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Basic Description of Discrete-event Dynamic Systems 

1.1 Introduction 

People observe various phenomena of nature and endeavor to comprehend them. 
The first step in that is a reflection of the phenomena by imagination and 
description. The reflexive process is a process of abstraction. In this process, the 
notion of “system” is of basic importance. 

A system is defined to be a group of objects separated from the universe and 
having mutual relations.  

Different physical entities can constitute system objects. If time is included 
among the system objects, their temporal properties or the system dynamics can be 
considered. The system dynamics is given by the time behavior of the system 
objects. The behavior is called the process. 

A real physical system is represented by an ideal system created by human 
thinking and understanding. Mathematical representations of real systems are the 
most abstract and precise descriptions. Since the very beginning of its existence, 
mankind strives not only to know and to describe natural systems but also to 
govern and control them.  

Control of a system is based on knowledge about the particular system. This 
knowledge is developed via abstraction based on observation of the system. The 
observation is realized by measurements and if possible, by experimentation with 
the system. Two main abstractions are to be distinguished, namely: 

1. The notion of a continuous system and 
2. The notion of a discrete system. 

A natural question arises about the substance of these abstractions. A 
continuous system is specified by a set of continuous variables, a set of continuous 
functions over the respective domains of these variables, and by derivatives of the 
variables and functions. Such a system is called a continuous-variable dynamic 
system (CVDS). One can find a good systematic survey of the CVDS control 
theory in the book by Jörgl (1993). A discrete system is specified by a set of 
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discrete variables and relations defined on them. A hybrid system is a combination 
of both.  

Sometimes the relations of system variables are not treated with respect to time. 
Then they describe the static behavior of the studied systems. However, time is 
mostly involved in the analysis and synthesis of systems and dynamic system 
behavior is considered. 

Figure 1.1 illustrates the classification of continuous and discrete systems 
considering dynamic behavior. In order to simplify the illustration, a system with 
one variable is depicted. Figure 1.1.a shows the case when the continuous variable 
( )tx  is a continuous function over a continuous time interval. The function domain 

and co-domain are real numbers. A system is continuous if it is defined by 
continuous variables and continuous functions such as the function depicted in 
Figure 1.1.a. A discrete system is given by discrete variables and discrete functions 
or relations as illustrated by Figure 1.1.b. The system in Figure 1.1.b consists of 
one object in the form of one variable that takes on values from the set of real 
numbers in discrete time points.  

 
Figure 1.1. Properties of one-variable system 

Figures 1.1.c and 1.1.d show the mixed/hybrid cases when the system is semi-
continuous.  Usually, a system has more than one object or variable. Then a set of 
variables can be aggregated into one or more vector variables. Note that the case 
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depicted in Figure 1.1.b can be understood either as a discrete representation of a 
continuous system or as a representation of the system that is discrete by its nature. 
The role of the semantics or interpretation is obvious. Therefore, the discrete or 
digital representation of continuous systems has to be distinguished from the 
representation of systems that are discrete in their nature and substance. The 
discrete representation of a continuous system is obtained by sampling continuous 
variables at discrete time points.  

Continuity and discreteness of a system is one aspect of the view on system 
properties. Another aspect is that CVDS are time-driven systems. The reason for 
the dynamic development of system states is time. On the other hand, discrete 
systems can be time-driven or event-driven. 
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Figure 1.2. An event-driven system 

Let us compare Figures 1.1 and 1.2. The discrete variable q describes the state 
of the system. There are four states q1, q2, q3, and q4, q1-4 for short, and three events 
e1, e2, and e3, e1-3 for short. Figure 1.2 shows that the state change is event-driven. 
The events occur at discrete time points and the state changes depend on the events 
only. Such systems are called discrete event dynamic systems or DEDS for short 
(Ho 1991; Ho and Cassandras 1983). They are also called discrete event systems 
(Ramadge and Wonham 1987; Zhou and DiCesare 1993; Jafari 1995; Bogdan et al. 
2006). As mentioned earlier, Figure 1.1.b has a double meaning. It can represent 
either time-driven CVDS or event-driven DEDS when the events occur at discrete 
time points and cause the change of system states as depicted in Figure 1.1.b. 

The applied system analysis and synthesis methods depend on the system 
nature. In this textbook we will study systems that are fully discrete in their nature 
and event-driven, i.e., discrete event dynamic systems. Their name expresses their 
specific character. DEDS are characterized by a set of states which the system can 
take, and by the set of events that cause the state changes at discrete time points. 
The events may take place asynchronously as opposed to the synchronous nature in 
a discrete time system. The change of states and occurrence of events are the 
essence of the DEDS dynamic behavior. 

A primary task of the DEDS theory is creating a DEDS model. Without such a 
model it would be impossible to analyze and control DEDS just as it is true in 
classic CDVS control theory. Obviously we are interested in a model that is 
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sufficiently general and includes the DEDS dynamics. There are two ways to 
consider the dynamics: 

1. To specify values of the system variables and system relations in defined 
discrete time points; and 

2. To specify time order of the states or events. 

The latter case means that time is not explicitly expressed and only the precedence 
relations for DEDS states and events are given. The order of events can be 
determined by means of their indexing. In other words, it is given which event 
happens before some other events. Such an approach is more abstract and avoids 
problems related to the time relativity. 

The control of DEDS can be designed if there is a DEDS model available. 
Control engineering design methods perform the following tasks: 

• Formulation and specification of the given system control tasks; 
• Determination of control algorithms; 
• Design of technical means necessary for the control implementation; 
• Creation and verification of control programs; and 
• Implementation, testing and maintenance of the control system function. 

Control engineering is an applied interdisciplinary technical science. To a 
considerable extent, the solution methods are independent of the technological 
substance of controlled systems. For a control it is important to achieve such an 
influence of various agents on the system that parameters and behavior of the 
system are as required (Kozák 2002; Jörgl 1993). The system behavior and various 
influences on it are given by physical, chemical, biological or other quantity values. 
What is important from the viewpoint of control is the information the quantities 
carry, but not their physical substance.  

Automatic control is based on the information manifestations of the system. In 
other words, a system is described by means of information about the spatial 
location of objects, time, system parameters, properties, characteristics, etc. Time 
is substantial for the dynamics of events. As mentioned earlier, the time evolution 
of system variables is called the process and in the context of DEDS, it is called the 
discrete process. 

1.2 Discrete Variables and Relations 

The notion of DEDS has been specified in the previous section. It is based on the 
discrete character of the individual variables and relations. It is useful to study the 
property of discreteness in some detail. 

Definition 1.1. Let D  be a finite set of n elements, i.e., 

 { }ndddD ,...,, 21=    (1.1) 
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Let v  be a variable taking on values only from set D , i.e.,  

 Ddv i ∈=         (1.2) 

then v  is a discrete variable. 

Definition 1.2. Let two non-empty finite sets D and E be given: 

 { }ndddD ,...,, 21=   (1.3) 
 { }meeeE ,...,, 21=     (1.4) 

A binary relation R  from D  into E is defined by 

 EDR ×⊆     (1.5) 

where symbol × denotes the Cartesian product. 
If a relation is defined on the sets for which AED ==  then AAR ×⊆  and we 

say that R  is a binary relation on A . The relation R  can be empty. If, e.g., 
( ) Red ∈32 ,  we write 32 eRd . Functions or mappings are subsets of relations. 
They are special relation cases as formally given next. 

Definition 1.3. Let a binary relation R  from { }ndddD ,..., 21=  into 
{ }meeeE ,...,, 21=  be given. Let for any two elements of ED ×  

  
( ) ( )

{ } { } { } { }mlnkmjni

EDedEDed lkji

,...,2,1,,...,2,1,,...,2,1,,...,2,1

,,,,

∈∈∈∈

×∈×∈
 (1.6) 

If the following implication holds true 

 ( ) ( ) ( )( )RedandRedeeanddd lkjiljki ∉∉⇒≠= ,,  (1.7) 

then the relation R  is a discrete function or a discrete mapping notated f defined 
on the domain 

 },...,,{
21 siii dddDOM =  (1.8) 

where DOM  is the set of all first elements of the pairs ( )ji ed ,  belonging to the 
relation R . A co-domain of the function is set CDOM  that consists of all the 
second elements of the pairs ( )ji ed ,  belonging to the relation R   

 },...,,{
21 uiii eeeCDOM =  (1.9) 
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We write 

 ( ) CDOMeDOMddfe jiij ∈∈= ,,         (1.10) 

The right-hand side of Equation (1.7) is an AND conjunction of two 
propositions. If the premise is true, they both are true. It means that both ordered 
pairs ( )ji ed ,  and ( )lk ed ,  cannot belong to the relation R. However, one of them 
can be in R. Another formulation of this can be as follows. A function is a binary 
relation from set { }ndddD ,...,, 21=  into set { }meeeE ,...,, 21=  if there are no two 
ordered pairs ( ) ( )vprp eded ,,,  in R such that vr ee ≠ . 

1.3 Discrete Processes 

Let a finite set Σ  be given as 

 { }neee ,...,, 21=Σ  (1.11) 

The set Σ  is called the event set. We assume that an event Σ∈
ki

e  occurs at the 

time point 
ki

τ . Let a sequence of events be given as 

 
Nk iiii eeee ,...,,...,,~

21
=σ  (1.12) 

where Σ∈
1i

e  occurs in the discrete time point 
1i

τ , Σ∈
2i

e  in time point 
2i

τ , etc., 

ki
e in time point 

ki
τ , etc., and 

Ni
e in time point 

Ni
τ , 

Nk iiii ττττ 〈〈〈〈〈 ..........
21

. The 

sequence σ~  is called a discrete process. In this particular case when elements of a 
sequence are events we speak about the event string. 

Figure 1.3 shows layout of a manufacturing system including a milling machine 
M, a grinding machine G and three belt conveyors C1–C3. The parts to be 
processed in the manufacturing system come into the system irregularly with 
various gaps as a sequence one by one part. Maximum three parts can be fed up on 
the conveyor C1. Input of a part is detected by a photo-sensor P11. The part is 
stopped by a stopper at the end of C1. Presence of the part at the end of the 
conveyor is signalized by a photo-sensor P12. If the milling machine M is free and 
a part is available at the end of C1, the part is transferred by the transportation 
means T1 into the milling machine. After milling the part is transferred by T2 onto 
the conveyor C2. The photo-sensor P21 detects input of the part on the conveyor 
C2. In the conveyor section between the sensors P21 and P22 there can be 
maximum two parts. The same mechanism holds for loading of the grinding 
machine G. Maximum four parts can be loaded on the conveyor section P31–P32. 
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Figure 1.3. Manufacturing system layout 

In a manufacturing system, typical events are the input of a part into a conveyor 
section, arrival of a part in some position on the conveyor, start of an operation, 
e.g., start of milling, end of an operation, e.g., end of milling.  

As an example, consider the following event set: 

 { }33322232111 ,,,,,,,,,,,,,, CCGGCCCCMMCCCCC esesggesesmmmes=Σ  (1.13) 

where 1Cs   stands for input of a part on conveyor C1, 1Ce  means arrival of a part at 
the end of the conveyor C1, 1Cm  means the transfer of a part from the conveyor C1 
into the milling machine, Ms  is the start and Me  the end of milling, 2Cm  is the 
transfer of a part from M on C2. Similarly, 2Cg  and 3Cg  denote transfers from C2 
in G and from G on C3, respectively. The other events are denoted similarly. 

Suppose that the manufacturing system is empty in its initial state. Both 
machines and conveyors are free. A possible sequence of events starting from the 
initial state is  

 GCCMCCCCMCMCCC sgesmesmessmes 22112211111
~ =σ  (1.14) 

Event 1Cs  occurs at the time point 1τ , event 1Ce  at 2τ … whereas .....21 〈〈ττ .  
Let us consider another event sequence example: 

 1221221111112
~

CMCCMCCCMCMCCCCC segesmsmeesmsses=σ         (1.15) 

Consider the following sequence starting from the initial state when the system is 
without parts (empty system): 

 1113
~

CCC ees=σ  (1.16) 

It represents an example of a technologically unfeasible event sequence in the 
given system. Consider a sequence from the beginning: 

                                1111114
~

CCCMCCC messmes=σ  (1.17) 
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This is an example of a feasible event string, but not an admissible one due to the 
requirement that only one part can be present in the milling machine. 

As mentioned before, an event is associated with a change of state. For example, 
the empty state when all conveyors are empty and both machines are free is 
denoted 0q . Arrival of a part on conveyor C1 is an event. State 0q  turns into state 

1q  characterized by the presence of a part on C1 moving toward the stopper, while 
other conveyors and machines are still free. 

The manufacturing system in Figure 1.3 is a serially arranged production line. 
A serial-parallel production cell example is shown in Figure 1.4. Suppose that four 
kinds of semi-products are produced from one kind of parts coming in via 
conveyor C1 and transported through the cell via conveyors C2–C4. Table 1.1 
describes the options how to produce them. 
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Figure 1.4. Manufacturing system arranged in a serial-parallel structure 

Table 1.1. Job options in the manufacturing system 

Operation A B C D 

1 M1 M3 M2 M1 

2 M2 or M3 M2 or M4 M4 M3 

3 M4 M3 or M4 M3 or M4 M3 or M4 

4  M4  M2 

The system is flexible in that there are several ways to finish the production 
tasks having the job alternatives given in Table 1.1. The optimal route of the 
processed parts is to be found. A related problem to this is the job scheduling. Both 
problems can be solved with respect to the given optimality criterion, e.g., to 
minimize the overall production work-span (work-time), also called makespan and 
completion time. The operation times have to be available for that task. A joblist 
breakdown with respect to operation time specifications is given in Table 1.2. Time 



 Basic Description of Discrete-event Dynamic Systems 9 

durations for the semi-products A, B, C, and D are denoted by a, b, c, and d, 
respectively. The scheduling problem will be treated in detail later. 

Individual events of the system depicted in Figure 1.4 can be specified as 
before: 
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   (1.18) 

Table 1.2. Job duration times specifications 

Products  

A B C D 

Machines Machines Machines Machines Oper
ation 

M1 M2 M3 M4 M2 M3 M4 M2 M3 M4 M1 M2 M3 M4 

1 a11     b13  c12   d11    

2  a22 a23  b22  b24   c24   d23  

3    a34  b33 b34  c33 c34   d33 d34 

4       b44     d42   

Occurrence of a part at one side of the conveyor is denoted as event a , on the 
other side as b . 111 MCRs  is the start of the part transfer via Robot R1 from conveyor 
C1 to the machine M1, 111 MCRe  is the end of the transfer. The system control 
depends on the conveyor capacities. 

It is assumed that the transfer times consumed by the robots and conveyors are 
negligible because they are much smaller than operation times. If such an 
assumption is not acceptable times of transfer operations can be considered 
separately.  In the latter case Table 1.2 would be extended by further time 
specifications. Sometimes the transportation times can be included in the operation 
times of the processing machines. 
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1.4 Basic Properties of DEDS and their Specification 

Characteristic properties of DEDS can be best illustrated on examples. DEDS 
include flexible manufacturing systems, digital computers, local or global 
computer networks, operation centers, and transportation systems on surface or in 
air. Various properties of DEDS events are to be studied: 

• Event synchronization 
• Concurrency 
• Parallelism 
• Conflict 
• Mutual exclusion 
• Deadlock 
• System liveness 
• Reversibility 
• State reachability 
• Event scheduling 

Mankind strives not only to observe the natural phenomena but also to govern, 
to control and to benefit from them. Many various tools for the specification and 
analysis of DEDS are used nowadays. In addition, there is a need for tools that are 
suitable for the design of DEDS control. They should be able to specify the 
required properties of DEDS and to ensure the real-time reactivity of the controlled 
DEDS.  

Basically the tools can be divided in three groups: 

• Graphical tools 
• Algebraic tools 
• Formal language-based tools  

The graphical tools are frequently used due to their transparency and ability to 
provide rich visual information. The main graphical tools include: 

• State-transition diagrams or finite-automata 
• Reactive (real-time) flow diagrams 
• Statecharts 
• Petri nets 
• Grafcet 
• Ladder logic diagrams 

The algebraic tools are the following: 

• Boolean algebra 
• Algebraic expressions based on the respective state space 
• Temporal logic 
• Max-plus algebra 

The tools based on formal languages are as follows: 

• Formal language models  
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• Standard programming languages combined with real-time operating 
systems 

• Real-time programming languages 

The different tools listed above are not equivalent with respect to the 
application field. For example, max-plus algebra is effective especially for the 
analysis and control of job scheduling, while Grafcet is useful for the specification 
of the sequence control (Frištacký et al. 1981, 1990; Zhou and Venkatesh 1998; 
Zhou 1995). 

The first two basic groups can serve as intermediate means between the 
requirements imposed on the system and the control that ensures them. A final 
specification and implementation of control requires the third group, namely a 
programming language. The specified control will then be implemented on 
appropriate hardware components, e.g., personal computer, process computer, 
programmable logic controller, etc. From a graphical or algebraic specification a 
control program can be generated automatically. Also the transformations among 
the different specification tools are useful.  

On the other hand, sometimes and for someone there is no need to use any 
intermediate means and it is possible to write a control program directly. However, 
for most people the opposite is true. A program formulated in any procedural 
language is a string of instructions to be performed separately and to force the 
system to behave as required. Intermediate means help to avoid the programming 
incorrectness.  

Each specification tool listed above is based on the concept of the system state 
and state transitions described earlier as events. This fact can be illustrated by the 
following generally valid system behavior scheme: 

... →  STATE→TRANSITION→STATE→TRANSITION→ ... 

Because of the generality of this scheme, the "state and transition" concept is dealt 
with in more detail in the following section. 

1.5 Basic Transition System 

Various DEDS can be described uniquely by means of the so-called basic 
transition model proposed by Manna and Pnueli (1991), which serves us as a 
general description framework. It is defined by the quadruple 

 ( )ΘΣΠ= ,,, QSYST  (1.19) 

where  
{ }nuuu ,...,, 21=Π  is the finite set of state variables; 

Q  is the set of states where each state is given by the particular values of 
the variables from set Π . This value assignment is called the interpretation 
of variables belonging to the set Π ; 
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Σ  is the set of transitions whereby a transition Σ∈e  is a partial function 
QCeQe 2: ⎯→⎯ . Note that Q2  is the power set defined as a set of all subsets 

created from set Q including the empty set ∅ , eC  is a condition imposed 
on a transition e  so that e  can occur only if eC  is fulfilled, and eC  can be 
empty (meaning no condition); and 
Θ  is the set of initial conditions of the system. It includes states in which 
the execution of potential events can start. 

The modeling power of the Manna and Pnueli model is that any correct 
specification by means of any tool described earlier can be transformed into a basic 
transition system. In other words, suitable transformations can be established 
between different system specifications. We can see that transitions in this model 
correspond to events introduced before. The time is not explicitly expressed in a 
basic transition. Rather, a possible sequence of events or an event precedence 
relation is used.  

The function QCeQ 2⎯→⎯  defining an event e is quite abstract. A standard 
particular case by excluding system control (if only controlled system is 
represented) is when one state is mapped into one another state due to the condition 

eC  or because there is only one-to-one mapping. The case when a state is mapped 
into state subsets presents indeterminism and its significance is purely theoretical. 
An example of that is the indeterministic finite automaton (see Section 5.4). In 
practical system control the indeterminism should be removed. If control is 
included the function QCeQ 2⎯→⎯  can map a state to more states. See Chapter 4 
for more details. 

A general form of the specification of an event e  is a transition relation given 
as an assertion for each transition e : 

 ( )',ΠΠeρ   (1.20) 

which relates the interpretation of state variables given as a state s with the 
interpretation of state variables given as a succeeding state 's . Under assertions we 
understand Boolean expressions extended by quantificators ∀∃, , etc. In other 
words, in each state the relation ( )',ΠΠeρ  determines the next state or states after 
transition e takes place. The following form describing the transition relation e  
can be used: 

 ( ) ( ) ( ) ( ) ( )nnee exuexuexuC =∧∧=∧=∧Π=ΠΠ '...'', 2211
'ρ   (1.21) 

where ( )ΠeC  is an assertion stating a condition for state s under which transition 
e  is enabled and the system comes over into state 's ; nex −1  are logic expressions. 
Assertion ( )ΠeC  is constructed over state variables such that if the variable values 

lead to a true Boolean value from ( )ΠeC , e  is enabled and state variables nu −1'  
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are given the values according to expressions nex −1 . These expressions are built up 
of state variables nu −1 .  Notation iex  is shortened in Equation (1.21). It has the 
following meaning: 

 trueislexifonlyandiflexu iii 21' =  (1.22) 

State variables in DEDS are discrete ones. If they are logical variables or 
expressions built up of logical variables, then Equation (1.21) can be put together 
directly based on them. Other than logic variables can be represented by means of 
a set of the auxiliary logic variables further used in Equation (1.21).  

Figure 1.5 shows an example of a simple discrete event dynamic system. The 
system is an input portion of a flexible manufacturing system. The parts to be 
processed are transported into the system by belt conveyor C1. They arrive as an 
irregular stream. There are different gaps between individual parts. A video system 
VS scans each part when the latter enters the VS range (detected by sensor P0).  It 
evaluates the parameters of shape and quality of an incoming part and sorts it in 
two groups. These two groups are routed via turntable TT1. Intervals between 
individual parts are so that a new part comes in the range of sensor P0 when the 
preceding part is already on conveyor C2 or C3. The parts of the first group are 
placed on conveyor C2 while those of the second group on conveyor C3. 

VIDEO
SYSTEM

VS

C1

TURNTABLE

TT1

C2

C3

P0 P1
P2

 
Figure 1.5. A manufacturing system 

Now, let us model the system described in the example in a form given by 
Equation (1.19). We have  
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 ( )ΘΣΠ= ,,, QSYST  (1.23) 
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⎬
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⎩
⎨
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=Π
VTTHTT

VETTHETTTPPP
1,1

;1,1;1;,;,, 0201210 γγ
 (1.24) 

where P0-P2 are logic variables corresponding to sensors P0-P2, respectively. If a 
part is under sensor P0 then 10 =P , etc. Note that the variables are written in italic 
in order to distinguish them from the corresponding sources of the variables. γ01 
and γ02 serve for the group distinction: γ01=1 and γ02=0 for the first group and γ01=0 
and γ02=1 for the second one. 1T  is a state variable signaling the presence of a part 
in turntable TT1 when 11 =T ; otherwise 01 =T . ETT1H and ETT1V indicate the 
turntable horizontal and vertical positions, respectively. TT1H, and TT1V are 
commands to set the turntable horizontally or vertically. Before the start of the 
system operation, conveyors C1–C3 are switched on and remain in this state during 
the operation. Let there be the logic C1–C3 corresponding to the conveyor state; 

11 =C  if conveyor C1 is switched on and similarly for C2 and C3. 
The set of states is as follows: 

 

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( ),1,0;0,1;1;1,0;1,0,0

,0,1;0,1;1;1,0;0,0,0
,0,1;0,1;0;1,0;0,1,0
,0,1;0,1;0;1,0;0,0,0
,0,1;0,1;0;1,0;0,0,1
,0,1;0,1;1;0,1;1,0,0
,0,1;0,1;1;0,1;0,0,0
,0,1;0,1;0;0,1;0,1,0
,0,1;0,1;0;0,1;0,0,0
,0,1;0,1;0;0,1;0,0,1
,0,1;0,1;0;0,0;0,0,1
,0,1;0,1;0;0,0;0,0,0{

11

10

9

8

7

6

5

4

3

2

1

0

=

=
=
=
=
=
=
=
=
=
=

==

q
q
q
q
q
q
q
q
q
q
q
qQ

 

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )}0,1;0,1;1;1,0;1,0,0

,1,0;1,0;1;0,1;0,0,0
,1,0;1,0;0;0,1;0,1,0
,1,0;1,0;0;0,1;0,0,0
,1,0;1,0;0;0,1;0,0,1
,1,0;1,0;1;1,0;1,0,0
,1,0;1,0;0;1,0;0,1,0
,1,0;1,0;0;1,0;0,0,0
,1,0;1,0;0;1,0;0,0,1
,1,0;1,0;0;0,0;0,0,1
,1,0;1,0;0;0,0;0,0,0

,1,0;1,0;1;1,0;1,0,0

23

22

21

20

19

18

17

16

15

14

13

12

=
=
=
=

=
=
=
=
=
=
=
=

q
q
q
q
q
q
q
q
q
q
q
q

 (1.25) 

The set of transitionsΣ  is given by the set of the following partial functions: 

 ( ) ( ) ( ) ( ) .,...:,:,:,: 4344323321221011 etcqqeeqqeeqqeeqqee ====  
  (1.26) 

All functions can be given via Tables 1.3 and 1.4. Function values are in the 
table cells. Let the initial conditions Θ  for the occurrence of the events from set Σ  
are these: the system is in state q0 and 1321 === CCC . Establishing the system 
in q0 is indicated by the logic variable INIT. 
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Table 1.3. The first part of the transition set functions 

Function argument  

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 

e1 q1 - - - - - - - - - - - 

e2 - q2 - - - - - - - - - - 

e3 - - q3 - - - - - - - - - 

e4 - - - q4 - - - - - - - - 

e5 - - - - q5 - - - - - - - 

e6 - - - - - q6 - - - - - - 

e7 - - - - - - q0 - - - - - 

e8 - q7 - - - - - - - - - - 

e9 - - - - - - - q8 - - - - 

e10 - - - - - - - - q9 - - - 

e11 - - - - - - - - - q10 - - 

e12 - - - - - - - - - - q11 - 

e13 - - - - - - - - - - - q12 

e14 - - - - - - - - - - - - 

e15 - - - - - - - - - - - - 

e16 - - - - - - - - - - - - 

e17 - - - - - - - - - - - - 

e18 - - - - - - - - - - - - 

e19 - - - - - - - - - - - - 

e20 - - - - - - - - - - - - 

e21 - - - - - - - - - - - - 

e22 - - - - - - - - - - - - 

e23 - - - - - - - - - - - - 

e24 - - - - - - - - - - - - 

e25 - - - - - - - - - - - - 

e26 - - - - - - - - - - - - 
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Table 1.4. The second part of the transition set functions 

Function argument  

q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 q23 

 - - - - - - - - - - - - 

 - - - - - - - - - - - - 

 - - - - - - - - - - - - 

 - - - - - - - - - - - - 

 - - - - - - - - - - - - 

 - - - - - - - - - - - - 

 - - - - - - - - - - - - 

 - - - - - - - - - - - - 

 - - - - - - - - - - - - 

 - - - - - - - - - - - - 

 - - - - - - - - - - - - 

 - - - - - - - - - - - - 

 - - - - - - - - - - - - 

 q13 - - - - - - - - - - - 

 - q14 - - - - - - - - - - 

 - - q15 - - - - - - - - - 

 - - - q16 - - - - - - - - 

 - - - - q17 - - - - - - - 

 - - - - - q18 - - - - - - 

 - - - - - - q13 - - - - - 

 - - q19 - - - - - - - - - 

 - - - - - - - q20 - - - - 

 - - - - - - - - q21 - - - 

 - - - - - - - - - q22 - - 

 - - - - - - - - - - q23 - 

 - - - - - - - - - - - q6 

All possible event sequences in the analyzed manufacturing system are built up 
from the sequences 
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  (1.27) 

The buildup or concatenations of the event sequences at Equation (1.27) 
follows the scheme as shown in Figure 1.6. Activities of the system can start when 
the condition Θ  is fulfilled and it means that the first event sequence can be only 

1
~σ . Equation (1.21) for the investigated system are 
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where 
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 (1.29) 

True logic value is 1 and false 0 in Equation (1.29). For event 2e  we have 
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Figure 1.6. Event sequence patterns 
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where  
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Other events would be expressed in a similar way. 
Now consider an extension to the above system so that the parts of the first 

group are processed in a batch of three by RA1 or RA2. Both robots perform the 
similar operations.  The parts of the second group to a cell are routed via turntable 
TT2. They are processed in two by RB robotic cell. The number of parts is checked 
by means of photo-sensors PA1–PA3 and PB1–PB2, respectively.  Gate G1 (G2) goes 
up when three (two) parts are prepared for the next processing. Transport conveyor 
capacities are three transported parts for C2–C5, C8–C9 and two for C6–C7, 
respectively. Only one part can be allowed between sensors 0P  and 1P . 

When a triple is prepared under sensor PA5, robot RA1 performs the required 
processing operations and then transfers the triple onto conveyor O1.  RA2 and RB 
operate similarly. The aim of the control is to coordinate and control operations 
and movement of parts within the system. The co-ordination control level is 
superior to the process control one. The process control examples are the vision 
system’s detection of parts, robots’ movement control, and conveyor speed control. 
The vision system start is an event commanded from the coordination control level. 
Other facts concerning the FMS function are evident from the layout in Figure 1.7. 

Now, let us outline the model of the system depicted in Figure 1.7 in a form 
given by Equation (1.19). We have 
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   (1.32) 
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Figure 1.7. Example of a basic transition system: FMS with three robots 

where the first part (the first two rows of Equation (1.28)) is inputs fed from the 
controlled system to the control system, the second part (the third and fourth rows) 
is outputs from the latter fed into the former and the third part is internal state 
variables. The variables Π  are determined at the higher coordination control level. 
The model is built for the coordination control purpose. As in the preceding 
example, variable ETT1H indicates the straight position of turntable TT1, ETT1V 
its transversal position, etc. We assume that initially conveyors C3 and C6 and 
conveyors in both turntables are switched on and moving during the FMS 
operation. Conveyor C1 is started by command variable SC1 and stopped by EC1. 
Other conveyor variables listed in Equation (1.32) have analogous meanings. The 
gates are operated by variables G1 and G2. Variables TT1H, TT1V, etc., are used to 
control the turntables, while RA1, RA2, and RB start robot operations. ERA1, ERA2, 
and ERB signals the end of the part processing by robots RA1, RA2, and RB, 
respectively. Information about routing a part is transferred from γ01 and γ02 to γ11 
and γ22 when the part moves from sensors P0 to P1 (γ01 and γ02 should be free for the 
next part), and analogously for γ11 and γ22 and sensor P2. LC21 and LC22 stand for 
storing the number of parts loaded on C2 so that no part gives 0,0 2221 == LCLC ; 
one part gives 1,0 2221 == LCLC ; two parts 1,1 2221 == LCLC ; and three parts 
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1,1 2221 == LCLC . Analogously, this holds true for ijLC , but in terms of 
conveyors C6 and C7, which have the capacity equal 2. 

All variables in Equation (1.32) are the Boolean ones taking values of 0 and 1. 
The states in set Q are given by pertinent variable values. For example, if 12 =AP  
and 13 =AP  and all other variables are zero, the system is in a state when two parts 
are located before gate G1 and otherwise it is empty. Then the arrival of a new part 
in C1, signaled by 10 =P , is an event given by mapping the previously described 
state into one with 1,1,1 320 === AA PPP  and all remaining variables being zero. 
For example, an event 3WPe =  - the arrival of a next part – in P0=0, P1=0, …, 
PA1=0, PA2=1, PA3=1, PA4=0, ..., is 
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  (1.33) 

whereΘ represents the condition that the system has to be initialized and empty 
before the first event can be accepted.  

The example illustrates that in a little more complex case the modeling using a 
basic transition system is complicated, not transparent and very difficult for 
analysis and control design. In the following chapters of this book, we try to 
develop systematically theory and a way for practical use of other tools aiming to 
model, analyze, evaluate, simulate and control DEDS. 

1.6 Problems and Exercises 

1.1. Cite some CDVS and DEDS examples from your daily life. 

1.2. Derive the basic transition system models for Figures 1.3 and 1.4. 

1.3. In the system in Figure 1.5, change the assumption that only one part is 
processed in it so that a part can come in when another part is between sensors P0 
and P1. Consider capacities of the conveyors. 
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1.4. Write the expression for the event next to that given by Equation (1.33) when a 
part moves from sensors P0 to P1. 

1.5. A robotic cell is depicted in Figure 1.8. A-Parts are loaded into it via input 
conveyor I1. The input has capacity of 1 part. The same holds for input I2 and 
output O. Robot R2 picks up an A-workpiece from I2 and transfers it onto table T.  
R1 picks up a B-work-piece from I1 and puts it into the free milling machine M1 
or M2. If both are free, M1 is preferred. After the machining, R1 transfers it onto 
palette P. If there is an A-workpiece on T, R2 transfers it from the palette to T and 
an assembly starts. After it, R2 transfers the product onto O. a) Analyze the system 
as DEDS; and b) Create an event set and event strings corresponding to the 
required behavior of the system, a realizable but not admissible event string and a 
non-realizable event string. 

 

Figure 1.8. A robotic cell with two milling machines 

1.6. For the system depicted in Figure 1.4 write a realizable event string 
corresponding to the technological process A in Table 1.1, a realizable but not 
admissible event string and a non-realizable event string. 

Input I1

Input I2

Output O 

Milling machine 
M1 

Milling machine 
M2 

Robot R1 Robot R2 

Palette P 

Assembling
table T


