
Preface

The aim of this book is to present the central parts of the theory for bases
and frames. The content can naturally be split into two parts: Chapters
1–5 describe the theory on an abstract level, and Chapters 7–11 deal with
explicit constructions in L2-spaces. The link between these two parts is
formed by Chapter 6, which introduces B-splines and their main properties.

Some years ago, I published the book An Introduction to Frames and
Riesz Bases [10], which also appeared in the ANHA series. So, what are
the reasons for another book on the topic? I will give some answers to this
question.

Books written by mathematicians are usually focused on characteriza-
tions of various properties and the search for sufficient conditions for a
desired conclusion to hold. Concrete constructions often play a minor role.
The book [10] is no exception. During the past few years, frames have be-
come increasingly popular, and several explicit constructions of frames of
various types have been presented. Most of these constructions were based
on quite direct methods rather than the classical sufficient conditions for
obtaining a frame. With this in mind, it seems that there is a need for an
updated version of the book [10], which moves the focus from the classical
approach to a more constructive one.

Frame theory is developed in constant dialogue between mathematicians
and engineers. Again, compared with [10], this is reflected in the current
book by several new sections on applications and connections to engineer-
ing. The hope is that these sections will help the mathematically oriented
readers to see where frames are used in practice — and the engineers to
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find the chapter containing the mathematical background for applications
in their field.

The third main change compared with [10] is that the current book is
meant to be a textbook, which should be directly suitable for use in a gradu-
ate course. We focus on the basic topics, without too many side-remarks; in
contrast, [10] tried to cover the entire area, including the research aspects.
The chapters from [10] dealing with research topics have been removed (or
reduced: for example, parts of Chapter 15 about perturbation results now
appear in Section 5.6). We frequently mention the names of the people
who first proved a given result, but for the parts of the theory that can
be considered classical, we do not state a reference to the original source.
A professional reader might miss all the hints to more advanced literature
and open problems; however, the hope is that the more streamlined writing
makes it easier for students to follow the presentation.

For use in a graduate course, a number of exercises is included; they
appear at the end of each chapter. Some of the removed material from [10]
now appears in the exercises.

Let us describe the chapters in more detail. Chapter 1 gives an introduc-
tion to frames in finite-dimensional vector spaces with an inner product.
This enables a reader with a basic knowledge of linear algebra to un-
derstand the idea behind frames without the technical complications in
infinite-dimensional spaces. Many of the topics from the rest of the book
are presented here, so Chapter 1 can also serve as an introduction to the
later chapters.

Chapter 2 collects some definitions and conventions concerning infinite-
dimensional vector spaces. Some standard results needed later in the book
are also stated here. Special attention is given to the Hilbert space L2(R)
and operators hereon. We expect the reader to be familiar with this ma-
terial, so most of the results appear without proof. The exceptions are
the sections about pseudo-inverse operators and some special operators
on L2(R), which play a key role in Gabor theory and wavelet analysis;
these subjects are not treated in classical analysis courses and are therefore
described in detail.

Chapter 3 deals with the theory for bases in Hilbert spaces and Banach
spaces. The most important part of the chapter is formed by a detailed
discussion of Bessel sequences and Riesz bases. The chapter also con-
tains sections on Fourier analysis and wavelet theory, which motivate the
constructions in Chapters 7–11.

Chapter 4 highlights some of the limitations on the properties one can
obtain from bases. Hereby, the reader is provided with motivation for
considering the generalizations of bases studied in the rest of the book.

Chapter 5 contains the core material about frames in general Hilbert
spaces. It gives a detailed description of frames with full proofs, relates
frames and Riesz bases, and provides various ways of constructing frames.



Preface xvii

Chapter 6 introduces B-splines and their main properties. We do not aim
at a complete description of splines but concentrate on the properties that
play a role in the current context.

Chapters 7–11 deal with frames having a special structure. A central
part concerns theoretical conditions for obtaining dual pairs of frames and
explicit constructions hereof. The most fundamental frames, namely frames
consisting of translates of a single function in L2(R), are discussed in Chap-
ter 7. In Chapter 8, these considerations are extended to frames generated
by translations of a collection of functions rather than a single function.
These frames naturally lead to Gabor frames in L2(R), which is the subject
of Chapter 9. We provide characterizations of such frames, as well as ex-
plicit constructions of frames and some of their dual frames. The discrete
counterpart in �2(Z) is treated in Chapter 10; in particular, it is shown
how one can obtain Gabor frames in �2(Z) by sampling of Gabor frames
in L2(R). Wavelet frames are introduced in Chapter 11. The main part of
the chapter is formed by explicit constructions via multiscale methods, but
the chapter also contains a section about general wavelet frames.

Most readers of the second part of the book will mainly be interested in
either Gabor systems or wavelet systems. For this reason, Chapters 7–11
are to a large extent independent of each other. The most notable exception
from that rule is that some of the fundamental results in Gabor analysis
are based on results derived in the chapter about shift-invariant systems.
In general, careful cross-references (and, if necessary, repetitions) between
Chapters 7–11 are provided.

Depending on the level and specific interests of the students, a graduate
course based on the book can proceed in various ways:

• Readers with a limited background in functional analysis (and read-
ers who just want to get an idea about the topic) are encouraged
to read Chapter 1. It will provide the reader with a good under-
standing for the topic, without all the technical complications in
infinite–dimensional vector spaces.

• A short course on frames and Riesz bases in Hilbert spaces can be
based on Sections 3.1–3.3 and Sections 5.1–5.2; these sections will
make the reader able to proceed with most of the other parts of
the book and with a large part of the research literature concerning
abstract frame theory.

• A theoretical graduate course on bases and frames could be based on
Chapter 2, Chapter 3, and Chapter 5. It would be natural to continue
with one or more chapters on concrete frame constructions in L2(R).

• For a course focusing on either Gabor analysis or wavelets, the de-
tailed analysis of frames in Chapter 5 is not necessary. It is enough to
read Chapter 2, Section 3.5 (or Section 3.6), Chapter 4, Section 5.1,
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and parts of Chapter 6 before continuing with the relevant specialized
chapters.
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2
Infinite-dimensional Vector Spaces
and Sequences

After the introduction to frames in finite-dimensional vector spaces in
Chapter 1, the rest of the book will deal with expansions in infinite-
dimensional vector spaces. Here great care is needed: we need to replace
finite sequences {fk}n

k=1 by infinite sequences {fk}∞k=1, and suddenly the
question of convergence properties becomes a central issue. The vector
space itself might also cause problems, e.g., in the sense that Cauchy se-
quences might not be convergent. We expect the reader to have a basic
knowledge about these problems and the way to circumvent them, but
for completeness we repeat the central themes in Sections 2.1–2.4. Sec-
tion 2.5 deals with pseudo-inverse operators; this subject is not expected
to be known and is treated in more detail. Section 2.6 introduces the so-
called moment problems in Hilbert spaces. In Sections 2.7–2.9, we discuss
the Hilbert space L2(R) consisting of the square integrable functions on
R and three classes of operators hereon, as well as the Fourier transform.
The material in those sections is not needed for the study of frames and
bases on abstract Hilbert spaces in Chapter 3 (except Section 3.5 and Sec-
tion 3.6) and Chapter 5, but it forms the basis for all the constructions in
Chapters 7–11.

2.1 Normed vector spaces and sequences

A central theme in this book is to find conditions on a sequence {fk}
in a vector space X such that every f ∈ X has a representation as a
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superposition of the vectors fk. In most spaces appearing in functional
analysis, this cannot be done with a finite sequence {fk}. We are therefore
forced to work with infinite sequences, say, {fk}∞k=1, and the representation
of f in terms of {fk}∞k=1 will be via an infinite series. For this reason, the
starting point must be a discussion of convergence of infinite series. We
collect the basic definitions here together with some conventions.

Throughout the section, we let X denote a complex vector space. A
norm on X is a function || · || : X → [0,∞[ satisfying the following three
conditions:

(i) ||x|| = 0 ⇔ x = 0;

(ii) ||αx|| = |α| ||x||, ∀x ∈ X, α ∈ C;

(iii) ||x + y|| ≤ ||x|| + ||y||, ∀x, y ∈ X.

In situations where more than one vector space appear, we will frequently
denote the norm on X by || · ||X . If X is equipped with a norm, we say that
X is a normed vector space. The opposite triangle inequality is satisfied in
any normed vector space:

||x − y|| ≥ | ||x|| − ||y|| | , x, y ∈ X. (2.1)

We say that a sequence {xk}∞k=1 in X

(i) converges to x ∈ X if

||x − xk|| → 0 for k → ∞;

(ii) is a Cauchy sequence if for each ε > 0 there exists N ∈ N such that

||xk − xl|| ≤ ε whenever k, l ≥ N.

A convergent sequence is automatically a Cauchy sequence, but the op-
posite is not true in general. There are, however, normed vector spaces in
which a sequence is convergent if and only if it is a Cauchy sequence; a
space X with this property is called a Banach space.

Imitating the finite-dimensional setting described in Chapter 1, we want
to study sequences {fk}∞k=1 in X with the property that each f ∈ X has a
representation f =

∑∞
k=1 ckfk for some coefficients ck ∈ C. In order to do

so, we have to explain exactly what we mean by convergence of an infinite
series. There are, in fact, at least three different options; we will now discuss
these options.

First, the notation {fk}∞k=1 indicates that we have chosen some ordering
of the vectors fk,

f1, f2, f3, . . . , fk, fk+1, . . . .

We say that an infinite series
∑∞

k=1 ckfk is convergent with sum f ∈ X if
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
f −

n∑

k=1

ckfk
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∣
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→ 0 as n → ∞.
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If this condition is satisfied, we write

f =
∞∑

k=1

ckfk. (2.2)

Thus, the definition of a convergent infinite series corresponds exactly to
our definition of a convergent sequence with xn =

∑n
k=1 ckfk.

Above we insisted on a fixed ordering of the sequence {fk}∞k=1. It is
very important to notice that convergence properties of

∑∞
k=1 ckfk not

only depend on the sequence {fk}∞k=1 and the coefficients {ck}∞k=1 but also
on the ordering. Even if we consider a sequence in the simplest possible
Banach space, i.e., a sequence {ak}∞k=1 in C, it can happen that

∑∞
k=1 ak

is convergent but that
∑∞

k=1 aσ(k) is divergent for a certain permutation σ
of the natural numbers (Exercise 2.1). This observation leads to the second
definition of convergence. If {fk}∞k=1 is a sequence in X and

∑∞
k=1 fσ(k) is

convergent for all permutations σ, we say that
∑∞

k=1 fk is unconditionally
convergent. In that case, the limit is the same regardless of the order of
summation.

Finally, an infinite series
∑∞

k=1 fk is said to be absolutely convergent if
∞∑

k=1

||fk|| < ∞.

In any Banach space, absolute convergence of
∑∞

k=1 fk implies that the
series converges unconditionally (Exercise 2.2), but the opposite does not
hold in infinite-dimensional spaces. In finite-dimensional spaces, the two
types of convergence are identical.

A subset Z ⊆ X (countable or not) is said to be dense in X if for each
f ∈ X and each ε > 0 there exists g ∈ Z such that

||f − g|| ≤ ε.

In words, this means that elements in X can be approximated arbitrarily
well by elements in Z.

For a given sequence {fk}∞k=1 in X, we let span{fk}∞k=1 denote the vector
space consisting of all finite linear combinations of vectors fk. The definition
of convergence shows that if each f ∈ X has a representation of the type
(2.2), then each f ∈ X can be approximated arbitrarily well in norm by
elements in span{fk}∞k=1, i.e.,

span{fk}∞k=1 = X. (2.3)

A sequence {fk}∞k=1 having the property (2.3) is said to be complete or
total. We note that there exist normed spaces where no sequence {fk}∞k=1

is complete. A normed vector space, in which a countable and dense family
exists, is said to be separable.

When we speak about a finite sequence, we mean a sequence {ck}∞k=1

where at most finitely many entries ck are non-zero.
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2.2 Operators on Banach spaces

Let X and Y denote Banach spaces. An linear map U : X → Y is called an
operator, and U is bounded or continuous if there exists a constant K > 0
such that

||Ux||Y ≤ K ||x||X , ∀x ∈ X. (2.4)

Usually, it will be clear from the context which norm we use, so we will
write || · || for both || · ||X and || · ||Y . The norm of the operator U , denoted
by ||U ||, is the smallest constant K that can be used in (2.4). Alternatively,

||U || = sup {||Ux|| : x ∈ X, ||x|| = 1} .

If U1 and U2 are operators for which the range of U2 is contained in the
domain of U1, we can consider the composed operator U1U2; if U1 and U2

are bounded, then also U1U2 is bounded, and

||U1U2|| ≤ ||U1|| ||U2||. (2.5)

Now consider a sequence of operators Un : X → Y, n ∈ N, which
converges pointwise to a mapping U : X → Y , i.e.,

Unx → Ux, as n → ∞, ∀x ∈ X.

We say that Un converges to U in the strong operator topology. The Banach–
Steinhaus Theorem, also known as the uniform boundedness principle,
states the following:

Theorem 2.2.1 Let Un : X → Y, n ∈ N, be a sequence of bounded op-
erators, which converges pointwise to a mapping U : X → Y . Then U is
linear and bounded. Furthermore, the sequence of norms ||Un|| is bounded,
and ||U || ≤ lim inf ||Un||.

An operator U : X → Y is invertible if U is surjective and injective. For a
bounded, invertible operator, the inverse operator is bounded:

Theorem 2.2.2 A bounded bijective operator between Banach spaces has
a bounded inverse.

In case X = Y , it makes sense to speak about the identity operator I on
X. The Neumann Theorem states that an operator U : X → X is invertible
if it is close enough to the identity operator:

Theorem 2.2.3 If U : X → X is bounded and ||I − U || < 1, then U is
invertible, and

U−1 =
∞∑

k=0

(I − U)k. (2.6)
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Furthermore,

||U−1|| ≤ 1
1 − ||I − U || .

Note that (2.6) should be interpreted in the sense of the operator norm,
i.e., as

∣
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k=0

(I − U)k

∣
∣
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∣
∣

∣
∣
∣
∣
∣
→ 0 as N → ∞.

2.3 Hilbert spaces

A special class of normed vector spaces is formed by inner product spaces.
Recall that an inner product on a complex vector space X is a mapping
〈·, ·〉 : X × X → C for which

(i) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉, ∀x, y, z ∈ X, α, β ∈ C;

(ii) 〈x, y〉 = 〈y, x〉, ∀x, y ∈ X;

(iii) 〈x, x〉 ≥ 0, ∀x ∈ X, and 〈x, x〉 = 0 ⇔ x = 0.

Note that we have chosen to let the inner product be linear in the first
entry. It implies that the inner product is conjugated linear in the second
entry. Frequently, the opposite convention is used in the literature.

A vector space X with an inner product 〈·, ·〉 can be equipped with the
norm

||x|| :=
√
〈x, x〉, x ∈ X.

If X is a Banach space with respect to this norm, then X is called a Hilbert
space. We reserve the letter H for these spaces. We will always assume that
H is non-trivial, i.e., that H �= {0}. The standard examples are the spaces
L2(R) and �2(N) discussed in Section 2.7.

In any Hilbert space H with an inner product 〈·, ·〉, Cauchy–Schwarz’
inequality holds: it states that

|〈x, y〉| ≤ ||x|| ||y||, ∀x, y ∈ H.

Two elements x, y ∈ H are orthogonal if 〈x, y〉 = 0; and the orthogonal
complement of a subspace U of H is

U⊥ = {x ∈ H : 〈x, y〉 = 0, ∀y ∈ U}.

The above definitions and results are valid whether H is finite-
dimensional or infinite-dimensional. Also note that norms and inner
products are defined in a similar way on real vector spaces (just replace
the scalars C by the real scalars R).
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We state a few elementary results concerning Hilbert spaces that will be
used repeatedly during the book. The proof of the first is left to the reader
as Exercise 2.3.

Lemma 2.3.1 For a sequence {xk}∞k=1 in a Hilbert space H the following
are equivalent:

(i) {xk}∞k=1 is complete.

(ii) If 〈x, xk〉 = 0 for all k ∈ N, then x = 0.

Among the linear operators on a Hilbert space, a special role is played
by the continuous linear operators U : H → C. They are called functionals
and are characterized in Riesz’ Representation Theorem:

Theorem 2.3.2 Let U : H → C be a continuous linear mapping. Then
there exists a unique y ∈ H such that Ux = 〈x, y〉 for all x ∈ H.

The uniqueness of the element y ∈ H associated with a given functional
has the following important consequence.

Corollary 2.3.3 Let H be a Hilbert space. Assume that x, y ∈ H satisfy
that

〈x, z〉 = 〈y, z〉, ∀z ∈ H.

Then x = y.

Finally, we note that the norm of an arbitrary element x ∈ H can be
recovered based on the inner product between x and the elements in the
unit sphere in H:

Lemma 2.3.4 For any x ∈ H,

||x|| = sup
||y||=1

|〈x, y〉|.

2.4 Operators on Hilbert spaces

Let U be a bounded operator from the Hilbert space (K, 〈·, ·〉K) into the
Hilbert space (H, 〈·, ·〉H). The adjoint operator is defined as the unique
operator U∗ : H → K satisfying that

〈x,Uy〉H = 〈U∗x, y〉K, ∀x ∈ H, y ∈ K.

Usually, we will write 〈·, ·〉 for both inner products; it will always be clear
from the context in which space the inner product is taken.

We collect some relationships between U and U∗; the proofs can be found
in, e.g., Theorem 4.14 and Theorem 4.15 in [60].
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Lemma 2.4.1 Let U : K → H be a bounded operator. Then the following
holds:

(i) ||U || = ||U∗||, and ||UU∗|| = ||U ||2.
(ii) RU is closed in H if and only if RU∗ is closed in K.

(iii) U is surjective if and only if there exists a constant C > 0 such that

||U∗y|| ≥ C ||y||, ∀y ∈ H.

In the rest of this section, we consider the case K = H. A bounded
operator U : H → H is unitary if UU∗ = U∗U = I. If U is unitary, then

〈Ux,Uy〉 = 〈x, y〉, ∀x, y ∈ H.

A bounded operator U : H → H is self-adjoint if U = U∗. When U is
self-adjoint,

||U || = sup
||x||=1

|〈Ux, x〉| . (2.7)

For a self-adjoint operator U , the inner product 〈Ux, x〉 is real for all
x ∈ H. One can introduce a partial order on the set of self-adjoint operators
by

U1 ≤ U2 ⇔ 〈U1x, x〉 ≤ 〈U2x, x〉, ∀x ∈ H.

Using this order, one can work with self-adjoint operators almost as
with real numbers. For example, under certain conditions it is possible to
“multiply” an operator inequality with a bounded operator. The precise
statement below can be found in [43]:

Theorem 2.4.2 Let U1, U2, U3 be self-adjoint operators. If U1 ≤ U2,
U3 ≥ 0, and U3 commutes with U1 and U2, then U1U3 ≤ U2U3.

An important class of self-adjoint operators consists of the orthogonal
projections. Given a closed subspace V of H, the orthogonal projection of
H onto V is the operator P : H → H for which

Px = x, x ∈ V, Px = 0, x ∈ V ⊥.

If {ek}∞k=1 is an orthonormal basis for V , the operator P is given explicitly
by

Px =
∞∑

k=1

〈x, ek〉ek, x ∈ H.

In case H is a complex Hilbert space and U is a bounded operator on H,
a direct calculation gives that

4〈Ux, y〉 = 〈U(x + y), x + y〉 − 〈U(x − y), x − y〉
+i〈U(x + iy), x + iy〉 − i〈U(x − iy), x − iy〉. (2.8)
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In particular, we can recover the inner product in H from the norm by

4〈x, y〉 = ||x + y||2 − ||x − y||2 + i ||x + iy||2 − i ||x − iy||2, x, y ∈ H,

a result that is known as the polarization identity.

Lemma 2.4.3 Let U : H → H be a bounded operator, and assume that
〈Ux, x〉 = 0 for all x ∈ H. Then the following holds:

(i) If H is a complex Hilbert space, then U = 0.

(ii) If H is a real Hilbert space and U is self-adjoint, then U = 0.

Proof. If H is complex, we can use (2.8); thus, if 〈Ux, x〉 = 0 for all x ∈ H,
then 〈Ux, y〉 = 0 for all x, y ∈ H, and therefore U = 0.

In case H is a real Hilbert space, we must use a different approach. Let
{ek}∞k=1 be an orthonormal basis for H. Then, for arbitrary j, k ∈ N,

0 = 〈U(ek + ej), ek + ej〉
= 〈Uek, ek〉 + 〈Uej , ej〉 + 〈Uek, ej〉 + 〈Uej , ek〉
= 〈Uek, ej〉 + 〈ej , Uek〉
= 2 〈Uej , ek〉;

therefore U = 0. �

Note that without the assumption U = U∗, the second part of the lemma
would fail; to see that, let U be a rotation of 90◦ in R

2.
A bounded operator U : H → H is positive if 〈Ux, x〉 ≥ 0, ∀x ∈ H. On

a complex Hilbert space, every bounded positive operator is self-adjoint.
For a positive operator U , we will often use the following result about the
existence of a square root, i.e., a bounded operator W such that W 2 = U :

Lemma 2.4.4 Every bounded and positive operator U : H → H has
a unique bounded and positive square root W . The operator W has the
following properties:

(i) If U is self-adjoint, then W is self-adjoint.

(ii) If U is invertible, then W is also invertible.

(iii) W can be expressed as a limit (in the strong operator topology) of a
sequence of polynomials in U , and commutes with U .

2.5 The pseudo-inverse operator

It is well-known that not all bounded operators U on a Hilbert space H
are invertible: an operator U needs to be injective and surjective in order
to be invertible. We will now prove that if an operator U has closed range,
there exists a “right-inverse operator” U† in the following sense:
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Lemma 2.5.1 Let H,K be Hilbert spaces, and suppose that U : K → H
is a bounded operator with closed range RU . Then there exists a bounded
operator U† : H → K for which

UU†x = x, ∀x ∈ RU . (2.9)

Proof. Consider the restriction of U to an operator on the orthogonal
complement of the kernel of U , i.e., let

Ũ := U|N⊥
U

: N⊥
U → H.

Clearly, Ũ is linear and bounded. Ũ is also injective: if Ũx = 0, it follows
that x ∈ N⊥

U ∩ NU = {0}. We now prove that the range of Ũ equals the
range of U . Given y ∈ RU , there exists x ∈ K such that Ux = y. By writing
x = x1 + x2, where x1 ∈ N⊥

U , x2 ∈ NU , we obtain that

Ũx1 = Ux1 = U(x1 + x2) = Ux = y.

It follows from Theorem 2.2.2 that Ũ has a bounded inverse

Ũ−1 : RU → N⊥
U .

Extending Ũ−1 by zero on the orthogonal complement of RU we obtain a
bounded operator U† : H → K for which UU†x = x for all x ∈ RU . �

The operator U† constructed in the proof of Lemma 2.5.1 is called the
pseudo-inverse of U . In the literature, one will often see the pseudo-inverse
of an operator U with closed range defined as the unique operator U†

satisfying that

NU† = R⊥
U , RU† = N⊥

U , and UU†x = x, x ∈ RU ; (2.10)

this definition is equivalent to the above construction (Exercise 2.4). We
collect some properties of U† and its relationship to U .

Lemma 2.5.2 Let U : K → H be a bounded operator with closed range.
Then the following holds:

(i) The orthogonal projection of H onto RU is given by UU†.

(ii) The orthogonal projection of K onto RU† is given by U†U .

(iii) U∗ has closed range, and (U∗)† = (U†)∗.

(iv) On RU , the operator U† is given explicitly by

U† = U∗(UU∗)−1. (2.11)

Proof. All statements follow from the characterization of U† in (2.10).
For example, it shows that

UU† = I on RU and that UU† = 0 on NU† = R⊥
U ;
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this gives (i) by the definition of an orthogonal projection. The proof of
(ii) is similar. That RU∗ is closed was stated already in Lemma 2.4.1; thus
(U∗)† is well defined. That (U∗)† equals (U†)∗ follows by verifying that
(U†)∗ satisfies (2.10) with U replaced by U∗. Finally, UU∗ is invertible as
an operator on RU , and the operator given by

U∗(UU∗)−1 on RU , and 0 on R⊥
U

satisfies the conditions (2.10) characterizing U†. �

The pseudo-inverse gives the solution to an important optimization
problem:

Theorem 2.5.3 Let U : K → H be a bounded surjective operator. Given
y ∈ H, the equation Ux = y has a unique solution of minimal norm, namely
x = U†y.

The proof is identical with the proof of Theorem 1.4.2.

2.6 A moment problem

Before we leave the discussion of abstract Hilbert spaces, we mention a
special class of equations, known as moment problems. For the purpose of
the current book, they are only needed in Section 7.4.

The general version of a moment problem is as follows: given a collec-
tion of elements {xk}∞k=1 in a Hilbert space H and a sequence {ak}∞k=1 of
complex numbers, can we find an element x ∈ H such that

〈x, xk〉 = ak, for all k ∈ N?

We will only need a special moment problem:

Lemma 2.6.1 Let {xk}N
k=1 be a collection of vectors in H and consider

the moment problem

〈x, xk〉 =

{
1 if k = 1,

0 if k = 2, . . . , N.
(2.12)

Then the following are equivalent:

(i) The moment problem (2.12) has a solution x.

(ii) If
∑N

k=1 ckxk = 0 for some scalar coefficients ck, then c1 = 0.

(iii) x1 /∈ span{xk}N
k=2.

In case the moment problem (2.12) has a solution, it can be chosen of the
form x =

∑N
k=1 dkxk for some scalar coefficients dk.
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Proof. Assume first that (i) is satisfied, i.e., (2.12) has a solution x. Then,
if
∑N

k=1 ckxk = 0 for some coefficients {ck}N
k=1, we have that

0 = 〈x,
N∑

k=1

ckxk〉 =
N∑

k=1

ck〈x, xk〉 = c1,

i.e., (ii) holds. Now assume that (ii) is satisfied. Then x1 /∈ span{xk}N
k=2.

Let P denote the orthogonal projection of H onto span{xk}N
k=2, and put

ϕ = x1 − Px1. Then

〈ϕ, x1〉 = 〈x1 − Px1, x1 − Px1〉 + 〈x1 − Px1, Px1〉 = ||x1 − Px1||2 �= 0,

and 〈ϕ, xk〉 = 0 for k = 2, . . . , N . Thus, the element

x :=
ϕ

||x1 − Px1||2
(2.13)

solves the moment problem (2.12), i.e., (i) is satisfied. The equivalence of
(ii) and (iii) is clear. In case the equivalent conditions are satisfied, the
construction of x in (2.13) shows that x ∈ span{xk}N

k=1. �

2.7 The spaces Lp(R), L2(R), and �2(N)

The most important class of Banach spaces is formed by the Lp-spaces,
1 ≤ p ≤ ∞. Before we define these spaces, we will remind the reader about
some basic facts from the theory of integration. The proofs and further
results can be found in any standard book on the subject, e.g., [59].

We begin with Fatou’s Lemma. For our purpose, it is enough to consider
the case of the Lebesgue measure on the real axis R, equipped with the
(Borel-) measurable sets:

Lemma 2.7.1 Let fn : R → [0,∞], n ∈ N be a sequence of measurable
functions. Then the function lim infn→∞ fn is measurable, and

∫ ∞

−∞
lim inf
n→∞

fn(x) dx ≤ lim inf
n→∞

∫ ∞

−∞
fn(x) dx.

Lebesgue’s Dominated Convergence Theorem is the main tool to inter-
change limits and integrals:

Theorem 2.7.2 Suppose that fn : R → C, n ∈ N is a sequence of mea-
surable functions, that fn(x) → f(x) pointwise as n → ∞, and that there
exists a positive, measurable function g such that |fn| ≤ g for all n ∈ N

and
∫∞
−∞ g(x) dx < ∞. Then f is integrable, and

lim
n→∞

∫ ∞

−∞
fn(x) dx =

∫ ∞

−∞
f(x) dx.
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A null set is a measurable set with measure zero. A condition holds
almost everywhere (abbreviated a.e.) if it holds except on a null set.

We are now ready to define the Banach spaces Lp(R) for 1 ≤ p ≤ ∞.
First, we define L∞(R) as the space of essentially bounded measurable
functions f : R → C, equipped with the essential supremums-norm. For
1 ≤ p < ∞, Lp(R) is the space of functions f for which |f |p is integrable
with respect to the Lebesgue measure:

Lp(R) :=
{

f : R → C | f is measurable and
∫ ∞

−∞
|f(x)|p dx < ∞

}

.

The norm on Lp(R) is

||f || =
(∫ ∞

−∞
|f(x)|p dx

)1/p

.

To be more precise, Lp(R) consists of equivalence classes of functions that
are equal almost everywhere, and for which a representative (and hence all)
for the equivalence class satisfies the integrability condition. In order not
to be too tedious, we adopt the standard terminology and speak about
functions in Lp(R) rather than equivalence classes.

The case p = 2 plays a special role: in fact, the space

L2(R) =
{

f : R → C | f is measurable and
∫ ∞

−∞
|f(x)|2 dx < ∞

}

is the only one of the Lp(R)-spaces that can be equipped with an in-
ner product. Actually, L2(R) is a Hilbert space with respect to the inner
product

〈f, g〉 =
∫ ∞

−∞
f(x)g(x) dx, f, g ∈ L2(R).

In L2(R), Cauchy–Schwarz’ inequality states that for all f, g ∈ L2(R),
∣
∣
∣
∣

∫ ∞

−∞
f(x)g(x) dx

∣
∣
∣
∣ ≤

(∫ ∞

−∞
|f(x)|2 dx

)1/2(∫ ∞

−∞
|g(x)|2 dx

)1/2

.

The spaces L2(Ω), where Ω is an open subset of R, are defined similarly.
According to the general definition, a sequence of functions {gk}∞k=1 in
L2(Ω) converges to g ∈ L2(Ω) if

||g − gk|| =
(∫

Ω

|g(x) − gk(x)|2 dx

)1/2

→ 0 as k → ∞.

Convergence in L2 is very different from pointwise convergence. As a
positive result, we have Riesz’ Subsequence Theorem:
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Theorem 2.7.3 Let Ω ⊆ R be an open set, and let {gk} be a sequence in
L2(Ω) that converges to g ∈ L2(Ω). Then {gk} has a subsequence {gnk

}∞k=1

such that

g(x) = lim
k→∞

gnk
(x)

for a.e. x ∈ Ω.

The result holds no matter how we choose the representatives for the
equivalence classes. This is typical for this book, where we rarely deal with a
specific representative for a given class. There are, however, a few important
exceptions. When we speak about a continuous function, it is clear that we
have chosen a specific representative, and the same is the case when we
discuss Lebesgue points. By definition, a point y ∈ R is a Lebesgue point
for a function f if

lim
ε→0

1
ε

∫ y+ 1
2 ε

y− 1
2 ε

|f(y) − f(x)| dx = 0.

If f is continuous in y, then y is a Lebesgue point (Exercise 2.5). More
generally, one can prove that if f ∈ L1(R), then almost every y ∈ R is a
Lebesgue point.

It is clear from the definition that different representatives for the same
equivalence class will have different Lebesgue points. For example, every
y ∈ R is a Lebesgue point for the function f = 0; changing the definition
of f in a single point y will not change the equivalence class, but y will no
longer be a Lebesgue point. See Exercise 2.5 for some related observations.

The discrete analogue of L2(R) is �2(I), the space of square sumable
scalar sequences with a countable index set I:

�2(I) :=

{

{xk}k∈I | xk ∈ C,
∑

k∈I

|xk|2 < ∞
}

.

The definition of the space �2(I) corresponds to our definition of L2(R)
with the set R replaced by I and the Lebesgue measure replaced by the
counting measure. �2(I) is a Hilbert space with respect to the inner product

〈{xk}, {yk}〉 =
∑

k∈I

xkyk;

in this case, Cauchy–Schwarz’ inequality gives that
∣
∣
∣
∣
∣

∑

k∈I

xkyk

∣
∣
∣
∣
∣

2

≤
∑

k∈I

|xk|2
∑

k∈I

|yk|2, {xk}k∈I , {yk}k∈I ∈ �2(I).

We will frequently use the discrete version of Fatou’s lemma:
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Lemma 2.7.4 Let I be a countable index set and fn : I → [0,∞], n ∈ N,
a sequence of functions. Then

∑

k∈I

lim inf
n→∞

fn(k) ≤ lim inf
n→∞

∑

k∈I

fn(k).

2.8 The Fourier transform and convolution

For f ∈ L1(R), the Fourier transform f̂ : R → C is defined by

f̂(γ) :=
∫ ∞

−∞
f(x)e−2πixγ dx, γ ∈ R.

Frequently, we will also denote the Fourier transform of f by Ff .
If (L1 ∩L2)(R) is equipped with the L2(R)-norm, the Fourier transform

is an isometry from (L1 ∩ L2)(R) into L2(R). If f ∈ L2(R) and {fk}∞k=1 is
a sequence of functions in (L1 ∩ L2)(R) that converges to f in L2-sense,
then the sequence {f̂k}∞k=1 is also convergent in L2(R), with a limit that is
independent of the choice of {fk}∞k=1. Defining

f̂ := lim
k→∞

f̂k

we can extend the Fourier transform to a unitary mapping of L2(R) onto
L2(R). We will use the same notation to denote this extension. In particular,
we have Plancherel’s equation:

〈f̂ , ĝ〉 = 〈f, g〉, ∀f, g ∈ L2(R), and ||f̂ || = ||f ||. (2.14)

If f ∈ L1(R), then f̂ is continuous. If the function f as well as f̂ belong
to L1(R), the inversion formula describes how to come back to f from the
function values f̂(γ), see [2]:

Theorem 2.8.1 Assume that f, f̂ ∈ L1(R). Then

f(x) =
∫ ∞

−∞
f̂(γ)e2πixγdγ, a.e. x ∈ R. (2.15)

If f is continuous, the pointwise formula (2.15) holds for all x ∈ R. In
general, it holds at least for all Lebesgue points for f .

Given two functions f, g ∈ L1(R), the convolution f ∗g : R → C is defined
by

f ∗ g(y) =
∫ ∞

−∞
f(y − x)g(x) dx, y ∈ R.

The function f ∗ g is well defined for all y ∈ R and belongs to L1(R). If
f ∈ L1(R) and g ∈ L2(R), the convolution f ∗ g(y) is well defined for a.e.
y ∈ R and defines a function in L2(R).
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The Fourier transform and convolution are related by the following
important result.

Theorem 2.8.2 If f, g ∈ L1(R), then f̂ ∗ g(γ) = f̂(γ)ĝ(γ) for all γ ∈ R;
if f ∈ L1(R) and g ∈ L2(R), the formula holds for a.e. γ ∈ R.

2.9 Operators on L2(R)

In this section, we consider three classes of operators on L2(R) that will play
a key role in our analysis of Gabor frames and wavelets. Their definitions
are as follows:

Translation by a ∈ R, Ta : L2(R) → L2(R), (Taf)(x) = f(x − a); (2.16)
Modulation by b ∈ R, Eb : L2(R) → L2(R), (Ebf)(x) = e2πibxf(x); (2.17)

Dilation by a �= 0, Da : L2(R) → L2(R), (Daf)(x) =
1

√
|a|

f(
x

a
). (2.18)

A comment about notation: we will usually skip the parentheses and
simply write Taf(x), and similarly for the other operators. Frequently, we
will also let Eb denote the function x �→ e2πibx. We collect some of the most
important properties for the operators in (2.16)–(2.18):

Lemma 2.9.1 The translation operators satisfy the following:

(i) Ta is unitary for all a ∈ R.

(ii) For each f ∈ L2(R), the mapping y �→ Tyf is continuous from R to
L2(R).

Similar statements hold for Eb, b ∈ R, and Da, a �= 0.

Proof. Let us prove that the operators Ta are unitary. Since

〈Taf, g〉 =
∫ ∞

−∞
f(x − a)g(x) dx =

∫ ∞

−∞
f(x)g(x + a) dx

= 〈f, T−ag〉, ∀f, g ∈ L2(R),

we see that T ∗
a = T−a. On the other hand, Ta is clearly an invertible

operator with T−1
a = T−a, so we conclude that T−1

a = T ∗
a .

To prove the continuity of the mapping y �→ Tyf , we first assume that
the function f is continuous and has compact support, say, contained in the
bounded interval [c, d]. For notational convenience, we prove the continuity
in y0 = 0. First, for y ∈] − 1

2 , 1
2 [ the function

φ(x) = Tyf(x) − Ty0f(x) = f(x − y) − f(x)
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has support in the interval [− 1
2 + c, d+ 1

2 ]. Since f is uniformly continuous,
we can for any given ε > 0 find δ > 0 such that

|f(x − y) − f(x)| ≤ ε for all x ∈ R whenever |y| ≤ δ;

with this choice of δ, we thus obtain that

||Tyf − Ty0f || =

(∫ 1
2+d

− 1
2+c

|f(x − y) − f(x)|2 dx

)1/2

≤ ε
√

d − c + 1.

This proves the continuity in the considered special case. The case of an
arbitrary function f ∈ L2(R) follows by an approximation argument, using
that the continuous functions with compact support are dense in L2(R)
(Exercise 2.6). The proofs of the statements for Eb and Da are left to the
reader (Exercise 2.7). �

Chapters 9–11 will deal with Gabor systems and wavelet systems in
L2(R); both classes consist of functions in L2(R) that are defined by com-
positions of some of the operators Ta, Eb, and Da. For this reason, the
following commutator relations are important:

TaEbf(x) = e−2πibaEbTaf(x) = e2πib(x−a)f(x − a), (2.19)

TbDaf(x) = DaTb/af(x) =
1

√
|a|

f(
x

a
− b

a
), (2.20)

DaEbf(x) =
1

√
|a|

e2πixb/af(
x

a
) = E b

a
Daf(x). (2.21)

In wavelet analysis, the dilation operator D1/2 plays a special role, and
we simply write

Df(x) := 21/2f(2x).

With this notation, the commutator relation (2.20) in particular implies
that

TkDj = DjT2jk and DjTk = T2−jkDj , j, k ∈ Z. (2.22)

We will often use the Fourier transformation in connection with Gabor
systems and wavelet systems. In this context, we need the commutator
relations

FTa = E−aF , FEa = TaF , FDa = D1/aF , FD = D−1F . (2.23)
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2.10 Exercises

2.1 Find a sequence {ak}∞k=1 of real numbers for which
∑∞

k=1 ak is
convergent but not unconditionally convergent.

2.2 Let {fk}∞k=1 be a sequence in a Banach space. Prove that absolute
convergence of

∑∞
k=1 fk implies unconditional convergence.

2.3 Prove Lemma 2.3.1.

2.4 Prove that the conditions in (2.10) are equivalent to the
construction of the pseudo-inverse in Lemma 2.5.1.

2.5 Here we ask the reader to prove some results concerning Lebesgue
points.

(i) Assume that f : R → C is continuous. Prove that every y ∈ R is
a Lebesgue point.

(ii) Prove that x = 0 is not a Lebesgue point for the function χ[0,1].

(iii) Let f = χQ. Prove that every y /∈ Q is a Lebesgue point and
that the rational numbers are not Lebesgue points.

2.6 Complete the proof of Lemma 2.9.1 by showing the continuity of
the mapping y �→ Tyf for f ∈ L2(R).

2.7 Prove the statements about Eb and Da in Lemma 2.9.1.

2.8 Prove the commutator relations (2.23).




