
Preface

The purpose of this book is to give the reader two things, to paraphrase Mark Twain:
Roots to know the basics of modeling networks and Wings to fly away and attempt
modeling other proposed systems of interest.

The Internet phenomenon is affecting us all in the way we communicate, conduct
business, and access information and entertainment. More unforeseen applications
are still to come. All of this is due to the existence of an efficient global high-
performance network that connects millions of users and moves information at a
high rate with small delay.

High-Performance Networks

A high-performance network is characterized by two performance measures band-
width and delay. Traditional network design focused mainly on bandwidth planning;
the solution to network problems was to add more bandwidth. Nowadays, we have
to consider message delay particularly for delay-sensitive applications such as voice
and real-time video. Both bandwidth and delay contribute to the performance of the
network. Bandwidth can be easily increased by compressing the data, by using links
with higher speed, or by transmitting several bits in parallel using sophisticated
modulation techniques. Delay, however, is not so easily improved. It can only be
reduced by the use of good scheduling protocols, very fast hardware and switching
equipment throughout the network. The increasing use of optical fibers means that
the transmission channel is close to ideal with extremely high bandwidth and low
delay (speed of light). The areas that need optimization are the interfaces and devices
that connect the different links together such as hubs, switches, routers, and bridges.
The goal of this book is to explore the design and analysis techniques of these
devices. There are indications, however, that the optical fiber channel is becom-
ing less than ideal due to the increasing bit rates. Furthermore, the use of wireless
mobile networking is becoming very popular. Thus new and improved techniques
for transmitting across the noisy, and band-limited, channel become very essential.
The work to be done to optimize the physical level of communication is devising
algorithms and hardware for adaptive data coding and compression. Thus digital
signal processing is finding an increasing and pivotal role in the area of networking.
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Scope

The three main building blocks of high-performance networks are the links, the
switching equipment connecting the links together, and the software employed at
the nodes and switches. The purpose of this book is to provide the basic techniques
for modeling and analyzing the last two components: the software and the switching
equipment. The book also reviews the design options used to build efficient switch-
ing equipment. For this purpose, different topics are covered in the book such as
Markov chains and queuing analysis, traffic modeling, interconnection networks,
and switch architectures and buffering strategies.

There are many books and articles dealing with continuous-time Markov chains
and queuing analysis. This is because continuous-time systems are thought to be
easily modeled and analyzed. However, digital communications are discrete in na-
ture. Luckily, discrete-time Markov chains are simple, if not even easier, to analyze.
The approach we chose to present Markov chains and queuing analysis is to start
with explaining the basic concepts, then explain the analytic and numerical tech-
niques that could be used to study the system. We introduce many worked examples
throughout to get a feel as to how to apply discrete-time Markov chains to many
communication systems.

We employ MATLAB � throughout this book due to its popularity among
engineers and engineering students. There are many equally useful mathematical
packages available nowadays on many workstations and personal computers such
as Maple � and Mathematica �.

Organization

This book covers the mathematical theory and techniques necessary for analyzing
telecommunication systems. Queuing and Markov chain analyses are provided for
many protocols that are used in networking. The book then discusses in detail ap-
plications of Markov chains and queuing analysis to model over 15 communica-
tions protocols and hardware components. Several appendices are also provided that
round up the discussion and provide a handy reference for the necessary background
material.

Chapter 1 discusses probability theory and random variables. There is discussion of
sample spaces and how to count the number of outcomes of a random experiment.
Also discussed is probability density function and expectations. Important distribu-
tions are discussed since they will be used for describing traffic in our analysis. The
Pareto distribution is discussed in this chapter, which is usually not discussed in
standard engineering texts on probability. Perhaps what is new in this chapter is the
review of techniques for generating random numbers that obey a desired probability
distribution. Inclusion of this material rounds up the chapter and helps the designer
or researcher to generate the network traffic data needed to simulate a switch under
specified conditions.
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Chapter 2 discusses random processes and in particular Poisson and exponen-
tial processes. The chapter also discusses concepts associated with random pro-
cesses such as ensemble average, time average, autocorrelation function, and cross-
correlation function.

Chapter 3 discusses discrete-time Markov chains. Techniques for constructing the
state transition matrix are explored in detail as well as how the time step is de-
termined since all discrete-time Markov chains require awareness of the time step
value. The chapter also discusses transient behavior of Markov chains and explains
the various techniques for studying it such as diagonalization, expansion of the ini-
tial distribution vector, Jordan canonic form, and using the z-transform.

Chapter 4 discusses Markov chains at equilibrium, or steady state. Analytic tech-
niques for finding the equilibrium distribution vector are explained such as finding
the eigenvalues and eigenvectors of the state transition matrix, solving difference
equations, and the z-transform technique. Several numerical techniques for finding
the steady-state distribution are discussed such as use of forward- and backward-
substitution, and iterative equations. The concepts of balance equations and flow
balance are also explained.

Chapter 5 discusses reducible Markov chains and explains the concept of closed
and transient states. The transition matrix for a reducible Markov chain is parti-
tioned into blocks and the closed and transient states are related to each partitioning
block. An expression is derived for the state of a Markov chain at any time instant
n and also at equilibrium. The chapter also discusses how a reducible Markov chain
could be identified by studying its eigenvalues and eigenvectors. It is shown that the
eigenvectors enable us to identify all sets of closed and transient states.

Chapter 6 discusses periodic Markov chains. Two types of periodic Markov chains
are identified and discussed separately. The eigenvalues of periodic Markov chains
are discussed and related to the periodicity of the system. Transient analysis of a
periodic Markov chain is discussed in detail and asymptotic behavior is analyzed.

Chapter 7 discusses discrete-time queues and queuing analysis. Kendall’s notation
is explained and several discrete-time queues are analyzed such as the infinite-sized
M/M/1 queue and the finite-sized M/M/1/B queue. Equally important queues
encountered in this book are also considered such as Mm/M/1/B and M/Mm/1/B
queues. The important performance parameters considered for each queue are the
throughput, delay, average queue size, loss probability, and efficiency. The chapter
also discusses how to analyze networks of queues using two techniques: the flow
balance approach and the merged approach.

Chapter 8 discusses the modeling of several flow control protocols using Markov
chains and queuing analysis. Three traffic management protocols are considered:
leaky bucket, token bucket, and the virtual scheduling (VS) algorithm.

Chapter 9 discusses the modeling of several error control protocols using Markov
chains and queuing analysis. Three error control using automatic repeat request
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algorithms are considered: stop-and-wait (SW ARQ), go-back-N (GBN ARQ), and
selective repeat protocol (SRP ARQ).

Chapter 10 discusses the modeling of several medium access control protocols using
Markov chains and queuing analysis. Several media access protocols are discussed:
IEEE Standard 802.1p (static priority), pure and slotted ALOHA, IEEE Standard
802.3 (CSMA/CD, Ethernet), Carrier sense multiple access with collision avoid-
ance (CSMA/CA), IEEE Standard 802.4 (token bus) & 802.5 (Token ring), IEEE
Standard 802.6 (DQDB), IEEE Standard 802.11 distributed coordination function
for ad hoc networks, and IEEE Standard 802.11 point coordination function for
infrastructure networks (1-persistent and p-persistent cases are considered).

Chapter 11 discusses the different models used to describe telecommunication traf-
fic. The topics discussed deal with describing the data arrival rates, data destinations,
and packet length variation. The interarrival time for Poisson traffic is discussed in
detail and a realistic model for Poisson traffic is proposed. Extracting the parameters
of the Poisson traffic model is explained given a source average and burst rates. The
interarrival time for Bernoulli sources is similarly treated and a realistic model is
proposed together with a discussion on how to determine the Bernoulli model pa-
rameters. Self-similar traffic is discussed and the Pareto model is discussed. Extract-
ing the parameters of the Pareto traffic model is explained given a source average
and burst rates. Modulated Poisson traffic models are also discussed such as the
on–off model and the Markov modulated Poisson process. In addition to modeling
data arrival processes, the chapter also discusses the traffic destination statistics for
uniform, broadcast, and hot-spot traffic types. The chapter finishes by discussing
packet length statistics and how to model them.

Chapter 12 discusses scheduling algorithms. The differences and similarities be-
tween scheduling algorithms and media access protocols are discussed. Scheduler
performance measures are explained and scheduler types or classifications are ex-
plained. The concept of max–min fairness is explained since it is essential for the
discussion of scheduling algorithms. Twelve scheduling algorithms are explained
and analyzed: first-in/first-out (FIFO), static priority, round robin (RR), weighted
round robin (WRR), processor sharing (PS), generalized processor sharing (GPS),
fair queuing (FQ), packet-by-packet GPS (PGPS), weighted fair queuing (WFQ),
frame-based fair queuing (FFQ), core-stateless fair queuing (CSFQ), and finally
random early detection (RED).

Chapter 13 discusses network switches and their design options. Media access tech-
niques are first discussed since networking is about sharing limited resources using
a variety of multiplexing techniques. Circuit and packet-switching are discussed
and packet switching hardware is reviewed. The basic switch components are ex-
plained and the main types of switches are discussed: input queuing, output queuing,
shared buffer, multiple input queue, multiple output queue, multiple input and output
queue, and virtual routing/virtual queuing (VRQ). A qualitative discussion of the
advantages and disadvantages of each switch type is provided. Detailed quantitative
analyses of the switches is discussed in Chapter 15.
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Chapter 14 discusses interconnection networks. Time division networks are dis-
cussed and random assignment time division multiple access (TDMA) is analyzed.
Several space division networks are studied: crossbar network, generalized cube
network (GCN), banyan network, augmented data manipulator network (ADMN),
and improved logical neighborhood network (ILN). For each network, a detailed
explanation is provided for how a path is established and, equally important, the
packet acceptance probability is derived. This last performance measure will prove
essential to analyze the performance of switches.

Chapter 15 discusses modeling techniques for input buffer, output buffer, and shared
buffer switches. Equations for the performance of each switch are obtained to de-
scribe packet loss probability, average delay within the switch, the throughput, and
average queue size.

Chapter 16 discusses the design of two next-generation high-performance network
switches. The first Promina 4000 switch developed by N.E.T. Inc. The second is
the VRQ switch which was developed at the University of Victoria and is being
continually improved. The two designs are superficially similar and a comparative
study is reported to show how high-performance impacted the design decisions in
each switch.

Appendix A provides a handy reference for many formulas that are useful while
modeling the different queues considered here. The reader should find this informa-
tion handy since it was difficult to find all the formulas in a single source.

Appendix B discusses techniques for solving difference equations or recurrence re-
lations. These recurrence relations crop up in the analysis of queues and Markov
chains.

Appendix C discusses how the z-transform technique could be used to find a closed-
form expression for the distribution vector s(n) at any time value through finding
the z-transform of the transition matrix P.

Appendix D discusses vectors and matrices. Several concepts are discussed such
as matrix inverse, matrix nullspace, rank of a matrix, matrix diagonalization, and
eigenvalues and eigenvectors of a matrix. Techniques for solving systems of linear
equations are discussed since these systems are encountered in several places in
the book. Many special matrices are discussed such as circulant matrix, diagonal
matrix, echelon matrix, Hessenberg matrix, identity matrix, nonnegative matrix, or-
thogonal matrix, plane rotation, stochastic (Markov) matrix, substochastic matrix,
and tridiagonal matrix.

Appendix E discusses the use of MATLAB in engineering applications. A brief
introduction to MATLAB is provided since it is one of the more common math-
ematical packages used.

Appendix F discusses design of databases. A database is required in a switch to
act as the lookup table for important properties of transmitted packets. Hashing and
B-trees are two of the main techniques used to construct the fast routing or lookup
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tables used in switches and routers. The performance of the hashing function and
average lookup delay are analyzed. The B-tree data structure is discussed and the
advantages of B-trees over regular binary trees and multiway trees are explained.

Advanced Topics

I invested special effort in making this book useful to practicing engineers and
students. There are many interesting examples and models throughout the book.
However, I list here some interesting topics:

� Chapter 1 discusses heavy-tailed distribution in Section 1.20 and generation of
random numbers in Section 1.35.

� Chapter 3 discusses techniques for finding higher powers for Markov chain state
transition matrix in Sections 3.13 and 3.14.

� Chapter 5 discusses reducible Markov chains at steady state in Section 5.7 and
transient analysis of reducible Markov chains in Section 5.6. Also, there is a
discussion on how to identify a reducible Markov chain by examining its eigen-
values and eigenvectors.

� Chapter 6 discusses transient analysis of periodic Markov chains in Section 6.15
and asymptotic behavior of periodic Markov chains in Section 6.15. Also, there
is a discussion on how to identify a periodic Markov chain and how to determine
its period by examining its eigenvalues.

� Chapter 7 discusses developing performance metrics for the major queue types.
� Chapter 8 discusses how to model three flow control protocols dealing with traf-

fic management.
� Chapter 9 discusses how to model three flow control protocols dealing with error

control.
� Chapter 10 discusses how to model three flow control protocols dealing with

medium access control.
� Chapter 11 discusses developing realistic models for source traffic using Poisson

description (Section 11.3.2), Bernoulli (Section 11.4.3), and Pareto traffic (Sec-
tion 11.8). There is also discussion on packet destination and length modeling.

� Chapter 12 discusses 12 scheduling algorithms and provides Markov chain anal-
ysis for many of them.

� Chapter 13 discusses seven types of switches based on their buffering strategies
and the advantages and disadvantages of each choice.

� Chapter 14 discusses many types of interconnection networks and also provides,
for the first time, analysis of the performance of each network.

Web Resource

The website http://www.ece.uvic.ca/∼fayez/Book, www.springer.com/978-0-387-
74437-7 contains information about the textbook and any related web resources.
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Errors

This book covers a wide range of topics related to communication networks and
provides an extensive set of analyses and worked examples. It is “highly probable”
that it contains errors and omissions. Other researchers and/or practicing engineers
might have other ideas about the content and organization of this book. We welcome
receiving any constructive comments and suggestions for inclusion in the next edi-
tion. If you find any errors, we would appreciate hearing from you. We also welcome
ideas for examples and problems (along with their solutions if possible) to include
in the next edition with proper citation.

You can send your comments and bug reports electronically to fayez@uvic.ca,
or you can fax or mail the information to

Dr. Fayez Gebali
Elec. and Comp. Eng. Dept.
University of Victoria Victoria, B.C., Canada V8W 3P6
Tel: (250) 721-6509
Fax: (250)721-6052.



Chapter 2
Random Processes

2.1 Introduction

We saw in Section 1.11 on page 10 that many systems are best studied using the
concept of random variables where the outcome of a random experiment was associ-
ated with some numerical value. Next, we saw in Section 1.27 on page 30 that many
more systems are best studied using the the concept of multiple random variables
where the outcome of a random experiment was associated with multiple numerical
values. Here we study random processes where the outcome of a random experiment
is associated with a function of time [1]. Random processes are also called stochastic
processes. For example, we might study the output of a digital filter being fed by
some random signal. In that case, the filter output is described by observing the
output waveform at random times.

Thus a random process assigns a random function of time as the outcome of a
random experiment. Figure 2.1 graphically shows the sequence of events leading to
assigning a function of time to the outcome of a random experiment. First we run
the experiment, then we observe the resulting outcome. Each outcome is associated
with a time function x(t).

A random process X (t) is described by

� the sample space S which includes all possible outcomes s of a random experi-
ment

� the sample function x(t) which is the time function associated with an outcome
s. The values of the sample function could be discrete or continuous

� the ensemble which is the set of all possible time functions produced by the
random experiment

� the time parameter t which could be continuous or discrete
� the statistical dependencies among the random processes X (t) when t is changed.

Based on the above descriptions, we could have four different types of random
processes:

1. Discrete time, discrete value: We measure time at discrete values t = nT with
n = 0, 1, 2, . . .. As an example, at each value of n we could observe the number
of cars on the road x(n). In that case, x(n) is an integer between 0 and 10, say.

F. Gebali, Analysis of Computer and Communication Networks,
DOI: 10.1007/978-0-387-74437-7 2, C© Springer Science+Business Media, LLC 2008
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Random
experiment

Random
outcome

Corresponding
function of
time: x(t)

Mapping
function

Fig. 2.1 The sequence of events leading to assigning a time function x(t) to the outcome of a
random experiment

Each time we perform this experiment, we would get a totally different sequence
for x(n).

2. Discrete time, continuous value: We measure time at discrete values t = nT with
n = 0, 1, 2, . . .. As an example, at each value of n we measure the outside tem-
perature x(n). In that case, x(n) is a real number between −30◦ and +45◦, say.
Each time we perform this experiment, we would get a totally different sequence
for x(n).

3. Continuous time, discrete value: We measure time as a continuous variable t . As
an example, at each value of t we store an 8-bit digitized version of a recorded
voice waveform x(t). In that case, x(t) is a binary number between 0 and 255,
say. Each time we perform this experiment, we would get a totally different se-
quence for x(t).

4. Continuous time, continuous value: We measure time as a continuous variable
t . As an example, at each value of t we record a voice waveform x(t). In that
case, x(t) is a real number between 0 V and 5 V, say. Each time we perform this
experiment, we would get a totally different sequence for x(t).

Figure 2.2 shows a discrete time, discrete value random process for an observa-
tion of 10 samples where only three random functions are generated. We find that
for n = 2, the values of the functions correspond to the random variable X (2).

Therefore, random processes give rise to random variables when the time value t
or n is fixed. This is equivalent to sampling all the random functions at the specified
time value, which is equivalent to taking a vertical slice from all the functions shown
in Fig. 2.2.

Example 1 A time function is generated by throwing a die in three consecutive
throws and observing the number on the top face after each throw. Classify this
random process and estimate how many sample functions are possible.

This is a discrete time, discrete value process. Each sample function will be have
three samples and each sample value will be from the set of integers 1 to 6. For
example, one sample function might be 4, 2, 5. Using the multiplication principle
for probability, the total number of possible outputs is 63 = 216.
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n0 1 2 3 4 5 6 7 8 9

x1

n0 1 2 3 4 5 6 7 8 9

x2

n0 1 2 3 4 5 6 7 8 9

x3

Fig. 2.2 An example of a discrete time, discrete value random process for an observation of 10
samples where only three random functions are possible.

2.2 Notation

We use the notation X (t) to denote a continuous-time random process and also to
denote the random variable measured at time t . When X (t) is continuous, it will
have a pdf fX (x) such that the probability that x ≤ X ≤ x + ε is given by

p(X = x) = fX (x) dx (2.1)

When X (t) is discrete, it will have a pmf pX (x) such that the probability that
X = x is given by

p(X = x) = pX (x) (2.2)

Likewise, we use the notation X (n) to denote a discrete-time random process
and also to denote the random variable measured at time n. That random variable is
statistically described by a pdf fX (x) when it is continuous, or it is described by a
pmf pX (x) when it is discrete.
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2.3 Poisson Process

We shall encounter Poisson processes when we describe communication traffic. A
Poisson process is a stochastic process in which the number of events occurring in a
given period of time depends only on the length of the time period [2]. This number
of events k is represented as a random variable K that has a Poisson distribution
given by

p(k) = (λ t)ke−λ t

k!
(2.3)

where λ > 0 is a constant representing the rate of arrival of the events and t is the
length of observation time.

2.4 Exponential Process

The exponential process is related to the Poisson process. The exponential process
is used to model the interarrival time between occurrence of random events. Exam-
ples that lead to an interarrival time include the time between bus arrivals at a bus
stop, the time between failures of a certain component, and the time between packet
arrival at the input of a router.

The random variable T could be used to describe the interarrival time. The prob-
ability that the interarrival time lies in the range t ≤ T ≤ t + dt is given by

λe−λ t dt (2.4)

where λ is the average rate of the event under consideration.

2.5 Deterministic and Nondeterministic Processes

A deterministic process is one where future values of the sample function are known
if the present value is known. An example of a deterministic process is the modula-
tion technique known as quadrature amplitude modulation (QAM) for transmitting
groups of binary data. The transmitted analog waveform is given by

v(t) = a cos(ωt + φ) (2.5)

where the signal amplitude a and phase angle φ change their value depending on
the bit pattern that has been received. The analog signal is transmitted for the time
period 0 ≤ t < T0. Since the arriving bit pattern is random, the values of the
corresponding two parameters a and φ are random. However, once a and φ are
determined, we would be able to predict the shape of the resulting waveform.
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A nondeterministic random process is one where future values of the sample
function cannot be known if the present value is known. An example of a nondeter-
ministic random process is counting the number of packets that arrive at the input
of a switch every one second and this observation is repeated for a certain time.
We would not be able to predict the pattern even if we know the present number of
arriving packets.

2.6 Ensemble Average

The random variable X (n1) represents all the possible values x obtained when time
is frozen at the value n1. In a sense, we are sampling the ensemble of random func-
tions at this time value.

The expected value of X (n1) is called the ensemble average or statistical average
μ (n1) of the random process at n1. The ensemble average is expressed as

μX (t) = E[X (t)] continuous-time process (2.6)

μX (n) = E[X (n)] discrete-time process (2.7)

The ensemble average could itself be another random variable since its value
could change at random with our choice of the time value t or n.

Example 2 The modulation scheme known as frequency-shift keying (FSK) can be
modeled as a random process described by

X (t) = a cos ωt

where a is a constant and ω corresponds to the random variable � that can have
one of two possible values ω1 and ω2 that correspond to the input bit being 0 or 1,
respectively. Assuming that the two frequencies are equally likely, find the expected
value μ(t) of this process.

Our random variable � is discrete with probability 0.5 when � = ω1 or � = ω2.
The expected value for X (t) is given by

E [X (t)] = 0.5 a cos ω1t + 0.5 a cos ω2t

= a cos

[
(ω1 + ω2) t

2

]
× cos

[
(ω1 − ω2) t

2

]

Example 3 The modulation scheme known as pulse amplitude modulation (PAM)
can be modeled as a random process described by
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X (n) =
∞∑

i=0

g(n) δ(n − i)

where g(n) is the amplitude of the input signal at time n. g(n) corresponds to the
random variable G that is uniformly distributed in the range 0–A. Find the expected
value μ(t) of this process.

This is a discrete time, continuous value random process. Our random variable
G is continuous and the expected value for X (n) is given by

E [X (n)] = 1

A

∫ A

0
g dg

= A

2

2.7 Time Average

Figure 2.2 helps us find the time average of the random process. The time average
is obtained by finding the average value for one sample function such as X1(n) in
the figure. The time average is expressed as

X = 1
T

∫ T
0 X (t) dt continuous-time process (2.8)

X = 1
N

∑N−1
0 X (n)] discrete-time process (2.9)

In either case we assumed we sampled the function for a period T or we observed
N samples. The time average X could itself be a random variable since its value
could change with our choice of the random function under consideration.

2.8 Autocorrelation Function

Assume a discrete-time random process X (n) which produces two random vari-
ables X1 = X (n1) and X2 = X (n2) at times n1 and n2 respectively. The au-
tocorrelation function for these two random variables is defined by the following
equation:

rX X (n1, n2) = E [X1 X2] (2.10)
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In other words, we consider the two random variables X1 and X2 obtained from the
same random process at the two different time instances n1 and n2.

Example 4 Find the autocorrelation function for a second-order finite-impulse re-
sponse (FIR) digital filter, sometimes called moving average (MA) filter, whose
output is given by the equation

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) (2.11)

where the input samples x(n) are assumed to be zero mean independent and identi-
cally distributed (iid) random variables.

We assign the random variable Yn to correspond to output sample y(n) and Xn

to correspond to input sample x(n). Thus we can have the following autocorrelation
function

rY Y (0) = E [YnYn] = a2
0 E

[
X2

0

]+ a2
1 E

[
X2

1

]+ a2
2 E

[
X2

2

]
E
[
X2

0

]
(2.12)

= (
a2

0 + a2
1 + a2

2

)
σ 2 (2.13)

Similarly, we can write

rY Y (1) = E (YnYn+1) = 2a0a1 σ 2 (2.14)

rY Y (2) = E (YnYn+2) = a0a2 σ 2 (2.15)

rY Y (k) = 0; k > 2 (2.16)

where σ 2 is the input sample variance. Figure 2.3 shows a plot of the autocorre-
lation assuming all the filter coefficients are equal.

RY 
(n)

0 n

Shift
1 2 3–1–2–3

Fig. 2.3 Autocorrelation function of a second-order digital filter whose input is uncorrelated
samples
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2.9 Stationary Processes

A wide-sense stationary random process has the following two properties [3]

E [X (t)] = μ = constant (2.17)

E [X (t) X (t + τ )] = rX X (t, t + τ ) = rX X (τ ) (2.18)

Such a process has a constant expected value and the autocorrelation function
depends on the time difference between the two random variables.

The above equations apply to a continuous time random process. For a discrete-
time random process, the equations for a wide-sense stationary random process
become

E [X (n)] = μ = constant (2.19)

E [X (n1) X (n1 + n)] = rX X (n1, n1 + n) = rX X (n) (2.20)

The autocorrelation function for a wide-sense stationary random process exhibits
the following properties [1].

rX X (0) = E
[
X2(n)

] ≥ 0 (2.21)

|rX X (n)| ≤ rX X (0) (2.22)

rX X (−n) = rX X (n) even symmetry (2.23)

A stationary random process is ergodic if all time averages equal their corre-
sponding statistical averages [3]. Thus if X (n) is an ergodic random process, then
we could write

X = μ (2.24)

X2 = rX X (0) (2.25)

Example 5 The modulation scheme known as phase-shift keying (PSK) can be
modeled as a random process described by

X (t) = a cos(ωt + φ)

where a and ω are constant and φ corresponds to the random variable � with two
values 0 and π which are equally likely. Find the autocorrelation function rX X (t) of
this process.
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The phase pmf is given by

p(0) = 0.5

p(π ) = 0.5

The autocorrelation is found as

rX X (τ ) = E [a cos(ωt + Φ) a cos(ωt + ωτ + Φ)]

= 0.5 a2 cos(ωτ ) E [cos(2ωt + ωτ + 2Φ)]

= 0.5 a2 cos(ωτ ) cos(2ωt + ωτ )

We notice that this process is not wide-sense stationary since the autocorrelation
function depends on t .

2.10 Cross-Correlation Function

Assume two discrete-time random processes X (n) and Y (n) which produce two
random variables X1 = X (n1) and Y2 = Y (n2) at times n1 and n2, respectively.
The cross-correlation function is defined by the following equation.

rXY (n1, n2) = E [X1 Y2] (2.26)

If the cross-correlation function is zero, i.e. rXY = 0, then we say that the two
processes are orthogonal. If the two processes are statistically independent, then we
have

rXY (n1, n2) = E [X (n1)] × E [Y (n2)] (2.27)

Example 6 Find the cross-correlation function for the two random processes

X (t) = a cos ωt

Y (t) = b sin ωt

where a and b are two independent and identically distributed random variables with
mean μ and variance σ 2.

The cross-correlation function is given by

rXY (t, t + τ ) = E [a cos ωt b sin(ωt + ωτ )]

= 0.5[sin ωτ + sin(2ωt + ωτ )] E[a] E[b]

= 0.5 μ2 [sin ωτ + sin(2ωt + ωτ )]



58 2 Random Processes

2.11 Covariance Function

Assume a discrete-time random process X (n) which produces two random variables
X1 = X (n1) and X2 = X (n2) at times n1 and n2, respectively. The autocovariance
function is defined by the following equation:

cX X (n1, n2) = E [(X1 − μ1) (X2 − μ2)] (2.28)

The autocovariance function is related to the autocorrelation function by the fol-
lowing equation:

cX X (n1, n2) = rX (n1, n2) − μ1μ2 (2.29)

For a wide-sense stationary process, the autocovariance function depends on the
difference between the time indices n = n2 − n1.

cX X (n) = E [(X1 − μ) (X2 − μ)] = rX X (n) − μ2 (2.30)

Example 7 Find the autocovariance function for the random process X (t) given by

X (t) = a + b cos ωt

where ω is a constant and a and b are iid random variables with zero mean and
variance σ 2.

We have

cX X = E {(A + B cos ωt)[A + B cos ω(t + τ )]}
= E

[
a2
]+ E[ab] [cos ωt + cos ω(t + τ )] + E

[
b2
]

cos2 ω(t + τ )

= σ 2 + E[a] E[b] [cos ωt + cos ω(t + τ )] + σ 2 cos2 ω(t + τ )

= σ 2
[
1 + cos2 ω(t + τ )

]

The cross-covariance function for two random processes X (n) and Y (n) is de-
fined by

cXY (n) = E [(X (n1) − μX ) (Y (n1 + n) − μY )]

= rXY (n) − μXμY (2.31)

Two random processes are called uncorrelated when their cross-covariance func-
tion vanishes.

cXY (n) = 0 (2.32)
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Example 8 Find the cross-covariance function for the two random processes X (t)
and Y (t) given by

X (t) = a + b cos ωt

Y (t) = a + b sin ωt

where ω is a constant and a and b are iid random variables with zero mean and
variance σ 2.

We have

cXY (n) = E {(A + B cos ωt)[A + B sin ω(t + τ )]}
= E

[
A2
]+ E[AB] [cos ωt + sin ω(t + τ )] + E

[
B2
]

cos ωt sin ω(t + τ )

= σ 2 + E[A] E[B] [cos ωt + sin ω(t + τ )] + σ 2 cos ωt sin ω(t + τ )

= σ 2 [1 + cos ωt sin ω(t + τ )]

2.12 Correlation Matrix

Assume we have a discrete-time random process X (n). At each time step i we define
the random variable Xi = X (i). If each sample function contains n components, it
is convenient to construct a vector representing all these random variables in the
form

x = [
X1 X2 · · · Xn

]t
(2.33)

Now we would like to study the correlation between each random variable Xi

and all the other random variables. This would give us a comprehensive understand-
ing of the random process. The best way to do that is to construct a correlation
matrix.

We define the n × n correlation matrix RX , which gives the correlation between
all possible pairs of the random variables as

RX = E
[
x xt

] = E

⎡

⎢⎢⎢
⎣

X1 X1 X1 X2 · · · X1 Xn

X2 X1 X2 X2 · · · X2 Xn
...

...
. . .

...
Xn X1 Xn X2 · · · Xn Xn

⎤

⎥⎥⎥
⎦

(2.34)
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We can express RX in terms of the individual correlation functions

RX =

⎡

⎢⎢
⎢
⎣

rX X (1, 1) rX X (1, 2) · · · rX X (1, n)
rX X (1, 2) rX X (2, 2) · · · rX X (2, n)

...
...

. . .
...

rX X (1, n) rX X (2, n) · · · rX X (n, n)

⎤

⎥⎥
⎥
⎦

(2.35)

Thus we see that the correlation matrix is symmetric. For a wide-sense stationary
process, the correlation functions depend only on the difference in times and we get
an even simpler matrix structure:

RX =

⎡

⎢⎢⎢
⎣

rX X (0) rX X (1) · · · rX X (n − 1)
rX X (1) rX X (0) · · · rX X (n − 2)

...
...

. . .
...

rX X (n − 1) rX X (n − 2) · · · rX X (0)

⎤

⎥⎥⎥
⎦

(2.36)

Each diagonal in this matrix has identical elements and our correlation matrix
becomes a Toeplitz matrix.

Example 9 Assume the autocorrelation function for a stationary random process is
given by

rX X (τ ) = 5 + 3e−|τ |

Find the autocorrelation matrix for τ = 0, 1, and 2.
The autocorrelation matrix is given by

RX X =
⎡

⎣
8 6.1036 5.4060
6.1036 8 6.1036
5.4060 6.1036 6

⎤

⎦

2.13 Covariance Matrix

In a similar fashion, we can define the covariance matrix for many random variables
obtained from the same random process as

CX X = E
[
(x − μ) (x − μ)t

]
(2.37)

where μ = [
μ1 μ2 · · · μn

]t
is the vector whose components are the expected val-

ues of our random variables. Expanding the above equation we can write
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CX X = E
[
XXt]− μ μt (2.38)

= RX − μ μt (2.39)

When the process has zero mean, the covariance matrix equals the correlation
matrix:

CX X = RX X (2.40)

The covariance matrix can be written explicitly in the form

CX X =

⎡

⎢⎢⎢
⎣

CX X (1, 1) CX X (1, 2) · · · CX X (1, n)
CX X (1, 2) CX X (2, 2) · · · CX X (2, n)

...
...

. . .
...

CX X (1, n) CX X (2, n) · · · CX X (n, n)

⎤

⎥⎥⎥
⎦

(2.41)

Thus we see that the covariance matrix is symmetric. For a wide-sense stationary
process, the covariance functions depend only on the difference in times and we get
an even simpler matrix structure:

CX X =

⎡

⎢⎢⎢
⎣

CX X (0) CX X (1) · · · CX X (n − 1)
CX X (1) CX X (0) · · · CX X (n − 2)

...
...

. . .
...

CX X (n − 1) CX X (n − 2) · · · CX X (0)

⎤

⎥⎥⎥
⎦

(2.42)

Using the definition for covariance in (1.114) on page 35, we can write the above
equation as

CX X = σ 2
X

⎡

⎢⎢⎢⎢⎢
⎣

1 ρ(1) ρ(2) · · · ρ(n − 1)
ρ(1) 1 ρ(1) · · · ρ(n − 2)
ρ(2) ρ(1) 1 · · · ρ(n − 3)

...
...

ρ(n − 1) ρ(n − 2) ρ(n − 3) · · · 1

⎤

⎥⎥⎥⎥
⎥
⎦

(2.43)

Example 10 Assume the autocovariance function for a wide-sense stationary ran-
dom process is given by

cX X (τ ) = 5 + 3e−|τ |

Find the autocovariance matrix for τ = 0, 1, and 2.
Since the process is wide-sense stationary, the variance is given by

σ 2 = cX X (0) = 8
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The autocovariance matrix is given by

CX X = 8

⎡

⎣
1 0.7630 0.6758

0.7630 1 0.7630
0.6758 0.7630 1

⎤

⎦

Problems

2.1 Define deterministic and nondeterministic processes. Give an example for
each type.

2.2 Let X be the random process corresponding to observing the noon temperature
throughout the year. The number of sample functions are 365 corresponding
to each day of the year. Classify this process.

2.3 Let X be the random process corresponding to reporting the number of defec-
tive lights reported in a building over a period of one month. Each month we
would get a different pattern. Classify this process.

2.4 Let X be the random process corresponding to measuring the total tonnage
(weight) of ships going through the Suez canal in one day. The data is plotted
for a period of one year. Each year will produce a different pattern. Classify
this process.

2.5 Let X be the random process corresponding to observing the number of cars
crossing a busy intersection in one hour. The number of sample functions are
24 corresponding to each hour of the day. Classify this process.

2.6 Let X be the random process corresponding to observing the bit pattern in an
Internet packet. Classify this process.

2.7 Amplitude-shift keying (ASK) can be modeled as a random process de-
scribed by

X (t) = a cos ωt

where ω is constant and a corresponds to the random variable A with two
values a0 and a1 which occur with equal probability. Find the expected value
μ(t) of this process.

2.8 A modified ASK uses two bits of the incoming data to generate a sinusoidal
waveform and the corresponding random process is described by

X (t) = a cos ωt

where ω is a constant and a is a random variable with four values a0, a1, a2,
and a3. Assuming that the four possible bit patterns are equally likely find the
expected value μ(t) of this process.
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2.9 Phase-shift keying (PSK) can be modeled as a random process described by

X (t) = a cos(ωt + φ)

where a and ω are constant and φ corresponds to the random variable Φ with
two values 0 and π which occur with equal probability. Find the expected
value μ(t) of this process.

2.10 A modified PSK uses two bits of the incoming data to generate a sinusoidal
waveform and the corresponding random process is described by

X (t) = a cos(ωt + φ)

where a and ω are constants and φ is a random variable Φ with four values
π/4, 3π/4, 5π/4, and 7π/4 [4]. Assuming that the four possible bit patterns
occur with equal probability, find the expected value μ(t) of this process.

2.11 A modified frequency-shift keying (FSK) uses three bits of the incoming data
to generate a sinusoidal waveform and the random process is described by

X (t) = a cos ωt

where a is a constant and ω corresponds to the random variable � with eight
values ω0, ω1, . . ., ω7. Assuming that the eight frequencies are equally likely,
find the expected value μ(t) of this process.

2.12 A discrete-time random process X (n) produces the random variable X (n)
given by

X (n) = an

where a is a uniformly distributed random variable in the range 0–1. Find the
expected value for this random variable at any time instant n.

2.13 Define a wide-sense stationary random process.
2.14 Prove (2.23) on page 56.
2.15 Define an ergodic random process.
2.16 Explain which of the following functions represent a valid autocorrelation

function.

rX X (n) = an 0 ≤ a < 1 rX X (n) = |a|n 0 ≤ a < 1
rX X (n) = an2

0 ≤ a < 1 rX X (n) = |a|n2
0 ≤ a < 1

rX X (n) = cos n rX X (n) = sin n

2.17 A random process described by

X (t) = a cos(ωt + φ)
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where a and ω are constant and φ corresponds to the random variable � which
is uniformly distributed in the interval 0 to 2π . Find the autocorrelation func-
tion rX X (t) of this process.

2.18 Define what is meant by two random processes being orthogonal.
2.19 Define what is meant by two random processes being statistically independent.
2.20 Find the cross-correlation function for the following two random processes.

X (t) = a cos ωt

Y (t) = α a cos(ωt + θ )

where a and θ are two zero mean random variables and α is a constant.
2.21 Given two random processes X and Y , when are they uncorrelated?
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