
Preface

The Analysis of Algorithms is a core Computer Science area which provides in-
formation on the expected, i.e. the average-case, performance of algorithms. Such
information is useful in a variety of applications, including power estimation and
resource budgetting in a real-time context. The Analysis of Algorithms also provides
fundamental insights in the design of efficient software. Hence, both from an applied
and a theoretical perspective, the investigation of improved methods and tools for
static average-case analysis is a worthwhile goal.

Average-Case Analysis involves a variety of techniques which, typically, do not
allow for automation. Currently algorithms must be analyzed on a case-by-case basis
and it is not feasible in general to statically derive the average number of basic steps
carried out by an algorithm during its execution. Various bottle-neck problems have
been high-lighted in the literature and some well-known algorithms escape analysis.

In view of the status of the field, the ultimate aim to provide a unified foundation
for average-case analysis motivated the work of many authors including [Knu73,
FS95, Ram96, Vui80]. As pointed out in [Vui80]:

A progress in our understanding of these questions should drastically affect the way in which
we discover and explain the fundamental algorithms, as catalogued by Knuth [Knu73] and
Aho et al [AHU87].

The aim of this work is to present a new approach to the Average-Case Analysis
of Algorithms, based on the novel notion of random bags and their preservation. The
view presented here is that the notion of a random bag may serve as a unifying model
for abstract data structures and their data distribution, while random bag preserva-
tion enables the constructive tracking of the distribution during computations. The
approach inspired novel algorithms and considerably simplified their average-case
analysis.

The work presents a modular calculus for static average-case analysis which dras-
tically simplifies the analysis and opens up the way for novel explorations on static
timing tools. Random bags also contribute a visual way to represent data and their dis-
tributions, which, in addition to facilitating average-case analysis, provides a useful
teaching aid.

xiv Preface

A parallel between the role of Static Analysis in Software Engineering and the
role of Calculus in “real” Engineering may be helpful to illustrate the motivation
behind the research. Engineering offers the capacity to analyse the strength of a
construction, such as a bridge, by analyzing its blue prints, rather than subjecting it
to heavy loads to test its limits. This approach should ideally find a natural parallel in
Software Engineering via Static Program Analysis. Rather than executing a program
on a large selection of inputs to experimentally derive information on its average-
case behaviour, the goal is to derive this information statically via an analysis of the
program’s source code. Calculus supports the analysis of blue-prints in Engineering.
Similarly, the aim of this work is to provide a foundation for a Calculus supporting
Static Average-Case Analysis of a program’s source code. This is a major challenge
and our aim is not to provide an all-encompassing answer. Instead, we focus on
the introduction of new advances in this area as a basis for a simplified and unified
theory of average-case analysis and as a potential platform on which to build future
improved modular static analysis tools.

A central aspect of the novel approach, which distinguishes it from prior ap-
proaches to Average-Case Analysis, is the use of randomness preservation to ensure
the compositionality property, well-known from the Semantics and the Real-Time
Language areas, in the context of the Analysis of Algorithms. Compositionality can
rightfully be referred to as the “golden key” to static analysis, witnessed by its central
role in static worst-case time analysis. A main theme of this work is that composi-
tionality, combined with the capacity for tracking data distributions, unlocks a novel
technique for modular average-case analysis. This approach provides the inspiration
for theMOQA1 “language”. The language essentially consists of a suite of random
bag preserving data-structuring operations together with conditionals, for-loops and
recursion and hence can be incorporated in any traditional programming language,
importing all of its benefits in a familiar context2.

A key feature of MOQA is that its operations have been purpose designed to
ensure the capacity for a compositional static average-case analysis ofMOQA code.
The guaranteed compositionality property of MOQA programs brings a strong
advantage for the programmer. The capacity to combine parts of code, where the
average-time is simply the sum of the times of the parts, is a helpful advantage in
static analysis. Moreover, re-use is a key factor in our approach: once the average
time is determined for a piece of code, then this time will hold in any context. Hence
it can be re-used and the timing impact is always the same. Compositionality also
improves precision of static average-case analysis, supporting the determination of
accurate estimates on the average number of basic operations of programs.

It is a main theme of the current work to introduce the new foundation for average-
case analysis and to illustrate its applicability, as well as to motivate and specify the
MOQA language and discuss its associated static average-case timing tool Distri-
Track.

1 MOdular Quantitative Analysis.
2 MOQA is implemented at CEOL in Java 5.0 as MOQA -Java.

Preface xv

The work is carried out at the intersection of several areas: Analysis of Algorithms
and Random Structures, Semantics, Real-Time Languages, Static Program Analysis,
Modular Design and the mathematical theories of Finite Partial Orders, Linear Ex-
tensions, Multi-Sets and Probability Theory. Hence the material may be useful for
a variety of researchers and students, with interests in Computer Science, Electrical
Engineering or Mathematics.

We provide an overview of the chapters in this work.
Chapter 1 provides an introduction to the new techniques for average-case anal-

ysis and focuses on a motivation of the central notions involved. This includes a
motivation of compositionality as the “golden key” to static timing and the need for
novel language design to reach compositionality, including the related concept of an
Efficiency-Oriented Language.

The chapter provides a brief introduction to the MOQA language, for which
static average-case timing can be achieved in a modular way through the tracking of
distributions. Random bags are introduced as concise ways to capture data and their
distribution and distribution tracking is incorporated via the concept of random bag
preservation. The split operation, well-known from algorithms such as Quicksort and
Quickselect, is provided as an example of a random bag preserving operation. This
example also serves to illustrate the tracking of distributions inMOQA and the use
of the notion of a separative function to establish random bag preservation.

The chapter also discusses the central Linear-Compositionality Theorem, which
forms the basis for the static derivation of the average-case time of MOQA pro-
grams. Advantages of theMOQA approach are outlined and the chapter concludes
with a discussion of the related area of bridging Semantics and Complexity and the
area of Real-Time Languages.

Chapter 2 presents introductory notions, including partial orders, series-parallel
orders, trees, heaps and bags. A brief overview of some basic sorting algorithms is
provided as well as an introduction to standard timing measures, including exact
time, total time, worst-case, best-case and average-case time.

Chapter 3 introduces the central notion of compositionality, including IO-compo-
sitionality.Worst-case time is shown to be semi-IO-compositional while average-case
time is shown to be IO-compositional. The Average-Case Time Paradox is discussed
in this context. This paradox regards the fact that even though average-case time is
shown to have better compositionality properties than worst-case time, in practice
the derivation of average-case time is known to be much more difficult than worst-
case time. The paradox is shown to be linked to the potential lack of randomness
preservation of standard algorithms, including well-known examples such as Bub-
blesort and Heapsort. Moreover, the chapter motivates how IO-compositionality of
the average-case time measure can be used, in combination with randomness preser-
vation, to obtain linear-compositionality. This greatly facilitates average-case time
analysis and overcomes the Average-Case Time Paradox.

Chapter 4 revisits in a slightly more general context, the fundamental notions of
random structures, random bags and their preservation, which have been introduced
in Chapter 1. The State Theorem is presented which enables an interpretation of

xvi Preface

states in random structures as “generalized permutations”. Chapter 4 also introduces
the central notion of an isolated subset. An isolated subset forms a subset of a partial
order such that the restriction of the random structure over this partial order to the
isolated subset is guaranteed to yield a new random structure. A simplified definition
of an isolated subset is obtained for the case of series-parallel orders. The chapter
concludes with the Extension Theorem, which demonstrates that it is sufficient to
define random bag preserving operations locally on an isolated subset, where the
extension of the operation to the entire random structure is obtained in a natural way.

Chapter 5 introduces the basicMOQA operations, including the Random Prod-
uct, the Random Deletion and Percolation, the Random Projection, the Random
Split and the Top and Bot operations. Each of these MOQA operations is shown
to be random bag preserving. Deletion operations typically are not included in the
context of automated average-case analysis, since the analysis of deletions with re-
spect to average-case time is well-known to be problematic, even in the context of
traditional average-case analysis. Hence the Random Deletion opens up the way
for the inclusion of novel algorithms, such as Percolating Heapsort and Treapsort,
which are analyzed in Chapter 9. The Extension Theorem of Chapter 4 is applied to
extend these operations from local applications on isolated subsets to applications
over the entire random structure. Uniformly random bag preserving operations are
singled out as of particular interest, since this type of operations enables simplifi-
cations of probability computations in later chapters. The MOQA operations are
shown to preserve series-parallel data structures which yields a characterization of
the so-calledMOQA atomic-constructible data structures as series-parallel orders.
Finally, some simplifications for the series-parallel case are obtained in the context
of the computation of cardinalities of random structures. Such simplifications for
series-parallel orders will also be useful in the context of Chapter 6, which regards
the average-case analysis of the basicMOQA operations.

Chapter 6, joint with D. Early, presents the detailed average-case analysis of the
basicMOQA operations, resulting in the formulas obtained by D. Early. As shown
in Chapter 7, MOQA programs are Linearly-Compositional with respect to the
average-case time, i.e. their average-case time can be expressed as linear combi-
nations of the average-case times of more basic components. Hence, ultimately, a
successful average-case time derivation yields the average-case time of MOQA
programs, expressed in terms of the average-case times of the basicMOQA opera-
tions. Formulas for the average-case times of basicMOQA operations are obtained
in Chapter 6 and simplified formulas are derived for the case of series-parallel orders.
These formulas are systematically applied in Chapter 9, which presents examples
of compositional average-case time derivations of MOQA programs. Finally, the
formulas of this chapter are illustrated via basic applications involving inductively
defined data structures, such as linear orders and complete binary trees. Chapter 6
concludes with a demonstration of combinatorial identities used in the derivation of
the average-case time formulas.

Chapter 7 provides the specifications for the MOQA language, with special
attention given to conditionals and recursion, which typically form a challenge for
static timing analysis. The random bag preservation ofMOQA programs is demon-

Preface xvii

strated and the method for the linear-compositional derivation of the average-time
ofMOQA programs is outlined.

Chapter 8 provides examples of well-known sorting and search algorithms imple-
mented inMOQA. It also includes examples of two novel algorithms, Percolating
Heapsort, the first randomness preserving version of the Heapsort algorithm, and
Treapsort, a sorting algorithm over treaps; both of which are essentially based on the
Random Deletion operation of Chapter 5.

Chapter 9 provides the compositional average-case time derivation of the pro-
grams discussed in Chapter 8, with a main focus on illustrating the use of random
bags in this context. The chapter in particular presents the first exact average-case
time analysis of a heapsort variant via an analysis of Percolating Heapsort. Compo-
sitional average-case time derivations, whenever appropriate, rely on the formulas
obtained in Chapter 6. The derivations obtained in this chapter illustrate the basic
techniques involved in the static timing tool Distri-Track.

Chapter 10, joint with D. Hickey and M. Boubekeur, discusses in more detail
the static timing tool Distri-Track, developed by D. Hickey. Distri-Track analyses
MOQA algorithms programmed in Java, using an implementation ofMOQA by
J. Townley. Distri-Track enables the automated static derivation of average-case time
of most of the MOQA programs presented in Chapter 8. Experiments, including
comparisons with time derivations relying on a Java profiler, are discussed, as well
as potential implications for Real-Time Languages. Finally, Chapter 11 presents the
conclusion and some potential future work.

The book is accompanied by a software tutorial “Static average-case analysis of
programs: a beginner’s guide to successful tracking”. The tutorial requires Adobe
Flash Player, which is freely available online at http://www.adobe.com/. The tutorial
provides an introduction to the main concepts used in this work as well as videos
illustrating the basic MOQA operations and a selection of MOQA programs.
The reader is advised to read Chapters 1 and 3, followed by a viewing of the tutorial,
before proceeding with later chapters in this work.

Cork, Ireland, December 2007 Michel Schellekens

Chapter 2
Introductory Notions

We denote the set of real numbers byR and the natural numbers by N .
We use the following notation for the combinatorial choice of k integers out of

l, without repetitions:
(

l
k

)
. We denote the number of choices of k1 integers out of l,

followed by k2 integers out of l−k1, . . . , followed by kn integers out of l−
∑n−1

i=1 ki

by
(

l
k1,...,kn

)
, where

(
l

k1, . . . , kn

)
=

(
l

k1

)(
l − k1

k2

)
. . .

(
l −

∑n−1
i=1 ki

kn

)
.

The cardinality of a set X is denoted by |X|. The range of a function f : X → Y
is the set {f(x)|x ∈ X}, denoted by Ra(f). The result of restricting a function to a
subset A of X is denoted by f �A. Similarly, the restriction of a partial order (X,�)
to a subset A of X is denoted by (A,�� A) or often, when no confusion can arise,
by (A,�).

For any finite collection of sets, these sets are said to be pairwise disjoint in case
any two distinct sets in the collection are disjoint, i.e. a collection of sets A1, . . . , An

is pairwise disjoint in case ∀i, j ∈ {1, . . . , n}. i
= j ⇒ Ai ∩Aj = ∅.
The result of concatenating two sequences, say A = (a1, . . . , am) and B =

(b1, . . . ,
bn) is the sequence Conc(A, B) = (a1, . . . , am, b1, . . . , bn). Concatenation of more
than two sequences, Conc(A1, . . . , An), is defined in a similar way.

An affine combination of a sequence of real-valued functions f1, . . . , fn is an
expression of the form α1f1 + . . . + αnfn where α1, . . . , αn are real numbers and∑n

i=1 αi = 1.

40 2 Introductory Notions

2.1 Partial Orders & Hasse Diagrams

A partial order is a pair (X,�) consisting of a set X and a binary relation� between
elements of X such that the relation is:

1) Reflexive: x � x
2) Transitive: x � y, y � z ⇒ x � z.
3) Anti-symmetric: x � y, y � x⇒ x = y.

Unless stated otherwise, we will only consider finite partial orders in the following.
For x ∈ X , we let x↓= {y| y ∈ X and y � x} and x↑= {y| y ∈ X and x � y}. If
A ⊆ X then A↑= ∪x∈Ax↑ and A↓= ∪x∈Ax↓.

If (X1,�1) and (X2,�2) are partial orders then a function f : X1 → X2 is
increasing iff ∀x, y ∈ X1. x �1 y ⇒ f(x) �2 f(y). In case the function f is an
increasing bijection and f−1 is increasing, we refer to f as an order-isomorphism
between the given partial orders.

If (X,�) is a partial order then x � y ⇔ (x � y and x
= y). The binary relation
�1 is defined to be the set of all pairs (x, y) such that x � y and �z. x � z � y.

We assume that the reader is familiar with Hasse diagrams [DP90] which will
be used to represent partial orders in the examples. The transitive reduction of a
partial order (X, �) is obtained by omitting from � all its reflexive pairs and
pairs that can be inferred by transitivity. The Hasse diagram of a partial order is
a digraph representation of its transitive reduction, where one requires that in the
representation, related elements x, y where x � y are displayed such that x is below
y in the Hasse diagram. In other words, Hasse diagrams represent directed acyclic
graphs for which the transitive reflexive closure is the given partial order. In Hasse
diagrams one only displays the relation �1. When specifying a finite partial order
we typically list a set of pairs specifying the Hasse diagram for the partial order.

A linear order (X,�) is a partial order such that every pair of elements x, y ∈ X
is related with respect to this order, i.e. ∀x, y ∈ X. x � y or y � x. For any set X ,
the discrete partial order on X is the partial order consisting only of the reflexive
pairs {(x, x)|x ∈ X}.

For any subset Y of a partial order (X,�) we say that Y is a discrete subset of
the partial order in case the restriction of the order � to Y is the discrete order.

An element x of a partial order (X,�) is maximal (minimal) iff �y ∈ X. x �
y (y � x). An extremal element of a partial order is an element which is maximal
or minimal. A maximum (minimum) of a partial order (X,�) is an element x ∈ X
such that ∀y ∈ X. y � x (x � y).

For any two points x, y ∈ X , a sequence (x1, . . . , xn) is a path from x to y when
x1, . . . , xn ∈ X, x1 = x, xn = y and ∀i ∈ {1, . . . n− 1}. xi � xi+1 or xi � xi+1.
A connected partial order (X,�) is a partial order such that for every two points x, y
of X there exists a path from x to y. A component of a partial order is a non-empty
connected subset of maximal size. Any partial order can be partitioned (as a graph)
into a set of components. The length of a path of a finite partial order is the number

2.2 Series-Parallel Orders 41

of elements on the path. A chain in a partial order (X,�) is a path which forms a
linear order under the restriction of �.

2.2 Series-Parallel Orders

We recall some main results regarding series-parallel partial orders [VTL79, Gra81,
Gis88, Fin03].

Definition 2.1. Given two disjoint partial orders (P,�1) and (Q,�2).
The sequential composition, denoted via a semi-column “;” is the partial order P ; Q
on P ∪Q such that x � y in P ; Q⇔

[x, y ∈ P and x �1 y] or [x, y ∈ Q and x �2 y], or [x ∈ P and y ∈ Q].

The parallel composition || is the partial order P ||Q on P ∪Q such that x � y in
P ||Q⇔

[x, y ∈ P and x �1 y] or [x, y ∈ Q and x �2 y].

A series-parallel partial order (SP-order) is a partial order that can be recursively
constructed by applying the operations of sequential and parallel composition starting
with a single point [Stan99].

Note that trees form an example of SP-orders as illustrated in Example 2.1 below.

Remark 2.1. For reasons which will become apparent later on, we will refer in the
remainder of this work to the sequential composition as the product operation. Hence
we will use the notation

⊗
for sequential composition in the following. The par-

allel composition of two partial orders in our context will amount to a reference to
components of partial orders.

From the definition of an SP-order it is clear that each SP-order over a finite set,
say {x1, . . . , xn}, can be represented through a formula from the following induc-
tively defined collection SP , where SP = ∪n≥0SPn and:

SP0 = {x1, . . . , xn}
∀n ≥ 1.SPn = {[y

⊗
z] | y, z ∈ SPn} ∪ {[y || z] | y, z ∈ SPn}.

Example 2.1. Consider the following SP-order, which corresponds to the formula
[x1

⊗
[x2|| [x3

⊗
[x4||x5]]]].

42 2 Introductory Notions

�� ��

�� ��

��

Remark 2.2. Note that in the above approach, there is a unique parsing of each SP
formula from SP . However, through associativity, one can drop brackets and focus
on the “parallel components” and the “series components” as discussed below.

An SP-order (P,�), after removing unnecessary brackets, is of one of the follow-
ing forms:

1) P = P1|| . . . ||Pn or

2) P = P1
⊗

. . .
⊗

Pn.

Definition 2.2. We refer to an SP-order in Remark 2.2 of the first kind as a parallel
SP-order and to an SP-order of the second kind as a product SP-order. Moreover,
we refer to the suborders P1, . . . , Pn of the parallel SP-order P = P1|| . . . ||Pn as
parallel components and to the suborders P1, . . . , Pn of P = P1

⊗
. . .

⊗
Pn as

product components.

Remark 2.3. It is clear that, by removing unnecessary brackets, we can express a
parallel SP-order as an SP-order for which all parallel components are product SP-
orders. Similarly we can express a product SP-order as an SP-order for which all
product components are parallel SP-orders. We refer to such expressions as canonical
representations of the SP-order in question.

Example 2.2. Consider the product SP-order [[x
⊗

[y || z]]
⊗

[z || [u ||v]], which can
be expressed as the product of parallel components x

⊗
[y || z]

⊗
[z ||u ||v].

We discuss the following interesting characterization of SP orders as so-called
N-free orders.

Definition 2.3. A partial order is N-free if there is no quadruple of elements{x, y, u, v}
whose non-trivial relations are given by x � u, y � u, y � v, i.e. there is no suborder
determined by a Hasse diagram corresponding to an “N-shape”:

2.3 Trees & Heaps 43

u v

x y

The following proposition provides a characterization of SP-orders as N-free
partial orders.

Proposition 2.1. [Fin03, Gis88, Gra81, VTL79] For finite partial orders, the notions
of SP and N-free are equivalent.

2.3 Trees & Heaps

A tree is a partial order with a maximum element, referred to as the root of a tree, for
which the Hasse diagram representation has no cycles [HJ99, AHU87]. The elements
of this order are referred to as the nodes of the tree. We follow here the Computer
Science convention in considering the root as the largest element in the tree, rather
than the standard mathematical approach of defining the root as the least element.
The leaves are the minimal nodes, internal nodes are nodes that are not leaves, a
child of a node, provided the given node has elements strictly below it, is a node
immediately below the given node in the ordering. Similarly, a parent of a node,
provided the given node has a node strictly above it, is a node immediately above the
given node in the ordering [AHU87]. The depth of a node in a tree is the number of
nodes (not including the given node) on the unique path from the node to the root.
The size of a finite tree is the number of nodes in the tree.

A binary tree is a tree in which every node has at most two children. A full binary
tree is a binary tree in which every internal node has two children. A complete binary
tree is a full binary tree in which all leaves occur at the same depth.

In the following we will only consider finite binary trees and will simply refer to
these as tree.

A near-heap is obtained from a complete binary tree as follows:

1) Some leaves are allowed to be omitted in right to left order.
2) All nodes of the tree obtained via 1) are labeled with a natural number

such that each parent which is not the root has a label which is greater
than those of its children.

A heap is a near-heap for which the root has a label which is larger than the labels
of its children. The set of all heaps of size n, identified up to labeling-isomorphism,
is denoted byHn and the cardinality of this set is denoted by h(n).

We display the recurrence for the number h(n) of heaps of size n with labelings
from a fixed set of n distinct labels [Ede96], where H1 and H2 are the two heaps
obtained by removing the root of the original heap of size n:

44 2 Introductory Notions

h(n) =
(

n− 1
|H1|

)
× h(|H1|)× h(|H2|).

Remark 2.4. For future reference we remark that: h(1) = h(2) = 1, h(3) = 2, h(4)
= 3, h(5) = 8 and h(6) = 20 and thus h(3) does not divide h(4), h(4) does not
divide h(5) and h(5) does not divide h(6).

Treaps were introduced independently by several authors [Vui80, SA96], where
the first introduction of these structures is due to [Vui80], which used the terminology
of Cartesian Trees .

A key is a value stored at a node x of a tree, denoted by x.key. Keys stem from
a totally ordered universe and are pairwise distinct. A Binary Search Tree consists
of a binary tree with a set X of n items stored at the nodes: some item y ∈ X
is chosen to be stored at the root of the tree, and the left and the right children of
the root are binary search trees for the sets X< = {x ∈ X|x.key < y.key} and
X> = {x ∈ X| y.key > x.key}. Binary Search trees satisfy the in-order property.
This means that for any node x in the tree y.key < x.key for all y in the left subtree
of x and x.keq < y.key for all y in the right subtree of x. Let X be a set of items
each of which has an associated key and a priority. The priorities, as are the keys, are
drawn from a totally ordered universe and are assumed to be pairwise distinct. The
two ordered universes need not be the same. A treap for X is a binary tree with node
set X that is arranged in in-order with respect to the keys and in heap-order with
respect to the priorities. Pairwise distinctness of keys and of priorities guarantees
that there is a unique treap for X [SA96].

2.4 Basic Sorting Algorithms

We give details of the pseudo-code for several algorithms of which the average-case
time will be discussed. For further information we refer the reader to [AHU87] and
[Knu73].

We will discuss two standard variants of Heapsort in the work, William’s version
and Floyd’s version. We recall some basic background material, to formulate the
Heapsort variants, and for simplicity consider heaps labeled with natural numbers.

The traditional Heapsort algorithm relies on a procedure “Push-Down”, which
transforms a near-heap to a heap. Two versions of Push-Down are available:Williams’
original version [Wil64] which we refer to as “W-Push-Down” and the more eco-
nomic version used by Floyd [Flo64], which we refer to as “F-Push-Down”. We
sketch these alternative versions below. For a precise formulation we refer the reader
to [AHU87], [Wil64],[Flo64] and [LV93]. In the description given below, “larger”
(“smaller”) refers to the order≥ (≤), while “strictly larger” (“strictly smaller”) refers
to the order > (<).

2.4 Basic Sorting Algorithms 45

W-Push-Down
Given a near-heap of size n, say with root label l, then W-Push-Down proceeds as
follows:

Start at the root of the near-heap and compare the labels of the two children. If m is
the larger label of these two, then compare the root label l with m. If m < l, then the
algorithm halts since the near-heap is a heap. Otherwise these labels are swapped.
Consider the sub near-heap which has as root the child which was originally labeled
with m. Recursively repeat this procedure on this sub near-heap until the children of
the root under consideration have labels which are both less than the root label or a
leaf is reached.

F-Push-Down
Given a near-heap of size n, say with root label l, then F-Push-Down proceeds as
follows:

Keep track separately of the root label l. Start at the root of the near-heap and compare
the labels of the two children. Select the child which has the larger of the two labels.
Repeat the procedure on the sub near-heap which has this child as root until a leaf
is reached. This determines a chain from the root of the near-heap to the leaf. Move
systematically up the chain (if necessary) until a particular node N is found which
has a label greater than the root label l.

At that point, assign the label of this particular node N and of each of its ancestor
nodes on the chain, to each of their respective parent nodes. That is, move the labels
of each node one node upwards along this chain. Finally, change the label of N to
the original root label l.

The main difference, regarding comparisons, is the following: W-Push-Down pro-
ceeds from the root down the near-heap, making two comparisons per step. F-Push-
Down proceeds from the root down the near-heap to a leaf, making one comparison
per step. Then it backtracks upwards along the chain to the root, making one extra
comparison per step until a particular node is reached for which the label is larger
than the label of the root.

We recall the Heapify procedure which uses Push-Down (where either of the
above versions of Push-Down can be selected) to create a heap from a given list.
Push-Down(i, j), where i ≤ j, comes equipped with two parameters which indicate
the boundaries i and j of the sub-list being operated on. I.e. i indicates the index
of the label to be “pushed down” and j indicates that we only operate on labels of
elements with indices ranging from i up to and including j.

A list (L[1], . . . , L[n]) is interpreted by Heapify as a binary tree, with root node
labeled with L[1] and such that each node labeled with L[j], with j ≤ �n

2 � has either
two children labeled with L[2j], L[2j + 1], when 2j + 1 ≤ n, or one child labeled
with L[2j] when 2j = n [AHU87]. Push-Down is called recursively in the Heapify

46 2 Introductory Notions

procedure defined below. Since Push-Down will initially be called on a binary tree
with at most 3 elements, this binary tree is automatically a near-heap and hence the
recursive calls to Push-Down are well defined.

Heapify
For i = �n

2 � downto 1 do Push-Down(i,n);

The Heapsort algorithm relies on a Selection process, in which the largest label
of the heap, i.e. the label at the root, is swapped with the label of the rightmost leaf,
after which Push-Down is called once more on the newly created near-heap and the
process is repeated.

The pseudo-code for Selection is given by:

Selection
For i = n downto 2 do

swap(L[1],L[i]);
Push-Down(1,i-1)

Finally, traditional Heapsort can be formulated as follows, again using either ver-
sion of the procedure Push-Down:

Heapsort
Heapify; Selection

We recall the pseudo-code of the version of Bubblesort discussed in [AHU87],
which we refer to as “Bubblesort-I”.

Bubblesort-I
For i = n-1 downto 1 do

For j = 1 to i do
if L[j] > L[j+1] then swap(L[j],L[j+1])

The inner for-loop of Bubblesort-I is denoted by JI
i where i ∈ {1, . . . , n− 1}.

We recall the pseudo-code of the Bubblesort version from [Knu73], which we
refer to as Bubblesort-II“”. This version keeps track of the number of swaps per-
formed during a run of the inner for-loop; i.e. of the number of comparisons for
which L[j] > L[j + 1] is true. In case no swaps occur during this run, the sublist
under consideration is sorted and the algorithm terminates.

Bubblesort-II
For i = n-1 downto 1 do

k := 0;
For j = 1 to i do

if L[j] > L[j+1] then k := k+1; swap(L[j],L[j+1]);

2.5 Uniform Distribution and Bags 47

If k=0 then return L

The inner for-loop of Bubblesort-II is denoted by JII
i where i ∈ {1, . . . , n− 1}

and n = |L|.

2.5 Uniform Distribution and Bags

A bag1 is a finite set-like object in which order is ignored but multiplicity is explicitly
significant. Thus, contrary to sets, bags allow for the repetition of elements. There-
fore, bags {1, 2, 3} and {3, 1, 2} are considered to be equivalent, but {1, 2, 2, 3} and
{1, 2, 3} differ. We refer to the number of times an element occurs in a bag as the
multiplicity of the element. The cardinality of a bag is the sum of the multiplicities
of its elements. Each bag A of n elements has an associated set B = {b1, . . . , bk}
such that ∪A = ∪B and where each element bi of B is repeated Ki times where
1 ≤ Ki ≤ n and

∑k
i=1 Ki = n. It is clear that a bag A can be represented in this

way as a - set of pairs {(b1, K1), . . . , (bk, Kk)}.
In fact it will be convenient to adopt a slight generalization of this type of rep-

resentation as our formal definition of a bag in the following. I.e. a bag is formally
defined in this context as a finite set of pairs {(b1, K1), . . . , (bk, Kk)}, where each
Ki is a natural number, referred to as the multiplicity of the element bi and where
we do not require that the elements bi are pairwise disjoint. In case (∗) ∀i, j. bi
= bj ,
we refer to the finite set of pairs {(b1, K1), . . . , (bk, Kk)} as a strict bag. We allow a
more flexible approach in which we do not require (∗) to hold since in practice some
repetitions of an element b may occur in different contexts, e.g. as K repetitions in
one context and L in another, in which case we chose to keep track of these repeti-
tions separately as pairs (b, K) and (b, L) in the same bag rather than as a single pair
(b, K + L) in the bag.

To keep track of the number of times that a particular output is produced, we will
represent the range of the input-output function of a program as a bag. MOQA -
programs are guaranteed to terminate, so there are no undefined outputs to be taken
into account.

Notation 2.1 (Input and Output Bag)
For any program P we indicate the bag of its inputs by IP , referred to as the “input
bag”. The bag of inputs of size n is denoted by IP (n).A bag of inputs I for a program
P is a sub bag of the input bag IP . Typically we will require that I ⊆ IP (n) for
some n.

OP (I) denotes the bag of outputs, referred to as “the output bag”, of the compu-
tations of a program P on a bag of inputs I.

1 Also referred to as multi-set in the literature.

48 2 Introductory Notions

If IP (n) = In for a particular data structure under consideration then we denote
the output bag OP (In) by OP (n).

We recall (cf. Remark 1.6) that all programs under consideration are assumed to
terminate. Hence it is clear that in case I is an input bag for a program P , the bags
I and OP (I) have the same cardinality where the input-output relation forms the
corresponding bijection.

Example 2.3. 1) Consider a sorting algorithm P . The bag of outputs OP (An) is
{(Sn, n!)}, consisting of n! copies of the sorted list Sn.

2) Consider Bubblesort-I of Section 2.2 and its inner for-loop JI
n−1 for n = 3, i.e.

JI
2 .

LetA3 = {(1, 2, 3),(1, 3, 2),(2, 1, 3),(2, 3, 1),(3, 1, 2),(3, 2, 1)}. The bag of outputs
is OJI

2
(A3) = {((1, 2, 3), 4), ((2, 1, 3), 2)}.

Bags are useful to represent sets of data that are uniformly distributed. A bag A =
{(b1, K1), . . . , (bk, Kk)} is called uniformly distributed iff∀i, j ∈ {1, . . . , n}. Ki =
Kj . It is clear that if A = {(b1, K1), . . . , (bk, Kk)} is a uniform bag then we can
simply use the simplified notation A = {(B, K)}, which indicates that the bag A
consists of K copies of the set B. In particular: |A| = K|B|. Each element of a
uniform bag A with associated set B arises with equal probability of K

|A| = 1
|B| .

Example 2.4. Note that Example 2.3, 1) yields a uniform bag, while this is not the
case for Example 2.3, 2).

We recall the main rules for computing probabilities for statements involving∧,∨
and ¬. These will be applied to determine the probabilities of boolean expressions
occuring inMOQA programs.

Prob[¬A] = 1− Prob[A].

For pairwise disjoint event sets A1, . . . , An:

Prob[∪n
i=1Ai] =

∑n
i=1 Prob[Ai].

The Modularity Law for probabilities two event sets A1 and A2:

Prob[A1 ∪A2] = Prob[A1] + Prob[A2]− Prob[A1 ∩A2],

The Modularity Law for three event sets A1, A2 and A3 :

Prob[A1 ∪A2 ∪A3] = Prob[A1] + Prob[A2] + Prob[A3]−Prob[A1 ∩A2]−
Prob[A1 ∩A3]− Prob[A2 ∩A3] + Prob[A1 ∩A2 ∩A3].

The General Modularity Law for event sets A1, . . . , An (n ≥ 2) :

2.6 Timing Measures 49

Prob[∪n
i=1Ai] =

n∑
i=1

Prob[Ai]−
∑
i<j

Prob[Ai∩Aj]+. . .+(−1)n−1Prob[∩n
i=1Ai].

2.6 Timing Measures

We recall the standard definitions of comparison-based algorithms and of worst-case
time and average-case time for comparison-based algorithms. We recall from Chapter
1 that a comparison-based algorithm is an algorithm for which every action during
the code execution is determined by a comparison between two elements of the
input data structure (e.g. [AHU87]). In particular, every assignment and every swap
during the execution of the code is a direct consequence of a comparison between
two elements. Most sorting and search algorithms fall into this class and traditional
lower bound estimates apply in this context.

As indicated in Chapter 1, static timing in our context regards the counting of
comparisons during the execution of comparison-based algorithms.

For a comparison-based algorithm P we define the exact time TP (I) on an input
I to be the number of comparisons made by the program P during the computation
of the output P (I). The notation TP (n) indicates the restriction of the function TP

to the set In. We will consider subsets I of In and consider the following time
measures with respect to I:

The total time of P for inputs from I, denoted by T t
P (I) is defined by:

T t
P (I) =

∑
I∈I

TP (I).

The worst-case time of P for inputs from I, denoted by TW
P (I) is defined by:

TW
P (I) = max{TP (I)| I ∈ I}.

The best-case time of P for inputs from I, denoted by TB
P (I) is defined by:

TB
P (I) = min{TP (I)| I ∈ I}.

The average-case time of P for inputs from I, denoted by TP (I) is defined by:

TP (I) =
T t(I)
|I| =

∑
I∈I TP (I)
|I| .

In order to denote an arbitrary measure, which can include any of the above, we
use the notation TP and the usual corresponding notations TP (I) and TP (n).

We observe that:
∀I. TB

P (I) ≤ TP (I) ≤ TW
P (I).

50 2 Introductory Notions

If the exact time of P is a constant C on the inputs from I then:

TP (I) = TB
P (I) = TW

P (I) = C.

For a given data structure, we let the finite set In denote the set of input states of
size n for this particular data structure.

Of course, in case I = In, we will for the total, worst-case, best-case and average-
case time respectively use the following standard notation based on size indication
only: T t

P (n), TW
P (n), TB

P (n) and TP (n).
We assume familiarity with the asymptotic classification of running times and the

notion of a decision tree (e.g. [AHU87]). Given two functions f, g : N → R+. Then

f ∈ O(g) ⇐⇒ ∃c > 0 ∃n0 ∀n ≥ n0. f(n) ≤ cg(n).

f ∈ Ω(g) ⇐⇒ ∃c > 0 ∃n0 ∀n ≥ n0. f(n) ≥ cg(n).

For comparison-based algorithms one can show that in the asymptotic hierarchy
(e.g. [CLR96]) the worst-case time and the average-case time satisfy the following
lower bound: TW

P (n) ∈ Ω(log(Nn)) and TP (n) ∈ Ω(log(Nn)) where Nn is the
number of leaves in the decision tree of the algorithm P for inputs of size n.

