Preface to the Third Edition

The world of chip design has changed significantly since the second edition was pub-
lished three years ago. In that time, silicon technology has gone through two genera-
tions, multi-million gate chips have gone from fringe to mainstream, and SoC has
gone from the exotic to commonplace.

At the same time, the world of reuse has changed as well, prompting us to develop the
third edition. From the perspective of 2002, many of the statements we made in 1999
now seem dated. Upon re-reading the second edition, it was obvious that the RMM
needed to be updated with the many of the lessons learned in the last few years.

In one sense, though, the biggest change we have made in the RMM is also the biggest
change we have seen in reuse in the last three years. Basically, we have changed the
tense from future to present. Reuse is no longer a proposal; it is a solution practiced
today by many, many chip designers. Likewise, the RMM is no longer aimed at pro-
moting reuse, but describing changes in methodology for practising it. The RMM is
now a chronicle of the best practices used by the best teams to develop reusable IP,
and to use IP in SoC designs.

Alas, the change of tense was not as trivial a task as it sounds. In order to bring the
RMM up to date, we have rewritten significant portions of the first eight chapters.
Chapter 3 and Chapter 8 in particular have undergone significant revision. Chapter 5
has remained basically the same, with the addition of several important guidelines,
and the modification of some existing guidelines to reflect current state-of-the-art.

Chapters 9 through 12 have had more modest updates to reflect current methodology.
In particular, a full description of system level design and verification is beyond the
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scope of this book. Chapter 13 has been updated to include some comments from the
design community on their perspective on reuse and SoC design.

In addition to the change in content, we have made one major editorial change. We
have dramatically reduced the number of references to specific tools. Over the brief
life of this book, we have found that tool names, tool vendors, and tool capabilities
change so quickly that specific references quickly become out of date. Instead, we
have focused on design and language issues, referencing the generic capabilities of
current tools as appropriate.

We hope that readers will find the third edition a significant improvement over earlier
editions.

May 1, 2002

Mike Keating Pierre Bricaud
Mountain View, California Sophia Antipolis, France



CHAPTER 2 The System-on-Chip

Design Process

This chapter gives an overview of the System-on-Chip (SoC) design methodology.
The topics include:

Canonical SoC design

System design flow

The role of specifications throughout the life of a project
Steps for system design process

2.1 A Canonical SoC Design

Consider the chip design in Figure 2-1 on page 10. We claim that, in some sense, this
design represents a canonical or generic form of an SoC design. It consists of:

A microprocessor and its memory subsystem

On-chip buses (high-speed and low-speed) to provide the datapath between cores
A memory controller for external memory

A communications controller

A video decoder

A timer and interrupt controller

A general purpose I/0 (GPIO) interface

A UART interface
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Figure 2-1 Canonical hardware view of SoC

This design is somewhat artificial, but it contains most of the structures and chal-
lenges found in real SoC designs. For example:

The microprocessor could be anything from an 8-bit 8051 to a 64-bit RISC.

The memory subsystem could be single- or multi-level, and could include SRAM
and/or DRAM.

The external memory could be DRAM (shown), SRAM, or Flash.

The I/O controller could include PCI, PCI-X, Ethernet, USB, IEEE 1394, analog-
to-digital, digital-to-analog, electro-mechanical, or electro-optical converters.

The video decoder could be MPEG, ASF, or AVI.
The GPIO could be used for powering LEDs or sampling data lines.
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The design process required to specify such a system-—to develop and verify the
blocks, and assemble them into a fabricated chip—contains all the basic elements and
challenges of an SoC design.

Real SoC designs are, of course, much more complex than this canonical example. A
real design would typically include several sets of IP interfaces and data transforma-
tions. Many SoC designs today include multiple processors, and combinations of pro-
cessors and DSPs. The memory structures of SoC designs are often very complex as
well, with various levels of caching and shared memory, and specific data structures
to support data transformation blocks, such as the video decoder. Thus, the canonical
design is just a miniature version of an SoC design that allows us to discuss the chal-
lenges of developing these chips utilizing reusable macros.

2.2 System Design Flow

To meet the challenges of SoC, chip designers are changing their design flows in two
major ways:

e From a waterfall model to a spiral model

¢ From a top-down methodology to a combination of top-down and bottom-up

2.2.1 Waterfall vs. Spiral

The traditional model for ASIC development, shown in Figure 2-2 on page 12, is
often called a waterfall model. In a waterfall model, the project transitions from phase
to phase in a step function, never returning to the activities of the previous phase. In
this model, the design is often tossed “over the wall” from one team to the next with-
out much interaction between the teams.

This process starts with the development of a specification for the ASIC. For complex
ASICs with high algorithmic content, such as graphics chips, the algorithm may be
developed by a graphics expert; this algorithm is then given to a design team to
develop the RTL for the SoC.

After functional verification, either the design team or a separate team of synthesis
experts synthesizes the ASIC into a gate-level netlist. Then timing verification is per-
formed to verify that the ASIC meets timing. Once the design meets its timing goals,
the netlist is given to the physical design team, which places and routes the design.
Finally, a prototype chip is built and tested. This prototype is delivered to the software
team for software debug.
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In most projects, software development is started shortly after the hardware design is
started. But without a model of the hardware to use for debug, the software team can
make little real progress until the prototype is delivered. Thus, hardware and software
development are essentially serialized.

This flow has worked well in designs of up to 100K gates and down to 0.5 um. It has
consistently produced chips that worked right the first time, although often the sys-
tems that were populated with them did not. But this flow has always had problems
because handoffs from one team to the next are rarely clean. For example, the RTL
design team may have to go back to the system designer and tell him that the algo-
rithm is not implementable, or the synthesis team may have to go back to the RTL
team and inform them that the RTL must be modified to meet timing.

For large, deep submicron designs, this waterfall methodology simply does not work.
Large systems have sufficient software content that hardware and software must be
developed concurrently to ensure correct system functionality. Physical design issues
must be considered early in the design process to ensure that the design can meet its
performance goals.

As complexity increases, geometry shrinks, and time-to-market pressures continue to
escalate, chip designers are turning to a modified flow to produce today’s larger SoC
designs. Many teams are moving from the old waterfall model to the newer spiral
development model. In the spiral model, the design team works on multiple aspects of
the design simultaneously, incrementally improving in each area as the design con-
verges on completion.

Figure 2-3 on page 14 shows the spiral SoC design flow. This flow is characterized
by:

e Parallel, concurrent development of hardware and software

e Parallel verification and synthesis of modules

e Floorplanning and place-and-route included in the synthesis process

* Modules developed only if a pre-designed hard or soft macro is not available

e Planned iteration throughout

In the most aggressive projects, engineers simultaneously develop top-level system
specifications, algorithms for critical subblocks, system-level verification suites, and
timing budgets for the final chip integrations. That means that they are addressing all
aspects of hardware and software design concurrently: functionality, timing, physical
design, and verification.
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2.2.2 Top-Down vs. Bottom-Up

The classic top-down design process can be viewed as a recursive routine that begins
with specification and decomposition, and ends with integration and verification:
1. Write complete specifications for the system or subsystem being designed.

2. Refine its architecture and algorithms, including software design and hard-
ware/software cosimulation if necessary.

Decompose the architecture into well-defined macros.
Design or select macros; this is where the recursion occurs.

Integrate macros into the top level; verify functionality and timing.

U

Deliver the subsystem/system to the next higher level of integration; at the top
level, this is tapeout.

7. Verify all aspects of the design (functionality, timing, etc.).

With increasing time-to-market pressures, design teams have been looking at ways to
accelerate this process. Increasingly powerful tools, such as synthesis and emulation
tools, have made significant contributions. Developing libraries of reusable macros
also aids in accelerating the design process.

But, like the waterfall model of system development, the top-down design methodol-
ogy is an idealization of what can really be achieved. A top-down methodology
assumes that the lowest level blocks specified can, in fact, be designed and built. If it
turns out that a block is not feasible to design, the whole specification process has to
be repeated. For this reason, real world design teams usually use a mixture of top-
down and bottom-up methodologies, building critical low-level blocks while they
refine the system and block specifications. Libraries of reusable hard and soft macros
clearly facilitate this process by providing a source of pre-verified blocks, proving
that at least some parts of the design can be designed and fabricated in the target tech-
nology and perform to specification.

2.2.3  Construct by Correction

The Sun Microsystems engineers that developed the UltraSPARC processor have
described their design process as “construct by correction.” In this project, a single
team took the design from architectural definition through place and route. In this
case, the engineers had to learn how to use the place and route tools, whereas, in the
past, they had always relied on a separate team for physical design. By going through
the entire flow, the team was able to see for themselves the impact that their architec-
tural decisions had on the area, power, and performance of the final design.

The UltraSPARC team made the first pass through the design cycle—from architec-
ture to layout—as fast as possible, allowing for multiple iterations through the entire
process. By designing an organization and a development plan that allowed a single
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group of engineers to take the design through multiple complete iterations, the team
was able to see their mistakes, correct them, and refine the design several times before
the chip was finally released to fabrication. The team called this process of iteration
and refinement “construct by correction.”

This process is the opposite of “correct by construction” where the intent is to get the
design completely right during the first pass. The UltraSPARC engineers believed that
it was not possible at the architectural phase of the design to foresee all the implica-
tion their decisions would have on the final physical design.

The UltraSPARC development project was one of the most successful in Sun Micro-
systems’ history. The team attributes much of its success to the “construct by correc-
tion” development methodology.

2.24 Summary

Hardware and software teams have consistently found that iteration is an inevitable
part of the design process. There is significant value in planning for iteration, and
developing a methodology that minimizes the overall design time. This usually means
minimizing the number of iterations, especially in major: loops. Going back to the
specification after an initial layout of a chip is expensive; we want to do it as few
times as possible, and as early in the design cycle as possible.

We would prefer to iterate in tight, local loops, such as coding, verifying, and synthe-
sizing small blocks. These loops can be very fast and productive. We can achieve this
if we can plan and specify the blocks we need with confidence that they can be built to
meet the needs of the overall design. A rich library of pre-designed blocks clearly
helps here; parameterized blocks that allow us to make tradeoffs between function,
area, and performance are particularly helpful.

In the following sections we describe design processes in flow diagrams because they
are a convenient way of representing the process steps. Iterative loops are often not
shown explicitly to simplify the diagrams. But we do not wish to imply a waterfall
methodology—that one stage cannot be started until the previous one is finished.
Often, it is necessary to investigate some implementation details before completing
the specification. Rather, it is our intention that no stage can be considered complete
until the previous stage is completed.

A word of caution: the inevitability of iteration should never be used as an excuse to
short-change the specification process. Spending time in carefully specifying a design
is the best way to minimize the number of iterative loops and to minimize the amount
of time spent in each loop.
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2.3 The Specification Problem

The first part of the design process consists of recursively developing, verifying, and
refining a set of specifications until they are detailed enough to allow RTL coding to
begin. The rapid development of clear, complete, and consistent specifications is a
difficult problem. In a successful design methodology, it is the most crucial, challeng-
ing, and lengthy phase of the project. If you know what you want to build, implemen-
tation mistakes are quickly spotted and fixed. If you don’t know, you may not spot
major errors until late in the design cycle or until fabrication.

Similarly, the cost of documenting a specification during the early phases of a design
is much less than the cost of documenting it after the design is completed. The extra
discipline of formalizing interface definitions, for instance, can occasionally reveal
inconsistencies or errors in the interfaces. On the other hand, documenting the design
after it is completed adds no real value for the designer and either delays the project or
is skipped altogether.

2.3.1 Specification Requirements

Specifications describe the behavior of a system; more specifically, they describe how
to manipulate the interfaces of a system to produce the desired behavior. In this sense,
specifications are largely descriptions of interfaces. Functional specifications describe
the interfaces of a system or block as seen by the user of the systems. They describe
the pins, buses, and registers, and how these can be used to manipulate data. Architec-
tural specifications describe the interfaces between component parts and how transac-
tions on these interfaces coordinate the functions of each block, and create the desired
system-level behavior.

In an SoC design, specifications are required for both the hardware and software por-
tions of the design. The specifications must completely describe all the interfaces
between the design and its environment, including:

Hardware

¢ Functionality

e External interfaces to other hardware (pins, buses, and how to use them)
» Interface to SW (register definitions)

e Timing

¢ Performance

e Physical design issues such as area and power
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Traditionally, specifications have been written in a natural language, such as English,
and have been plagued by ambiguities, incompleteness, and errors. Many companies,
realizing the problems this causes, have started using executable specifications for
some or all of the system.

2.3.2 Types of Specifications

There are two major techniques currently being used to help make hardware and soft-
ware specifications more robust and useful: formal specification and executable spec-
ification.

Formal specifications — In formal specifications, the desired characteristics of
the design are defined independently of any implementation. Once a formal speci-
fication is generated for a design, formal methods such as property checking can
be used to prove that a specific implementation meets the requirements of the
specification. A number of formal specification languages have been developed,
including one for VHDL called VSPEC [1]. These languages typically provide a
mechanism for describing not only functional behavior, but timing, power, and
area requirements as well. To date, formal specification has not been used widely
for commercial designs, but continues to be an important research topic and is
considered promising in the long term.

Executable specifications — Executable specifications are currently more use-
ful for describing functional behavior in most design situations. An executable
specification is typically an abstract model for the hardware and/or software being
specified. For high-level specifications, it is typically written in C, C++, or some
variant of C++, such as SystemC or a Hardware Verification Language (HVL). At
the lower levels, hardware is usually described in Verilog or VHDL. Developing
these models early in the design process allows the design team to verify the basic
functionality and interfaces of the hardware and software long before the detailed
design begins.

Most executable specifications address only the functional behavior of a system,
so it may still be necessary to describe critical physical specifications—timing,
clock frequency, area, and power requirements—in a written document. Efforts
are under way to develop more robust forms of capturing timing and physical
design requirements.
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2.4 The System Design Process

Many chip designs are upgrades or modifications of an existing design. For these
chips, the architecture can be reasonably obvious. But for SoC designs with signifi-
cant new content, system design can be a daunting process. Determining the optimal
architecture in terms of cost and performance involves a large number of complex
decisions and tradeoffs, such as:

e What goes in software and what goes in hardware
e What processor(s) to use, and how many
e What bus architecture is required to achieve the required system performance

¢ What memory architecture to use to reach an appropriate balance between power,
area, and speed

In most SoC designs, it is not possible, purely by analysis, to develop a system archi-
tecture that meets the design team’s cost and performance objectives. Extensive mod-
eling of several alternative architectures is often required to determine an appropriate
architecture. The system design process consists of proposing a candidate system
design and then developing a series of models to evaluate and refine the design.

The system design process shown in Figure 2-4 on page 22 employs both executable
and written specifications to specify and refine a system architecture. This process
involves the following steps:

1. Create the system specification

The process begins by identifying the objectives of the design; that is, the system
requirements: the required functions, performance, cost, and development time for
the system. These are formulated into a preliminary specification, often written
jointly by engineering and marketing.

2. Develop a behavioral model

The next step is to develop an initial high-level design and create a high-level
behavioral model for the overall system. This model can be used to test the basic
algorithms of the system design and to show that they meet the requirements out-
lined in the specification. For instance, in a wireless communication design it may
be necessary to demonstrate that the design can meet certain performance levels in
a noisy environment. Or a video processing design may need to demonstrate that
losses in compression/decompression are at an acceptable level.

This high-level model provides an executable specification for the key functions of
the system. It can then be used as the reference for future versions of the design.
For instance, the high-level model and the detailed design of a video chip can be
given the same input stream, and the output frames can be compared to verify that
the detailed design products the expected result.
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Refine and test the behavioral model

A verification environment for the high-level model is developed to refine and test
the algorithm. This environment provides a mechanism for refining the high-level
design, verifying the functionality and performance of the algorithm. If properly
designed, it can also be used later to verify models for the hardware and software,
such as an RTL model verified using hardware/software cosimulation. For systems
with very high algorithmic content, considerable model development, testing, and
refinement occurs before the hardware/software partitioning.

For instance, a graphics or multimedia system may be initially coded in C/C++
with all floating-point operations. This approach allows the system architect to
code and debug the basic algorithm quickly. Once the algorithm is determined, a
fixed-point version of the model is developed. This allows the architect to deter-
mine what accuracy is required in each operation to achieve performance goals
while minimizing die area.

Finally, a cycle-accurate and bit-accurate model is developed, providing a very
realistic model for implementation. In many system designs, this refinement of the
model from floating-point to fixed-point to cycle-accurate is one of the key design
challenges.

These multiple models are very useful when the team is using hardware/software
cosimulation to debug their software. The behavioral model can provide simula-
tion for most development and debugging. Later, the detailed, cycle-accurate
model can be used for final software debug.

Determine the hardware/software partition (decomposition)

As the high-level model is refined, the system architects determine the hard-
ware/software partition; that is, the division of system functionality between hard-
ware and software. This is largely a manual process requiring judgment and
experience on the part of the system architects and a good understanding of the
cost/performance tradeoffs for various architectures. A rich library of pre-verified,
characterized macros and a rich library of reusable software modules are essential
for identifying the size and performance of various hardware and software func-
tions.

The final step in hardware/software partitioning is to define the interfaces between
hardware and software, and specify the communication protocols between them.

Specify and develop a hardware architectural model

Once the requirements for the hardware are defined, it is necessary to specify a
detailed hardware architecture. This involves determining which hardware blocks
will be used and how they will communicate. Memory architecture, bus structure
and bus bandwidth can be critical issues. Most SoC chips have many different
blocks communicating over one or more buses. The traffic over these buses and
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thus the required bandwidth can be very application dependent, so it becomes nec-
essary to evaluate architectures by running substantial amounts of representative
application code on them.

Running significant amounts of application code on an RTL-level design is often
too time consuming to be practical. To address this problem, designers are using
transaction-level models to model interfaces and bus behavior. By eliminating the
detailed behavior of pins and signals on a bus or interface, these models can run
considerably faster than RTL models, yet still give accurate estimates of perfor-
mance. Many of the features of the SystemC language were developed explicitly
to facilitate transaction-level modeling.

Determining the final hardware architecture consists of developing, testing, and
modifying architectural-level models of the system until an architecture is demon-
strated to meet the system requirements.

6. Refine and test the architectural model (cosimulation)

One of the classic problems in system design is that software development often
starts only once the hardware has been built. This serialization of hardware and
software development has led to many delayed or even cancelled projects.

The architectural model for the system can be used for hardware/software cosimu-
lation. It provides sufficient accuracy that software can be developed and
debugged on it, long in advance of getting actual hardware.

As the software content of systems continues to grow, hardware/software co-
development and cosimulation will become increasingly critical to the success of
SoC projects. Having fast, accurate models of the hardware will be key to this
aspect of SoC design.

7. Specify implementation blocks

The output of the architectural exploration activity is a hardware specification: a
detailed specification of the functionality, performance, and interfaces for the
hardware system and its component blocks.

In its written form, the hardware specification includes a description of the basic
functions, the timing, area, and power requirements, and the physical and software
interfaces, with detailed descriptions of the I/O pins and the register map.

The architectural model itself functions as an executable specification for the
hardware.
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Figure 2-4 Top-level system design and recommended applications for each step
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