterations of PRS.

Particular case of the uniform distribution

Consider an important particular case, where the distribution P is uniform
on A and ρ is the Euclidean metric (that is, ρ = ρ2). Then for every Z ∈ B
(this means that Z is any measurable subset of A) we have

P (Z) = vol(Z)/vol(A)

and for B = B(x∗, ε) we have

P (B) =
vol(B)
vol(A)

≤ π
d
2 εd

Γ
(

d
2 + 1

) · vol(A)
, (2.21)

where Γ (·) is the Gamma-function. If x∗ is an interior point of A and ε is
small enough so that the ball

{
x ∈ Rd : ρ2(x, x∗) ≤ ε

}
is fully inside A, then

the inequality in (2.21) becomes an equality.
The formulae (2.19) and (2.20) then say that if we want to reach the set

B = B(x∗, ε) = {x ∈ A : ρ2(x, x∗) ≤ ε}

with probability at least 1− γ, then we need to perform at least

n∗=




ln γ

ln
(
1−π

d
2 εd/(Γ (d

2 +1)·vol(A))
)



'

⌈
−ln γ ·Γ

(
d
2 +1

)

π
d
2 εd

·vol(A)

⌉
(2.22)

iterations of PRS. Table 2.1 and Fig. 2.4 illustrate the dependence of n∗ =
n∗(γ, ε, d) on γ, ε and d.

Note that in the majority of cases considered in Table 2.1, the approxima-
tion for n∗ given in the r.h.s. of (2.22) over-estimates the true value of n∗ by 1.
Taking into account the fact that the values of n∗ are typically very large, we
can conclude that the r.h.s. of (2.22) gives a very good approximation for n∗.
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Fig. 2.4. Values of ln n∗ as a function of d; here vol(A) = 1, γ = 0.1, ε = 0.5, 0.2, 0.1
and n∗ is as defined in (2.22).

d γ = 0.1 γ = 0.05
ε = 0.5 ε = 0.2 ε = 0.1 ε = 0.5 ε = 0.2 ε = 0.1

1 0 5 11 0 6 14
2 2 18 73 2 23 94
3 4 68 549 5 88 714
4 7 291 4665 9 378 6070
5 13 1366 43743 17 1788 56911
7 62 38073 4.9·106 80 49534 6.3·106

10 924 8.8·106 9.0·109 1202 1.1·107 1.2·1010

20 9.4·107 8.5·1015 8.9·1021 1.2·108 1.1·1016 1.2·1022

50 1.5·1028 1.2·1048 1.3·1063 1.9·1028 1.5·1048 1.7·1063

100 1.2·1070 7.7·10109 9.7·10139 1.6·1070 1.0·10110 1.3·10140

Table 2.1. Values of n∗ = n∗(γ, ε, d), see (2.22), for vol(A) = 1, γ = 0.1 and 0.05,
ε = 0.5, 0.2 and 0.1, for various d.

We can see that the dependence of n∗ on γ is not crucial; on the other
hand, n∗ = n∗(γ, ε, d) increases exponentially as the dimension d increases.
As a matter of fact, the Stirling approximation gives for fixed 0 < γ < 1 and
ε > 0:

ln n∗(γ, ε, d)=
d+1

2
ln (d)−d ln(

√
2πeε)+ln

[√
πvol(A) (− ln γ)

]
+O

(
1
d

)

as d →∞, and this approximation is extremely good even for small d.
If one is interested in the asymptotic behaviour of the value of n∗(γ, ε, d)

when d is fixed and the required precision ε tends to 0, then (2.22) implies
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n∗ = O

(
1
εd

)
as ε → 0 . (2.23)

Since we are not specifying the constant in (2.23), this formula holds not only
for the case where n∗ = n∗(γ, ε, d) with ρ = ρ2 and P = P0 is the uniform
distribution, but also for arbitrary ρ = ρp (1 ≤ p ≤ ∞), for any probability
measure P equivalent to the uniform measure P0 on A (see Condition C10
above). The same formula is true in the case when n∗ has the meaning of
the average number of iterations required to reach the ball B(x∗, ε, ρ). If the
objective function satisfies Conditions C7–C9 of Sect. 2.1, then we can replace
the ball B(x∗, ε, ρ) with the set W (ε); the formula (2.23) will still hold.

Multivariate spacings

Let us mention a relevant result of S.Janson [127] on multivariate spacings.
In general, the maximum (multivariate) spacing of a set of points x1, . . . , xn

with respect to a convex set B ⊂ Rd is defined as the largest possible subset
x + rB of A which does not contain any of the points xj(j = 1, . . . , n). Let
vol(A) = 1, B be either a cube or a Euclidean ball in Rd of unit volume:
vol(B) = 1; let also x1, . . . , xn be i.i.d.r.v. with the uniform distribution on
A. Set

4n = sup{t : there exists x ∈ Rd such that x+tB ⊂ A \ {x1, . . . , xn}} (2.24)

and define the volume of the maximum spacing as Vn = (4n)d, which is the
volume of the largest ball (or cube of fixed orientation) that is contained in
A and avoids all n points x1, . . . , xn. Then we have

lim
n→∞

nVn − ln n

ln lnn
= d− 1 with probability 1 (2.25)

(this result generalizes the result of P. Deheuvels [62]; see also [72]). Moreover,
the sequence of random variables

nVn − ln n− (d− 1) ln ln n + βd

converges (as n →∞) in distribution to the r.v. with c.d.f. exp(−e−u), u > 0,
where βd = 0 if A is a cube and

βd = ln Γ (d+1)−(d−1)
[
1
2

ln π+ln Γ

(
d

2
+1

)
−ln Γ

(
d+1

2

)]
(2.26)

in the case when A is a ball. Since βd ≥ 0, the spherical spacings are a little
bit smaller than the cubical ones. For large d, we can use the approximation

βd =
d

2
ln

2d

π
− d + ln(πd)− 1

4
+ O

(
1
d

)
, d →∞ ,

for the quantity βd defined in (2.26). This approximation is very accurate,
especially if d is not very small (say, d ≥ 5).
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Extension to general global random search algorithms

The main results on the rate of convergence of PRS can be extended to a
much wider class of global random search algorithms.

Consider the general Algorithm 2.1 of Sect. 2.1.2 and assume that the
probability measures Pj are chosen according to (2.7), where the probability
measure P satisfies Condition C10 of Sect. 2.2.1. Assume also that the mea-
sures Qj are arbitrary and the condition (2.8) guaranteeing the convergence
of the algorithm is met. Let us generalize the arguments that led us to the
estimates of the convergence rate of PRS into this more general situation.

As a replacement of (2.17), for all j ≥ 1 we have

Pr{xj ∈ B} ≥ αjP (B) . (2.27)

Arguments similar to those used in deriving (2.18) imply the inequality

Pr{xj ∈ B for at least one j, 1 ≤ j ≤ n} ≥ 1−
n∏

j=1

(1− αjP (B)) . (2.28)

In view of the condition (2.8) and the fact that P (B) > 0, the r.h.s. of (2.28)
tends to one as n →∞.

Assume now that P (B) is small and define n(γ) as the smallest integer
such that the following inequality is satisfied:

n(γ)∑

j=1

αj ≥ − ln γ

P (B)
.

Similarly to (2.20) we deduce that one has to perform at least n(γ) iterations
of Algorithm 2.1 to guarantee that at least one of the points xj reaches the
set B with probability ≥ 1− γ. Of course, n(γ) is smallest if all αj = 1, that
is when Algorithm 2.1 is PRS.

Extension of the main results concerning the rate of convergence with
respect to function values and specialization to the case where P is the uniform
distribution on A can be similarly made.

Slow rate of convergence may imply that the convergence is not practically
achievable

Paying much attention to local search reduces the values of αj ’s in (2.27). It
may be tempting to perform many local searches leaving αj ’s very small (for
example, by setting αj = 1/j), just to guarantee the global convergence of
the algorithm. Let us check what happens with the rate of convergence in the
case when αj = 1/j. Since for large n we have

∑n
j=1 1/j ' ln(n), from (2.20)

we obtain

n(γ) ' exp{(− ln γ)/P (B)} .
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Assuming that vol(A)=1 and that the distribution P is the uniform this,
roughly speaking, implies that to compute the number of required iterations
we need to exponentiate the numbers presented in Table 2.1. For instance, for
very reasonable parameters ε = 0.1 and d = 5, we would need about 1019000

iterations of Algorithm 2.1 to guarantee that at least one of the points xj will
reach the ball B(x∗, ε) with probability ≥ 0.9 (note that the total number of
atoms in the universe is estimated to be smaller than 1081).

The discussion above is very similar to the discussion provided by G.H.Hardy
in Appendix III of his book [113]. Its consequence is that the fact of conver-
gence of some global optimization algorithms is only a theoretical fiddle and
does not mean anything in practice.

2.2.3 Pure Adaptive Search and Related Methods

In recent years there has been a great deal of activity (see e.g. papers [182,
265, 268, 269], the monograph [267] by Z.Zabinsky and references therein)
related to the so-called ‘pure adaptive search’. Unlike PRS, where the points
xj are independent and distributed in A with the same distribution P , at
iteration j+1 of the pure adaptive search one chooses a random point xj+1

within the set

Sj = {x ∈ A : f(x) < yoj} , (2.29)

where yoj = min{f(x1), . . . , f(xj)} is the current record (in fact, every new
point in the pure adaptive search is a new record point so that xj = xoj and
yj = yoj for all j ≥ 1). More precisely, x1 has the probability distribution P
and for each j ≥ 1, xj+1 is a random point with the distribution Pj+1 defined
for all Borel sets U ⊂ A by

Pj+1(U) =
P (U ∩ Sj)

P (Sj)
, (2.30)

where P is the original distribution and Sj is defined in (2.29). If P is the
uniform distribution on A, then Pj+1 is the uniform distribution on Sj . Of
course, the points x1, x2, . . . generated in the pure adaptive search are depen-
dent (unlike in PRS), see Sect. 2.3.3 for details.

If we replace the strict inequality < in the definition of the sets Sj with
≤, then these sets are exactly the sets

Wxj
= {x ∈ A : f(x) ≤ f(xj)} ;

that is, Sj = Wxj , where Z denotes the closure of a set Z. The corresponding
method (using the sets Wxj

in place of Sj) is called ‘weak pure adaptive
search’.

The study of the sequence of function values f(x1), f(x2), . . . in the pure
adaptive search is equivalent to the study of the record values in PRS. This
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is the subject of Sect. 2.3.3; that section provides, therefore, a detailed inves-
tigation of the properties of the pure adaptive search. Note that in previous
literature on the pure adaptive search this kind of investigation was lacking.

Of course, the sequence f(xj) converges to m much faster for the pure
adaptive search than for PRS. The major obstacle preventing the application
of the pure adaptive search to the practice is the fact that it is very hard to
find points in the sets (2.29). To some extent, the problem of finding points
in the sets (2.29) is one of the major objectives of all global optimization
strategies. In particular, the set covering methods of Sect. 3.1 can help in
removing the subregions of A that have no intersection with the sets (2.29)
and thus simplify the problem of generating random points in these sets.

There are several papers fully devoted to the problem of generating random
points in the sets (2.29), see e.g. [28, 194, 269] and Chapt. 5 in [267]; the
corresponding methods either resemble or are fully based on the celebrated
Markov Chain Monte Carlo methods. However, the problem is too difficult and
cannot be resolved adequately. In general, there is no algorithmically effective
way of generating (independent) random points from the sets (2.29) apart
from using PRS in the first place (perhaps, with the bounding of certain
subsets of A) and waiting for a new record value of the objective function
(which is equivalent to obtaining a new point xj in the pure adaptive search).
If this is the way of performing the pure adaptive search then:

(a) the average waiting time of a new record is infinite for all j > 1, see (2.63);
(b) by discarding the k-th record values in PRS (k > 1) we lose an enormous

amount of information contained in the evaluations made during PRS.

Taking these points into account we can state that generally, despite the
fast convergence, the pure adaptive search only has theoretical interest as it
is either impractical or much less efficient that PRS.

A similar conclusion can be drawn about different modifications of the
pure adaptive search. These modifications include:

(i) weak pure adaptive search defined above;
(ii) ‘hesitant random search’ (see e.g. [28, 30]), where for all j > 1 the next

point xj+1 is random and has distribution Pj+1 with probability αj+1

and any other distribution on A with probability 1−αj+1; here αj+1

(0 ≤ αj+1 ≤ 1) may depend on f(xj) and the probability measures Pj+1

are as defined in (2.30);
(iii) ‘backtracking adaptive search’, see [29, 265], where for all j > 1 the new

point xj+1 is sampled from the sets:



{x ∈ A : f(x) < yoj} = Sj with probability αj+1

{x ∈ A : f(x) = yoj} with probability βj+1

{x ∈ A : f(x) > yoj} with probability 1−αj+1−βj+1

for some αj+1 and βj+1 which may depend on f(xj).
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2.2.4 Pure Adaptive Search of Order k

Aiming to resolve the problems (a) and (b) of the pure adaptive search, we
can suggest the following extension of this algorithm (similar extensions can
be suggested for its modifications (i)-(iii) above) which improves both pure
random search and pure adaptive search.

Algorithm 2.3 (Pure adaptive search of order k).

1. Choose points x1, . . . , xk by independent random sampling from the uni-
form distribution on A. Compute the objective function values yi = f(xi)
(i = 1, . . . , k). Set iteration number j = k.

2. For given j ≥ k, we have points x1, . . . , xj in A and values of the objective
function at these points. Let y

(k)
j be the k-th record value corresponding to

the sample {yi = f(xi), i = 1, . . . , j}. Define the set

S
(k)
j = {x ∈ A : f(x) < y

(k)
j } . (2.31)

3. Choose xj+1 as a uniform random point from the set S
(k)
j and evaluate

the objective function value at xj+1.
4. Substitute j + 1 for j and return to step 2.

For simplicity, Algorithm 2.3 is formulated under the assumption that the
underlying distribution of points in A is uniform. It can be easily generalized
to the case of a general distribution: in this case, x1, . . . , xk are distributed
in A according to a distribution P and xj+1 has the distribution P

(k)
j+1 defined

for all Borel sets U ⊂ A by P
(k)
j+1(U) = P (U ∩ S

(k)
j )/P (S(k)

j ); this formula is
an extension of (2.30). Thus, the pure adaptive search of order 1 is just the
pure adaptive search of Sect. 2.2.3.

Similarly to the case k = 1, we can define ‘weak pure adaptive search
of order k’ by replacing the strict inequality < in the definition of the sets
S

(k)
j with ≤ . Analogously, we can define ‘hesitant adaptive search of order

k’, ‘backtracking adaptive search of order k’ and other versions of the pure
adaptive search.

Let, at iteration j ≥ k of Algorithm 2.3, Y
(k)
j = {y(1)

j , . . . , y
(k)
j } be the

set of k record values and X
(k)
j = {x(j)

1 , . . . , x
(k)
j } be the corresponding set

of k record points. We have y
(1)
j ≤ . . . ≤ y

(k)
j and these values are the k

smallest values of the objective function computed so far. At iteration j + 1,
the value y

(k)
j is never in the set Y

(k)
j+1 (as f(xj+1) < y

(k)
j ) but the value y

(k−1)
j

always belongs to the new set of records: y
(k−1)
j ∈ Y

(k)
j+1 (the value y

(k−1)
j can

be either y
(k)
j+1 or y

(k−1)
j+1 ). Similarly, x

(k)
j /∈ X

(k)
j+1 and x

(k−1)
j ∈ X

(k)
j+1. Thus,

the pure adaptive search of order k (that is, Algorithm 2.3) is probabilistically
equivalent to performing PRS and keeping k records and record points (rather
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than just one record value and one record point in the original pure adaptive
search).

The two main advantages of choosing k > 1 over k = 1 are:

(a) the set (2.31) is bigger than (2.29) and it is therefore easier to find random
points belonging to the set (2.31). In particular, if at an iteration j > k of
Algorithm 2.3 we perform random sampling from A and wait for a point
to arrive in the set (2.31), then the average waiting time is infinite when
k = 1 and finite when k > 1, see (2.63) and (2.64), respectively;

(b) the set of records Y
(j)
k contains much greater information about m than

the set Y
(j)
1 consisting of the single record yoj (see Sect. 2.4 on how to use

this information).

Note also that if at each iteration of Algorithm 2.3, in order to obtain
random points in the set (2.31) we sample points from A at random, then
we can use the theory of k-th records (see Sect. 2.3) to devise the stopping
rules (as this theory predicts the number of independent random points we
need to obtain to improve the set of records Y

(j)
k ). Fig.nnnn illustrates typical

sequential updating of the set of records Y
(j)
k obtained by performing random

sampling of points from A. In this figure, the trajectories of three records y
(k)
j

(k = 1, 2, 3) are plotted as we sequentially sample random points from A (the
sample size n increases from 50 to 10000).

2.3 Order Statistics and Record Values: Probabilistic
Aspects

Let F (·) be some c.d.f. and η be a random variable on R with this c.d.f. Our
main particular case will be the c.d.f. (2.13) but the results of this section can
be applied to many other c.d.f. as well. In this section, we shall not use the
specific form of the c.d.f. (2.13) but we shall use the following two properties
of this c.d.f.:

(i) the c.d.f. F (·) and the corresponding r.v. η have finite lower bound
m=ess inf η>−∞ so that F (t) = 0 for t < m and F (t) > 0 for t > m,

(ii) the c.d.f. F (·) is continuous at some vicinity of m.

We shall sometimes use stronger assumptions:

(i′) the c.d.f. F (·) has bounded support [m,M ] with −∞ < m < M < ∞
implying, additionally to (i), F (t) = 1 for t ≤ M,

(ii′) the c.d.f. F (·) is continuous.

In this section, always bearing in mind applications to the theory and
methodology of global random search, we formulate and discuss numerous
results of the theory of extreme order statistics and the associated theory of
records.
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2.3.1 Order Statistics: Non-Asymptotic Properties

Below, we collect several useful facts from the non-asymptotic theory of ex-
treme value statistics. For more information about the theory we refer to the
classical book by H.A. David [57] and to its extension [58].

Exact distributions and moments

Let η1, η2, . . . be i.i.d.r.v. with common c.d.f. F (·). If we rearrange the first n
random variables η1, . . . ηn so that η1,n ≤ η2,n ≤ · · · ≤ ηn,n, then the resulting
variables are called order statistics corresponding to η1, . . . ηn. Two extreme
order statistics are η1,n and ηn,n, the minimum and maximum order statistics
respectively. Their c.d.f.’s are:

F1,n(t) = Pr {η1,n ≤ t} = 1− (1− F (t))n (2.32)

and

Fn,n(t) = Pr {ηn,n ≤ t} = (F (t))n
.

The c.d.f. of ηk,n with 1 ≤ k ≤ n can also be easily computed:

Fk,n(t) = Pr {ηk,n ≤ t} =
n∑

m=k

(
n
m

)
(F (t))m (1− F (t))n−m

=
∫ F (t)

0

n!
(k − 1)!(n− k)!

uk−1(1− u)n−kdu, −∞ < t < ∞ . (2.33)

The joint c.d.f of ηi,n and ηj,n (1≤ i<j≤n) is given by (−∞<u<v<∞):

Pr {ηi,n ≤ u, ηj,n ≤ v} =

n∑

s=j

n∑

r=i

n!
r!(s−r)!(n−s)!

(F (u))r (F (v)−F (u))s−r (1−F (v))n−s
. (2.34)

If η has density p(t) = F ′(t), then (2.34) implies the following expression for
the joint density of ηi,n and ηj,n (1 ≤ i < j ≤ n):
p(i,j)(u, v) =

n!
(i−1)!(j−i−1)!(n−j)!

(F (u))j−1 (F (v)−F (u))j−i−1 (1−F (v))n−j
p(u)p(v),

where u ≤ v. The joint distributions of several order statistics can also be
written down, if needed.

The expression for the β-th moment of ηk,n easily follows from (2.33):

EXβ
k,n =

∫ ∞

−∞
tβdFk,n(t)
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=
n!

(k−1)!(n−k)!

∫ ∞

−∞
tβ(F (t))k−1(1−F (t))n−kdF (t) .

We shall also need the following expression for the joint moment Eηi,nηj,n

with 1 ≤ i < j ≤ n:

Eηi,nηj,n =
n!

(i− 1)!(j − i− 1)!(n− j)!
×

∫ ∞

−∞

∫ ∞

x

xy(F (x))k−1(F (y)− F (x))j−i−1(1− F (y))n−jdF (x)dF (y) ;

this expression is a direct consequence of (2.34).

Two useful representations

The following representation for the order statistics has proven to be extremely
useful:

ηk,n
d= F−1

(
exp

{
−

(
ν1

n
+

ν2

n− 1
+ · · ·+ νk

n− k + 1

)})
, (2.35)

where ν1, ν2, . . . , νk are i.i.d.r.v. with exponential density e−t, t ≥ 0; the for-
mula (2.35) is called the Rényi representation, and was derived in [196] (The
inverse function F−1(s) is defined here as F−1(s) = inf{ t : F (t) ≥ s } and
the equality d= means that the distributions of the random variables (vectors)
in the l.h.s. and r.h.s. of the equation are the same.)

When studying the joint distributions of order statistics, the following
representation is often used:

(η1,n, . . . , ηn,n) d=
(
F−1(U1,n), . . . , F−1(Un,n)

)
(2.36)

where U1,n ≤ · · · ≤ Un,n are the order statistics corresponding to the n
i.i.d.r.v. with the uniform distribution on [0, 1].

Order statistics as a Markov chain

Of course, the order statistics ηk,n are dependent random variables (we assume
that n is fixed and k varies). One of their important properties is that if the
original i.i.d.r.v. η1, η2, . . . have a continuous distribution (that is, ηj ’s have
a common density F ′(t)), then the order statistics ηk,n form a Markov chain.
The (forwards and backwards) transition probabilities of the Markov chain
are:

Pr {ηk,n ≤ t | ηk+1,n = v} =
(

F (t)
F (v)

)k

, t ≤ v; (2.37)

Pr {ηk+1,n ≤ t | ηk,n = v} = 1−
(

1− F (t)
1− F (v)

)n−k

, t ≥ v. (2.38)
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If we make the substitution η → −η, then (2.38) will become (2.37) and vice
versa.

Using the representations (2.35) and (2.36) we can express ηk+1,n through
ηk,n as follows:

ηk+1,n
d= F−1

(
exp

{
ln F (ηk,n)− νk+1

n− k

})
; (2.39)

here we assume that the c.d.f. F (·) is continuous, 1 ≤ k < n and νk+1 is
as in (2.35). Since νk+1 is independent of ηk,n, the representation (2.39) also
implies the fact that the sequence of order statistics {ηk,n} forms a Markov
chain.

If the original distribution is discrete with at least three support points,
then the order statistics do not form a Markov chain.

2.3.2 Extreme Order Statistics: Asymptotic Properties

In this section, we collect classical facts from the asymptotic theory of ex-
treme value statistics. These facts will play the key role in deriving statistical
inference procedures in Sects. 2.4 and 2.5.

More information about the asymptotic theory of extreme value statistics
and its numerous applications can be found in [11, 13, 68, 86, 105] and in
many other books. No proofs of the classical results are given below; these
proofs can easily be found in literature.

Let η1, η2, . . . be i.i.d.r.v. with common c.d.f. F (·) and η1,n ≤ · · · ≤ ηn,n be
the order statistics corresponding to the first n random variables η1, . . . , ηn.
We are interested in the limiting behaviour, as n →∞, of the minimal order
statistic η1,n. Also, for fixed k and n → ∞, we shall look at the asymptotic
distributions of the k-th smallest order statistics ηk,n. As we are only interested
in applying the theory to global random search problems, we always assume
the properties (i) and (ii) stated in the beginning of Sect. 2.3 and sometimes
we additionally assume one of the stronger properties (i′) or (ii′).

Note that the classical theory of extremes is usually formulated in terms of
the maximum order statistics but we formulate all statements for the minimal
order statistics.

Asymptotic distribution of the minimum order statistic

Consider first the asymptotic distribution of the sequence of minimum order
statistics η1,n, as n → ∞. In the case m = ess inf > −∞ (where η has c.d.f.
F (t)), there are two possible limiting distributions. However, in global ran-
dom search applications, where F (·) has the form (2.13), only one asymptotic
distribution arises; specifically, the Weibull distribution with the c.d.f.

Ψα(z) =

{
0 for z < 0
1− exp {−zα} for z ≥ 0 .

(2.40)
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This c.d.f. only has one parameter, α, which is called the ‘tail index’. The
mean of the Weibull distribution with tail index α is Γ (1 + 1/α); the density
corresponding to the c.d.f. (2.40) is

ψα(t) = (Ψα(t))′ = α tα−1 exp {−tα} , t > 0 . (2.41)

Figure 2.5 displays the density ψα(t) for α = 2, 3 and 8.

α=8

α=3

α=2

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5
t

Fig. 2.5. The density ψα(t) for α = 2, 3 and 8.

Let κn be the (1/n)-quantile of a c.d.f. F (·); that is, κn = inf{u|F (u) ≥
1/n}. Note that since we assume that the c.d.f. F (·) is continuous in the
vicinity of m, for n large enough we have F (κn)=1/n. The following classical
result from the theory of extreme order statistics is of primary importance to
us.

Theorem 2.2. Assume ess inf η = m > −∞, where η has c.d.f. F (t), and the
function

V (v) = F

(
m +

1
v

)
, v > 0,

regularly varies at infinity with some exponent (−α), 0 < α < ∞; that is,

lim
v→∞

V (tv)
V (v)

= t−α, for all t > 0 . (2.42)

Then

lim
n→∞

F1,n(m + (κn −m)z) = Ψα(z) , (2.43)

where F1,n is the c.d.f. (2.32), the c.d.f. Ψα(z) is defined in (2.40) and κn is
the (1/n)-quantile of F (·).
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The asymptotic relation (2.43) means that the distribution of the sequence
of random variables (η1,n −m)/(κn −m) converges (as n →∞) to the random
variable with c.d.f. Ψα(z).

The family of c.d.f.’s Ψα(z), along with its limiting case

Ψ∞(z) = lim
α→∞

Ψα(1 + z/α) = 1− exp {− exp(z)} , z>0,

are the only non-degenerate limits of the c.d.f.s of the sequences (η1,n−an)/bn,
where {an} and {bn} are arbitrary sequences of positive numbers.

If there exist numerical sequences {an} and {bn} such that the c.d.f.’s of
(η1,n−an)/bn converge to Ψα, then we say that F (·) belongs to the domain
of attraction of Ψα(·) and express this as F ∈ D(Ψα). The conditions stated
in Theorem 2.2 are necessary and sufficient for F ∈ D(Ψα). There are two
conditions: m = ess sup η < ∞ and the condition (2.42). The first one is always
valid in global random search applications. The condition (2.42) demands
more attention. For example, it is never valid in discrete optimization problems
since the c.d.f. F (·) has to be continuous in the vicinity of m = ess inf η. In fact,
for a c.d.f. with a jump at its lower end-point no non-degenerate asymptotic
distribution for η1,n exists, whatever the normalization (that is, sequences
{an} and {bn}).

The condition (2.42) can be written as

F (t) = c0(t−m)α + o((t−m)α) as t ↓ m , (2.44)

where c0 is a function of v = 1/(t−m), slowly varying at infinity as v →∞.
Of course, any positive constant is a slowly varying function, but the actual
range of eligible functions c0 is much wider.

The following sufficient condition (the so-called von Mises condition) for
(2.42) and (2.43) is often used: if F (t) has a positive derivative F ′(t) for all
t ∈ (m,m + ε) for some ε > 0 and

lim
t↓m

(t−m)F ′(t)
F (t)

= α ,

then (2.42) holds.
The following condition is stronger that the condition (2.44) and is often

used for justifying properties of the maximum likelihood estimators:

F (t) = c0(t−m)α
(
1 + O((t−m)β)

)
as t ↓ m (2.45)

for some positive constants c0, α and β.
The quantity κn−m, where m = ess inf η and κn is the (1/n)-quantile

of F (·) enters many formulae below and therefore its asymptotic behaviour
is very important. Fortunately, the asymptotic behaviour of κn−m is clear.
Indeed, provided that (2.44) holds with some c0, we have

1
n

= F (κn) ∼ c0 (κn −m)α as n →∞
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implying

(κn −m) ∼ (c0n)−1/α as n →∞ . (2.46)

Extensions to k-th order statistics

There is a one-to-one correspondence between the convergence of the smallest
order statistics η1,n and of the k-th smallest statistics ηk,n. Assume that m =
ess inf η > −∞, n → ∞ and let k be fixed. Then it is easy to prove that
F ∈ D (Ψα) if and only if the sequence of random variables (ηk,n−m)/(κn−m)
converges in distribution to the random variable with c.d.f.

Ψ (k)
α (t) = 1− (1− Ψα(t))

k−1∑
m=0

(− ln(1− Ψα(t)))m

m!

= 1− exp (−tα)
k−1∑
m=0

tαm

m!
, t > 0 . (2.47)

The corresponding density is

ψ(k)
α (t) =

(
Ψ (k)

α (t)
)′

=
α

(k − 1)!
tαk−1 exp {−tα} , t > 0 . (2.48)

The following statement is a generalisation of this fact and reveals the
joint asymptotic distribution of the k smallest order statistics: if m > −∞,
F ∈D(Ψα), n → ∞, then for any fixed k the asymptotic distribution of the
random vector

(
η1,n −m

m− κn
,
η2,n −m

m− κn
, · · · ,

ηk,n −m

m− κn

)
(2.49)

converges to the distribution with density

ψα(t1, . . . , tk) = αk(t1 . . . tk)(α−1) exp(−tαk ), 0<t1 < · · ·<tk <∞ . (2.50)

The density (2.50) is the density of the random vector
(
ν

1/α
1 , (ν1 + ν2)1/α, . . . , (ν1 + · · ·+ νk)1/α

)
, (2.51)

where ν1, . . . , νk are i.i.d.r.v. with exponential density e−t, t > 0.
As an important particular case, we find that the joint asymptotic density

of the random vector
(

η1,n −m

κn −m
,
ηk,n −m

κn −m

)

coincides with the joint density of the vector (ν1/α
1 , (ν1+. . .+νk)1/α).
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The following corollary of this result will be the basic tool in constructing
confidence intervals for m.

Proposition 2.1. If the conditions of Theorem 2.2 hold, then for any fixed
integer k ≥ 2 and n →∞ the sequence of random variables

Dn,k =
η1,n −m

ηk,n −m

converges in distribution to a random variable with c.d.f.

Fk(u) = 1−
(

1−
(

u

1 + u

)α)k−1

, u ≥ 0. (2.52)

The proof of this statement is given in Sect. 2.7; it is a simplified and corrected
version of the proof of Lemma 7.1.4 in [273].

In the following proposition we use the asymptotic distributions (2.47)
and (2.50) to derive the asymptotic formulae for the moments of the random
variables (ηk,n −m) and the first joint moment E(ηj,n −m)(ηk,n −m).

Proposition 2.2. Let m = ess inf η > −∞ and F ∈ D(Ψα) with α > 1.
Assume that k is either fixed or k tends to infinity as n →∞ so that k2/n → 0,
n →∞. Then

E(ηk,n −m)β ∼ (κn −m)β Γ (k + β/α)
Γ (k)

as n →∞ (2.53)

for any β > 0 and

E(ηj,n −m)(ηk,n −m) ∼ (κn −m)2λjk as n →∞, (2.54)

where k ≥ j and

λjk =
Γ (k + 2/α) Γ (j + 1/α)

Γ (k + 1/α) Γ (j)
. (2.55)

We give a proof of this statement in Sect. 2.7; this proof is easier than the
one given in [273], Sect. 7.1.2.

General results on the rate of convergence of the normalised minima to
the extreme value distribution (see e.g. [70] and §2.10 in [86]) imply that
in the case considered in Theorem 2.2 this rate is O(1/n) as n → ∞ (note
that [60] and [197], Chapt. 2 contain more sophisticated results on the rate
of convergence to the extreme value distribution). This fact along with the
asymptotic relation (2.46) imply that for α ≤ 1 we have

E(ηk,n −m)β = O(1/nβ)

rather than (2.53). Similarly, we have to have α > 1 for (2.54) to hold. The
reasons why the condition k2/n → 0 as n →∞ must be satisfied are explained
in [273], p. 245-246.
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2.3.3 Record Values and Record Moments

In this section, we survey the theory of record values and record moments.
The importance of this topic in global random search is related, first of all,
to its link with pure adaptive search and its modifications, see Sects. 2.2.3
and 2.2.4. For all missing proofs and more information on record values and
record moments we refer to [6, 171].

Definitions

Let η1, η2, . . . be a sequence of random variables. Define the sequences of
related random variables L(n) and η(n) as follows: L(1) = 1, η(1) = η1,

L(n+1) = min{j >L(n) : ηj <ηL(n)}, η(n)=ηL(n), n=1, 2, . . . ; (2.56)

L(n) are called (lower) record moments corresponding to the sequence η1, η2, . . .
and η(n) are the associated (lower) record values.

If we change the inequality sign in (2.56) to be >, then we obtain the
upper record order moments and upper record values. By changing ηj to 1/ηj

or (−ηj) for j = 1, 2, . . . we correspond the upper record moments to the lower
ones. We will only consider the lower moments and values and omit the word
‘lower’.

In addition to L(n) and η(n), we shall also use the following random
variables: N (n) is the number of record values among η1, . . . , ηn (note that
N (L(n))=n) and 4(n) = L(n)−L(n−1), the waiting time between (n−1)-th
and n-th record moments.

Properties of record moments

Assume that η1, η2, . . . are i.i.d.r.v. with common continuous c.d.f. F (·). First,
consider the non-asymptotic properties of the record moments L(n).

P1: The distribution of L(n) does not depend on F (·).
P2: The sequence of random variables L(n) forms a Markov chain with the

starting point L(1) = 1 and transition probabilities

Pr {L(n)=j | L(n−1)= i} =
i

j(j−1)
for j >i≥n−1, n=2, 3, . . .

P3: The joint distribution of the record moments is

Pr {L(2)= i2, . . . , L(n)= in} =
1

(i2−1) . . . (in−1)in
with 1<i2 < · · ·<in.

Property P3 implies

Pr{L(2) = j} =
1

j(j − 1)
, j > 1 ; (2.57)

Pr{L(n) = j} =
|Sn−1

j−1 |
j!

, j ≥ n > 1 , (2.58)
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where Sb
a are the Stirling numbers of the first kind.

Property P3 follows from P2, and properties P1 and P2 are simple conse-
quences of the relation between L(n) and N (n),

Pr{N (n) < n} = Pr{L(n) > n} , (2.59)

and of the representation

N (n) d= ζ1 + · · ·+ ζn (n = 1, 2, . . .) , (2.60)

where ζj are independent r.v. with Pr{ζj =1}=1/j and Pr{ζj =0}=1−1/j.
For each j, the random variable ζj can be interpreted as the indicator of the
event that ηj is the new record value, which is the event ηj < min{η1, . . . ηj−1}.

The sequence of record times L(n) has another useful representation:

L(1) = 1, L(n + 1) d=
⌈

L(n)
Un

⌉
(n = 1, 2, . . .) ,

where U1, U2, . . . are i.i.d.r.v. uniformly distributed on [0,1].
For any integer x > 1, we have

Pr
{

L(n + 1)
L(n)

> x

}
=

1
x

; (2.61)

if x is not an integer, then (2.61) holds asymptotically, as n →∞.
The representations (2.59) and (2.60) enable the application of classical

techniques to obtain the law of large numbers, the central limit theorem and
the law of iterated logarithm for the random variables L(n) and N (n). In
particular, as n →∞ we have

Pr
{

lim
n→∞

1
n

ln L(n) = 1
}

= 1,

lim
n→∞

Pr
{
(ln L(n)− n) ≤ t

√
n
}

= Φ(t)

where Φ(t) is the c.d.f. of the standard normal distribution:

Φ(t) =
1√
2π

∫ t

−∞
e−u2/2du . (2.62)

Consider now the moments of L(n). Using (2.57) and (2.58) we obtain:

EL(n) = ∞ for all n = 2, 3, . . . (2.63)

(note that L(1) = 1). Moreover, for any n ≥ 2, the average waiting time
E[L(n) − L(n−1)] of a new record is infinite. This is a very unsatisfactory
result for the theory of global random search: it says that on average one has
to make infinitely many iterations of PRS to get any improvement over the
current best value of the objective function.
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The distributions of the inter-record times 4(n+1) = L(n+1)−L(n) can
be easily computed; they are:

Pr{4(n + 1)=j} = F (η(n)) · (1−F (η(n)))j−1
, j =1, 2, . . . , n=1, 2, . . .

That is, the distribution of 4(n+1) only depends on the n-th record value
η(n) and is in fact geometric with parameter of success F (η(n)).

The logarithmic moments of L(n) can asymptotically be expressed as fol-
lows:

E ln L(n) = n− γ + O
(

n2

2n

)
, n →∞,

var(lnL(n)) = n− π2

6
+ O

(
n3

2n

)
, n →∞,

where γ = 0.5772 . . . is the Euler’s constant.

The number of records in a given sequence

Consider again the sequence of random variables N (n), the number of records
among the random variables η1, . . . , ηn:

N (1) = 1, N (n) = 1 +
n∑

j=2

I[ηj<min{η1,...,ηj−1}] .

In accordance with (2.60) and the fact that

Eζj = 1
j and var(ζk) = 1

j − 1
j2 ,

for any continuous c.d.f. F (·) we obtain

EN (n) =
n∑

j=1

1
j

and var(N (n)) =
n∑

j=1

(
1
j
− 1

j2

)
.

This implies that both EN (n) and var(N (n)) are of order ln n; the approx-
imation EN (n) ∼= ln n + γ with γ = 0.5772 . . . (the Euler’s constant) is
very accurate. Additionally, taking into account the asymptotic normality
of (N (n) − ln n)/

√
ln n (the normalized sequence of N (n)), we can use Ta-

ble 2.2 for making good guesses (using, say, the ‘3σ-rule’) about the number
of records N (n) for given n. This table shows the expected number of records
EN (n) in a sequence of i.i.d.r.v. η1, . . . , ηn, along with the standard deviation
of N (n), for some values of n. One can see that as n increases, the number of
records grows very slowly.
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n 10 102 103 104 105 106 107 108 109

EN (n) 2.9 5.2 7.5 9.8 12.1 14.4 16.7 19.0 21.3√
var(N (n)) 1.2 1.9 2.4 2.8 3.2 3.6 3.9 4.2 4.4

Table 2.2. Expected number of records EN (n) among n i.i.d.r.v. η1, . . . , ηn, along
with the standard deviation of N (n).

Record values

Let η(1), η(2), . . . be the sequence of record values in the sequence of i.i.d.r.v.
η1, η2,. . .Assume that the c.d.f. F (t) of ηj is continuous with density p(t)=F ′(t).
Under these assumptions, it is easy to see that the joint density of η(1),. . . , η(n)
is

p(x1, . . . , xn) =
p(x1)
F (x1)

· · · p(xn−1)
F (xn−1)

· p(xn), x1 ≤ · · · ≤ xn .

This implies, in particular, that the sequence η(1), η(2), . . . is a Markov chain
with transition probabilities

Pr {η(n+1) ≤ t | η(n) = u} =
F (t)
F (u)

, m ≤ t ≤ u .

For each n ≥ 1, the c.d.f. of the record value η(n) is

Pr{η(n) < t} = 1− F (t)
n−1∑

j=0

(− ln(F (t)))j

j!
.

Consider now the asymptotic distribution of the record values η(n) cor-
responding to the sequence of i.i.d.r.v. η1, η2, . . . as n → ∞, assuming that
m = ess inf ηi > −∞ and F ∈ D(Ψα); that is, the c.d.f. F (·) belongs to the
domain of attraction of the c.d.f. Ψα(·) defined in (2.40). Theorem 2.2 implies
that the condition F ∈ D(Ψα) yields that the sequence of random variables
(η(n)−m)/(κL(n) −m) has the asymptotic distribution with the c.d.f. Ψα(·);
here L(n) is the sequence of record moments, and κL(n) is (1/L(n))-quantile
of F (·).

Since L(n) is a random variable, κL(n) is a random variable too, which
is not very satisfactory. There is, however, another limiting law for the prop-
erly normalized record values (η(n)− a(n))/b(n) with non-random coefficients
a(n) and b(n). Specifically, the conditions m > −∞ and F ∈ D(Ψα) imply
that the sequence of random variables (η(n)−m)/(κexp(n/2) −m) converges
in distribution to the r.v. with c.d.f.

Ψ̃α(z) =

{
0, z ≤ 0
Φ(−α ln(z)) , z > 0 ;

here Φ(·) is as in (2.62).
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Extension to k-th records

To perform statistical inference in global random search algorithms we need
several minimal order statistics, rather than just one of them. Similarly, we can
use the k-th record moments and the k-th record values. The record moments
and the record values considered above are the first record moment and the
first record value, respectively (in this case k = 1). Assume now the general
case k ≥ 1 and start with the so-called ‘Gumbel’s method of exceedances’, see
[105]. This method is aimed to answer the question: ‘how many values among
future observations exceed past records?’. Specifically, let the c.d.f. F (·) be
continuous, η1,n ≤ · · · ≤ ηn,n be the order statistics as usual and denote
by Sk

r (n) the number of exceedances of ηk,n among the next r observations
ηn+1, . . . , ηn+r; that is,

Sk
r (n) =

r∑

i=1

I{ηn+i<ηk,n} .

It is an easy consequence of (2.33) that the random variable Sk
r (n) has the

hypergeometric distribution with

Pr
{
Sk

r (n) = j
}

=

(
r + n− k − j

n− k

)(
j + k − 1

k − 1

)

(
r + n

n

) , j = 0, 1, . . . , r .

In particular, the mean number of exceedances is equal to

ESk
r (n) =

rk

n + 1
.

Let us now consider ways of generalizing other results discussed earlier in
this section from the case k = 1 to the general case k ≥ 1. We start with
definitions.

For each n ≥ k, we rearrange the random variables η1, . . . , ηn so that

η1,n ≤ η2,n ≤ · · · ≤ ηn,n .

The random variable ηk,n is the k-th order statistic. The sequence of k-th
order statistics is

ηk,k ≥ ηk,k+1 ≥ . . . ≥ ηk,n ≥ . . .

Let us select the indices n such that there is strict inequality in this sequence:

. . . ≥ ηk,n−1 > ηk,n ≥ . . .

This gives us the sequence of k-th record moments L(k)(n). Formally, the
sequence L(k)(n) can be defined as follows: L(k)(0) = 0, L(k)(1) = k and
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L(k)(n+1) = min
{

j >L(k)(n) such that ηj <ηk,j−1

}
, n=1, 2, . . .

The sequence of random variables η
(k)
(n) = ηk,L(k)(n), n = 1, 2, . . . , is the se-

quence of k-th record values; the differences 4(k)(n) = L(k)(n) − L(k)(n−1)
are k-th record waiting times; N (k)(n) is the number of k-th record values
among η1, . . . , ηn. Of course, L(1)(n) = L(n), η

(1)
(n) = η(n), 4(1)(n) = 4(n)

and N (1)(n) = N (n).
For each n, the k-th record waiting times have all moments E

(4(k)(n)
)β

of order 0 < β < k; the mean is

E4(k)(n) = (k/(k−1))n−1
, k ≥ 2 . (2.64)

Properties of the k-th record moments L(k)(n) are similar to the properties
of the ordinary record moments L(n). In particular, for any fixed k ≥ 1 and
any continuous c.d.f. F (·), the sequence of L(k)(n) forms a Markov chain;
many limit theorems for L(k)(n) are direct extensions of the related theorems
for L(n), see [171], Lectures 18–20.

A very useful tool in studying the k-th record sequences is the so-called
‘Ignatov’s Theorem’ which says that the processes of the k-th records are
independent and identically distributed copies of the same random sequence
(here the process of the k-th records is defined as a sequence of time moments
when the current observation of a sequence of i.i.d.r.v. has rank k), see e.g.
[96, 125, 230] and [197], Sect. 4.6. The underlying c.d.f. F (·) of the i.i.d.r.v.
is almost arbitrary; in particular, it does not have to be continuous. The
Ignatov’s Theorem implies that the sequence of moments when the current
observation has rank k is the same for any k, in particular, for k = 1 where
this sequence is the sequence of record moments {L(n)} discussed above. The
second extremely informative part of this theorem is the independence of the
k-th record processes for all k = 1, 2, . . .. Different implications of this theorem
are discussed in literature; see, for example, [31].

2.4 Statistical Inference About m: Known Value of the
Tail Index

In this section, we consider statistical inference about m =ess inf η (in random
search applications m = min f) based on the asymptotic theory of extreme
order statistics described in Sect. 2.3.2. These statistical procedures will be
using only the k smallest order statistics

η1,n ≤ η2,n ≤ . . . ≤ ηk,n

corresponding to the independent sample {η1, . . . , ηn} of the values of a ran-
dom variable η with c.d.f. F (t). The sample size n is assumed large (formally,
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n → ∞) and k is assumed small relative to n (see Sect. 2.4.3 concerning the
choice of k).

We assume throughout this section that the conditions of Theorem 2.2
hold for the c.d.f. F (·) (in random search application this c.d.f. is defined by
(2.13)) and the value of the tail index α is known. We shall also assume that
α > 1 (results of Sect. 2.5.3 show that this is the main case of interest in global
optimization). As we are interested in the applications of the methodology in
global random search, we always assume that the assumptions (i′) and (ii) of
Sect. 2.3 are met.

Note that the statistical inference about m and the behaviour of the c.d.f.
F (·) in the vicinity of m are much simpler when the value of α is known.
Fortunately, in problems of global random search this case can be considered
as typical in view of the results of Sect. 2.5.3, where the direct link between
the form (2.13) of the c.d.f. F (·) and the value of the tail index α is considered.

A detailed consideration of the theory of asymptotic statistical inference
about the bounds of random variables in the case of known α is given in [273],
Chap. 7; there has not been much progress in this area since 1991, the time
of publication of [273]. Hence, in this section, we only discuss the results that
can be directly applied to global random search algorithms, those outlined in
Sect. 2.6.1.

2.4.1 Estimation of m

The maximum likelihood estimator

The maximum likelihood estimators of m have been introduced and investi-
gated in [109]. These estimators are constructed under the assumption that
α ≥ 2 and that the distribution of the sample is the asymptotic one, which is
the Weibull distribution with c.d.f. (2.40).

For fixed n and k, set

βj(m̂) = (ηk,n − ηj,n)/(ηj,n − m̂), j < k. (2.65)

Differentiating the logarithm of the likelihood function, see (2.89) below, with
respect to m and c0 and equating the derivatives to zero, we obtain the fol-
lowing likelihood equation for m̂:

(α− 1)
k−1∑

j=1

βj(m̂) = k . (2.66)

Hence, when α is known, the maximum likelihood estimator m̂ of m is the
solution of the equation (2.66) under the condition m̂ ≤ η1,n; if there is no
solution of this equation satisfying the inequality m̂ ≤ η1,n, then m̂ is defined
as η1,n.

If the conditions (2.45), α ≥ 2, k →∞, k/n → 0 (as n →∞) are satisfied,
then the maximum likelihood estimators of m are asymptotically normal and
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asymptotically efficient in the class of asymptotically normal estimators and
their mean square error E(m̂−m)2 is asymptotically

E(m̂−m)2 ∼
{

(1− 2
α )(κn −m)2 k−1+2/α for α > 2,

(κn −m)2 ln k for α = 2 .
(2.67)

As usual, κn is the (1/n)-quantile of the c.d.f. F (·).
Linear estimators

Linear estimators of m are simpler than the maximum likelihood ones. How-
ever, the best linear estimators possess similar asymptotic properties.

Introduce the following notation:

a = (a1, . . . , ak)′ ∈ Rk, 1 = (1, 1, . . . , 1)′ ∈ Rk,

bi = Γ (i + 1/α) / Γ (i), b = (b1, . . . bk)′ ∈ Rk,

λji = λij =
Γ (i+2/α) Γ (j+1/α)

Γ (i+1/α) Γ (j)
for i ≥ j, Λ = ‖λij‖k

i,j=1 ; (2.68)

here Γ (·) is the gamma–function.
A general linear estimator of m can be written as

m̂n,k(a) =
k∑

i=1

aiηi,n , (2.69)

where a = (a1, . . . , ak)′ is the vector of coefficients.
Using (2.53) with β = 1, for any linear estimator m̂n,k(a) of the form

(2.69) we obtain:

Em̂n,k(a)=
k∑

i=1

aiEηi,n =m
k∑

i=1

ai−(κn−m)a′b+o(κn−m), n →∞. (2.70)

Since κn−m → 0 as n → ∞, see (2.46), and the variances of all ηi,n are
finite (this is true, in particular, if the c.d.f. F (·) has bounded support, see
assumption (i′) of Sect. 2.3), the estimator m̂n,k(a) is a consistent estimator
of m if and only if

a′1 =
k∑

i=1

ai = 1 . (2.71)

The additional condition

a′b = 0

(
⇐⇒

k∑

i=1

aibi = 0

)
(2.72)
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guarantees that for α > 1 the corresponding estimator m̂n,k(a) has a bias
of the order o(κn−m) = o(n−1/α), as n → ∞, rather than O(n−1/α) for a
general consistent linear estimator.

For a general consistent estimator m̂n,k(a), we obtain from (2.70):

Em̂n,k(a)−m ∼ (κn −m) a′b, n →∞ . (2.73)

The mean square error of a general consistent estimator m̂n,k(a) is ob-
tained by applying (2.54):

E(m̂n,k(a)−m)2 ∼ (κn−m)2 a′Λa, n →∞ . (2.74)

Examples of linear estimators

For the simplest and most commonly used estimator of m, where only the
minimal order statistic is used, m̂n,k(a(0)) = η1,n, where a(0), the vector of
coefficients, is a(0) = (1, 0, . . . , 0)′. For this estimator we easily obtain

E(m̂n,k(a(0))−m)2 ∼ (κn−m)2 Γ (1 + 2/α), n →∞ . (2.75)

This is, however, a rather poor estimator, see (2.82) and Fig. 2.6.
The r.h.s. of (2.74) is a natural optimality criterion for selecting the vec-

tor a. The optimal consistent estimator m̂n,k(a∗), we shall call it the optimal
linear estimator, is determined by the vector of coefficients

a∗ = arg min
a:a′1=1

a′Λa =
Λ−11

1′Λ−11
. (2.76)

The estimator m̂n,k(a∗) has been suggested in [52], where the form (2.76) for
the vector of coefficients was obtained.

Solving the quadratic programming problem in (2.76) is straightforward.
In the process of doing that, we obtain

min
a:a′1=1

a′Λa = (a∗)′Λa∗ = 1/1′Λ−11 . (2.77)

Lemma 7.3.4 in [273] gives us the following expression for the r.h.s. of (2.77):

1′Λ−11 =

{
1

α−2

(
αΓ (k+1)
Γ (k+2/α) − 2

Γ (1+2/α)

)
for α 6= 2,

∑k
i=1 1/i for α = 2 ;

(2.78)

this expression is valid for all α > 0 and k = 1, 2, . . .
The components a∗i (i = 1, . . . , k) of the vector a∗ can be evaluated ex-

plicitely: a∗i = ui/1′Λ−11 for i = 1, . . . , k with

u1 = (α + 1) / Γ (1 + 2/α),
ui = (α− 1)Γ (i)/Γ (i + 2/α) for i = 2, . . . , k − 1,
uk =−(αk−α+1)Γ (k) /Γ (k + 2/α).
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Deriving this expression for the coefficients of the vector a∗ is far from trivial,
see [273], Sect. 7.3.3.

The asymptotic properties (when both n and k are large) of the optimal
linear estimators coincide with the properties of the maximum likelihood es-
timators and hold under the same regularity conditions (we again refer to
[273], Sect. 7.3.3). In particular, the optimal linear estimators m̂n,k(a∗) of m
are asymptotically normal (as n → ∞, k → ∞, k/n → 0) and their mean
square error E(m̂n,k(a∗)−m)2 asymptotically behaves like the r.h.s. of (2.67).

Consider two other linear estimators which have similar asymptotic prop-
erties (as n →∞, k →∞ and k/n → 0).

The first one is the estimator m̂n,k(a+) which is optimal in the class of
linear estimators satisfying the consistency condition (2.71) and the additional
condition (2.72); it is determined by the vector

a+ = arg min
a : a′1=1,

a′b=0

a′Λa =
Λ−11− (b′Λ−11)Λ−1b/(b′Λ−1b)
1Λ−11− (b′Λ−11)2/(b′Λ−1b)

(2.79)

(the solution to the above quadratic minimization problem is easily found
using Lagrange multipliers). For the estimator m̂n,k(a+), the additional con-
dition (2.72) guarantees a faster rate of decrease of the bias Em̂n,k(a) −m,
as n →∞.

The Csörgő–Mason estimator m̂n,k(aCM ) (proposed in [55]) is determined
by the vector aCM with components

ai =





vi for α > 2, i = 1, . . . , k − 1
vk + 2− α for α > 2, i = k

2/ ln(k) for α = 2, i = 1
ln(1 + 1/i)/ ln(k) for α = 2, i = 2, . . . , k − 1
(ln(1 + 1/k)− 2) / ln(k) for α = 2, i = k

with

vj = (α− 1)k2/α−1
(
j1−2/α − (j − 1)1−2/α

)
.

The finite–sample behaviours of the optimal unbiased consistent estimator
m̂n,k(a+) and the Csörgő–Mason estimator m̂n,k(aCM ) are slightly worse than
that of the optimal consistent estimator m̂n,k(a∗).

For practical use, a very simple estimator

m̂n,k(aU ) = (1 + Ck)η1,n − Ckηk,n (2.80)

with aU =(1+Ck, 0, . . . , 0,−Ck)′ may be recommended, where Ck =b1/(bk−b1)
is found from the condition a′b = 0. (An estimator resembling (2.80) was
proposed in [257].)

For large values of α, which is an important case in global optimization
practice,
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Γ (k + 1/α)− Γ (k) ∼ 1
α

Γ ′(k) as α →∞

and therefore

Ck ∼
Γ (1) + 1

αΓ ′(1)
1 + 1

αψ(k + 1)− Γ (1)− 1
αΓ (1)

=
α− γ

ψ(k + 1) + γ
, α →∞ ,

where ψ(·) = Γ ′(·)/Γ (·) is the psi-function and γ ∼= 0.5772 is the Euler con-
stant.

Asymptotic efficiency of the estimators

If k is fixed, then the asymptotic efficiency of any consistent linear estimator
m̂n,k(a) can naturally be defined as

eff(m̂n,k(a)) =
(

min
c∈Rk: c′1=1

c′Λc

)
/a′Λa .

Obviously, 0 ≤ eff(m̂n,k(a)) ≤ 1 for any a ∈ Rk satisfying the consistency
condition (2.71). In view of (2.77) we obtain

eff(m̂n,k(a)) =
1

1′Λ−11 · a′Λa
, (2.81)

where 1′Λ−11 can be computed using the expression (2.78).
In particular, theasymptotic efficiency of thesimplest estimator m̂n,k(a(0))=

η1,n is

eff(m̂n,k(a(0))) =
1

1′Λ−11 · Γ (1 + 2/α)
. (2.82)

This result easily follows from (2.75) and (2.85). For large k and α, the asymp-
totic efficiency of the estimator m̂n,k(a(0)) is low, see Fig. 2.6.

Asymptotic efficiency of the estimator m̂n,k(aU ) is higher (especially for
small k) than that of the simplest estimator m̂n,k(a(0)) = η1,n. Fig. 2.7 displays
this efficiency for k = 3, 5 and 20 and varying α (for k = 2 the asymptotic
efficiency of m̂n,k(aU ) is equal to 1).

Note that the asymptotic efficiency of the optimal estimator m̂n,k(a∗) can
be low if an incorrect value of α is used to construct this estimator. This issue
is considered in Sect. 2.5.2.

Finite-sample efficiency (simulation results)

Let us make a comparison of the efficiency for the maximum likelihood and
linear estimators of m given finite samples of size n drawn from the Weibull
distribution with tail index α. Considering the Weibull distribution means
assuming that the original sample size n is large enough for the asymptotic
distribution for the minimal statistics to be reached.
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Fig. 2.6. Asymptotic efficiency of the simplest estimator m̂n,k(a(0)) = η1,n, see
(2.82), for k = 2, 5 and 20 and varying α.
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Fig. 2.7. Asymptotic efficiency of the estimator m̂n,k(aU ) for k = 3, 5 and 20 and
varying α.

According to the definition, for each k, the optimal linear estimator
m̂n,k(a∗), with a∗ given in (2.76), provides the lowest mean square error in
the class of all linear consistent estimators, as n → ∞. In view of (2.74) and
(2.77), we have, for the asymptotic mean square error of m̂n,k(a∗):

lim
n→∞

1′Λ−11
(κn −m)2

MSE(m̂n,k(a∗)) = 1 , (2.83)

for any k. Therefore, for fixed n and k it is natural to define the finite-sample
efficiency of an estimator m̂ as

(κn −m)2

1′Λ−11
/MSE(m̂) . (2.84)

Since we consider finite samples, it is possible for the efficiency to be slightly
greater than 1.

Below, the efficiency of an estimator m̂ will be estimated based on taking
R = 10 000 estimators of m̂j , where each m̂j (j = 1, . . . , R) is estimated from
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an independent sample of size n; that is,

MSE(m̂) ' 1
R

R∑

j=1

(m̂j −m)2 .

Thus, for fixed k, n and R, we use the following definition of efficiency of an
estimator m̂:

eff(m̂) =
[
(κn −m)2

1′Λ−11

]
/


 1

R

R∑

j=1

(m̂j −m)2


 . (2.85)

As R →∞, the efficiency (2.85) tends to (2.84).
where in our case m = 0, n = 100, R = 10 000 and k varies.
Fig. 2.8 shows the efficiencies (2.85) computed for n = 100, R = 10 000,

α=1,2,5,10, and varying k for the following estimators:

• the optimal linear estimator m̂n,k(a∗) (depicted as circles),
• the maximum likelihood estimator (squares),
• the linear estimators m̂n,k(a+) defined by the vector (2.79) (triangles),
• Csörgő–Mason estimators m̂n,k(aCM ) (dots),
• the minimum order statistic η1,n = m̂n,k(a(0)) (bullets).

Fig. 2.8 demonstrates that the mean square error of the optimal linear es-
timator m̂n,k(a∗) is very close to the asymptotically optimal value of the MSE
given by (2.83) for all α ≥ 1 (sometimes it is even larger than this value). The
estimator m̂n,k(a∗) clearly provides the lowest mean square error in the class
of estimators considered. The efficiency of the maximum likelihood estimator
(MLE) is consistently lower than the efficiency of m̂n,k(a∗), especially when
α is small; note that MLE can only be used for α ≥ 2. Note also that the ac-
tual efficiency curves of MLE are rather uneven; they have been considerably
smoothed in this figure.

The efficiency of the minimum order statistic decreases monotonically as
k → ∞, this is because the estimator is not using k−1 out of k order statis-
tics. The efficiency of the linear estimator m̂n,k(a+) is poor for small k (as
the unbiasedness condition (2.72) takes away one degree of freedom for the
coefficients) but increases monotonically as k increases. The efficiencies of the
minimum order statistic and the mM estimators are equal for k = 2. This can
be verified by considering the asymptotic mean square errors (as n → ∞)
of these two estimators at this point. The efficiency of the Csörgő–Mason
estimators is poor for small α (note that this estimator is only defined for
α ≥ 2) but gets better when α increases; thus, for α = 10 the efficiency of the
Csörgő–Mason estimator is basically 1.

The case of small values of α has a particular interest. Unlike the MLE and
the Csörgő–Mason estimator, the linear estimators m̂n,k(a∗) and m̂n,k(a+) are
defined in the region 0 < α < 2 and behave rather well.
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Simulation study of the bias of the estimators shows that the bias of the
four main estimators (namely, MLE, m̂n,k(a∗), m̂n,k(a+) and m̂n,k(aCM ))
improves as both k and α increase; for large k and alpha this bias is ap-
proximately the same; for small α the bias of the Csörgő–Mason estimator is
large but the bias of the other three estimators is comparable for all α ≥ 2
(note again that MLE is properly defined only for α ≥ 2). See [110] for more
simulation results and related discussions.

α = 1 α = 2

α = 5 α = 10

Fig. 2.8. Efficiency as defined in (2.85) of different estimators; n = 100, R = 10 000,
α = 1, 2, 5, 10, against k.
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2.4.2 Confidence Intervals and Hypothesis Testing

In global random search one of the most important statistical problems is
testing the hypothesis H0 : m ≤ K versus the alternative H1 : m > K, where
K is some fixed number, K < η1,n. For instance, K may be the record value
of the objective function f(·) attained at another region, see Sect. 2.6.1.

Following the standard route, to construct a test for H0 : m ≤ K we
construct a one-sided confidence interval for m of a fixed confidence level and
reject H0 if K does not fall into this interval.

The most convenient procedure for constructing confidence intervals for m
was proposed in [51]. According to this procedure, the one-sided confidence
interval for m is

[η1,n, η1,n + rk,δ(ηk,n − η1,n)] . (2.86)

Here

rk,δ =
(
(1−δ1/k)−1/α−1

)−1

, (2.87)

the (1−δ)-quantile of the c.d.f. Fk(u) defined in (2.52). Proposition 2.1 of
Sect. 2.3.2 then implies that the asymptotic (as n → ∞) confidence level of
the interval (2.86) equals 1− δ.

The test corresponding to the confidence interval (2.86), for testing the
hypothesis H0 : m ≤ K, is defined by the rejection region

{(η1, . . . , ηn) : (η1,n −K)/(ηk,n − η1,n) ≥ rk,δ} . (2.88)

The first kind error probability of this test asymptotically (as n →∞) does
not exceed δ; this is a consequence of Proposition 2.1 of Sect. 2.3.2.

Different asymptotic expressions for the power function of this procedure
can be found in [273], Sect. 7.1.5.

Note that if n is very large (in this case, k may also be chosen large enough),
then for constructing the confidence intervals and testing hypotheses one may
also use the asymptotic normality (discussed above) of some estimators of m.

2.4.3 Choice of n and k

Let us briefly address the practically important problem of the choice of k and
the sufficiency of the sample sample size n for applicability of the methodology
considered above to the practice of global optimization.

Theoretically, n should be large enough to guarantee that there are enough,
at least k, sample points in the vicinity of the global minimizer. Everything
now depends on how we define ‘the vicinity of the global minimizer’. This, in
turn, depends on the objective function. For example, if the objective function
is steep in the vicinity of the global minimizer (as an example, see Fig. 1.1),
then the region of attraction of this minimizer is small and there is a high
possibility that this region is completely missed. If the region of attraction of
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the minimizer is not reached, then the statistical inference will be made about
some other minimum (perhaps, local).

Another important point is that the vicinity of a minimizer should not be
confused with the region of attraction of the minimizer, see Sects. 1.1.2 and
1.1.3. If, for example, the objective function f(·) is the sum of a smooth and
slowly varying function f1(·) and a small irregular function f2(·) (see Figs.
1.3 and 1.4) then small variations in the values of f(·) due to the presence
of f2(·) can be regarded as small variations in the sample points, which are
statistically insignificant provided that k is not too large. On the other hand, if
the objective function changes its shape approaching the minimum within the
region of attraction of the global minimizer, this would imply that Theorem 2.2
is practically useless. Theoretically, however, as n →∞ we can select k →∞
and construct a consistent estimator of the tail index.

The problem of how large the sample size n should be can be approached
from the more formal point of view of the rate of convergence in (2.43). There
are a number of results concerning the estimation of this convergence rate, see
for instance Sect. 2.10 in [86]; note that these estimators depend on different
characteristics of behaviour of the c.d.f. F (t) for t close to m.

Theoretically, the value of k should be such that at least k sample points
belong to the vicinity of the global minimizer. It may, of course, happen that
some of these k points are far from this vicinity. This would narrow the gap
between η1,n and ηk,n (in the probabilistic sense, and in comparison to such a
gap when all the points belong to the same vicinity of the global minimizer).
This would lead, in particular, to the over-estimation of m. Since we know
the location of the test points, this may sometimes be corrected as follows:
using some prior information about the objective function we can define a
region (say, a ball) with the centre at the record point so the points outside
the region will not be able to contribute to the set of the k smallest order
statistics.

From the theoretical view-point, k should be small relative to the sample
size n, which tends to infinity. Typically, the theoretically optimal choice of k
is k → ∞ so that k/n → 0 as n → ∞. In practice, however, n is never large
enough and therefore small or moderate values of k should be used. Theoretical
results of Sect. 2.4 imply that for many procedures a reasonably small value
of k, say k = 5, is almost as good as the theoretically optimal choice k →∞,
so we do not loose much in the asymptotic efficiency by restricting k to small
values.

Another argument in favour of small k is given in Sect. 2.5.2: if the value
of the tail index α is not correct (for instance, α has been estimated), then
an increase in k (formally, k →∞) decreases the accuracy of precision in the
estimators of m.

If the tail index is unknown, the problem of the choice of k is more serious
than when α is known, see Sect. 2.5.1. For example, consistency of estimators
of α can only be achieved if k → ∞ as n → ∞. Consideration can be given
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to a mixed strategy which uses a large number of extreme order statistics to
estimate α and a relatively small number of these statistics for estimating m.

2.5 Unknown Value of the Tail Index

Our main objective is making statistical inferences about m based on an
independent sample from the c.d.f. F (·) given in (2.13). In Sect. 2.4 we have
shown how to make statistical inferences when the value of the tail index α is
known. In Sect. 2.5.3 below, we show that the specific form of the c.d.f. (2.13)
in many cases enables explicit determination of the value of α.

An alternative approach would be to find an estimator α̂ for α and use this
estimator in place of the true value of α. However, we will show in Sect. 2.5.2
that this approach leads to a significant drop in precision of statistical infer-
ence procedures about m, in comparison to the case of known α.

Additionally, the requirements for the sample size seem to be unrealistic.
Indeed, to construct any consistent estimator of α we must have k = k(n)
observations with k(n) → ∞ (as n → ∞) belonging to the lower tail of
the c.d.f. (2.13), where the approximation (2.44) can be applied. In global
optimization problems, however, obtaining more than a few observations in
this region is problematic.

In global random search problems, making statistical inference about α
is most useful for checking upon one of a few possible exact values of α, say
α = 2/d or α = 1/d; these expressions for α follow from Theorem 2.3 and
related results, see Sect. 2.5.3.

2.5.1 Statistical Inference

In this section, we assume that the conditions of Theorem 2.2 are met but the
value of the tail index α is unknown. Unlike the case considered in Sect. 2.4,
a satisfactory precision of the statistical inference can only be guaranteed if
k is large enough. Therefore, we shall suppose that the parameter k is chosen
so that k = k(n) → ∞, k/n → 0, as n → ∞. Also, we shall assume that the
condition (2.45) is met.

The standard way of making statistical inference concerning m, when α is
unknown, is to construct an estimator α̂ of α and to substitute α̂ for α in the
formulae which determine the statistical procedures for the case of known α.

The topic of making statistical inferences about the value of the tail index
is widely discussed in literature including a very recent one, see for example,
[13, 32, 46, 61, 65, 133, 134, 149, 183].

Easily readable surveys of standard results concerning different estimators
of α and their asymptotic properties can be found in Sect. 6.4.2 of [68] and
in Sect. 2.6 of [139]. The two most known estimators are the so-called Hill
estimator
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α̂(H) =


ln ηk,n − 1

k

k∑

j=1

ln ηj,n



−1

suggested in [118], and the Pickands estimator

α̂(P ) =
1

ln 2
ln

η2k,n − ηk,n

η4k,n − η2k,n

proposed in [186]. Provided that the conditions of Theorem 2.2, along with an
additional regularity condition of the type (2.45), are satisfied and k →∞ as
n →∞, both estimators of α are consistent and asymptotically normal. Their
asymptotic properties are similar. The main practical problem is, of course,
the choice of k. This problem has been addressed in a number of articles, see
e.g. [65]. However, this problem can hardly be adequately resolved in global
random search applications as the value of n required to achieve a reasonable
precision in statistical inference about m = min f must be astronomical when
the dimension d of A is not very small (recall that one of the main attractive
points of the global random search methods is their applicability for solving
problems with moderate or large dimension).

Results of Sect. 2.5.2 show that the linear estimators which perform well
when the value of α is known become much less precise when the value of α
is not known. Their asymptotic properties in the case when α̂ is noticeably
different from α are poor and, consequently, it is often not worth using these
estimators in the case of unknown α.

A slightly different way of making statistical inferences about m is based
on making the inferences about m and α simultaneously using the maximum
likelihood principle outlined below (see [109, 186, 228] for more details).

Assume that the asymptotic relation (2.42), along with the additional
regularity condition (2.45) hold with some c0 > 0 and α ≥ 2. Then the
likelihood function depending on the unknown parameters c0, α and m is
asymptotically, as n →∞, equal to

L(η1,n, . . . , ηk,n; m, c0, α)

= n!
(n−k)! (c0α)k (1− c0 (ηk,n −m)α)n−k

k∏
j=1

(ηj,n −m)α−1 .
(2.89)

This asymptotic form of the likelihood function is treated as the exact one.
The maximisation of (2.89), with respect to c0 for fixed α = α̂ and m = m̂
gives the maximum likelihood estimator for c0:

ĉ0 =
k

n
(ηk,n − m̂)α̂

. (2.90)

The maximisation of (2.89) with respect to α for fixed m = m̂ and the sub-
stitution (2.90) for c0, gives the maximum likelihood estimator for α:
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α̂ = k/
k−1∑

j=1

ln(1 + βj(m̂)) , (2.91)

where βj(m̂) are defined in (2.65). The remaining problem is to define the max-
imum likelihood estimator m̂ for m. It cannot be defined as the global max-
imizer of the likelihood function L(η1,n, . . . , ηn−k; m, ĉ0, α̂), since the global
maximum is achieved at m = η1,n and equals +∞ (meaning that the proper
maximum likelihood estimator of m is η1,n, which is a poor estimator). Ac-
cording to the proposal of P.Hall [109], m̂ is defined as a solution of the
likelihood equation, which is

1/
k−1∑

j=1

ln(1 + βj(m̂)) − 1/
k−1∑

j=1

βj(m̂) = 1/k (2.92)

provided that m̂ ≤ η1,n. If there is no solution to the equation (2.92) in
the half-interval (−∞, η1,n), then m̂ is taken as η1,n; if there is more than
one solution of this equation in (−∞, η1,n) (that is, the likelihood function
is multimodal), then the largest solution is taken. Despite the fact that the
estimator does not typically maximize the likelihood function (execpt in the
trivial case where η1,n is taken as the estimator), it is still called the maximum
likelihood estimator. Note that the equation (2.92) is exactly the equation
(2.66) with α replaced by α̂ of (2.91).

Under the regularity condition (2.45) the maximum likelihood estimator
m̂ of m is asymptotically normal with mean m and the variance

(α− 1)2(1− 2/α)(κn −m)2k−1+2/α, α > 2, n →∞, k →∞, k/n → 0.

This differs from the r.h.s. of (2.67) in the multiplier (α− 1)2 only.
Formally, we can avoid estimating α and construct confidence intervals

and statistical tests for m using the result proved in [262]. This result says
that if the conditions of Theorem 2.2 hold, k → ∞, k/n → 0, n →∞, then
the sequence of random variables

(ln k) ln[(η2,n −m)/(η1,n −m)]
ln[(ηk,n − η3,n)/(η3,n − η2,n)]

converges in distribution to a random variable with the exponential density
e−t, t ≥ 0. Some generalizations of this result can be found in [263].

2.5.2 Using an Incorrect Value of the Tail Index

Confidence intervals

Consider what happens to the level of the one-sided confidence interval (2.86)
for the case where



78 2 Global Random Search: Fundamentals and Statistical Inference

r′k,δ = 1/
(
(1− δ1/k)1/ϑ − 1

)

is being substituted for rk,δ defined in (2.87); this means that ϑ is being used
in place of the true α.

Proposition 2.3. Let the conditions of Theorem 2.2 hold, n → ∞, k and
ϑ > 0 be fixed. Then the asymptotic confidence level of the confidence interval

I ′ = [η1,n − r′k,δ(ηk,n − η1,n) , η1,n] (2.93)

is equal to
1− (1− (1− δ1/k)α/ϑ)k. (2.94)

Proof is given in Sect. 2.7.

Note that if we take ϑ = α, then (2.94) is simplified to 1 − δ; therefore,
Proposition 2.3 generalizes the statement of Sect. 2.4.2 saying that the asymp-
totic confidence level of the interval (2.86) is equal to 1− δ.

Linear estimators of m

Let us now follow [274] and study the consequences of using incorrect values
of α while constructing linear estimators of m (using incorrect values of α is
inevitable when we do not know the exact value of α and use its estimator
instead).

Assume that α > 1, α 6= 2 and start the investigation with the opti-
mal estimator m̂n,k(a∗). Denote by ϑ (ϑ 6= α) the value we use to compute
a∗=a∗(ϑ) and by Λ0 = Λ(ϑ) the matrix Λ = ‖λij‖ defined in (2.68) with ϑ
substituted for α.

In view of (2.85) the asymptotic efficiency of the estimator m̂n,k(a∗(ϑ)) is

eff(m̂n,k(a∗(ϑ))) =
1

1′Λ−11 · (a∗(ϑ))′Λa∗(ϑ)
=

(1′Λ−1
0 1)2

1′Λ−11 · 1′Λ−1
0 ΛΛ−1

0 1
.

If k is fixed and |ϑ−α| is small, then the estimator m̂n,k(a∗(ϑ)) is relatively
good. For example, if k = 2 then

Λ =
(

Γ (1 + 2/α) (1 + 1
α )Γ (2 + 2/α)

(1 + 1
α )Γ (2 + 2/α) Γ (2 + 2/α)

)
, a∗(ϑ) =

(
1 + ϑ

2

−ϑ
2

)
,

λ′Λ−1λ =
2(α+1)

(α+2)Γ (1 + 2/α)
and eff(m̂n,k(a∗(ϑ))) =

α + 2
α+2+α(1− ϑ

α )2
.

We shall say that the estimator m̂n,k(a∗(ϑ)) is poor if

eff(m̂n,k(a∗(ϑ))) < eff(m̂n,k(a(0))) ; (2.95)
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that is, the asymptotic efficiency of the estimator m̂n,k(a∗(ϑ)) is worse than
the asymptotic efficiency of the simplest estimator m̂n,k(a(0)) = η1,n. Note
that for k = 2 we have

eff(m̂n,k(a(0))) = α + 2/(2(α + 1)) .

The inequality (2.95) cannot be true for ϑ < α. On the other hand, it is
easy to see that the estimator m̂n,k(a∗(ϑ)) is poor when ϑ > 2α.

In the case k > 2 the situation is not so clear. For instance, for k = 3 we
have

Λ = Γ (1 + 2/α)




1 α+2
α+1

2(α+2)
2α+1

α+2
α+1

α+2
α

2(α+1)(α+2)
α(2α+1)

2(α+2)
2α+1

2(α+1)(α+2)
α(2α+1)

(α+1)(α+1)
α2




,

a∗1(ϑ) =
(ϑ + 2)(ϑ + 1)2

3ϑ2 + 4ϑ + 2
, a∗2(ϑ) =

ϑ(ϑ2 − 1)
3ϑ2 + 4ϑ + 2

,

a∗3(ϑ) = − ϑ2(2ϑ + 1)
3ϑ2 + 4ϑ + 2

, eff(m̂n,k(a(0))) =
(α + 1)(α + 2)
3α2 + 4α + 2

.

Thus, for given values of α and ϑ, to conclude whether the estimator
m̂n,k(a∗(ϑ)) is poor we must compute the value of the two–variate polynomial

(a∗(ϑ))′
( 1

Γ (1 + 2/α)
Λ

)
(a∗(ϑ)) ,

which depends on α and ϑ, and compare it with 1. The estimator is poor if
this value is smaller than 1.

Another interesting case is where k is large. According to [274], for all
ϑ 6= α we have

(a∗(ϑ))′ Λ a∗(ϑ) ∼ (ϑ− 2)2 (α− ϑ)2 (ϑ + α ϑ− 2α)−2 k2/α as k →∞ .

In this case the estimator m̂n,k(a∗(ϑ)) is poor (it is asymptotically less
efficient than the simplest estimator m̂n,k(a(0)) = η1,n). The estimator is
consistent but the order of convergence (as k → ∞, n → ∞, k/n → 0) of
the mean square error E(m− m̂n,k(a∗(ϑ)))2 to 0 is only (k/n)2/α rather than
(k/n)2/α/k for the estimator m̂n,k(a(0)).

Thus, if the value of the tail index α is not correct (for instance, α has been
estimated), then the increase of k leads to a precision loss in the estimator
m̂n,k(a∗). A similar conclusion can be derived for the estimators m̂n,k(a+)
and m̂n,k(aCM ) since these two estimators are asymptotically equivalent to
m̂n,k(a∗) (as k →∞, n →∞, k/n → 0).
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The situation with the estimator m̂n,k(aU (ϑ)) is better (that is, this es-
timator is less sensitive to deviations in α for large k). Indeed, we have as
k →∞:

aU
1 (ϑ) =

bk

bk − b1
∼ 1 + k−1/ϑΓ (1 + 1/ϑ), aU

k (ϑ) ∼ −k−1/ϑ Γ (1 + 1/ϑ),

λ11 = Γ (1 + 2/α), λkk =
Γ (k + 2/α)

Γ (k)
∼ k2/α,

λk1 =
Γ (k + 2/α)Γ (1 + 1/α)

Γ (k + 1/α)
∼ k1/αΓ (1 + 1/α),

(aU )′Λ(aU ) = (aU
1 (ϑ))2 λ11 + 2aU

1 (ϑ)aU
k (ϑ)λk1 + (aU

k (ϑ))2λkk

∼ Γ (1+2/α)− 2Γ (1+1/α)k1/α−1/ϑΓ (1+1/ϑ) + k2/α−2/ϑΓ 2(1+1/ϑ)

∼




Γ (1 + 2/α) for ϑ < α,
Γ (1 + 2/α)− Γ 2(1 + 1/α) for ϑ = α,
k2/α−2/ϑΓ 2(1− 1/ϑ) for ϑ > α.

This implies that for ϑ < α the asymptotic efficiency of the estimator
m̂n,k(aU (ϑ)) asymptotically (as k → ∞) coincides with the asymptotic effi-
ciency of the simplest estimator m̂n,k(a(0)), for α = ϑ the estimator m̂n,k(aU )
is better than m̂n,k(a(0)) but worse than m̂n,k(a∗), and, finally, for ϑ > α the
estimator m̂n,k(aU ) is poor but it is much more asymptotically efficient than
m̂n,k(a∗).

2.5.3 Exact Determination of the Value of the Tail Index

Recall that the c.d.f. F (·) arising in global random search problems has the
specific form (2.13). As we show in this section, this specific form often enables
the determination of the value of the tail index α explicitly. It gives us the
possibility of using the simple and efficient techniques of Sect. 2.4, rather than
the techniques of Sect. 2.5.1, which require a much larger sample size.

The basic result is the following theorem.

Theorem 2.3. Assume that the global minimizer x∗ of f(·) is unique and
Conditions C1 – C4, C8 and C9 of Sect. 2.1.1 along with the condition C10
of Sect. 2.2.1 are met. Assume, in addition, that the representation

f(x)−m = w(‖x−x∗‖)H(x−x∗) + O(‖x−x∗‖β), ‖x−x∗‖ → 0, (2.96)

is valid, where H(·) is a positive homogeneous function on Rd\{0} of order
β > 0 (for H(·) the relation H(λz) = λβH(z) holds for all λ > 0 and z ∈ Rd)
and function w : R → R is positive and continuous. Then the conditions of
Theorem 2.2 for the c.d.f. (2.13) are fulfiled and the value of the tail index α
is equal to α = d/β.
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Proof of the theorem is given in Sect. 2.7.
The main condition in Theorem 2.3 is (2.96) which characterizes the be-

haviour of the objective function f(·) in the neighbourhood of its global min-
imizer. Let us consider two important particular cases of (2.96).

First, let us assume that f(·) is twice continuously differentiable in the
vicinity of x∗, ∇f(x∗) = 0 (here ∇f(x∗) is the gradient of f(·) in x∗) and the
Hessian ∇2f(x∗) of f(·) at x∗ is non-degenerate. In this case, we can take

w(·) = 1, H(z) = −z′[∇2f(x∗)]z ,

which implies β = 2 and α = d/2.
Assume now that all components of ∇f(x∗) are finite and non-zero which

often happens if the global minimum of f(·) is achieved at the boundary of A.
Then we may take H(z) = z′∇f(x∗), w(·) = 1; this gives β = 1 and α = d.

Consider now two extensions of the basic result.
The following statement demonstrates that if we can assume that the

conditions of Theorem 2.2 are met for the c.d.f. (2.13) with some α, then the
value of α itself can be determined from assumptions that are weaker than
those of Theorem 2.3.

Theorem 2.4. Assume that the global minimizer x∗ of f(·) is unique and
Conditions C1–C4, C8 and C9 of Sect. 2.1.1 are met. Assume, in addition,
that the conditions of Theorem 2.2 are met for some α > 0 and there exist
positive numbers ε0, c3 and c4 such that for all x ∈ B(x∗, ε0) the inequality

c3||x∗ − x||β ≤ f(x)−m ≤ c4||x∗ − x||β

is valid. Then α = d/β.

Proof of the theorem is given in Sect. 2.7.
The next assertion relaxes the uniqueness requirement for the global min-

imizer.
Theorem 2.5. Assume that Conditions C1–C4, C7, C8 and C9 of Sect. 2.1.1
along with Condition C10 of Sect. 2.2.1 are met. Let the global minimum
m = min f of f(·) be attained at points x

(i)
∗ (i = 1, . . . , l) in whose vicinities

the tail indexes αi can be determined. Then the conditions of Theorem 2.2
for the c.d.f. (2.13) are fulfilled and the value of the tail index α is α =
min{α1, . . . , αl}.
Proof of the theorem is given in Sect. 2.7.

2.6 Some Algorithmic and Methodological Aspects

2.6.1 Using Statistical Inference in Global Random Search

In this section, we consider different ways of using statistical inference pro-
cedures in global random search algorithms, discuss the so-called branch and
probability bound methods and review the statistical inference procedures in
the method of random multistart.
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General considerations

Many global random search algorithms consist of several iterations so that
at the i-th iteration a particular probability distribution P = Pi is gener-
ated to obtain the points where f(·) is to be evaluated – see Algorithm 2.2 of
Sect. 2.1.2 and a number of methods in Sect. 3.5. At each iteration of these
algorithms and for various subsets Z of A with P (Z) > 0, we have indepen-
dent samples of points which belong to Z and are distributed according to
the probability measure PZ (for a given Z ∈ B, the measure PZ is defined
as PZ(U) = P (U ∩ Z)/P (Z), U ⊆ A), along with the values of the objec-
tive function f(·) at these points. For given Z, these values of f(·) form an
independent sample from the distribution with the c.d.f.

FZ(t) = PZ{x ∈ Z : f(x) ≤ t}
and the lower bound

mZ = inf
z∈Z

f(z) .

To guarantee that mZ is indeed the lower bound of FZ(·) it is sufficient to
assume Conditions C1–C3 and C4′ of Sect. 2.1.1 for the set Z and Condition
C10 of Sect. 2.2.1 for the measure P .

To decide whether it is worthwhile to place new points in Z we can draw
statistical inferences concerning the parameter mZ and the behaviour of the
c.d.f. FZ(t) in the vicinity of mZ . Since statistical procedures can be con-
structed for all sets Z and at various iterations of the algorithms in a similar
manner, we can extend all the results of Sect. 2.4 and 2.5 formulated in the
case Z = A to the case of a generic Z ⊆ A. A wide class of global ran-
dom search methods based on the statistical inference procedures developed
in previous sections, is considered below.

More broadly, the statistical inference procedures of Sect. 2.4 and 2.5 aim
to learn about the distance between the current record yon and the unknown
target m = min f and hence can be used for devising various stopping rules in
any global random search algorithm presented in the form of Algorithm 2.2 of
Sect. 2.1.2. For example, the estimators m̂ of m and the confidence intervals
for m can be used to define the following stopping rule: if m̂ is close enough to
the best value of f(·) obtained so far (alternatively, if the confidence interval
is small enough), then the algorithm terminates.

The distributions for the new points in algorithms of this kind can differ
from the uniform as these distributions are constantly changing. The corre-
sponding algorithms, where the number of iterations is small but the number
of points at each iteration is large, constitute a wide class of the so-called ge-
netic random search algorithms, see Sect. 3.5; these algorithms are extremely
popular in practice. As the number of points at each iteration is typically
large, all the statistical procedures developed above can be used exactly as
they are presented. The differences between these algorithms and the branch
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and probability bound methods considered below, are:
(a) the subregions are not removed from A; instead, the distributions Pi are
adapted; and
(b) the function values that were used in previous iterations cannot be used
in subsequent iterations: indeed, the use of them would introduce dependence
into the sample {f(xi)}; this dependence would be difficult to handle.

Furthermore, the assumption of the independence of points x
(j)
i at itera-

tion j in Algorithm 2.2 of Sect. 2.1.2, which is commonly used in practice (see
e.g. Sect. 3.5), can be relaxed to allow some dependence in these points and
some of the statistical inference procedures developed above can be suitably
modified. In Sect. 3.2 we consider in detail the problem of making statistical
inference about m for the case of stratified sampling. We will show that a
certain reduction in randomness typically leads to more efficient algorithms;
note that improving the efficiency of algorithms by reducing the randomness
of points is one of the major areas of interest in the theory of Monte-Carlo
methods.

Branch and probability bound methods

Branch and bound optimisation methods are widely known. To put it briefly,
they consist of several iterations, each including the following stages:

(i) branching the optimisation set into a tree of subsets (more generally, de-
composing the original problem into subproblems),

(ii) making decisions about the prospectiveness of the subsets for further
search, and

(iii) selecting the subsets that are recognized as prospective for further branch-
ing.

To make a decision at stage (ii) prior information about f(·) and values of
f(·) at some points in A are used, deterministic lower bounds concerning
the minimal values of f(·) on the subsets of A are constructed, and those
subsets Z ⊂ A are rejected (considered as non-prospective for further search)
for which the lower bound for mZ = infx∈Z f(x) exceeds an upper bound m̂
for m = min f ; the minimum among all evaluated values of f(·) in A is a
natural upper bound m̂ for m. A general recommendation for improving this
upper bound is to use a local descent algorithm, starting at the new record
point, each time we obtain such a point.

Let us consider a version of the branch and bound technique, which we
call ‘branch and probability bound’; see [272] and Sect. 4.3 in [273] for a
detailed description of this technique and results of numerical experiments.
In the branch and probability bound methods, an independent sample from
the uniform distribution in the current search region is generated at each
iteration and the statistical procedures described in Sect. 2.4.2 for testing
the hypothesis H0 : mZ ≤ m̂ are applied to make a decision concerning
the prospectiveness of sets Z at stage (ii). Rejection of the hypothesis H0
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corresponds to the decision that the global minimum m can not be reached
in Z. Naturally, such a rejection may be false. This may result in losing the
global minimizer. An attractive feature of the branch and probability bound
algorithms is that the asymptotic level for the probability of false rejection
can be controlled.

The stages (i) and (iii) above can be implemented in exactly the same
fashion as in the classical branch and bound methods. When the structure
of A is not too complicated, the following technique has been proven to be
convenient and efficient.

Let Aj be a search region at iteration j, j ≥ 1 (so that A1 = A). At it-
eration j, in the search region Aj we first isolate a subregion Zj1 with centre
at the point corresponding to the record value of f(·). The point correspond-
ing to the record value of f(·) over Aj\Zj1 is the centre of a subregion Zj2.
Similar subregions Zji (i = 1, . . . , I) are isolated until either Aj is covered
or the hypothesis that the global minimum can occur in the residual set
Aj/ ∪I

i=1 Zji is rejected (the hypothesis can be verified by the procedure de-
scribed in Sect. 2.4.2). The search region Aj+1 in the next (j+1)–th iteration
is naturally either Z(j+1) = ∪I

i=1Zji, a hyperrectangle covering Z(j+1), or
a union of disjoint hyperrectangles covering Z(j+1). In the multidimensional
case the last two ways produce more computationally convenient versions of
the branch and probability bound method than the first one.

As the value of the minimum of f(·) over these kind of subsets can often
be expected to be attained at the boundary, where all the components of the
gradient of the objective function are expected to be non-zero (assuming the
objective function is differentiable), the results of Sect. 2.5.3 imply that α = d
can be used as the value of the tail index α. For some subregions Z, the value
d overestimates the true value of α, but this only affects the power of the test
of Sect. 2.4.2 applied for testing the hypothesis H0 : mZ ≤ m̂. On the other
hand, the fact that we do not have to estimate α significantly simplifies the
problem of making statistical inferences about the minimum of f(·) over the
subregions Zji.

Note also that at subsequent iterations all previously used points can still
be used, since they follow the uniform distribution at the reduced regions.

The branch and probability bound methods are rather simple and can
easily be realized as computer codes. They are both practically efficient for
small or moderate values of d (say, d < 10) and theoretically justified in the
sense that under general assumptions concerning f(·), they asymptotically
converge with a given probability, which can be chosen close to 1. However,
as d (and therefore α) increases, the efficiency of the statistical procedures
of Sect. 2.4 deteriorates. Therefore, for large d the branch and probability
methods are both hard to implement (this is the case for the whole family of
branch and bound methods) and their efficiency is poor. As a consequence of
this, the use of the branch and probability methods for large dimensions is
not recommended.
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2.6.2 Statistical Inference in Random Multistart

Random multistart is a global optimization method consisting of several local
searches starting at random initial points. In its original form, this method
is inefficient as it typically wastes much effort on repeated ascents. However,
some of its modifications, such as those using cluster analysis procedures to
prevent repeated ascents to the same local extrema, can be quite efficient.
These modifications are widely used and have been discussed in a number of
papers including [22, 23, 147, 198, 199, 210].

This section mainly follows the paper [278] by R. Zieliński and describes
several statistical procedures that can be used to increase the efficiency of
the simplest random multistart and some of its modifications. A number of
publications have appeared developing the ideas discussed in this section,
mostly using the Bayesian inference, see e.g. [16, 17, 20, 21, 114, 261]. However,
all the main ideas of the approach were contained in the original paper [278]
and there has not been any significant progress in the area since 1981, the
time of the publication of [278].

Notation

Let A ⊂ Rd satisfy the conditions C1, C2 and C3 of Sect. 2.1.1, f(·) be
a continuous function on A with a finite but unknown number l of local
minimizers x

(1)
∗ , . . . , x

(l)
∗ , P be a probability measure on A and A be a local

descent algorithm. We shall write A(x) = x
(i)
∗ for x ∈ A, if when starting at

the initial point x the algorithm A leads to the local minimizer x
(i)
∗ .

Set θi = P (A∗i ) for i = 1, . . . , l, where A∗i = {x ∈ A : A(x) = x
(i)
∗ } is the

region of attraction of x
(i)
∗ (note that A∗i may depend on the chosen algorithm

of local descent). It is clear that θi > 0 for i = 1, . . . , l and
∑l

i=1 θi = 1.
The method of random multistart is constructed as follows. An indepen-

dent sample Xn = {x1, . . . , xn} from the distribution P is generated and a
local optimization algorithm A is sequentially applied at each xj ∈ Xn. Let
ni be the number of points xj belonging to A∗i (that is, ni is the number
of descents to x

(i)
∗ from the points x1, . . . , xn). According to the definition,

ni ≥ 0 (i = 1, . . . , l),
∑l

i=1 ni = n, and the random vector (n1, . . . , nl) follows
the multinomial distribution

Pr{n1 = n1, . . . , nl = nl} =
(

n
n1, . . . , nl

)
θn1
1 . . . θnl

l ,

where

l∑

i=1

ni = n,

(
n

n1, . . . , nl

)
=

n!
n1! . . . nl!

, ni ≥ 0 (i = 1, . . . , l).

We consider the problem of drawing statistical inferences concerning the num-
ber of local minimizers l, the parameter vector θ = (θ1, . . . , θl), and the
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number n∗ of trials that guarantees with a given probability that all local
minimizers are found.

If l is known, then the problem is reduced to the standard problem of
making statistical inferences about the parameters of a multinomial distribu-
tion. This problem is well documented in literature, see Chapt. 35 in [129].

The main difficulty is caused by the fact that l is usually unknown. If an
upper bound for l is known, then one can apply standard statistical methods;
if an upper bound for l is unknown, the Bayesian approach is a natural alter-
native. Let us first consider the case where the number of local minimizers is
bounded.

Bounded number of local minimizers

Let L be an upper bound for l and n ≥ L. Then (n1/n, . . . , nl/n) is the stan-
dard minimum variance unbiased estimate of θ, where ni/n are the estimators
of θi’s. Of course, for all n and l > 1 it may happen, for some i, that ni = 0
but θi > 0. So, the above estimator non-degenerately estimates only the θi’s
for which ni > 0.

Let W be the number of ni’s that are strictly positive. Then for given l
and θ = (θ1, . . . , θl) we have

Pr{W = w | θ} =
∑

n1+···+nw=n
ni>0

∑

1≤i1<···<iw≤l

(
n

n1, . . . , nw

)
θn1

i1
. . . θnw

iw
.

For instance, the probability that all local descents will lead to a single local
minimizer is

Pr{W = 1 | θ} =
l∑

i=1

θn
i

and the probability that all local minima will be found is

Pr{W = l | θ} =
∑

n1+···+nl=n
ni>0

∑

1≤i1<···<iw≤l

(
n

n1, . . . , nl

)
θn1

i1
. . . θnl

il
. (2.97)

The probability (2.97) is small if at least one of the θi’s is small. On the other
hand, for any l and θ we can find n∗ such that for any given γ ∈ (0, 1) we will
have Pr{W = l |θ} ≥ γ for all n ≥ n∗. Finding n∗ = n∗(γ, θ) is the problem
of finding the (minimal) number of points in A such that the probability that
all local minimizers will be found is at least γ.

Set δ = min{θ1, . . . , θl} ≤ 1/l and note that

Pr{W = l|θ} ≥
∑

n1+...+nl=n

(
n

n1, . . . , nl

)
δn = (δl)n Pr{W = l | ( 1

l , . . . ,
1
l

)} .



2.6 Some Algorithmic and Methodological Aspects 87

Hence the problem of finding n∗(γ, θ) is reduced to that of finding n∗(γ, θ∗),
where θ∗ = (l−1, . . . , l−1). The latter is easy to approximate as for large n

Pr{W = l | θ∗} = l−n
∑

n1+···+nl=n

(
n

n1, . . . , nl

)
=

=
l∑

i=0

(−1)i

(
l
i

)
(1− i/l)n ∼ exp{−l exp{−n/l}}, n →∞.

By solving the equation exp(−l exp(−n/l)) = γ with respect to n we obtain
the approximation

n∗(γ, θ∗) ' l ln l + l ln(− ln γ) . (2.98)

This approximation is rather good even for small l and n; see Fig. 2.9, where
the exact values of n∗(γ, θ∗) and the approximation (2.98) are given for γ = 0.9
and l ≤ 20.

100

80
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40

20

0

l

20151050

n

Fig. 2.9. The exact values of n∗(γ, θ∗) (dots) and the approximation l ln l +
l ln(− ln γ) (solid line) for γ = 0.9 and l = 2, . . . , 20.

Bayesian approach

Let αj (j = 1, 2, . . .) be the prior probabilities of events that the number l of
local minimizers of f(·) is equal to j and let λj(dθj) be the conditional prior
measures for the parameter vector θj = (θ1, . . . , θj) under the condition l=j.
We shall assume that the measures λj(dθj) are uniform on the simplices

Θj =
{

θj = (θ1, . . . , θj) : θi > 0,

j∑

i=1

θi = 1
}

.
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Thus, the parameter set Θ, on which the vector of unknown parameters
θ = (θ1, . . . , θl) can take its values, has the form Θ = ∪∞j=1Θj and the prior
measure λ(dθ) on Θ for θ equals

λ(dθ) =
∞∑

j=1

αjλj(dθj). (2.99)

It is natural to assume that λ is a probability measure.
Let d = d(n1, . . . , nW ) be an estimate of l. The estimate

d∗ = arg min
d

∫

Θ

Eθ 1[n1,...,nW :d6=l]λ(dθ)

is the optimal Bayesian estimate of l; it can be simplified to

d∗ = arg max
j≥W

αjQ(j, W, n), (2.100)

where

Q(j,W, n) =
(

j
W

)
Γ (j)/Γ (n + j).

Using a quadratic loss function, the optimal Bayesian estimate for the total
P -measure of the domains of attraction of the hidden l−W local minimizers
(i.e. of the sum of the θi’s corresponding to the undiscovered minimizers) is
given by

∞∑

j=W

j −W

n + j
αjQ(j, W, n)

/ ∞∑

j=W

αjQ(j, W, n) .

The optimal Bayesian procedure for testing the hypothesis H0 : l = W under
the alternative H1 : l > W is constructed in a similar way. According to this
procedure, H0 is accepted if

c01

∞∑

j=W+1

αjQ(j,W, n) ≤ c10αW Γ (W )/Γ (n + W ),

otherwise H0 is rejected. Here c01 is the loss arising after accepting H0 in the
case of H1’s validity and c10 is the loss due to accepting the hypothesis H1

when it is false.

2.6.3 Sampling on Surfaces

Application of any random search algorithm to an optimization problem
where the feasible region A is defined by the equality-type constraints re-
quires sampling from probability distributions on the surface defined by these
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constraints. We show how to reduce the problem of distribution sampling on
a surface to the problem of distribution sampling on a subset of Rk of positive
volume (the latter problem is potentially simpler).

Let X ⊂ Rk with 0 < vol(X) < ∞ and Φ be a continuously differentiable
mapping of X into Rd with d ≥ k. Using the notation x = (x1, . . . , xk),
z = (z1, . . . , zd) and Φ = (ϕ1, . . . , ϕd) we can write





z1 = ϕ1(x1, . . . , xk)
...

...
zd = ϕd(x1, . . . , xk)

simply as z = Φ(x). For d > k, the set

A = Φ(X) = {z = Φ(x), x ∈ X}

is a k-dimensional surface in Rd.
For any x ∈ X we define

dij(x) =
d∑

l=1

∂ϕl(x)
∂xi

∂ϕl(x)
∂xj

(i, j = 1, . . . , k)

and

D(x) =
√

det‖dij(x)‖k
i,j=1 .

The matrix ‖dij(x)‖k
i,j=1 is non-negative definite for all x ∈ X so that its

determinant is always non-negative.
If d=k then D(x)= |∂Φ/∂x| is the Jacobian of the transformation Φ. An-

other important particular case is where d=k+1 and ϕj(x)=xj (j =1, . . . , k);
in this case we have

D(x) =

[
1 +

k∑

i=1

(
∂ϕk+1(x)

∂xi

)2
] 1

2

.

Let ds denote the surface measure on the surface A = Φ(X). As follows
from §10, Chapt. 4 in [211], for any Borel-measurable function p defined on A
and any B ⊆ A of the form B = Φ(U), where U is a measurable subset of X,
we have

∫

B

p(s)ds =
∫

Φ−1(B)

p(Φ(x))D(x)dx.

Therefore, for any measurable non-negative function p(·) defined on A and
satisfying the condition
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∫

X

p(Φ(x))D(x)dx = 1,

the probability measure with density

p(Φ(x))D(x), x ∈ X

induces the probability distribution p(s)ds on the surface A = Φ(X). In the
important particular case where

c =
∫

X

D(x)dx < ∞,

the probability distribution with density

p0(x) =
1
c
D(x), x ∈ X ,

induces the uniform distribution ds/c on the surface A.
Thus, the problem of distribution sampling on the surface A is being

reduced to the problem of distribution sampling on the set X ⊂ Rk with
vol(X)>0. In order to obtain a realization ξ of a random vector in Rd with
distribution p(s)ds on A, it is enough to obtain a realization ζ of a random
vector in X ⊂ Rk with density p(Φ(x))D(x) and compute ξ = Φ(ζ).

This general methodology was applied in [273], Sect. 6.1, to construct
distribution sampling algorithms on various surfaces including ellipsoids, hy-
perboloids and cones.

2.7 Proofs

Proof of Theorem 2.1.

Fix δ > 0 and find some ε > 0 such that B(x∗, ε)⊂W (δ); this is possible as
f(·) is continuous in the vicinity of x∗. Define the sequence of independent
random variables {ζj} on the two-point set {0, 1} so that

Pr{ζj = 1} = 1− Pr{ζj = 0} = qj(ε)

where qj(ε) is defined in (2.5).
For each j, the probability of the event xj ∈ B(x∗, ε) is larger than or equal

to the probability of the event ζj = 1. However, the first part of the Borel’s
‘zero-one law’ (see e.g. [226]) implies that if (2.4) holds, then ζj infinitely often
takes the value 1; this yields the assertion of the theorem. ¤
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Proof of Proposition 2.1.

Setting w = (1+1/u)α−1 and using the fact that the joint asymptotic density
of

(
η1,n −m

κn −m
,
ηk,n −m

κn −m

)

coincides with the joint density of the random vector (ν1/α
1 , (ν1+. . .+νk)1/α),

we obtain

Pr{Dn,k≤u} ∼ Pr

{
ν

1/α
1

(ν1+ · · ·+νk)1/α−ν
1/α
1

≤u

}
= Pr

{
ν1+ · · ·+νk

ν1
≥w

}

=
1

(k − 2)!

∫ ∞

0

[∫ ∞

wy

exp{−x− y} · xk−2dx

]
dy = 1−

(
w

w + 1

)k−1

.

¤

Proof of Proposition 2.2.

The formula (2.53) for the asymptotic moments follows from the fact that
(ηk,n − m)/(κn − m) converges in distribution (as n → ∞) to the random
variable with density (2.48); computing the β-th moment of this distribution
with this density immediately gives (2.53).

Proof of (2.54) is similar but more technical. Assume that 1 ≤ j < k ≤ n;
the case j = k is covered in (2.53) with β = 2.

Using the fact that the sequence of random vectors (2.49) asymptotically,
as n → ∞, has the same density as the vector (2.51), we deduce that the
random vector

(
ηj,n −m

κn −m
,
ηk,n −m

κn −m

)

asymptotically has the same density as the vector
(
ζ1/α, (ξ + ζ)1/α

)
,

where random variables ξ and ζ are independent and have Gamma-distributions
with densities

pζ(x) =
1

Γ (j)
xj−1e−x and pξ(x) =

1
Γ (k−j)

xk−j−1e−x (x > 0),

respectively. Therefore, as n →∞, we have

1
(κn−m)2

E(ηj,n−m)(ηk,n−m) → Eζ1/α(ξ + ζ)1/α
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=
1

Γ (j)Γ (k−j)

∫ ∞

0

∫ ∞

0

z1/α(x + z)1/αzj−1e−zxk−j−1e−xdxdz

=
1

Γ (j)Γ (k−j)

∫ ∞

0

∫ ∞

0

zj−1+2/α(1 + x/z)1/αe−zxk−j−1e−xdxdz

=
1

Γ (j)Γ (k−j)

∫ ∞

0

∫ ∞

0

(1 + t)1/αtk−j−1zk−1+2/αe−z(t+1)dtdz

=
1

Γ (j)Γ (k−j)

∫ ∞

0

tk−j−1

(t + 1)k+1/α
dt ·

∫ ∞

0

uk−1+2/αe−udu = λkj .

In the process of integration, we have introduced the new variables t = x/z
and u = z(t + 1); additionally, we have used the formulae

∫ ∞

0

uk−1+2/αe−udu = Γ (k+
2
α

) and
∫ ∞

0

tk−j−1

(t+1)k+1/α
dt =

Γ (k−j)Γ (j+1/α)
Γ (k+1/α)

.

¤

Proof of Proposition 2.3.

According to Proposition 2.1, the sequence of random variables

(η1,n −m)/(ηk,n − η1,n)

converges in distribution to the random variable with the c.d.f.

Fk(u) = 1−
(

1−
(

1− 1
1 + u

)α)k

(note that rk,δ is the (1−δ)-quantile of this c.d.f.). This implies that as n →∞,
the confidence level of the interval (2.93) can be represented as

Pr {m ∈ I ′} = Pr
{

η1,n −m

ηk,n − η1,n
≤ r′k,δ

}

∼ 1−
(

1−
(

1
1 + r′k,δ

)α)k

= 1−
(

1−
(
1− δ1/k

)α/ϑ
)k

.

¤


