
4

Dynamic Time Warping

Dynamic time warping (DTW) is a well-known technique to find an optimal
alignment between two given (time-dependent) sequences under certain res-
trictions (Fig. 4.1). Intuitively, the sequences are warped in a nonlinear fashion
to match each other. Originally, DTW has been used to compare different
speech patterns in automatic speech recognition, see [170]. In fields such as
data mining and information retrieval, DTW has been successfully applied
to automatically cope with time deformations and different speeds associated
with time-dependent data.

In this chapter, we introduce and discuss the main ideas of classical DTW
(Sect. 4.1) and summarize several modifications concerning local as well as
global parameters (Sect. 4.2). To speed up classical DTW, we describe in
Sect. 4.3 a general multiscale DTW approach. In Sect. 4.4, we show how DTW
can be employed to identify all subsequence within a long data stream that are
similar to a given query sequence (Sect. 4.4). A discussion of related alignment
techniques and references to the literature can be found in Sect. 4.5.

4.1 Classical DTW

The objective of DTW is to compare two (time-dependent) sequences X :=
(x1, x2, . . . , xN) of length N ∈ N and Y := (y1, y2, . . . , yM) of length M ∈ N.
These sequences may be discrete signals (time-series) or, more generally, fea-
ture sequences sampled at equidistant points in time. In the following, we fix a
feature space denoted by F . Then xn, ym ∈ F for n ∈ [1 : N] and m ∈ [1 : M].
To compare two different features x, y ∈ F , one needs a local cost measure,
sometimes also referred to as local distance measure, which is defined to be a
function

c : F × F → R≥0. (4.1)

Typically, c(x, y) is small (low cost) if x and y are similar to each other, and
otherwise c(x, y) is large (high cost). Evaluating the local cost measure for

70 4 Dynamic Time Warping

Sequence X

Sequence Y

Time

Fig. 4.1. Time alignment of two time-dependent sequences. Aligned points are
indicated by the arrows

50 100 150 200 250

20

40

60

80

100

120

140

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

−
101

−1

0

1X
Y

Fig. 4.2. Cost matrix of the two real-valued sequences X (vertical axis) and Y
(horizontal axis) using the Manhattan distance (absolute value of the difference) as
local cost measure c. Regions of low cost are indicated by dark colors and regions
of high cost are indicated by light colors

each pair of elements of the sequences X and Y , one obtains the cost matrix
C ∈ R

N×M defined by C(n, m) := c(xn, ym), see Fig. 4.2. Then the goal is to
find an alignment between X and Y having minimal overall cost. Intuitively,
such an optimal alignment runs along a “valley” of low cost within the cost
matrix C, see Fig. 4.4 for an illustration. The next definition formalizes the
notion of an alignment.

Definition 4.1. An (N, M)-warping path (or simply referred to as warping
path if N and M are clear from the context) is a sequence p = (p1, . . . , pL)
with p� = (n�, m�) ∈ [1 : N] × [1 : M] for � ∈ [1 : L] satisfying the following
three conditions.

(i) Boundary condition: p1 = (1, 1) and pL = (N, M).
(ii) Monotonicity condition: n1 ≤ n2 ≤ . . . ≤ nL and m1 ≤ m2 ≤ . . . ≤ mL.
(iii) Step size condition: p�+1 − p� ∈ {(1, 0), (0, 1), (1, 1)} for � ∈ [1 : L − 1].

4.1 Classical DTW 71

Note that the step size condition (iii) implies the monotonicity condition
(ii), which nevertheless has been quoted explicitly for the sake of clarity.
An (N, M)-warping path p = (p1, . . . , pL) defines an alignment between two
sequences X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yM) by assigning the
element xn�

of X to the element ym�
of Y . The boundary condition enforces

that the first elements of X and Y as well as the last elements of X and Y
are aligned to each other. In other words, the alignment refers to the entire
sequences X and Y . The monotonicity condition reflects the requirement of
faithful timing: if an element in X precedes a second one this should also hold
for the corresponding elements in Y , and vice versa. Finally, the step size con-
dition expresses a kind of continuity condition: no element in X and Y can be
omitted and there are no replications in the alignment (in the sense that all
index pairs contained in a warping path p are pairwise distinct). Figure 4.3
illustrates the three conditions.

The total cost cp(X, Y) of a warping path p between X and Y with respect
to the local cost measure c is defined as

cp(X, Y) :=
L∑

�=1

c(xn�
, ym�

). (4.2)

Furthermore, an optimal warping path between X and Y is a warping path
p∗ having minimal total cost among all possible warping paths. The DTW
distance DTW(X, Y) between X and Y is then defined as the total cost of p∗:

DTW(X, Y) := cp∗(X, Y) (4.3)
= min{cp(X, Y) | p is an (N, M)-warping path}

We continue with several remarks about the DTW distance. First, note that
the DTW distance is well-defined even though there may be several warping
paths of minimal total cost. Second, it is easy to see that the DTW distance
is symmetric in case that the local cost measure c is symmetric. However,

(a)

1 2 3 4 5 6 7

1
2
3
4
5
6
7
8
9

(b)

1 2 3 4 5 6 7

1
2
3
4
5
6
7
8
9

(c)

1 2 3 4 5 6 7

1
2
3
4
5
6
7
8
9

(d)

1 2 3 4 5 6 7

1
2
3
4
5
6
7
8
9

Fig. 4.3. Illustration of paths of index pairs for some sequence X of length N = 9
and some sequence Y of length M = 7. (a) Admissible warping path satisfying the
conditions (i), (ii), and (iii) of Definition 4.1. (b) Boundary condition (i) is violated.
(c) Monotonicity condition (ii) is violated. (d) Step size condition (iii) is violated

72 4 Dynamic Time Warping

the DTW distance is in general not positive definite even if this holds for c.
For example, one obtains DTW(X, Y) = 0 for the sequences X := (x1, x2)
and Y := (x1, x1, x2, x2, x2) in case c(x1, x1) = c(x2, x2) = 0. Furthermore,
the DTW distance generally does not satisfy the triangle inequality even in
case c is a metric. This fact is illustrated by the following example.

Example 4.2. Let F := {α, β, γ} be a feature space consisting of three fea-
tures. We define a cost measure c : F × F → {0, 1} by setting c(x, y) := 0
if x = y and c(x, y) := 1 if x �= y for x, y ∈ F . Note that c defines
a metric on F and particularly satisfies the triangle inequality. Now con-
sider X := (α, β, γ), Y := (α, β, β, γ), and Z := (α, γ, γ). Then one easily
checks that DTW(X, Y) = 0, DTW(X, Z) = 1, and DTW(Y, Z) = 2. There-
fore, DTW(Y, Z) > DTW(X, Y) + DTW(X, Z), i. e., the DTW distance does
not satisfy the triangle inequality. Finally, note that the paths p1 = ((1, 1),
(2, 2), (3, 2), (4, 3)), p2 = ((1, 1), (2, 1), (3, 2), (4, 3)), and p3 = ((1, 1), (2, 2),
(3, 3), (4, 3)) are different optimal warping paths between Y and Z of total
cost two. This shows that an optimal warping path is generally not unique.

To determine an optimal path p∗, one could test every possible warping
path between X and Y . Such a procedure, however, would lead to a compu-
tational complexity that is exponential in the lengths N and M . We will now
introduce an O(NM) algorithm that is based on dynamic programming. To
this end, we define the prefix sequences X(1 :n) := (x1, . . . xn) for n ∈ [1 : N]
and Y (1 :m) := (y1, . . . ym) for m ∈ [1 : M] and set

D(n, m) := DTW(X(1 :n), Y (1 :m)). (4.4)

The values D(n, m) define an N × M matrix D, which is also referred to
as the accumulated cost matrix . Obviously, one has D(N, M) = DTW(X, Y).
In the following, a tuple (n, m) representing a matrix entry of the cost matrix
C or of the accumulated cost matrix D will be referred to as a cell . The next
theorem shows how D can be computed efficiently.

Theorem 4.3. The accumulated cost matrix D satisfies the following identi-
ties: D(n, 1) =

∑n
k=1 c(xk, y1) for n ∈ [1 : N], D(1, m) =

∑m
k=1 c(x1, yk) for

m ∈ [1 : M], and

D(n, m) = min{D(n− 1, m− 1), D(n− 1, m), D(n, m−1)}+ c(xn, ym) (4.5)

for 1 < n ≤ N and 1 < m ≤ M . In particular, DTW(X, Y) = D(N, M) can
be computed with O(NM) operations.

Proof. Let m = 1 and n ∈ [1 : N]. Then there is only one possible warping
path between Y (1 : 1) and X(1 : n) having a total cost of

∑n
k=1 c(xk, y1).

This proves the formula for D(n, 1). Similarly, one obtains the formula for
D(1, m). Now, let n > 1 and m > 1 and let q = (q1, . . . , qL−1, qL) be an
optimal warping path for X(1 :n) and Y (1 :m). Then the boundary condition

4.1 Classical DTW 73

implies qL = (n, m). Setting (a, b) := qL−1, the step size condition implies
(a, b) ∈ {(n − 1, m − 1), (n − 1, m), (n, m − 1)}. Furthermore, it follows that
(q1, . . . , qL−1) must be an optimal warping path for X(1 : a) and Y (1 : b)
(otherwise, q would not be optimal for X(1 :n) and Y (1 :m)). Since D(n, m) =
c(q1,...,qL−1)(X(1 : a), Y (1 : b)) + c(xn, ym), the optimality of q implies the
assertion of (4.5). ��

Theorem 4.3 facilitates a recursive computation of the matrix D. The ini-
tialization can be simplified by extending the matrix D with an additional row
and column and formally setting D(n, 0) := ∞ for n ∈ [1 : N], D(0, m) := ∞
for m ∈ [1 : M], and D(0, 0) := 0. Then the recursion of (4.5) holds for
n ∈ [1 : N] and m ∈ [1 : M]. Furthermore, note that D can be computed in a
column-wise fashion, where the computation of the m-th column only requires
the values of the (m−1)-th column. This implies that if one is only interested
in the value DTW(X, Y) = D(N, M), the storage requirement is O(N). Simi-
larly, one can proceed in a row-wise fashion, leading to O(M). However, note
that the running time is O(NM) in either case. Furthermore, to compute an
optimal warping path p∗, the entire (N × M)-matrix D is needed. It is left
as an exercise to show that the following algorithm OptimalWarpingPath
fulfills this task.

Algorithm: OptimalWarpingPath

Input: Accumulated cost matrix D.
Output: Optimal warping path p∗.

Procedure: The optimal path p∗ = (p1, . . . , pL) is computed in reverse
order of the indices starting with pL = (N, M). Suppose p� = (n, m) has
been computed. In case (n, m) = (1, 1), one must have � = 1 and we are
finished. Otherwise,

p�−1 :=

⎧
⎪⎪⎨

⎪⎪⎩

(1, m − 1), if n = 1
(n − 1, 1), if m = 1
argmin{D(n − 1, m − 1),

D(n − 1, m), D(n, m − 1)}, otherwise,

(4.6)

where we take the lexicographically smallest pair in case “argmin” is not
unique.

Figure 4.4 shows the optimal warping path p∗ (white line) for the seq-
uences of Fig. 4.2. Note that p∗ covers only cells of C that exhibit low costs
(cf. Fig. 4.4a). The resulting accumulated cost matrix D is shown in Fig. 4.4b.

74 4 Dynamic Time Warping

50 100 150 200 250

20

40

60

80

100

120

140

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

50 100 150 200 250

20

40

60

80

100

120

140

20

40

60

80

100

120

)b()a(

Fig. 4.4. (a) Cost matrix C as in Fig. 4.2 and (b) accumulated cost matrix D with
optimal warping path p∗ (white line)

4.2 Variations of DTW

Various modifications have been proposed to speed up DTW computations
as well as to better control the possible routes of the warping paths. In this
section, we discuss some of these variations and refer to [170] for further
details.

4.2.1 Step Size Condition

Recall that the step size condition (iii) of Definition 4.1 represents a kind of
local continuity condition, which ensures that each element of the sequence
X = (x1, x2, . . . , xN) is assigned to an element of Y = (y1, y2, . . . , yM) and
vice versa. However, one drawback of this condition is that a single element
of one sequence may be assigned to many consecutive elements of the other
sequence, leading to vertical and horizontal segments in the warping path, see
Fig. 4.6a. Intuitively, the warping path can get stuck at some position with
respect to one sequence, corresponding to a local deceleration by a large factor
(or, conversely, to a local acceleration by a large factor regarding the second
sequence).

To avoid such degenerations, one can modify the step size condition to
constrain the slope of the admissible warping paths. As a first example, we
replace the step size condition (iii) of Definition 4.1 by the condition p�+1−p� ∈
{(2, 1), (1, 2), (1, 1)} for � ∈ [1 : L], see Fig. 4.5b. This leads to warping paths
having a local slope within the bounds 1

2 and 2. The resulting accumulated
cost matrix D can then be computed by the recursion

D(n, m) = min{D(n−1, m−1), D(n−2, m−1), D(n−1, m−2)}+ c(xn, ym)
(4.7)

for n ∈ [2 : N] and m ∈ [2 : N]. As initial values, we set D(0, 0) := 0,
D(1, 1) := c(x1, y1), D(n, 0) := ∞ for n ∈ [1 : N], D(n, 1) := ∞ for n ∈
[2 : N], D(0, m) := ∞ for m ∈ [1 : M], and D(1, m) := ∞ for m ∈ [2 : M].
Note that, with respect to the modified step size condition, there is a warping

4.2 Variations of DTW 75

(a)

�

�

�

�
(n, m)(n−1, m)

(n, m−1)(n−1, m−1)

(b)

�

�

�

�

�

�

�

�

�
(n, m)

(n−1, m−2)

(n−2, m−1)

(c)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
(n, m)

(n−3, m−1)

(n−1, m−3)

(n−1, m−1)

Fig. 4.5. Illustration of three different step size conditions, which express different
local constraints on the admissible warping paths. (a) corresponds to the step size
condition (iii) of Definition 4.1

(a)

�

� � � � � �

�

�

�

�

�

�

�
(b)

�

�

�

�

�

�

�
(c)

�
� � �

� � �
�
�
�

�
�
�

Fig. 4.6. Three warping paths with respect to the different step size conditions
indicated by Fig. 4.5. (a) Step size condition of Fig. 4.5a may result in degenerations
of the warping path. (b) Step size condition of Fig. 4.5b may result in the omission
of elements in the alignment of X and Y . (c) Warping path with respect to the step
size condition of Fig. 4.5c

path between two sequences X and Y if and only if the lengths N and M
differ at most by a factor of two. Furthermore, note that not all elements of
X need to be assigned to some element of Y and vice versa. This is illustrated
by Fig. 4.6b: here, x1 is assigned to y1, x3 is assigned to y2, but x2 is not
assigned to any element of Y (i.e., x2 is omitted and does not cause any cost
at all).

Figure 4.5c gives a second example for a step size condition, which avoids
such omission while imposing constraints on the slope of the warping path.
The recursion of the resulting accumulated cost matrix D is given by

D(n, m) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D(n − 1, m − 1) + c(xn, ym)
D(n − 2, m − 1) + c(xn−1, ym) + c(xn, ym)
D(n − 1, m − 2) + c(xn, ym−1) + c(xn, ym)
D(n − 3, m − 1) + c(xn−2, ym) + c(xn−1, ym) + c(xn, ym)
D(n − 1, m − 3) + c(xn, ym−2) + c(xn, ym−1) + c(xn, ym)

(4.8)

for (n, m) ∈ [1 : N] × [1 : M] \ {(1, 1)}. Here, the initial values are set to
D(1, 1) := c(x1, y1), D(n,−2) := D(n,−1) := D(n, 0) := ∞ for n ∈ [−2 : N],
and D(−2, m) := D(−1, m) := D(0, m) := ∞ for m ∈ [−2 : M]. The slopes

76 4 Dynamic Time Warping

of the resulting warping paths lie between the values 1
3 and 3. Note that this

step size conditions enforce that all elements of X are aligned to some element
of Y and vice versa. In other words, in the recursion (4.8) all elements of X
and Y generate some cost in the accumulated cost matrix D – opposed to the
recursion (4.7). Figure 4.6 illustrates the differences of the resulting optimal
warping paths computed with respect to different step size conditions.

4.2.2 Local Weights

To favor the vertical, horizontal, or diagonal direction in the alignment, one
can introduce an additional weight vector (wd, wh, wv) ∈ R

3, yielding the
recursion

D(n, m) = min

⎧
⎨

⎩

D(n − 1, m − 1) + wd · c(xn, ym)
D(n − 1, m) + wh · c(xn, ym)
D(n, m − 1) + wv · c(xn, ym)

(4.9)

for n ∈ [2 : N] and m ∈ [2 : M]. Furthermore, D(n, 1) :=
∑n

k=1 wh · c(xk, y1)
for n > 1, D(1, m) =

∑m
k=1 wv · c(x1, yk) for m > 1, and D(1, 1) := c(x1, y1).

The equally weighted case (wd, wh, wv) = (1, 1, 1) reduces to classical DTW,
see (4.5). Note that for (wd, wh, wv) = (1, 1, 1) one has a preference of the diag-
onal alignment direction, since one diagonal step (cost of one cell) corresponds
to the combination of one horizontal and one vertical step (cost of two cells).
To counterbalance this preference, one often chooses (wd, wh, wv) = (2, 1, 1).
Similarly, one can introduce weights for other step size conditions.

4.2.3 Global Constraints

One common DTW variant is to impose global constraint conditions on the
admissible warping paths. Such constraints do not only speed up DTW com-
putations but also prevent pathological alignments by globally controlling the
route of a warping path. More precisely, let R ⊆ [1 : N]× [1 : M] be a subset
referred to as global constraint region. Then a warping path relative to R is
a warping path that entirely runs within the region R. The optimal warping
path relative to R, denoted by p∗R, is the cost-minimizing warping path among
all warping paths relative to R.

Two well-know global constraint regions are the Sakoe-Chiba band and
the Itakura parallelogram, as indicated by Fig. 4.7. Alignments of cells can be
selected only from the respective shaded region. The Sakoe-Chiba band runs
along the main diagonal and has a fixed (horizontal and vertical) width T ∈ N.
This constraint implies that an element xn can be aligned only to one of the
elements ym with m ∈

[
M−T
N−T · (n − T), M−T

N−T · n + T
]
∩ [1 : M], see Fig. 4.7a.

The Itakura parallelogram describes a region that constrains the slope of a
warping path. More precisely, for a fixed S ∈ R>1, the Itakura parallelogram
consists of all cells that are traversed by some warping path having a slope

4.2 Variations of DTW 77

(a)

T
T

(b) (c)

Fig. 4.7. (a) Sakoe-Chiba band of (horizontal and vertical) width T . (b) Itakura
parallelogram with S = 2. (c) Optimal warping path p∗ (black line) which does not
run within the constraint region R

between the values 1/S and S, see Fig. 4.7b. Note that the local step size
condition introduced in Sect. 4.2.1 may also imply some global constraint. For
example, the step size condition p�+1−p� ∈ {(2, 1), (1, 2), (1, 1)} for � ∈ [1 : L],
as indicated by Fig. 4.5b, implies a global constraint region in form of an
Itakura parallelogram with S = 2.

For a general constraint region R, the path p∗R can be computed similar
to the unconstrained case by formally setting c(xn, ym) := ∞ for all (n, m) ∈
[1 : N] × [1 : M] \ R. Therefore, in the computation of p∗R only the cells
that lie in R need to be evaluated. This may significantly speed up the DTW
computation. For example, in case of a Sakoe-Chiba band of a fixed width T ,
only O(T ·max(N, M)) computations need to be performed instead of O(NM)
as required in classical DTW. Here, note that one typically has T
 M and
T
 N .

However, the usage of global constraint regions is also problematic, since
the optimal warping path may traverse cells outside the specified constraint
region. In other words, the resulting optimal (constrained) warping path p∗R
generally does not coincide with the optimal (unconstrained) warping path p∗,
see Fig. 4.7c. This fact may lead to undesirable or even completely useless
alignment results.

4.2.4 Approximations

An effective strategy to speed up DTW computations is based on the idea
to perform the alignment on coarsened versions of the sequences X and Y ,
thus reducing the lengths N and M of the two sequences. Such a strategy is
also known as dimensionality reduction or data abstraction. For example, to
reduce the data rate, one could process the sequences by some suitable low-
pass filter followed by downsampling. Another strategy is to approximate the
sequences by some piecewise linear (or any other kind of) function and then
to perform the warping at the approximation level. For further strategies and
an overview, we refer to [102].

78 4 Dynamic Time Warping

(a)

20 40 60

90

80

70

60

50

40

30

20

10

(b)

10 20 30

45

40

35

30

25

20

15

10

5

(c)

5 10 15

22
20
18
16
14
12
10
8
6
4
2

Fig. 4.8. (a) Cost matrix and optimal warping path (dotted path) between two
feature sequences X of length N = 91 and Y of length M = 68. (b) Cost matrix
obtained after low-pass filtering and downsampling (by a factor of two) the feature
sequences. The resulting optimal warping path at the lower resolution level does not
accord well to the optimal warping path of (a). (c) Further decreasing the feature
resolution destroys the structure of the cost matrix and leads to a completely useless
alignment

One important limitation of this approach, however, is that the user must
carefully specify the approximation levels used in the alignment. If the user
chooses too fine of an approximation, the gains in speed are negligible. Con-
versely, if the user chooses too coarse of an approximation, e. g., by decreasing
the sampling rate of the feature sequences X and Y , the resulting optimal
warping path may become inaccurate or even completely useless, see [102].
This fact is also illustrated by Fig. 4.8.

4.3 Multiscale DTW

To obtain an efficient as well as robust algorithm to compute DTW-based
alignments, one can combine the strategies described in Sects. 4.2.3 and 4.2.4
in some iterative fashion to generate data-dependent constraint regions. The
general strategy is to recursively project an optimal warping path computed
at a coarse resolution level to the next higher level and then to refine the
projected path. In this section, we summarize the main ideas of this approach,
which will be referred to as multiscale DTW (MsDTW). For details we refer
to [184]. A similar approach has been applied, e. g., to melody alignment [1]
and to audio alignment [142].

Let X1 := X and Y1 := Y be the sequences to be synchronized, having
lengths N1 := N and M1 := M , respectively. It is the objective to compute
an optimal warping path p∗ between X1 and Y1. The highest resolution level
will also be referred to as Level 1. By reducing the feature sampling rate by
a factor of f2 ∈ N, one obtains sequences X2 of length N2 := N1/f2 and
Y2 of length M2 := M1/f2. (Here, we assume that f2 divides N1 and M1,
which can be achieved by suitably padding X1 and Y1.) Next, one computes
an optimal warping path p∗2 between X2 and Y2 on the resulting resolution

4.4 Subsequence DTW 79

(a) (b) (c)

Fig. 4.9. (a) Optimal warping path p∗
2 on Level 2. (b) Optimal warping path p∗

R

with respect to the constraint region R obtained by projecting path p∗
2 to Level 1.

(Here, p∗
R does not coincide with the (unconstrained) optimal warping path p∗.)

(c) Optimal warping path p∗
Rδ using an increased constraint region Rδ ⊃ R with

δ = 2. Here, p∗
Rδ = p∗

level (Level 2). This path is projected onto Level 1 and there defines a
constraint region R. Note that R consists of L2×f2

2 cells, where L2 denotes the
length of p∗2. Finally, an optimal warping path p∗R relative to R is computed.
We say that this procedure is successful if p∗ = p∗R. The overall number
of cells to be computed in this procedure is N2M2 + L2f

2
2 , which is gen-

erally much smaller than the total number N1M1 of cells on Level 1. In
an obvious fashion, this procedure can be recursively applied by introduc-
ing further levels of decreasing resolution. For a complexity analysis, we refer
to [184].

The constrained path p∗R may not coincide with the optimal path p∗.
To alleviate this problem, one can increase the constraint region R – at the
expense of efficiency – by adding δ cells to the left, right, top, and bottom
of every cell in R for some parameter δ ∈ N. The resulting region Rδ will be
referred to as δ-neighborhood of R, see Fig. 4.9.

4.4 Subsequence DTW

In many applications, the sequences to be compared exhibit a significant dif-
ference in length. Instead of aligning these sequences globally, one often has
the objective to find a subsequence within the longer sequence that opti-
mally fits the shorter sequence, see Fig. 4.10. For example, assuming that the
longer sequence represents a given database and the shorter sequence a query,
a typical goal is to identify the fragment within the database that is most
similar to the query. The problem of finding optimal subsequences can be
solved by a variant of dynamic time warping, as will be described in this
section.

Let X := (x1, x2, . . . , xN) and Y := (y1, y2, . . . , yM) be feature sequences,
where we assume that the length M is much larger than the length N .
In the following, we fix a local cost function c. It is the goal to find a sub-
sequence Y (a∗ : b∗) := (ya∗ , ya∗+1, . . . , yb∗) with 1 ≤ a∗ ≤ b∗ ≤ M that

80 4 Dynamic Time Warping

Sequence X

Sequence Y

Time

Fig. 4.10. Optimal time alignment of the sequence X with a subsequence of Y .
Aligned points are indicated by the arrows

minimizes the DTW distance to X over all possible subsequences of Y . In other
words,

(a∗, b∗) := argmin
(a,b) : 1≤a≤b≤M

(
DTW

(
X , Y (a :b)

))
. (4.10)

The indices a∗ and b∗ as well as an optimal alignment between X and the
subsequence Y (a∗ : b∗) can be computed by a small modification in the ini-
tialization of the DTW algorithm as described in Theorem 4.3. The basic
idea is not to penalize the omissions in the alignment between X and Y
that appear at the beginning and at the end of Y . More precisely, we mod-
ify the definition of the accumulated cost matrix D by setting D(n, 1) :=∑n

k=1 c(xk, y1) for n ∈ [1 : N] and D(1, m) := c(x1, ym) (opposed to
D(1, m) :=

∑m
k=1 c(x1, yk)) for m ∈ [1 : M]). The remaining values of D

are defined recursively as in (4.5) for n ∈ [2 : N] and m ∈ [2 : N]. Sim-
ilar to Sect. 4.1, one can also define an extended accumulated cost matrix
by setting D(n, 0) := ∞ for n ∈ [0 : N] and D(0, m) := 0 (opposed to
D(0, m) := ∞) for m ∈ [0 : M]. The index b∗ can be determined from
D by

b∗ := argmin
b∈[1:M]

D(N, b). (4.11)

To determine a∗ as well as the optimal warping path between X and
the subsequence Y (a∗ : b∗), we apply Algorithm OptimalWarpingPath
from Sect. 4.1, this time, however, starting with pL = (N, b∗). Let p∗ =
(p1, . . . , pL) denote the resulting path. Then a∗ ∈ [1 : M] is the maxi-
mal index such that p� = (a∗, 1) for some � ∈ [1 : L]. In other words,
all elements of Y to the left of ya∗ and to the right of yb∗ are left uncon-
sidered in the alignment and do not cause any additional costs. It is left
as an exercise to show that the subsequence Y (a∗ : b∗) indeed has min-
imal total cost in the alignment with X among all possible subsequences
of Y . The optimal warping path between X and Y (a∗ : b∗) is given by
(p�, . . . , pL). Obviously, the computational complexity of the subsequence
DTW algorithm is O(NM). Furthermore, note that the optimal subsequence
Y (a∗ : b∗) is in general not uniquely defined – there may be several choices
for b∗ in (4.11), and in the construction of a∗ we have used a maximality
criterion.

4.4 Subsequence DTW 81

We finally describe how the accumulated cost matrix D can be used to
derive an entire list of subsequences of Y that are close to X with respect to
the DTW distance. To this end, we define a distance function

∆ : [1 : M] → R, ∆(b) := D(N, b), (4.12)

which assigns to each index b ∈ [1 : M] the minimal DTW distance ∆(b) that
can be achieved between X and a subsequence Y (a :b) of Y ending in yb. For
each b ∈ [1 : M], the DTW-minimizing a ∈ [1 : M] can be computed anal-
ogously to a∗ as described above using Algorithm OptimalWarpingPath
and starting with pL = (N, b). Note that if ∆(b) is small for some b ∈ [1 : M]
and if a ∈ [1 : M] denotes the corresponding DTW-minimizing index, then
the subsequence Y (a :b) is close to X . This observation suggests the following
algorithm to compute all (up to some specified overlap) subsequences of Y
similar to X :

Algorithm: ComputeSimilarSubsequences

Input: X = (x1, . . . , xN) query sequence
Y = (y1, . . . , yM) database sequence
τ ∈ R cost threshold

Output: Ranked list of all (essential distinct) subsequences of Y
that have a DTW distance to X below the threshold τ .

(0) Initialize the ranked list to be the empty list.
(1) Compute the accumulated cost matrix D w.r.t. X and Y ,
(2) Determine the distance function ∆ as in (4.12).
(3) Determine the minimum b∗ ∈ [1 : M] of ∆.
(4) If ∆(b∗) > τ then terminate the procedure.
(5) Compute the corresponding DTW-minimizing index a∗ ∈ [1 : M].
(6) Extend the ranked list by the subsequence Y (a∗ :b∗).
(7) Set ∆(b) := ∞ for all b within a suitable neighborhood of b∗.
(8) Continue with Step (3).

Note that Step (7) is introduced to exclude an entire neighborhood of
b∗ from further consideration, thus avoiding that the ranked output list
contains many subsequences that only differ by a slight shift. (For exam-
ple, if Y (a : b) is in the list, one can prevent that Y (a : b + 1) is in
the list as well.) Depending on the application, one may choose a fixed
size of the neighborhood around b∗ or one may adaptively adjust the size
according to the local property of ∆ around b∗. For example, one may
require that b∗ is a local minimum of ∆ and then determines the neigh-
borhood confined by the closest local maxima to the left and to the right
of b∗.

82 4 Dynamic Time Warping

We illustrate the procedure of Algorithm ComputeSimilarSubsequen-
ces by the example shown in Fig. 4.11a. The input consists of the query
sequences X and the database sequence Y as well as the cost threshold τ = 5.
We iteratively look for all indices b ∈ [1 : M] that are local minima of the
distance function ∆ with ∆(b) ≤ τ , see Fig. 4.11b. In the first iteration, we
obtain the local minimum b∗ = 291 with ∆(b∗) = 2.13, which also constitutes
the global minimum of ∆. Based on Algorithm OptimalWarpingPath, one
obtains a∗ = 163 as well as the optimal warping path that aligns X with the
subsequence Y (a∗ :b∗), see Figs. 4.11c, d. We next determine the closest local
maximum b∗� = 265 to the left and closest local maximum b∗r = 313 to the
right of b∗ and exclude the neighborhood [b∗� : b∗r] for further consideration by
setting ∆(b) := ∞ for b ∈ [b∗� : b∗r]. We then proceed with the modified ∆ in
the same fashion, obtaining the local minima b∗2 = 454 with ∆(b∗2) = 2.66 and
a∗
2 = 367. In a third iteration, one obtains b∗3 = 137 with ∆(b∗3) = 3.50 and

a∗
2 = 44. The three resulting “matches,” i. e., subsequences of Y close to X ,

are shown in Fig. 4.11d.

4.5 Further Notes

Originating from speech processing, dynamic time warping (DTW) has become
a well-established method to account for temporal variations in the compar-
ison of related time series. A classical and comprehensive account on DTW
and related pattern recognition techniques is given by Rabiner and Juang [170]
in the context of speech recognition. In their book, one also finds a detailed
introduction to Hidden Markov Models (HMMs) – a statistical method that
extends the concept of DTW-based pattern recognition.

In addition to speech recognition, dynamic time warping has found numer-
ous applications in a wide range of fields including data mining, information
retrieval, bioinformatics, chemical engineering, signal processing, robotics, or
computer graphics, see, e. g., [100] and the references therein. Basically any
data that can be transformed into a (linear) sequence of features can be an-
alyzed with DTW, which includes data types such as text, video, audio, or
general time series. In the field of music information retrieval, DTW plays in
important role for synchronizing music data streams [57,94,141,142,196,202].
DTW has also been used in the field of computer animation to analyze and
align motion data [22, 75, 93, 106, 143, 217, 220]. In Chaps. 5 and 10, some of
these reference will be discussed in more detail.

Extensive research has been performed on how to accelerate DTW com-
putations, in particular for one-dimensional (or low-dimensional) real-valued
sequences, often referred to as time series, see [102, 184] and the references
therein. The problem of indexing large time series databases has also attracted
great interest in the database community, see Last et al. [117] for an overview.
Keogh [100] describes an indexing method based on lower bounding tech-
niques that makes retrieval of time-warped time series feasible even for large

4.5 Further Notes 83

50 100 150 200 250 300 350 400 450

20

40

60

80

100

0.5

1

1.5

−
101

−1

0

1X
Y

0

20

40

60

∆

b∗3 b∗ b∗2

50 100 150 200 250 300 350 400 450

20

40

60

80

100

10

20

30

40

50

60

a∗
3 a∗ a∗

2

50 100 150 200 250 300 350 400 450

−1

0

1

Y

(a)

(b)

(c)

(d)

Fig. 4.11. (a) Cost matrix between the query sequences X (vertical axis) and
the database sequence Y (horizontal axis) using the absolute value as local cost
measure c. (b) Distance function ∆ corresponding to the top row of the matrix
D. The red vertical lines indicate the three local minima b∗, b∗2, and b∗3 having
a ∆-value below the cost threshold τ = 5. (c) Accumulated cost matrix D for
subsequence DTW and the three optimal warping paths (white lines) corresponding
to the minima of (b). (d) Resulting subsequences Y (a∗

3 :b∗3), Y (a∗ :b∗), and Y (a∗
2 :b∗2)

of Y (indicated by grey regions)

datasets. An early account on efficient indexing for subsequence matching of
one-dimensional time series is given by Faloutsos et al. [62]. Most of these
approaches follow the general strategy to first extract a coarse approximation
from each time series of the database. Such approximations may be based on
taking the first few coefficients of a Fourier [2] or wavelet transform [39], or the
average values of adjacent analysis windows [101]. Next, based on a suitable
distance measure on the approximations, one computes lower bounds for the
distances between the corresponding time series. To view of efficient retrieval,
the approximations can then be stored by means of multidimensional indexing
methods such as an R-tree [90].

Closely related to DTW is the edit distance, which is sometimes also
referred to as Levenshtein distance [120]. The edit distance is used to compute

84 4 Dynamic Time Warping

a distance between strings, i. e., one-dimensional sequences consisting of
discrete symbols (rather than sequences consisting of continuous features).
It is defined as the minimum number of operations needed to transform one
string into the other, where an operation is an insertion, a deletion, or a sub-
stitution of a single symbol. The edit distance is used in fields such as text
retrieval (spell checkers, plagiarism detection) or molecular biology (to com-
pute a distance between DNA sequences, i. e., strings over {A,C,G,T}). For a
detailed account on the edit distance with its applications to bioinformatics,
we refer to [18].

Vlachos et al. [209] introduced similarity measures for multidimensional
time series (having values in R

d) based on the concept of longest common
subsequences (LCS) – a variant of the edit distance that is more robust to
noise and outliers. For low dimensions (d ≤ 3), they also describe some efficient
approximation algorithms that compute these similarity measures.

The computation of DTW, edit, as well as LCS distances can be done
efficiently by means of dynamic programming, which is a general method for
reducing the running time of algorithms exhibiting the properties of over-
lapping subproblems and optimal substructure. For a general introduction
to dynamic programming, we refer the reader to the standard text book by
Cormen et al. [47].

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

