
Preface

Interactive curve modeling techniques and their applications are extremely useful
in a number of academic and industrial settings. Specifically, curve modeling plays
a significant role in multidisciplinary problem solving. It is extremely useful in
various situations like font design, designing objects, CAD/CAM, medical imag-
ing and visualization, scientific data visualization, virtual reality, object recogni-
tion, etc. In particular, various problems like iris recognition, fingerprint recog-
nition, signature recognition, etc. can also be intelligently solved and automated
using curve techniques. In addition to its critical importance more recently, the
curve modeling methods have also proven to be indispensable in a variety of mod-
ern industries, including computer vision, robotics, medical imaging, visualiza-
tion, and even media.

This book aims to provide a valuable source that focuses on interdisciplinary
methods and to add up-to-date methodologies in the area. It aims to provide the
user community with a variety of techniques, applications, and systems necessary
for various real-life problems in the areas such as font design, medical visualiza-
tion, scientific data visualization, archaeology, toon rendering, virtual reality, body
simulation, outline capture of images, object recognition, signature recognition,
industrial applications, and many others.

Book Features

It aims to collect and disseminate information in various disciplines including
computer graphics, image processing, computer vision, pattern recognition, artifi-
cial intelligence, soft computing, shape analysis and description, curve and surface
fitting, scientific visualization, shape abstraction and modeling, intelligent CAD
systems, computational geometry, reverse engineering, and levels of details for
curves and surfaces. The major goal of this book is to stimulate views and provide
a source where students, researchers, and practitioners can find the latest devel-
opments in the field of interactive curve modeling and its applications. The book
provides classical and up-to-date theory and practice to get the problems solved in
diverse areas of science and engineering.

All the chapters of the book will contribute toward curve modeling techniques,
applications, and systems. The book will have the best possible utility for stu-
dents, researchers, computer scientists, practicing engineers, and many others who
seek classical and state-of-the-art techniques, applications, and systems with curve
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modeling. It will be an extremely useful book for undergraduate senior students as
well as graduate students in the areas of computer science, engineering, and other
computational sciences.

Suggested Course Outlines

This book is designed to have around fifteen chapters. These chapters will con-
tribute toward interactive curve modeling techniques, applications, systems, and
tools. The book is planned to have the best possible utility for researchers, com-
puter scientists, practicing engineers, and many others who seek classical and
state-of-the-art techniques and applications for computer graphics, vision, and
imaging. It will also be equally and extremely useful for undergraduate senior
students as well as graduate students in the areas of computer science. It is also
beneficial to students in other disciplines including computer engineering, electri-
cal engineering, mechanical engineering, and mathematics. The book is equally
beneficial to researchers and practitioners in the industry and academia.

The book has been designed as a course book for undergraduate as well as grad-
uate students in the area of computer science in particular. The main audience of
the book are the communities related to the field of computer graphics, vision,
and imaging. However, it can be useful for students in other disciplines like com-
puter engineering, electrical engineering, mechanical engineering, mathematics,
etc. The book is equally beneficial to researchers and practitioners in the industry.
The book can formulate at least three courses as follows:

Course I. As an undergraduate course, at senior level, Chaps. 1–3, 8, 9, 11 (any
two corner detectors), 12 (any two methods), 13, and 14 (one heuristic
approach) will comprise a full length three credit hours course for a semester
of 15 weeks. This course can be conducted with practical projects of reason-
able weight.

Course II. As a graduate course consisting of Chaps. 1–4, 6–8 (self-study), 9, and
11–14 (one heuristic approach). This course should also have heavy projects
for practical applications.

Course III. As a slightly different graduate course, if the undergraduate course
described in Course I is considered to be a prerequisite. This course can be
designed with Chaps. 4–7, 9 (using other curve schemes in the book but
different than those in Chap. 9), 11–13 (just a quick review), 14, and 15.
This course design can also consist of some state-of-the-art topics together
with good weighted projects.

The researchers and practitioners can utilize the manuscript as a source as well
as a reference book. Depending on their needs, they can study on pick and choose
basis. They are also advised to study in their leisure time as it may prove to be
fruitful to them.
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Required Background

As such, it is not required to possess a specific qualification as a prerequisite to any
of the undergraduate Course I or graduate courses II or III mentioned above. But,
the user of this book is presumed to have some knowledge of computer program-
ming together with some basic mathematical topics including analytic geometry,
linear algebra, and calculus.
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2
Weighted Nu Splines

Abstract. Weighted ν-splines are the composition of two spline methods, namely, weighted
splines and ν-splines. These are the generalization of cubic spline method and are
highly useful for CAD/CAM and various applications in computer graphics. Both—
interpolatory and freeform—schemes are available in the literature. This chapter explains
interpolatory weighted ν-splines together with a construction of its B-spline-like form.
The design curves, constructed through B-spline-like form, possess all the ideal geometric
properties such as partition of unity, convex hull, and variation diminishing. The splines
provide not only a variety of very interesting shape control such as point and interval
tensions but also, as a special case, recover the cubic spline method. In addition, these
weighted ν-splines also provide, as special cases, the weighted splines and the ν-splines.
The method for evaluating these splines is suggested by a transformation to Bézier form.

2.1 Introduction

Designing of curves, especially those curves that are robust and easy to control and
compute, has been one of the significant problems of computer graphics and geo-
metric modeling. Specific applications including font designing, capturing hand-
drawn images on computer screens, data visualization, and computer-supported
cartooning are main motivations toward curve designing. In addition, various other
applications in CAD/CAM/CAGD are also a good reason to study this topic. Many
authors have worked in this direction. For brevity, the reader is referred to [1–22].

A cubic spline curve method is considered to be a considerably decent approach
for designing applications in the area of computer graphics and geometric mod-
eling. However, due to its various limitations, such as lack of freedom in shape
control, a designer may not have much help. In this study, the weighted ν-spline
method has been reviewed. This curve design method, in addition to enjoying the
good features of cubic splines, possesses interesting shape design features too.
It has two families of shape parameters working in such a way that one family
of parameters is associated with intervals and the other with points. These para-
meters provide a variety of shape control such as point and interval tension. This
is an interpolatory curve scheme, which utilizes a piecewise cubic function in its
description. However, it is desired to extend this idea to freeform curves, which
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22 2. Weighted Nu Splines

can enjoy all the ideal properties related to B-spline theory. This work is mainly
concerned with developing such a theory.

Weighted splines [7] were discovered as a cubic spline method. The method
provides a C1 computationally simpler alternative to the exponential spline-under-
tension [4, 13, 20]. Regarding shape characteristics, it has shape control parame-
ters associated with each interval, which can be used to flatten or tighten the curve
locally. Nu-splines [11,12] were discovered as another cubic spline method. It pro-
vides a GC2 computationally simpler alternative to the exponential spline-under-
tension [4,13,21]. Regarding shape characteristics, it has shape control parameters
associated with each point, which can be used to tighten the curve both locally and
globally. The ideas of weighted splines and Nu-splines were married together to
formulate another spline called weighted Nu-spline [11, 12, 19, 22]. This curve
design method covers the shape features of both of its counter parts and provides
a C1 computationally economical method.

B-splines are a useful and powerful tool for computer graphics and geometric
modeling. They can be found frequently in the existing CAD/CAM (computer-
aided design/computer -aided manufacturing) systems. They form a basis for the
space of n th degree splines of continuity class Cn−1. Each B-spline is a non-
negative n th-degree spline that is nonzero only on n + 1 intervals. The B-splines
form a partition of unity, that is, they sum up to one. Curves generated by summing
control points multiplied by the B-splines have some very desirable shape proper-
ties, including the local convex hull property and variation diminishing property.

It is desirable to generalize the idea of B-spline-like local basis functions for the
classes of splines with shape parameters considered in the description of continu-
ity. The first local basis for GC2 splines was developed by Lewis [10]. In 1981,
Barsky [1] generalized B-splines to Beta splines. These splines preserve the geo-
metric smoothness of the design curve while allowing the continuity conditions
on the spline functions at the knots to be varied by certain parameters, thus giving
greater flexibility. Later, in 1984, Bartels and Beatty [2] developed local bases for
Beta spline curves that are equivalent to Boehm’s [3] Gamma splines. Foley [7],
in 1987, constructed a B-spline-like basis for weighted splines; different weights
were built into the basis functions so that the control point curve was a C1 piece-
wise cubic with local control of interval tension.

In this work, a constructive approach has been adopted to build B-spline-like
basis for cubic spline curves with the same continuity constraints as those for inter-
polatory weighted v-splines. These are local basis functions with local support
which have the property of being positive everywhere. The design curve, con-
structed through these functions, possesses all the ideal geometric properties like
partition of unity, convex hull, and variation diminishing. This curve method pro-
vides not only a variety of very interesting shape control such as point and interval
tensions, but also, as a special case, recovers the cubic B-spline curve method.
In addition, it also provides B-spline-like design curves for weighted splines,
ν-splines and weighted ν-splines. The method for evaluating these splines is
suggested by a transformation to Bézier form.
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The approach adopted in the construction of local basis for the weighted
ν-splines is quite different from those adopted for different spline methods
in [1–8, 15]. The way for evaluating the weighted ν-splines representation of
a curve is suggested by a transformation to piecewise defined Bézier form. This
form will also expedite a proof of the variation diminishing property for the Bézier
representation.

This chapter is related the weighted ν-spline method [19, 22] explained in
Section 2.2. It studies, in Section 2.3, a B-spline-like local basis for the weighted
ν-spline. The design curve in Section 2.4 maintains the C1 continuity of the
weighted ν-splines. This description of freeform weighted ν-spline not only pro-
vides a variety of interesting shape control such as point and interval tensions
but also, as a special case, recovers the cubic B-spline curve method. In addition,
it also provides B-spline like design curves for weighted splines, ν-splines and
weighted ν-splines. The method has been extended for the construction of surfaces
in Section 2.5. Section 2.6 summarizes the chapter.

2.2 Some Spline Methods

This section gives a brief review of the cubic spline, weighted splines, ν-splines,
and weighted ν-splines. Detailed description of the weighted ν-splines is given in
Sections 2.3 and 2.4. Assume that we are given knot partition as t1 < t2 < . . . . <
tn , and set of control points F1, F2, . . . , Fn . Let us have the Followings:

Point tension factors: νi ≥ 0, i = 1, 2, . . . , n,

Interval weights: wi > 0, i = 1, 2, . . . , n.

}
, (2.1)

Consider the piecewise cubic function:

p(t) ≡ pi (t) = Fi (1 − θ)3 + 3θ(1 − θ)2Vi + 3θ2(1 − θ)Wi + Fi+1θ
3, (2.2)

where
θ = t − ti

hi
, hi = ti+1 − ti , (2.3)

and
Vi = Fi + hi Di

3
, Wi = Fi+1 − hi Di+1

3
. (2.4)

It is obvious to see that the piecewise cubic function (2.2) holds the following
interpolatory properties:

p(ti ) = Fi , p(ti+1) = Fi+1

p(1)(ti ) = Di , p(1)(ti+1) = Di+1

}
, (2.5)

where p(1) denotes first derivative with respect to t and Di denote derivative values
given at the knots ti . This leads the piecewise cubic (2.2) to the piecewise Hermite
interpolant p ∈ C1[t1, tn].
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2.2.1 Cubic Splines
The cubic spline interpolant is a C2 piecewise cubic function p(t) that minimizes

V ( f ) =
n−1∑
i=1

ti+1∫
ti

[
f ′′(t)

]2dt,

subject to the interpolation conditions f (ti ) = Fi for i = 1, 2, . . . , n and one of
the following end conditions:

• Type 1: First derivative end conditions,
• Type 2: Natural end conditions, or
• Type 3: Periodic end conditions.

Given Fi and Di for i = 1, 2, . . . , n, there exists a unique C2 piecewise cubic
function f (t) that satisfies f (ti ) = Fi and f ′(ti ) = Di for i = 1, 2, . . . , n.
The unknowns are the first derivative values, Di , i = 1, 2, . . . , n, and once they
are computed, the function f (t) can be easily evaluated using the standard piece-
wise cubic Hermite form explained in (2.2). Necessary and sufficient conditions
for the function f (t) to be the cubic spline interpolant are that its derivatives Di ’s
satisfy

ĉi−1 Di−1 + (
2ĉi−1 + 2ĉi

)
Di + ĉi Di+1 = b̂i (Fi+1 − Fi ) + b̂i−1 (Fi − Fi−1) ,

for i = 1, 2, . . . , n, where ĉi = 1/hi , b̂i = 3ĉi/hi . The above system of equa-
tions provides (2.n −2) equations for n unknowns, D1, . . ., Dn , and the additional
equations come from the given end conditions. The equations for Type I first deriv-
ative end conditions are D1 = f ′(t1) and Dn = f ′(tn). For Type II natural end
conditions they are

2ĉ1 D1 + ĉ1 D2 = b̂1 (F2 − F1) ,

and
ĉn−1 Dn−1 + 2ĉn−1 Dn = b̂n−1(Fn − Fn−1).

For Type 3 periodic end conditions, they are(
2ĉ1 + 2ĉn−1

)
D1 + ĉ1 D2 + ĉn−1 Dn−1 = b̂1(F2 − F1) + b̂n−1(Fn − Fn−1),

and D1 = Dn . The linear system of equations that occurs when Type 1 or 2
end conditions are used is tridiagonal and diagonally dominant; thus it can be
solved efficiently by using a standard tridiagonal system solver. Figure 2.1 is a
cubic spline curve for a data shown as bullets.

2.2.2 Weighted Splines
The weighted spline interpolant is a C1 piecewise cubic function p(t) that mini-
mizes

V ( f ) =
n−1∑
i=1

ωi

ti+1∫
ti

[
f ′′(t)

]2dt,
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FIGURE 2.1. The default weighted ν-spline with periodic end conditions.

subject to the interpolation conditions f (ti ) = Fi for i = 1, 2, . . . , n and one of
the Type 1, Type 2, and Type 3 end conditions.

The ωi ’s are termed as interval weights because they “tighten” the curve on the
i th interval in the same way that they do for the weighted splines in [14]. If and all
ωi = q , where q is some constant value, then the weighted spline equals the cubic
spline as in Section 2.2.1.

The approach taken in [21] uses piecewise cubic Hermite basis functions to rep-
resent the weighted splines. Given Fi and Di for i = 1, 2, . . . , n, there exists a
unique C1 piecewise cubic function f (t) that satisfies f (ti ) = Fi and f ′(ti ) =
Di for i = 1, 2, . . . , n. The unknowns are the first derivative values, Di , i =
1, 2, . . . , n, and once they are computed, the function f (t) can be easily evalu-
ated using the standard piecewise cubic Hermite form. Necessary and sufficient
conditions for the function p(t) to be the weighted spline interpolant are that its
derivatives Di satisfy

ci−1 Di−1 + (2ci−1 + 2ci ) Di + ci Di+1 = bi (Fi+1 − Fi ) + bi−1 (Fi − Fi−1) ,

for i = 1, 2, . . . , n, where ci = ωi/hi , bi = 3ci/hi . The above system of
equations provides (n − 2) equations for n unknowns, D1, . . . , Dn , and the addi-
tional equations come from the given end conditions. The equations for Type I first
derivative end conditions are D1 = f ′(t1) and Dn = f ′(tn). For Type II natural
end conditions they are

2c1 D1 + c1 D2 = b1 (F2 − F1) ,

and
cn−1 Dn−1 + 2cn−1 Dn = bn−1(Fn − Fn−1).

For Type 3 periodic end conditions, they are

2c1 + 2cn−1 D1 + c1 D2 + cn−1 Dn−1 = b1(F2 − F1) + bn−1(Fn − Fn−1),
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and D1 = Dn . The linear system of equations that occurs when Type 1 or 2 end
conditions are used is tridiagonal and diagonally dominant; thus it can be solved
efficiently by using a standard tridiagonal system solver.

2.2.3 Nu Splines
The ν-spline interpolant is a GC2 piecewise cubic function p(t) that minimizes

V ( f ) =
n∑

i=1

νi
[

f ′(ti )
]2

,

subject to the interpolation conditions f (ti ) = Fi for i = 1, 2, . . . , n and one of
the Type 1, Type 2, and Type 3 end conditions.

The νi are termed point tension factors because they “tighten” a parametric
curve at the i th point in the same way that they do for the ν-splines in [11, 12].
If νi = 0 ν-spline equals the cubic spline in [11, 12].

The approach taken in [11,12,19,21] uses piecewise cubic Hermite basis func-
tions to represent the ν-splines. Given Fi and Di for i = 1, 2, . . . , n, there exists a
unique GC2 piecewise cubic function f (t) that satisfies f (ti ) = Fi and f ′(ti ) =
Di for i = 1, 2, . . . , n. The unknowns are the first derivative values, Di , i =
1, 2, . . . , n, and once they are computed, the function f (t) can be easily evaluated
using the standard piecewise cubic Hermite form. Necessary and sufficient condi-
tions for the function p(t) to be the ν-spline interpolant are that its derivatives Di
satisfy

c̆i−1 Di−1 +
(

1
2
νi + 2c̆i−1 + 2c̆i

)
Di + c̆i Di+1 = b̆i

(
Fi+1 − Fi

) + b̆i−1
(
Fi − Fi−1

)
,

for i = 1, 2, . . . , n, where c̆i = 1/hi , b̆i = 3c̆i/hi . The above system of equa-
tions provides (n − 2) equations for n unknowns, D1, . . . , Dn , and the additional
equations come from the given end conditions. The equations for Type I first deriv-
ative end conditions are D1 = f ′(t1) and Dn = f ′(tn). For Type II natural end
conditions they are(

1
2
ν1 + 2c1

)
D1 + c1 D2 = b1 (F2 − F1) ,

and
cn−1 Dn−1 +

(
1
2
νn + 2cn−1

)
Dn = bn−1(Fn − Fn−1).

For Type 3 periodic end conditions, they are(
1
2
ν1 + 1

2
νn + 2c1 + 2cn−1

)
D1 + c1 D2 + cn−1 Dn−1

= b1(F2 − F1) + bn−1(Fn − Fn−1),

and D1 = Dn . The linear system of equations that occurs when Type 1 or 2 end
conditions are used is tridiagonal and diagonally dominant; thus it can be solved
efficiently by using a standard tridiagonal system solver.



2.2. Some Spline Methods 27

2.2.4 Weighted Nu Splines
The weighted ν-spline interpolant is a C1 piecewise cubic function p(t) that min-
imizes

V ( f ) =
n−1∑
i=1

ωi

ti+1∫
ti

[
f ′′(t)

]2dt +
n∑

i=1

νi
[

f ′(ti )
]2

,

subject to the interpolation conditions f (ti ) = Fi for i = 1, 2, . . . . . . , n and one
of the Type 1, Type 2, Type 3 end conditions. This is the marriage of Weighted
splines and Nu splines which can be recovered as special cases discussed later in
this chapter.

The νi are termed point tension factors because they ‘tighten’ a parametric
curve at the i th point in the same way that they do for the ν-splines in [11, 12].
The wi are termed interval weights because they ‘tighten’ the curve on the i th
interval in the same way that they do for the weighted splines in [14]. If νi = 0
and all ωi = q , where q is some constant value, then the weighted ν-spline equals
the ν-spline in [11, 12] with tension factors νi/q. If all νi = 0, then it equals the
weighted spline given in [14].

The approach taken in [8] uses piecewise cubic Hermite basis functions to
represent the weighted ν-splines. Given Fi and Di for i = 1, 2, . . . , n, there
exists a unique C1 piecewise cubic function f (t) that satisfies f (ti ) = Fi and
f ′(ti ) = Di for i = 1, 2, . . . , n. The unknowns are the first derivative values, Di ,
i = 1, 2, . . . , n, and once they are computed, the function f (t) can be easily eval-
uated using the standard piecewise cubic Hermite form. Necessary and sufficient
conditions for the function p(t) to be the weighted ν-spline interpolant are that its
derivatives Di satisfy

ci−1 Di−1 +
(

1
2
νi + 2ci−1 + 2ci

)
Di + ci Di+1

= bi (Fi+1 − Fi ) + bi−1 (Fi − Fi−1) , (2.6)

for i = 1, 2, . . . , n. The above system of equations provides (n − 2) equations
for n unknowns, D1, . . . , Dn , and the additional equations come from the given
end conditions. The equations for Type I first derivative end conditions are D1 =
f ′(t1) and Dn = f ′(tn). For Type II natural end conditions they are(

1
2
ν1 + 2c1

)
D1 + c1 D2 = b1 (F2 − F1) ,

and
cn−1 Dn−1 +

(
1
2
νn + 2cn−1

)
Dn = bn−1(Fn − Fn−1).

For Type 3 periodic end conditions, they are(
1
2
ν1 + 1

2
νn + 2c1 + 2cn−1

)
D1 + c1 D2 + cn−1 Dn−1

= b1(F2 − F1) + bn−1(Fn − Fn−1),
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and D1 = Dn . The linear system of equations that occurs when Type 1 or 2 end
conditions are used is tridiagonal and diagonally dominant; thus it can be solved
efficiently by using a standard tridiagonal system solver.

The weighted ν-spline can be computed by solving for Di ’s. This can be done
by re-writing the system of equations in (2.10) as follows:

ci−1 Di−1 +
(νi

2
+ 2ci−1 + 2ci

)
Di + ci Di+1 = 3ci�i + 3ci−1�i−1, (2.7)

where
�i = (Fi+1 − Fi ) /hi .

for i = 2, . . . , n − 1. For given appropriate end conditions (Type 1, Type 2, or
Type 3), this system of equations is a tridiagonal linear system. This is also diag-
onally dominant for the following constraints on the shape parameters as in (2.1),
and hence has a unique solution for Di ’s. As far as the computation method is
concerned, it is much more economical to adopt the LU-decomposition method to
solve the tridiagonal system. Therefore, the above discussion can be concluded in
the following:

Theorem 2.1. For the shape parameter constraints (2.1), the spline solution of
the weighted v-spline exists and is unique.

Remark 2.1. Each component of the parametric weighted ν-spline is a C1 func-
tion in general, but it has second-order geometric continuity at ti if ωi−1 = ωi and
the tangent vector at ti is non zero and it is C2 at ti if ωi−1 = ωi and νi = 0.

2.2.5 Demonstration
Figure 2.1 is the parametric weighted ν-spline interpolant to the points denoted by
circles using periodic end conditions. In Figure 2.2, interval weight,ωi , of 30 is
used in the base interval, while point tension factors, νi of 10 are used on the four
vertices defining the “neck.” The rest of the parameters are taken as ωi = 1 and
νi = 0.

2.3 Freeform Weighted Nu Spline

This section is devoted to constructing the freeform weighted Nu spline which has
inherent properties of B-spline curves. This formulation is possible through the
construction of local support basis Bi ’s to compute the cubic weighted ν-spline
p(t) satisfying the following constraints:⎡

⎣ p(ti+)

p(1)(ti+)

p(2)(ti+)

⎤
⎦ =

⎡
⎣ 1 0 0

0 1 0
0 νi

ωi

ωi−1
ωi

⎤
⎦

⎡
⎣ p(ti−)

p(1)(ti−)

p(2)(ti−)

⎤
⎦ . (2.8)
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FIGURE 2.2. The weighted ν-spline with periodic end conditions using ωi = 30 on the
base interval, ωi = 1 otherwise, νi = 10 on the four vertices defining the “neck,” and
νi = 0 otherwise.

2.3.1 Local Support Basis
For the purpose of the analysis, let additional knots be introduced outside the knot
partition t1 < t2 < . . . < tn of the interval [t1, tn], defined by:

t−2 < t−1 < t0 < t1 and tn < tn+1 < tn+2 < tn+3. (2.9)

Let
ai = 1/ci , (2.10)

and φi be cubic weighted ν-spline:

φi (t) =
{

0, t ≤ ti−2,

1, t ≥ ti+1.
(2.11)

Imposing weighted ν-spline constraints (2.8), we have:

φi (ti−1) = hi−2

3
φ

(1)
i (ti−1),

φi (ti ) = 1 − hi

3
φ

(1)
i (ti ),

φ
(1)
i (ti−1) = Ai

Ci
,

and
φ

(1)
i (ti ) = Bi

Ci
,
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where, if di = 1
2 ai ai−1νi + ai−1 + ai , then

Ai = 3ai−2

hi−1
di ,

Bi = 3ai

hi−1
di−1,

Ci = di di−1 + ai

hi−1
(hi−1 + hi )di−1 + ai−2

hi−1
(hi−1 + hi−2)di .

Let

Di = hi−1di di−1 + ai (hi−1 + hi )di−1 + ai−2(hi−1 + hi−2)di ,

µi = φi+1(ti ), λi = 1 − φi (ti ),

µ̂i = φ
(1)
i+1(ti ), λ̂i = φ

(1)
i (ti ),

Then

λ̂i = 3ai di−1

Di
, µ̂i = 3ai−1di+1

Di+1
,

µi = hi−1

3
µ̂i , λi = hi

3
λ̂i ,

and hence
0 ≤ µi ≤ 1, 0 ≤ λi ≤ 1 and 0 ≤ µi + λi ≤ 1.

Now define
Bi (t) = φi (t) − φi+1(t).

Then Bi has the local support (ti−2, ti+2) and an explicit representation of B j
on any interval (ti , ti+1) (in particular, for i = j − 2, j − 1, j, j + 1) can be
calculated as:

B j (t) = (1 − θ)3 B j (ti ) + θ(1 − θ)2(3B j (ti )hi B(1)
j (ti ))

+ θ2(1 − θ)(3B j (ti+1) − hi B(1)
j (ti+1)) + θ3 B j (ti+1), (2.12)

where
B j (ti ) = B(1)

j (ti ) = 0 for i �= j − 1, j, j + 1,

and
B j (t j−1) = µ j−1, B(1)

j (t j−1) = µ̂ j−1,

B j (t j ) = 1 − λ j − µ j , B(1)
j (t j ) = λ̂ j − µ̂ j ,

B j (t j+1) = λ j+1, B(1)
j (t j+1) = −λ̂ j+1.

⎫⎪⎪⎬
⎪⎪⎭ (2.13)

Careful examination of the Bézier vertices of B j (t) in (2.12) shows these to be
non-negative for νi , ωi satisfying (2.7) and thus B j (t) ≥ 0, ∀t . This leads to the
following:



2.3. Freeform Weighted Nu Spline 31

Proposition 2.1. The local support basis functions (2.12) are such that the foll-
owing properties hold:

(i) (Local support) B j (t) = 0 for t /∈ (t j−2, t j+2),

(ii) (Partition of unity)
n+1∑
j=−1

B j (t) = 1 for t ∈ [t1, tn],
(iii) (Positivity) B j (t) ≥ 0 for all t .

2.3.2 Design Curve
Now, we need a convenient method to compute the curve representation. It is
desired to apply the above developed local basis functions to develop a freeform
weighted ν-spline curve as follows:

P(t) =
n+1∑
j=−1

B j (t)Pj , t ∈ [t1, tn], (2.14)

where Pj ∈ RN , j = 0, 1, . . . , n + 1, define the control points of the representa-
tion. By the local support property,

P(t) =
i+2∑

j=i−1

B j (t)Pj , t ∈ [ti , ti+1), i = 0, . . . , n − 1.

Substitution of (2.12), t ∈ [ti , ti+1), then gives the piecewise defined Bézier rep-
resentation

P(t) ≡ Pi (t) = Fi (1 − θ)3 + 3θ(1 − θ)2Vi + 3θ2(1 − θ)Wi + Fi+1θ
3, (2.15)

where
Fi = λi Pi−1 + (1 − λi − µi )Pi + µi Pi+1,
Vi = (1 − αi )Pi + αi Pi+1,
Wi = βi Pi + (1 − βi )Pi+1,

⎫⎬
⎭ (2.16)

with

αi = µi + hi µ̂i/3 = µ̂i

3
(hi−1 + hi ),

βi = λi+1 + hi
∧
λi = λ̂i+1

3
(hi + hi+1).

This transformation to Bézier form is very convenient for computational purposes
and also leads to the following:

Proposition 2.2. (Variation Diminishing Property) The weighted ν-spline curve
P(t), t ∈ [t0,tn], defined by (2.14), crosses any (hyper) plane of dimension N − 1
no more times than it crosses the “control polygon” joining the control points
P−1, P0, . . . , Pn+1.
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Proof. Following the arguments of positivity in the previous proposition, it is
straightforward that 0 ≤ αi ≤ 1, 0 ≤ βi ≤ 1, and 0 ≤ αi + βi ≤ 1. Thus, Vi and
Wi lie on the line segment joining Pi and Pi+1, where Vi is before Wi . It can also
be simply noted that

Fi = (1 − γi )Wi−1 + γi Vi , (2.17)

where
0 < γi = hi−1

hi−1 + hi
< 1.

Thus, the control polygon of the piecewise defined Bézier representation is
obtained by corner cutting of the weighted ν-spline control polygon. Since the
piecewise defined Bézier representation is variation diminishing, it follows that
weighted ν-spline representation is variation diminishing.

2.3.3 Shape Control
The shape parameters, defined in (2.7), can be used to control the local or
global shape of the design curve. To analyze such behaviors, the explicit form
on (2.ti , ti+1) of the weighted ν-spline design curve (2.14) can be expressed as:

P(t) = li (t) + ei (t), (2.18)

where
li (t) = (1 − θ)Fi + θ Fi+1, (2.19)

and

ei (t) = θ(1 − θ)
{[

(Fi+1 − Fi ) − hi P(1)(ti )
]
(θ − 1)

+
[
(Fi+1 − Fi ) − hi P(1)(ti+1)

]
θ
}

. (2.20)

Proposition 2.3. Let ωi = ω ≥ 1, and νi = 0,∀i are all bounded then the
weighted ν-spline design curve is straightway the standard cubic spline.

Proof. It follows from the last constraint of relation (2.8).

Proposition 2.4. (Global Tension) Let ωi ≥ 1, ∀i , be bounded and νi ≥ ν then
the weighted ν-spline curve (2.14) converges uniformly to the control polygon
P0, . . ., Pn as ν → ∞.

Proof. Let νi = ν, ∀i then from (2.1)

lim
ν→∞ P(1)(ti ) = 0. (2.21)

Moreover
lim

ν→∞ µ̂i = 0 = lim
ν→∞ λ̂i , ∀i.
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This implies the following:

lim
ν→∞ Fi = Pi , ∀i. (2.22)

More generally, for νi ≥ ν ≥ 0, it can be shown that

max
i

|λ̂i | ≤ r(ν),

and
max

i
|µ̂i | ≤ s(ν),

where
lim

ν→∞ r(ν) = 0 = lim
ν→∞ s(ν),

and again (2.21) and (2.22) hold. Hence the result.

Proposition 2.5. [Local Tension] Consider an interval [tk, tk+1] for a fixed k.
Then on [tk, tk+1] weighted ν-spline curve converges uniformly to a line segment
of the line Pk Pk+1 as wk → ∞ where ωk−1 and νk are bounded.

Proof. Careful examination shows

lim
ω→∞ µk = hk−1

(3hk + hk−1 + hk+1)
= α̂k(say)

lim
ω→∞ µk+1 = 0

lim
ω→∞ λk = 0

lim
ω→∞ λk+1 = hk+1

(3hk + hk−1 + hk+1)
= β̂k(say)

This implies the following:

lim
ω→∞ Fk = (

1 − α̂k
)

Pk + α̂k Pk+1 = F̂k(say)

and
lim

ω→∞ Fk+1 = β̂k Pk +
(

1 − β̂k

)
Pk+1 = F̂k+1(say)

Obviously F̂k and F̂k+1 lie on Pk Pk+1 and F̂k is before F̂k+1 as α̂k < (1 − β̂k).
Also

lim
ω→∞(Fk+1−Fk)= lim

ω→∞ hk P(1)(tk)= lim
ω→∞ hk P(1)(tk+1)= 3hk(Pk+1 − Pk)

(3hk + hk−1 + hk+1)

Hence from (2.18), (2.19), (2.20) if P(t) = Pk(t) for t ∈ (tk, tk+1), then

lim
ω→∞ Pk (t) = (1 − θ) F̂k + θ F̂k .
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Proposition 2.6. (Local Tension) Consider an interval as in Proposition 5. Then
on [tk, tk+1], the weighted ν-spline converges uniformly to the linear interpolant
li (t) as both νk , νk+1→ ∝, where ωk−1, ωk , ωk+1 are bounded.

Proof. It can be noted that

lim µk = lim µk+1 = 0,

lim λk = lim λk+1 = 0,

and
lim P(1) (tk) = lim P(1) (tk+1) = 0.

This gives the desired result.

2.3.4 Demonstration
The tension behavior of the weighted ν-spline is illustrated by the following sim-
ple examples for data set in R2. Unless otherwise stated, in all the figures, the
parameter νi will be assumed as zero ∀i and the parameters ωi as 1 for all i .

Figure 2.3 is the default curve, which is a cubic spline for νi = 0, and ωi = 1,
for all i . The control polygon, together with the control points, is also shown in
the figure. Figure 2.4 shows the effect of a progressive increase in the interval
tension in the base of the figure. The top, middle, and bottom curves have been
demonstrated for ω = 1, 10, and 100, respectively. The effect of the high-tension
parameters is clearly seen in the corresponding interval in the base of the figure.
Figure 2.5 shows the effect of a progressive increase in point tension behavior
locally at two opposite points of the figure. The top, middle, and bottom curves
have been demonstrated for ν = 0, 10, and 100, respectively. The effect of the
high-tension parameters is clearly seen at the corresponding points in the figure.

FIGURE 2.3. The default weighted Nu spline.
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FIGURE 2.4. The weighted Nu spline with interval tension at the base with ω values as 1
(left curve), 10 (middle curve), 100 (right curve).

FIGURE 2.5. The weighted Nu spline with corner tension at two opposite points with ν
values as 0 (left curve), 10 (middle curve), 100 (right curve).

FIGURE 2.6. The weighted Nu spline with global tension ν = 1 (top curve), ν = 5 (middle
curve), ν = 100 (bottom curve).

Figures 2.6 illustrates the effect of progressively increasing the values of the
point tension parameters νi ’s = 0, 5, and 100, for the top, middle, and bottom
curves, respectively, at all the points of the figure. This is the global tension effect
due to progressive increase.

Figure 2.7 demonstrates an important observation about the negative values of
the shape parameters. The global values of the interval shape parameters ω’s will
not make any effect to the picture. However, the local values do influence the
picture. The curve bulges inside for negative values ω = 0,−3,−4,−5,−25,
and −100. It can be noted (row-wise from left to right) that lower negative values
make the curve bulge more inside, but higher negative values again start making
the curve tensed in the interval.

Behavior of the negative ν values can be seen in Figure 2.8. It illustrates the
effect of progressive negative increase in the values of the point tension parameters
νi ’s = 0,−1,−5,−25,−100, and −1000. It can be seen (row-wise from left to
right) that Lower negative values make the curve bulge inside so much so the
curve starts looping with the negative increase. However, it again starts getting
tensed after attaining certain values. Ultimately, higher negative values make the
curve tensed to converge to the control polygon.
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FIGURE 2.7. The weighted Nu spline curves (row vise from left to right) with negative
global tension ω values 0,−3, −4, −5, −25, 100.

FIGURE 2.8. The weighted Nu spline curves (row vise from left to right) with negative
global tension ν values 0,−1, −5, −25, 100, and 1000.
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2.3.5 Advantages and Features
The method has various advantages and features as follows:

• It enjoys the good features of cubic splines.
• It enjoys all the standard geometric properties of B-splines.
• The method is geometrically smooth.
• It recovers the cubic B-spline method as a special case.
• It recovers the weighted spline method as a special case.
• It recovers the Nu-spline method as a special case.
• It possesses interested shape design features.
• It has two families of shape parameters working in such a way that one family

of parameters is associated with intervals and the other with points. These para-
meters provide a variety of shape controls such as point and interval tension.

• Negative weights can also be utilized for shape design.
• It is computationally economical because it consumes the cubic function only.
• The method of evaluation is suggested by a transformation to Bézier form,

which is computable by any well-known recursive method too.
• In addition to direct manipulation, the interpolation method can be computed

through B-spline-like formulation too. This point will be discussed in detail
somewhere else later.

• The curve method is extendable to surfaces. The direct approach using a tensor
product is the simplest one.

2.4 Surfaces

The extension of the curve scheme, to tensor product surface representations:

P(t̃, t) =
m+1∑
i=−1

n+1∑
j=−1

Pi, j B̃i (t̃)B j (t),

where t̃−2 ≤ t̃ ≤ t̃m+3, t−2 ≤ t ≤ tn+3, is immediately apparent. This surface
presents a bicubic weighted ν-spline surface with shape parameters as:

ṽi ≥ 0, i = 1, . . . , m, w̃i > 0, i = 1, . . . , m − 1,

ν j ≥ 0, j = 1, . . . , n, ω j > 0, j = 1, . . . , n − 1.

Here
Pi, j ∈ R3, i = −1, . . . , m + 1, j = −1, . . . , n + 1.

are the data points and B̃i , i = −1, . . . , m + 1 and B j , j = −1, . . . , n + 1 are
the local support bases functions for the weighted ν-spline in t̃ and t directions,
respectively. However, this representation exhibits a problem common to all tensor
product descriptions in that the shape control parameters now affect a complete
row or column of the tensor product array.
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Nielson [12] solves this problem for his cubic ν-spline representation by
constructing a Boolean sum, spline-blended, rectangular network of parametric
ν-spline curves. Another possibility is to allow the shape parameters to be variable
in the orthogonal direction to, for example, the local support basis functions of the
tensor product form.

We propose a tensor product like the approach in [16,17], but actually it is not a
tensor product. Instead of step functions, the tension weights are introduced as C2

continuous cubic B-splines in the description of the tensor product. This produces
local control in the construction of surfaces in an independent way. The details
of the proposed method are out of the scope of this paper and will be discussed
elsewhere.

2.5 Summary

A freeform C1 weighted Nu spline curve design has been developed through
the construction of local support B-spline-like basis functions. This cubic spline
method has been developed with a view to its application in computer graphics,
geometric modeling, and CAGD. It is quite reasonable to construct a freeform
cubic spline method, which involves two families of shape parameters in exactly
a similar way as in interpolatory weighted ν-spline. These parameters provide a
variety of local and global shape controls such as interval and point shape effects.
The visual smoothness of the proposed method is also C1, which is same as
the smoothness of interpolatory weighted ν-spline. The freeform C1 weighted
Nu-spline method can be applied to tensor product surfaces, but unfortunately,
in the context of interactive surface design, this tensor product surface is not that
useful because any one of the tension parameters controls an entire corresponding
interval strip of the surface. Thus, as an application of C1 spline for the surfaces, a
method similar to Nielson’s [12] spline blended methods may be attempted. This
will produce local shape control, which is quite useful regarding the computer
graphics and geometric modeling applications.

2.6 Exercises

1. Write a program to implement the curve design method in Section 2.2.
2. Write a program to implement the curve design method in Section 2.3.
3. Check the difference of shape effects in your programs of Exercise 2.6.1 and

2.6.2 when the schemes are implemented in scalar form.
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