
Preface

Next-generation broadband wireless standards, e.g. IEEE 802.16e and Third
Generation Partnership Project – Long Term Evolution (3GPP-LTE), use
Orthogonal Frequency Division Multiple Access (OFDMA) as the preferred
physical layer multiple access scheme, esp. for the downlink. Due to the limited
resources available at the base station, e.g. bandwidth and power, intelligent
allocation of these resources to the users is crucial for delivering the best
possible quality of service (QoS) to the consumer with the least cost.

The problem of allocating time slots, subcarriers, rates, and power to the
different users in an OFDMA system has been an area of active research
in recent years. Previous research efforts in OFDMA resource allocation have
typically focused on maximizing instantaneous performance, i.e. the allocation
decisions are performed for the current time instant subject to the current
resource constraints, which is unable to fully utilize the time-varying nature of
the wireless channel to improve the communication performance of the system.
This book focuses instead on maximizing time-averaged rates, allowing us to
exploit the temporal dimension to improve performance.

Furthermore, due to the difficult combinatorial nature of the problem,
many researchers in the past have focused on developing sub-optimal heuris-
tic algorithms. This book proposes a unified algorithmic framework based
on dual optimization techniques that have complexities that are linear in
the number of subcarriers and users, and that achieve negligible optimality
gaps in standards-based numerical simulations. Adaptive algorithms based on
stochastic approximation techniques are also proposed, which are shown to
achieve similar performance with even much lower complexity.

Finally, it was assumed in previous work that perfect channel state infor-
mation (CSI) is available at the transmitter, which is quite unrealistic due to
inevitable channel estimation errors and feedback delay. This book develops
algorithms assuming that only imperfect CSI is available, such that allocation
decisions are made while explicitly considering the error statistics of the CSI.

Austin, TX Ian Wong
June 2007 Brian Evans
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Background

2.1 Introduction

In this chapter, we begin by reviewing the seminal and recent work in the field
of multi-user wireless communications in Sec. 2.2, with emphasis on physical
layer transmit optimization algorithms for OFDMA. This is followed by an
exposition of my proposed approach to the problem of OFDMA resource al-
location in Sec. 2.3, and a description of the OFDMA system model and key
assumptions used throughout this book in Sec. 2.4. Finally, we conclude this
chapter in Sec. 2.5.

2.2 Review of Related Work

2.2.1 Scheduling in Wireless Networks

The idea of using channel information at the transmitter to improve the per-
formance of communication systems have been around since at least 1968 [22].
The main concept is to utilize knowledge about the channel to adjust trans-
mission parameters accordingly to maximize communications performance,
which is known as adaptive modulation and coding . Adaptive modulation and
coding in single-user wireless communication systems have been studied exten-
sively (see [23] [24] and the references therein). The extension of the adaptive
modulation concept to scheduling in multi-user wireless networks have also
been very well studied since the introduction of the concepts of multiuser di-
versity [25] and proportional fair scheduling [26]. In these seminal papers, the
fading wireless channel was seen as a vehicle to improve the overall system
performance when multiple users are involved. The theoretical underpinnings
behind this concept, and the fundamental limits of these multiuser channels
are addressed by the field of multiuser information theory, which is the topic
of the next subsection.
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2.2.2 Multiuser Information Theory

The focus of this book is on the downlink transmission channel for OFDMA,
since this is typically where the increased performance is needed for mobile
broadband wireless access applications. This is called a broadcast channel [27]
in information theory, which consists of a sender with a transmit power and
bandwidth budget that is sending independent information simultaneously
to multiple users. The capacity and optimal resource allocation for fading
broadcast channels has been quite well studied. In [28] and [29], the ergodic
and outage capacity , and the optimal resource allocation for a flat-fading
broadcast channel was derived. In [30], the capacity region for a frequency-
selective broadcast channel with colored Gaussian noise was derived. In [31],
the capacity and optimal power allocation for a flat-fading broadcast chan-
nel was derived subject to minimum rate constraints. It was shown in the
aforementioned publications that superposition coding, followed by succes-
sive interference cancellation, is required in order to achieve the capacity of
the channel. If we use OFDM transmission with infinitesimally small sub-
carrier widths to approximate the superposition coding transmission over a
frequency-selective channel, some subcarriers would need to be shared among
different users, which makes decoding overly complex for practical implemen-
tations. Fortunately, the amount of subcarrier sharing is minimal even in the
capacity-achieving case [30]. Thus, assigning only one user to each subcarrier
could still achieve transmissions close to capacity, and is essentially the down-
link OFDMA transmission scheme. However, near capacity performance can
be achieved only when optimal allocation of subcarriers, rates, and power is
performed.

2.2.3 Physical Layer (PHY) Transmit Optimization

The problem of assigning the subcarriers, rates, time slots, and power to the
different users in an OFDMA system has been an area of active research
over the past several years. The research in this area can be broadly catego-
rized into two: margin-adaptive and rate-adaptive. Margin adaptation refers to
minimizing the transmit power subject to minimum quality of service (QoS)
parameters for each user, which could be a combination of data rate, bit error
rates, delays, etc. Rate adaptation refers to maximizing the data rates subject
to various QoS and/or resource constraints.

Margin-adaptive Resource Allocation

In [32], the margin-adaptive resource allocation problem was investigated, in
which an iterative subcarrier and power allocation algorithm was proposed
to minimize the total transmit power given a set of fixed user data rates and
bit error rate (BER) requirements. They applied a constraint relaxation tech-
nique, which allowed the binary integer parameter of subcarrier assignment
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to take on real values, which in turn implies a time-sharing of each subcar-
rier among users. This converted the problem into a convex minimization
problem with a convex feasible region, and allowed the use of iterative con-
vex optimization algorithms to find the global minimum transmit power. The
user with the biggest time-sharing factor on each subcarrier is then assigned
to that subcarrier, and a single-user OFDM bit-loading algorithm (see e.g.
[33]) is then run for each user. Although an iterative solution is required in
this algorithm, it is guaranteed to converge to a good solution. Unfortunately,
the algorithm requires a large number of iterations to converge, and is too
complex for cost-effective real-time implementation.

In [34], computationally inexpensive algorithms were proposed to solve
the margin-adaptive problem. They decoupled the problem into a bandwidth
allocation step, which determined the number of subcarriers to be assigned
to each user; and a subcarrier allocation step, which determined the actual
subcarrier assignments to each user. Greedy heuristics were developed for
each of the two steps, and were shown to give comparable performance to the
constraint relaxation technique of [32] with lower complexity.

In [35], an alternative integer programming (IP) formulation, and a lin-
ear programming (LP) relaxation algorithm were proposed for the margin-
adaptive problem. It was shown that their methods outperform the constraint
relaxation method in [32] at a lower complexity, but the complexity perfor-
mance was not justified rigorously. In [36], iterative refinement is used to come
close to the IP solution of [35].

Rate-adaptive Resource Allocation

In [37], the rate-adaptive problem was investigated, wherein the objective was
to maximize the total sum continuous rate over all users subject to power and
BER constraints. It was shown in [37] that in order to maximize the total
capacity, each subcarrier should be allocated to the user with the best gain on
it, and the power should be allocated using the water-filling algorithm across
the subcarriers. However, no fairness among the users was considered in [37].
Thus, the users that have the best channel conditions will be assigned all the
resources, which leaves many users without a chance to use the spectrum at all.
The same authors extended the problem formulation to consider ergodic rates
in [38], i.e. the expected value of the sum rate is maximized, which utilizes
the temporal dimension when ergodicity of the channel gains is assumed to
improve the data rate performance. However, [38] likewise suffers from the
unfairness problem.

This problem was partially addressed in [39] and [40] by ensuring that each
user would be able to transmit at a minimum rate. The authors of [39] ap-
proached it using two steps similar to [34], wherein the number of subcarriers
and power is initially assigned to each user using a greedy algorithm; followed
by the subcarrier assignment step using the Hungarian algorithm. In [40], the
approach was a simple greedy algorithm that assumes equal power allocation
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among subcarriers, and assigned the best subcarrier to each user until the rate
requirements for all users are achieved. The remaining subcarriers are then
assigned to the users with the best channel gains in them.

In [41], an alternative formulation that maximized the minimum user’s
data rate was solved by using subcarrier time-sharing methods as in [32].
This enforced a notion of max-min fairness, and thus the starvation of some
users in the method of [37] can be avoided. A suboptimal greedy algorithm was
also developed which was shown to be close to the relaxed convex problem.
This method, though, assumes that all users have similar QoS requirements,
which is not the case for practical systems.

In [42], prioritization was enforced using a weighted-sum rate maximiza-
tion , and a subcarrier time-sharing convex relaxation similar to [32] was
used to derive the optimum subcarrier and power allocation. Several greedy
algorithms were also proposed to solve the problem with lower complexity.
Different weights were assigned to different users, and a higher weight for a
user would imply a higher priority of getting resources. By varying the weights
for each user’s rate, the boundary of the rate-region can also be traced out
. In the special case of the weights being identically unity, it would reduce
to the problem addressed in [37]. The authors, however, neglected to indi-
cate how the weights are to be assigned in an actual system. More recently,
[43] and [44] have discovered a dual optimization framework to solve a similar
weighted-sum continuous rate maximization problem. Their work is similar to
the approach we advocate in this book, and is one of the special cases that our
unified framework can solve (see Section 3.2.6). Note that our contribution in
Sec. 3.2.6 was developed independently of [43] and [44].

In [45], the sum data rate was maximized under a proportional rate con-
straint , i.e. the rate of each user should adhere to a set of predetermined
proportionality constants. This is a concrete way of assigning priorities to the
users, instead of simply assigning arbitrary weights as in [42]. This method is
also very useful for service level differentiation, which allows for flexible billing
mechanisms for different classes of users. However, the power allocation al-
gorithm proposed in [45] involves solving simultaneous non-linear equations
, which requires computationally expensive iterative operations and is thus
not suitable for a cost-effective real-time implementation. In cases there the
signal-to-noise ratio is high, the algorithm in [45] is shown to reduce to a
one-dimensional zero-finding routine, which is much less complex, but may
suffer from stability problems. In [46], the strict proportional rate constraints
are relaxed to hold approximately, which allowed the power allocation to be
solved in closed-form, significantly reducing the complexity, while improving
the achieved sum capacity.

Several other methods that use various heuristics have also been proposed.
Examples of these include subcarrier partitioning to reduce complexity [47],
and game-theoretic Nash bargaining solutions [48].
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2.2.4 PHY-MAC Cross-layer Optimization

All of the aforementioned approaches focused on the physical layer transmis-
sion optimization for OFDMA. This section reviews several important papers
on the PHY-MAC cross-layer approach to OFDMA resource allocation, where
longer-term throughput optimality and queue state information is included in
their optimization goals.

In [49], resource allocation that optimizes total packet throughput subject
to the user’s outage probability constraint was proposed. Their algorithm
assumes a finite queue size for arrival packets, and dynamically allocates the
resources every time-slot based on the users’ average SNR, traffic patterns,
and QoS requirements. In [50], throughput maximization coupled with queue
load balancing was proposed for a simple ON/OFF channel model. Their
approach reduced the allocation problem into a maximum weight matching
of a bipartite graph, and was shown to stabilize the queues in the OFDMA
system, whereas using instantaneous optimization approaches do not.

In [51], an opportunistic cumulative distribution function (CDF)-scheduling
based subcarrier allocation, and a proportionally-fair power allocation was
proposed. Their algorithm was shown to improve overall system capacity in
terms of time-average throughput. In [52], a similar opportunistic scheduling
algorithm based on [53] that exploits the time varying channel was proposed.
In their work, a constant power allocation is assumed, and each user is assigned
a time-slot for which it could transmit on the assigned subcarrier. Optimal
scheduling policies for three QoS/fairness constraints–temporal fairness, utili-
tarian fairness, and minimum-performance guarantees, were derived to maxi-
mize the asymptotic best-case system performance. More recently, in [54] [55],
a cross-layer approach that bridges the gap between the physical (PHY) layer
and the media access control (MAC) layer was investigated. It was shown
that tradeoffs between efficiency and fairness can be realized by maximizing
a concave utility function of the user’s data rate, instead of maximizing the
data rates themselves. Time diversity was also exploited in [55] by maximizing
the utility function of an exponentially weighted and time-windowed average
data rate of each user. Prepublished work by the same authors [56] extend the
utility based optimization to develop a max-delay-utility scheduling algorithm
that utilizes both channel and queue state information.

2.2.5 Comparison of Related Work

Table 2.1 presents a summary of the comparison among several relevant re-
search efforts in OFDMA physical layer transmit optimization. We compare
the various research publications in terms of how they formulated the problem,
their proposed solution to the problem, and the channel knowledge assump-
tions that they made. The criteria we use is such that a “Yes” is more desirable
in terms of achieving better performance, requiring less computational com-
plexity, or making more realistic assumptions.
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Table 2.1. Related work comparison

Method
Criteria Formulation Solution Assumption

(1) (2) (3) (4) (5) (6) (7)

Max-min rate [41] No No No No No No Yes
Sum rate [37][38] Yes No No Yes No No No
Proportional rate [45][46] No No Yes No No No Yes
Max-utility [54][55] aNo Yes Yes No No No Yes

Weighted rate [43][44] No No Yes bYes cYes No Yes
a Considered some form of temporal diversity by maximizing an expo-

nentially windowed running average of the rate
b Independently developed a similar instantaneous continuous rate

maximization algorithm
c Only for instantaneous continuous rate case, but was not shown in

their papers

Criteria

(1) Ergodic rates: The optimization problem is posed such that the expected value
of the rate is being maximized instead of instantaneous rate, which allows the
temporal dimension to be exploited when assuming ergodicity of channel gains.

(2) Discrete rates: The practical transmission scheme of only allowing a discrete set
of possible data rates is considered rather than just the theoretical continuous
rate.

(3) User prioritization: The problem formulation allows setting varying priorities
among users to ensure fairness in the system.

(4) Practically optimal: The algorithm is shown in simulations using realistic pa-
rameters to have negligible optimality gaps.

(5) Linear complexity: The algorithm can be performed with complexity that is just
linear in the number of users and subcarriers.

(6) Imperfect CSI: The algorithm assumes the more realistic scenario of the presence
of errors in the available channel state information.

(7) Does not require CDI: The algorithm does not assume knowledge of the prob-
ability distribution function of the channel gains, which is difficult to obtain in
practice.

In terms of the problem formulation, only [38] considered ergodic rates,
and only [55] considered discrete rates. Under the proposed solutions, only
[43] and [44] can be considered practically optimal with linear complexity. In
terms of channel knowledge assumption, it should be noted that none of the
surveyed papers considered imperfect CSI, and only [38] requires CDI since it
is also the only work that considers ergodic rate maximization.

2.3 A New Approach to OFDMA Resource Allocation

This book primarily focuses on the physical layer transmit optimization in
OFDMA, and assumes that the upper MAC layer performs the other nec-
essary functions, including admission and congestion control, queue manage-
ment, and user prioritization. This book can thus be seen as a complementary
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work to the PHY-MAC cross-layer scheduling work, since it extracts further
improvements to the physical layer data rate performance in order to benefit
the overall system throughput performance.

We observe that in most of the aforementioned work in physical layer trans-
mit optimization, the formulation and algorithms only consider instantaneous
performance metrics. Thus, the temporal dimension is not being exploited
when the resource allocation is performed. Although the PHY-MAC cross-
layer studies performed in [51] and [55] considered time-averaged through-
put performance, their channel-based adaptations are based on the average
channel-to-noise ratio (CNR), and their approaches focused more on the ef-
fect of the past channel information on fairness, rather than exploiting the
temporal variations of the wireless channel directly to improve the overall
physical data rate performance. We formulate problems considering ergodic
rates for both continuous (capacity-based) and discrete (Adaptive modula-
tion and coding ) rates assuming the availability of the distribution function
of the CNR (this assumption is subsequently relaxed in Chapter 5). This al-
lows us to exploit the time dimension explicitly in the formulation, and utilize
all three degrees of freedom in our system, namely frequency, time, and mul-
tiuser dimensions. Interestingly, when considering ergodic rates, we increase
the complexity only slightly during an initialization step, e.g. during frame
preamble processing in a frame-based transmission; but actually reduce the
complexity when performing the actual resource allocation during data trans-
mission versus instantaneous optimization.

Furthermore, previous research efforts have assumed that algorithms to
find the optimal or near-optimal solution to the problem is too computa-
tionally complex for real-time implementation. A popular approach to attain
near-optimality is constraint relaxation (see e.g. [32] [41] [42]). This approach
performs a convex reformulation of the problem by relaxing the binary integer
constraints xm,k ∈ {0, 1} which indicate a subcarrier assignment of user m to
subcarrier k; to interval constraints 0 ≤ xm,k ≤ 1, where xm,k is now a shar-
ing factor . The solution to the reformulated convex problem is then projected
back to the original constraint space by assigning each subcarrier to the user
with the largest sharing factor. This approach is suboptimal, and more impor-
tantly, is also computationally prohibitive, because it involves solving a large
constrained convex optimization problem with 2MK variables with interval
constraints and K + 1 linear inequality constraints, requiring O((2MK)3)
operations per iteration when using Newton-type projected gradient meth-
ods [57]. Hence, the main focus of previous research have been on developing
heuristic approaches with typical complexities in the order of O(MK2) (e.g.
[34] [42]).

Our approach, on the other hand, is based on a Lagrangian relaxation of
the power constraints and (possibly) rate constraints, instead of the constraint
relaxation proposed previously. This relaxation retains the subcarrier assign-
ment exclusivity constraints, but “dualizes” the power/rate constraints and
incorporate them into the objective function, thereby allowing us to solve the
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dual problem instead. This dual optimization framework is much less complex,
with complexity order O(MK); and achieves relative optimality gaps that are
less than 10−4 (i.e. achieving 99.9999% of the optimal solution) in simulations
based on realistic parameters. We also provide adaptive algorithms based on
stochastic approximation methods that are shown to converge to the dual op-
timal solutions w.p.1 with linear complexity without the need for iterations.
Note that the dual optimization approach is also studied in [43] [44] [58], but
their focus has been on instantaneous continuous rate optimization only.

2.4 System Model

In this section, we elaborate on the system model and assumptions considered
in this book. Table 2.2 is a notation glossary of the most commonly used terms
in this book.

2.4.1 OFDMA Signal Model

We consider a single-cell OFDMA base station, where we ignore the effect
of inter-cell interference, which we assume to be either absent (sufficient cell
separation given the power budget) or simply modeled as additive white Gaus-
sian noise which increases the noise variance of the signal model. The OFDMA
base station has Kfft subcarriers with Lcp cyclic-prefix, wherein there are K
used subcarriers and M active users indexed by the set K = {1, . . . , k, . . . , K}
and M = {1, . . . , m, . . . , M} (typically K � M) respectively. We assume
an average base station transmit power of P̄ > 0, sampling frequency Fs,
bandwidth B, and flat noise power spectral density N0. The received signal
vector for the mth user at the nth OFDM symbol assuming perfect sample
and symbol synchronization, and sufficient cyclic prefix length, is given as

ym[n] = Γm[n]Hm[n]xm[n] + νm[n] (2.1)

where ym[n] and xm[n] are the K-length received and transmitted complex-
valued signal vectors; Γm[n] = diag

{√
pm,1[n], . . . ,

√
pm,K [n]

}
is the diago-

nal gain allocation matrix with pm,k[n] as the power allocated to user m in sub-
carrier k at time n; νm[n] ∼ CN (0, σ2

νIK) with noise variance σ2
ν = N0B/K is

the white zero-mean, circular-symmetric, complex Gaussian (ZMCSCG) noise
vector; and

Hm[n] = diag {hm,1[n], . . . , hm,K [n]} (2.2)

is the diagonal channel response matrix.

2.4.2 Multiuser Statistical Fading Channel Model

The diagonal elements hm,k[n] of (2.2) are the complex-valued frequency-
domain wireless channel fading random processes for the mth user at the kth
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Table 2.2. Notation Glossary

Notation Description

B Bandwidth

N0 Noise power spectral density

Fs Sampling frequency

Nt No. of time domain multipath taps

Lcp Length of cyclic prefix

Kfft Number of subcarriers

n OFDMA symbol index

hm,k[n] Frequency domain complex channel gain

gm,k[n] Time domain complex channel gain

K Set of used subcarrier indices

K Number of used subcarriers

k Subcarrier index

M Set of active users

M Number of active users

m User index

L Set of discrete rate level indices

L Number of discrete rate levels

l Rate level index

rl Rate for level l

ηl SNR upper boundary for rate level l

L Space of allowable rate vectors

lm,k Rate allocation for user m and subcarrier k

BERl Bit error rate for rate level l

BER Average BER constraint

P Space of allowable power vectors

P̄ Total power constraint

pm,k Power allocated to user m and subcarrier k

γm,k CNR of user m and subcarrier k

γ̂m,k Predicted CNR of user m and subcarrier k

γ0,m Cut-off CNR for user m in multi-level waterfilling

σ2
ν Ambient noise variance

σ̂2
m,k Prediction error variance for user m and subcarrier k

ρm,k Prediction error to ambient noise ratio

λ Geometric multiplier

wm User weights

̂ Superscript for estimated/predicted terms
∗ Superscript for optimal terms

d/d Superscript/subscript for discrete rate related terms
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subcarrier, given as the discrete-time Fourier transform of the Nt time-domain
multipath taps gm,i[n] with time-delay τi and subcarrier spacing Δf = Fs/Kfft

hm,k[n] =
Nt∑
i=1

gm,i[n]e−j2πτikΔf . (2.3)

The time-domain multipath taps gm,i[n] are modeled as stationary and er-
godic discrete-time random processes with normalized temporal autocorrela-
tion function

rm,i[Δ] =
1

σ2
m,i

E{gm,i[n]g∗m,i[n + Δ]}, i = 1, . . . , Nt (2.4)

with tap power σ2
m,i, which we assume to be independent across the fad-

ing paths i and across users m. Since gm,i[n] is stationary and ergodic, so is
hm,k[n]. Hence, the distribution of hm[n] is independent of n through station-
arity, and we can replace time averages with ensemble averages in the problem
formulations through ergodicity. In the subsequent discussion, we shall drop
the index n when the context is clear for notational brevity.

Although the results in this book are applicable to any stationary fading
distribution, we shall prescribe a particular distribution for the fading channels
for illustration purposes. We assume that the time domain channel taps are
independent ZMCSCG random variables gm,i ∼ CN (0, σ2

m,i) with total power

σ2
m =

Nt∑
i=1

σ2
m,i. Then from (2.3), we have

hm ∼ CN (0K ,Rhm
)

Rhm
= WΣmWH

(2.5)

where W is the K × Nt DFT matrix with entries [W]k,i = e−j2πτikΔf , k =
−K/2 − 1, . . . ,K/2; i = 1, . . . , Nt and Σm = diag{σ2

m,1, . . . , σ
2
m,Nt

} is an
Nt × Nt diagonal matrix of the time-domain path power1. Since we also as-
sume that the fading for each user is independent, then the joint distribution
of the stacked fading vector for all users h = [hT

1 , . . . ,hT
M ]T is likewise a ZM-

CSCG random vector with distribution h ∼ CN (0KM ,Rh) where Rh is the
KM ×KM block diagonal covariance matrix with Rhm

as the diagonal block
elements.

We let γm = [γm,1, . . . , γm,k]T where γm,k = |hm,k|2/σ2
ν denote the instan-

taneous channel-to-noise ratio (CNR) with mean γ̄m,k = σ2
m/σ2

ν . Note that
γm,k for a particular subcarrier k and different users m are independent but
not necessarily identically distributed (INID) exponential random variables;
and for a particular user m and different subcarriers k are not independent
but identically distributed (NIID) exponential random variables.
1 Following the convention in [17] and [19], we assume that the number of used

subcarriers K is odd by including the null subcarrier at index 0 as part of the
used subcarriers.
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2.4.3 Optimization Variables

Denote by p = [pT
1 , · · · ,pT

K ]T the length MK vector of power allocation
values to be determined, where pk = [p1,k, · · · , pM,k]T is the M -length vector
of power allocation values with pm,k as the assigned power for user m in a
subcarrier k. Although subcarrier, rate, and time slot allocation is required,
in addition to determining the power values, it can be seen that the power
vector can essentially capture these other resource assignments as well.

Subcarrier Allocation

The exclusive subcarrier allocation restriction in OFDMA can be captured by
constraining the power vector as pk ∈ Pk ⊂ R

M
+ , where the space of allowable

power vectors is

Pk ≡ {pk ∈ R
M
+ |pm,kpm′,k = 0;∀m 
= m′;m,m′ ∈ M} (2.6)

For notational convenience, we let p ∈ P ≡ P1 × · · · × PK ⊂ R
MK
+ denote

the space of allowable power vectors for all subcarriers.

Continuous Rate Allocation

The continuous rate or capacity for user m and subcarrier k is given as

Rm,k(pm,kγm,k) = log2(1 + pm,kγm,k) bps/Hz (2.7)

Thus, the power allocation value pm,k determines a unique rate allocation,
and pm,k = 0 also results in zero rate allocation, which of course also means
that the subcarrier k is not assigned to user m.

Discrete Rate Allocation

In the discrete rate allocation case, the data rate of the kth subcarrier for the
mth user can be given by the staircase function

Rd
m,k(pm,kγm,k) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

r0, η0 ≤ pm,kγm,k < η1

r1, η1 ≤ pm,kγm,k < η2

...,
...

rL−1, ηL−1 ≤ pm,kγm,k < ηL

(2.8)

where {ηl}l∈L, L = {0, . . . , L − 1}, are the SNR boundaries which define a
particular code-rate and constellation pair combination that result in rl data
bits per transmission with a predefined target bit error rate (BER), and where
rl ≥ 0, rl+1 > rl, r0 = 0, η0 = 0, and ηL = ∞. Thus, similar to the continuous
rate case, the power allocation value pm,k determines a unique rate allocation
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Fig. 2.1. Example discrete-rate function for an uncoded system with BER=10−3.
Note that the SNR is plotted in linear and not dB scale.

for a particular target BER, and pm,k = 0 also results in zero rate allocation.
We assume a Grey-coded square 2rl -QAM modulation scheme, where the
BER without channel coding in AWGN can be approximated to within 1-dB

for rl ≥ 2 and BER ≤ 10−3 by BER ≈ 0.2e

[ −1.6pm,kγm,k

2rl−1

]
[24]. Fig. 2.1 shows an

example of a discrete rate function for rate levels rl = {0, 2, 4, 6} corresponding
to no transmission, QPSK, 16-QAM, and 64-QAM transmission, and SNR
boundaries ηl ∈ {0, 9.93, 49.66, 208.45} with a BER constraint of 10−3.

Time slot allocation

In the context of OFDMA, a time slot can be considered as a single OFDMA
symbol (or several OFDMA symbols), and time slot allocation in this case
is more granular than conventional TDMA time slot allocation since each
OFDMA symbol may be shared by more than a single user. Hence, time slot
allocation fundamentally entails performing the OFDMA resource allocation
algorithms across time for each OFDMA symbol. In the previous work that
considered instantaneous rate allocation only, the OFDMA algorithms were
simply re-run every symbol (or several symbols). In this book, we can capture
the idea of “time slot allocation” by using the ergodicity assumption , and
determine power allocation functions that are parameterized by the channel
knowledge. For example, if we assume perfect channel knowledge, then our
optimization variable is essentially
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p(·) ∈ P ≡
{
R

MK
+ → R

MK
+ : pm,k(·)pm′,k(·) = 0 w.p.1,∀m′ 
= m

}
(2.9)

whose search space includes all R
MK
+ -measurable functions with exclusive sub-

carrier allocation restriction imposed w.p.1. In the case of the adaptive algo-
rithms discussed in Chapter 5, the power allocation is indexed by the time
index n, i.e. p[n] and the exclusive subcarrier allocation restriction is simply
imposed as pm,k[n]pm′,k[n] = 0,∀m′ 
= m,∀n.

2.4.4 PHY-MAC Interaction

The resource allocation problems considered in this book include assigning
the power, subcarriers, rates, and time slots to the different users such that
weighted-sum rate (Chapters 3-4) or sum rate subject to proportional rate
constraints (Chapter 5) of the users are maximized. Although the focus of this
book is primarily on the physical layer transmit optimization, it is important
to discuss our assumptions on the cross-layer PHY-MAC interactions in order
to see how one can apply the results in PHY-MAC cross-layer optimization
discussed in Sec. 2.2.4. Specifically, we assume that the upper MAC layer
passes the following information to the physical layer optimization routine:

• Set of active users M: The MAC layer performs the necessary admission
and congestion control to determine which are the active users at a par-
ticular time

• Priority for the active users wm or φm for all m ∈ M: Depending on
queue back-logs and information on the average data rate for each user,
the MAC layer sets the appropriate user weights wm in the weighted-sum
rate maximization formulations, or the user proportionality values φm in
the proportional rate formulations.

There are numerous ways in which the MAC layer can determine these pa-
rameters, but are beyond the intended scope of this book. Admission and
congestion control to determine the active user set depending on the utility
of the network and availability of the resources are studied in [55] [59]. User
prioritization by setting the weights wm as the reciprocal of the user’s av-
erage rate so far has been shown to approximate proportional fairness [55].
Another possibility is to set the weights as a directly proportional function
of the queue-back log of the user, which can be shown to minimize the delay
and ensure network stability [56].

2.5 Conclusion

In this chapter, we surveyed several important papers in OFDMA resource
allocation, and showed the relative strengths and weaknesses of each of these.
We then presented the general idea of our new approach to OFDMA resource
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allocation based on dual optimization techniques. We also presented the sys-
tem model and key assumptions used in this book.

Chapters 3-4 shall elaborate on the dual optimization framework for solv-
ing the weighted-sum rate maximization problem in OFDMA with channel
distribution information, where we assume perfect and partial channel state
information, respectively. Chapter 5 presents an extension of the framework to
formulations that have proportional rate constraints with or without channel
distribution information. Chapter 6 then concludes this book.


