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Rational Parametrization

Summary. Chapter 4 is the central chapter of the book. In this chapter, we focus
on rational or parametric curves, we study different problems related to this type of
curves and we show how to algorithmically parametrize a rational curve. The chapter
consists of three conceptual blocks. The first one (Sect. 4.1) is devoted to the notion
of rational parametrization of a curve, and to the study of the class of rational curves,
i.e., curves having a rational parametrization. In the second block of the chapter
(Sects. 4.2–4.5), we assume that a rational parametrization of a curve is provided
and we consider various problems related to such a rational parametrization. The
material in this part of the chapter follows the ideas in [SeW01a]. In Sect. 4.2 the
injectivity of the parametrization is studied, in Sect. 4.3 we analyze the number
of times the points on the curve are traced via the parametrization, in Sect. 4.4
the inversion problem for proper parametrizations is studied, and in Sect. 4.5 the
implicitization question is addressed. The third block of the chapter (Sects. 4.6–4.8)
deals with the problem of algorithmically deciding whether a given curve is rational,
and in the affirmative case, of actually computing a rational parametrization of the
curve. The material in this part of the chapter follows the ideas in [SeW91], which
are based on [AbB87a, AbB87b, AbB88, AbB89]. In Sect. 4.6 we study the simple
case of curves parametrizable by lines, in Sect. 4.7 these ideas are extended to the
general case, and in Sect. 4.8, once the theoretical and algorithmic ideas have been
developed, we show how to carry out all these algorithms symbolically.

Alternatively, a parametrization algorithm can be constructed from meth-
ods in [VaH94]. Also, the reader interested in the parametrization problem for
surfaces may see [Sch98a].

Throughout this chapter, unless explicitly stated otherwise, we use the
following notation. K is an algebraically closed field of characteristic 0. We
consider either affine or projective plane algebraic curves. In addition, if C is
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an affine rational curve, and P(t) is a rational affine parametrization of C over
K (see Definition 4.1), we write its components either as

P(t) =
(
χ1 1(t)
χ1 2(t)

,
χ2 1(t)
χ2 2(t)

)
,

where χi j(t) ∈ K[t] and gcd(χ1 i, χ2 i) = 1, or as

P(t) = (χ1(t), χ2(t)),

where χi(t) ∈ K(t). Similarly, rational projective parametrizations (see
Definition 4.2) are expressed as

P(t) = (χ1(t), χ2(t), χ3(t)),

where χi(t) ∈ K[t] and gcd(χ1, χ2, χ3) = 1.
Furthermore, associated with a given parametrization P(t) we consider

the polynomials

GP
1 (s, t) = χ1 1(s)χ1 2(t) − χ1 2(s)χ1 1(t), GP

2 (s, t) = χ2 1(s)χ2 2(t) − χ2 2(s)χ2 1(t)

as well as the polynomials

HP
1 (t, x) = x · χ1 2(t) − χ1 1(t), HP

2 (t, y) = y · χ2 2(t) − χ2 1(t).

The polynomials GP
i will play an important role in Sect. 4.3 in deciding

whether a parametrization P(t) is proper by means of the tracing index; i.e.,
in studying whether the parametrization is injective for almost all parameter
values. The polynomials HP

i will be used in Sect. 4.5 for the implicitization
problem.

4.1 Rational Curves and Parametrizations

Some plane algebraic curves can be expressed by means of rational parametri-
zations, i.e., pairs of univariate rational functions that, except for finitely many
exceptions, represent all the points on the curve. For instance, the parabola
y = x2 can also be described as the set {(t, t2) | t ∈ C}; in this case, all
affine points on the parabola are given by the parametrization (t, t2). Also,
the tacnode curve (see Exercise 2.9 and Fig. 4.1) defined in A2(C) by the
polynomial

f(x, y) = 2x4 − 3x2y + y2 − 2y3 + y4

can be represented, for instance, as
{(

t3 − 6t2 + 9t− 2
2t4 − 16t3 + 40t2 − 32t+ 9

,
t2 − 4t+ 4

2t4 − 16t3 + 40t2 − 32t+ 9

) ∣∣∣∣ t ∈ C

}
.
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Fig. 4.1. Tacnode curve

In this case, all points on the tacnode are reachable by this pair of rational
functions with the exception of the origin.

However, not all plane algebraic curves can be rationally parametrized,
as we will see in Example 4.3. In this section, we introduce the notion of
rational or parametrizable curves and in this whole chapter we study the
main properties and characterizations of this type of curves. In fact, we will
see that the rationality of curves can be characterized by means of the genus,
and therefore the algorithmic methods described in Chap. 3 will be used.

Definition 4.1. The affine curve C in A2(K) defined by the square-free poly-
nomial f(x, y) is rational (or parametrizable) if there are rational functions
χ1(t), χ2(t) ∈ K(t) such that

(1) for almost all t0 ∈ K (i.e. for all but a finite number of exceptions) the
point (χ1(t0), χ2(t0)) is on C, and

(2) for almost every point (x0, y0) ∈ C there is a t0 ∈ K such that (x0, y0) =
(χ1(t0), χ2(t0)).

In this case (χ1(t), χ2(t)) is called an affine rational parametrization of C.
We say that (χ1(t), χ2(t)) is in reduced form if the rational functions χ1(t),
and χ2(t) are in reduced form; i.e., if for i = 1, 2 the gcd of the numerator
and the denominator of χi is trivial.

Definition 4.2. The projective curve C in P
2(K) defined by the square-free

homogeneous polynomial F (x, y, z) is rational (or parametrizable) if there are
polynomials χ1(t), χ2(t), χ3(t) ∈ K[t], gcd(χ1, χ2, χ3) = 1, such that

(1) for almost all t0 ∈ K the point (χ1(t0) : χ2(t0) : χ3(t0)) is on C, and
(2) for almost every point (x0 : y0 : z0) ∈ C there is a t0 ∈ K such that

(x0 : y0 : z0) = (χ1(t0) : χ2(t0) : χ3(t0)).
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In this case, (χ1(t), χ2(t), χ3(t)) is called a projective rational parametriza-
tion of C.

Remarks. (1) By abuse of notation, we will sometimes refer to a pro-
jective parametrization as a triple of rational functions. Of course, we
could always clear denominators and generate a polynomial projective
parametrization.

(2) In Sect. 2.5 we have introduced the notion of local parametrization of a
curve over K, not necessarily rational. Rational parametrizations are also
called global parametrizations, and can only be achieved for curves of genus
0 (see Theorem 4.11). On the other hand, since K(t) ⊂ K((t)), it is clear
that any global parametrization is a local parametrization. Consider the
global rational parametrization P = (χ1, χ2). W.l.o.g. (perhaps after a
linear change of parameter) we may assume that t = 0 is not a root of
the denominators. By interpreting the numerators and denominators of a
global parametrization as formal power series, and inverting the denomi-
nators, we get exactly a local parametrization χ1 = A(t), χ2 = B(t) with
center (χ1(0), χ2(0)), as introduced in Sect. 2.5,

(3) The notion of rational parametrization can be stated by means of rational
maps. More precisely, let C be a rational affine curve and P(t) ∈ K(t)2 a
rational parametrization of C. By Definition 4.1, the parametrization P(t)
induces the rational map

P : A1(K) −→ C
t �−→ P(t),

and P(A1(K)) is a dense (in the Zariski topology) subset of C. Sometimes,
by abuse of notation, we also call this rational map a rational parametriza-
tion of C.

(4) Every rational parametrization P(t) defines a monomorphism from the
field of rational functions K(C) to K(t) as follows (see proof of Theo-
rem 4.9):

ϕ : K(C) −→ K(t)
R(x, y) �−→ R(P(t)). 	


Example 4.3. An example of an irreducible curve which is not rational is the
projective cubic C, defined over C, by x3 +y3 = z3. Suppose that C is rational,
and let (χ1(t), χ2(t), χ3(t)) be a projective parametrization of C. Observe that
not all components of the parametrization can be constant. Then

χ3
1 + χ3

2 − χ3
3 = 0.

Differentiating this equation w.r.t. t we get

3 · (χ′
1χ

2
1 + χ′

2χ
2
2 − χ′

3χ
2
3) = 0.
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W.l.o.g. assume that χ2 is not constant, so χ2 �= 0 and χ′
2 �= 0. χ2

1, χ
2
2, χ

2
3

are a solution of the system of homogeneous linear equations with coefficient
matrix (

χ1 χ2 −χ3

χ′
1 χ

′
2 −χ′

3

)
.

By fundamental line operations we reduce this coefficient matrix to
(
χ2χ

′
1 − χ′

2χ1 0 χ′
2χ3 − χ2χ

′
3

0 χ2χ
′
1 − χ′

2χ1 χ
′
3χ1 − χ3χ

′
1

)
.

So
(χ2

1 : χ2
2 : χ2

3) = (χ2χ
′
3 − χ3χ

′
2 : χ3χ

′
1 − χ1χ

′
3 : χ1χ

′
2 − χ2χ

′
1).

Since χ1, χ2, χ3 are relatively prime, this proportionality implies

χ2
1 | (χ2χ

′
3 − χ3χ

′
2), χ2

2 | (χ3χ
′
1 − χ1χ

′
3), χ2

3 | (χ1χ
′
2 − χ2χ

′
1).

Suppose deg(χ1) ≥ deg(χ2), deg(χ3). Then, we get that the first divisibility
implies 2 deg(χ1) ≤ deg(χ2) + deg(χ3) − 1, a contradiction. Similarly, we see
that deg(χ2) ≥ deg(χ1), deg(χ3) and deg(χ3) ≥ deg(χ1), deg(χ2) are impos-
sible. Thus, there can be no parametrization of C.

Definitions 4.1 and 4.2 are stated for general affine and projective curves,
respectively. However, in the next theorem we show that only irreducible
curves can be parametrizable.

Theorem 4.4. Any rational curve is irreducible.

Proof. We prove this for affine curves, the proof for projective curves is similar
and is left to the reader. Let C be a rational affine curve parametrized by a
rational parametrization P(t). First observe that the ideal of C consists of the
polynomials vanishing at P(t), i.e.,

I(C) = {h ∈ K[x, y] |h(P(t)) = 0} .

Indeed, if h ∈ I(C) then h(P ) = 0 for all P ∈ C. In particular h vanishes
on all points of C generated by the parametrization, and hence h(P(t)) = 0.
Conversely, let h ∈ K[x, y] be such that h(P(t)) = 0. Therefore, h vanishes
on all points of the curve generated by P(t), i.e., on all points of C with
finitely many exceptions. So, since C is the Zariski closure of the image of P ,
it vanishes on C, i.e., h ∈ I(C) (see Appendix B).

Finally, in order to prove that C is irreducible, we prove that I(C) is prime
(see Appendix B). Let h1 · h2 ∈ I(C). Then h1(P(t)) · h2(P(t)) = 0. Thus,
either h1(P(t)) = 0 or h2(P(t)) = 0. Therefore, either h1 ∈ I(C) or h2 ∈ I(C).

	

The rationality of a curve does not depend on its embedding into an affine

or projective plane. So, in the sequel, we may choose freely between projective
and affine situations, whatever we find more convenient.
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Lemma 4.5. Let C be an irreducible affine curve and C∗ its corresponding
projective curve. Then C is rational if and only if C∗ is rational. Furthermore,
a parametrization of C can be computed from a parametrization of C∗ and vice
versa.

Proof. Let
(χ1(t), χ2(t), χ3(t))

be a parametrization of C∗. Observe that χ3(t) �= 0, since the curve C∗ can
have only finitely many points at infinity. Hence,

(
χ1(t)
χ3(t)

,
χ2(t)
χ3(t)

)

is a parametrization of the affine curve C.
Conversely, a rational parametrization of C can always be extended to

a parametrization of C∗ by normalizing the z-coordinate to 1 and clearing
denominators. 	


Definition 4.1 clearly implies that associated with any rational plane curve
there is a pair of univariate rational functions over K, not both simultane-
ously constant, which is a parametrization of the curve. The converse is also
true. That is, associated with any pair of univariate rational functions over K,
not both simultaneously constant, there is a rational plane curve C such that
the image of the parametrization is dense in C. The implicit equation of this
curve C is directly related to a resultant. In the following lemma we state
this property. Later, in Sect. 4.5, we give a geometric interpretation to the
integer r that appears in Lemma 4.6, proving that it counts the number
of times the curve is traced when one gives values to the parameter of the
parametrization.

Lemma 4.6. Let C be an affine rational curve over K, f(x, y) its the defining
polynomial, and

P(t) = (χ1(t), χ2(t))

a rational parametrization of C. Then, there exists r ∈ N such that

rest(HP
1 (t, x), HP

2 (t, y)) = (f(x, y))r.

Proof. Let χi(t) = χi 1(t)
χi 2(t) , and let

h(x, y) = rest(HP
1 (t, x), HP

2 (t, y)).

First we observe that HP
1 and HP

2 are irreducible, because χ1(t) and χ2(t)
are in reduced form. Hence HP

1 and HP
2 do not have common factors. There-

fore, h(x, y) is not the zero polynomial. Furthermore, h cannot be a constant
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polynomial either. Indeed: let t0 ∈ K be such that χ1 2(t0)χ2 2(t0) �= 0. Then
HP

1 (t0,P(t0)) = HP
2 (t0,P(t0)) = 0. So h(P(t0)) = 0, and since h is not the

zero polynomial it cannot be constant.
Now, we consider the square-free part h′(x, y) of h(x, y) and the plane

curve C defined by h′(x, y) over K. Let us see that P(t) parametrizes C. For
this purpose, we check the conditions introduced in Definition 4.1.

1. Let t0 ∈ K be such that χ1 2(t0)χ2 2(t0) �= 0. Reasoning as above, we see
that h(P(t0)) = 0. So h′(P(t0)) = 0, and hence P(t0) is on C.

2. Let c1, c2 be the leading coefficients of HP
1 , H

P
2 w.r.t. t, respectively. Note

that c1 ∈ K[x], c2 ∈ K[y] are of degree at most 1. For every (x0, y0) on C
such that c1(x0) �= 0 or c2(y0) �= 0 (note that there is at most one point
in K2 where c1 and c2 vanish simultaneously), we have h(x0, y0) = 0.
Thus, since h is a resultant, there exists t0 ∈ K such that HP

1 (t0, x0) =
HP

2 (t0, y0) = 0. Also, observe that χ1 2(t0) �= 0 since otherwise the first
component of the parametrization would not be in reduced form. Similarly,
χ2 2(t0) �= 0. Thus, (x0, y0) = P(t0). Therefore, almost all points on C are
generated by P(t).

Now by Theorem 4.4 it follows that h′(x, y) is irreducible. Therefore, there
exists r ∈ N such that h(x, y) = (h′(x, y))r. 	


Sometimes it is useful to apply equivalent characterizations of the con-
cept of rationality. In Theorems 4.7, 4.9, 4.10, and 4.11 some such equivalent
characterizations are established.

Theorem 4.7. An irreducible curve C, defined by f(x, y), is rational if and
only if there exist rational functions χ1(t), χ2(t) ∈ K(t), not both con-
stant, such that f(χ1(t), χ2(t)) = 0. In this case, (χ1(t), χ2(t)) is a rational
parametrization of C.

Proof. Let C be rational. So there exist rational functions χ1, χ2 ∈ K(t) sat-
isfying conditions (1) and (2) in Definition 4.1. Obviously not both rational
functions χi are constant, and clearly f(χ1(t), χ2(t)) = 0.

Conversely, let χ1, χ2 ∈ K(t), not both constant, be such that f(χ1(t),
χ2(t)) is identically zero. Let D be the irreducible plane curve defined by
(χ1(t), χ2(t)) (see Lemma 4.6). Then C and D are both irreducible, because of
Theorem 4.4, and have infinitely many points in common. Thus, by Bézout’s
Theorem (Theorem 2.48) one concludes that C = D. Hence, (χ1(t), χ2(t)) is a
parametrization of C. 	


An alternative characterization of rationality in terms of field theory is
given in Theorem 4.9. This theorem can be seen as the geometric version of
Lüroth’s Theorem. Lüroth’s Theorem appears in basic text books on algebra
such as [Jac74], [Jac80], or [VaW70]. Here we do not give a proof of this
result.
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Theorem 4.8 (Lüroth’s Theorem). Let L be a field (not necessarily alge-
braically closed), t a transcendental element over L. If K is a subfield of L(t)
strictly containing L, then K is L-isomorphic to L(t).

Theorem 4.9. An irreducible affine curve C is rational if and only if the field
of rational functions on C, i.e. K(C), is isomorphic to K(t) (t a transcendental
element).

Proof. Let f(x, y) be the defining polynomial of C, and let P(t) be a parametr-
ization of C. We consider the map

ϕP : K(C) −→ K(t)
R(x, y) �−→ R(P(t)).

First we observe that ϕP is well-defined. Let p1
q1
, p2

q2
, where pi, qi ∈ K[x, y],

be two different expressions of the same element in K(C). Then f divides
p1q2 − q1p2. In addition, by Theorem 4.7, f(P(t)) is identically zero, and
therefore p1(P(t))q2(P(t))−q1(P(t))p2(P(t)) is also identically zero. Further-
more, since q1 �= 0 in K(C), we have q1(P(t)) �= 0. Similarly q2(P(t)) �= 0.
Therefore, ϕP (p1

q1
) = ϕP (p2

q2
).

Now, since ϕP is not the zero homomorphism, the map ϕP defines an iso-
morphism of K(C) onto a subfield of K(t) that properly contains K. Thus, by
Lüroth’s Theorem, this subfield, and K(C) itself, must be isomorphic to K(t).

Conversely, let ψ : K(C) → K(t) be an isomorphism and χ1(t) =
ψ(x), χ2(t) = ψ(y). Clearly, since the image of ψ is K(t), χ1 and χ2 can-
not both be constant. Furthermore

f(χ1(t), χ2(t)) = f(ψ(x), ψ(y)) = ψ(f(x, y)) = 0.

Hence, by Theorem 4.7, the pair (χ1(t), χ2(t)) is a rational parametrization
of C. 	


Remarks. From the proof of Theorem 4.9 we see that every parametrization
P(t) induces a monomorphism ϕP from K(C) to K(t). We will refer to ϕP as
the monomorphism induced by P(t).

In the following theorem we see how rationality can also be established by
means of rational maps.

Theorem 4.10. An affine algebraic curve C is rational if and only if it is
birationally equivalent to K (i.e., the affine line A

1(K)).

Proof. By Theorem 2.38 one has that C is birationally equivalent to K if and
only if K(C) is isomorphic to K(t). Thus, by Theorem 4.9 we get the desired
result. 	


The following theorem states that only curves of genus 0 can be rational.
In fact, all irreducible conics are rational, and an irreducible cubic is rational
if and only if it has a double point.
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Theorem 4.11. If an algebraic curve C is rational then genus(C) = 0.

Proof. By the remark after Definition 3.4 the genus is invariant under bira-
tional maps. Hence the result follows from Theorem 4.10. 	


In Sect. 4.7 (see Theorem 4.63) we will demonstrate that also the converse
is true, namely that every curve of genus 0 is rational.

4.2 Proper Parametrizations

Although the implicit representation for a plane curve is unique, up to
multiplication by nonzero constants, there exist infinitely many different
parametrizations of the same rational curve. For instance, for every i ∈ N,
(ti, t2i) parametrizes the parabola y = x2. Obviously (t, t2) is the parametriza-
tion of lowest degree in this family and it generates every point on the
parabola only once. Such parametrizations are called proper parametrizations
(see Definition 4.12).

The parametrization algorithms presented in this book always output
proper parametrizations. Furthermore, there are algorithms for determining
whether a given parametrization of a plane curve is proper, and if that is not
the case, for transforming it to a proper one. In Sect. 6.1 we will describe these
methods.

In this section, we introduce the notion of proper parametrization and we
study some of their main properties. For this purpose, in the following we
assume that C is an affine rational plane curve, and P(t) is an affine rational
parametrization of C.

Definition 4.12. An affine parametrization P(t) of a rational curve C is
proper if the map

P : A1(K) −→ C
t �−→ P(t)

is birational, or equivalently, if almost every point on C is generated by exactly
one value of the parameter t.

We define the inversion of a proper parametrization P(t) as the inverse
rational mapping of P, and we denote it by P−1.

Lemma 4.13. Every rational curve can be properly parametrized.

Proof. From Theorem 4.10 one deduces that every rational curve C is bira-
tionally equivalent to A

1(K). Therefore, every rational curve can be properly
parametrized. 	


The notion of properness can also be stated algebraically in terms of
fields of rational functions. From Theorem 2.38 we deduce that a rational
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parametrization P(t) is proper if and only if the induced monomorphism ϕP
(see Remark to Theorem 4.9)

ϕP : K(C) −→ K(t)
R(x, y) �−→ R(P(t)).

is an isomorphism. Therefore, P(t) is proper if and only if the mapping ϕP is
surjective, that is, if and only if ϕP (K(C)) = K(P(t)) = K(t). More precisely,
we have the following theorem.

Theorem 4.14. Let P(t) be a rational parametrization of a plane curve C.
Then, the following statements are equivalent:

(1) P(t) is proper.
(2) The monomorphism ϕP induced by P is an isomorphism.
(3) K(P(t)) = K(t).

Remarks. We have introduced the notion of properness for affine parametri-
zations. For projective parametrizations the notion of properness can be
introduced in a similar way by requiring the rational map, associated with
the projective parametrization, to be birational. Moreover, if C is an irre-
ducible affine curve and C� is its projective closure, then K(C) = K(C�).
Thus, taking into account Theorem 4.14 one has that the properness of affine
and projective parametrizations are equivalent.

Now, we characterize proper parametrizations by means of the degree of
the corresponding rational curve. To state this result, we first introduce the
notion of degree of a parametrization.

Definition 4.15. Let χ(t) ∈ K(t) be a rational function in reduced form.
If χ(t) is not zero, the degree of χ(t) is the maximum of the degrees of the nu-
merator and denominator of χ(t). If χ(t) is zero, we define its degree to be −1.
We denote the degree of χ(t) as deg(χ(t)). Rational functions of degree 1 are
called linear.

Obviously the degree is multiplicative with respect to the composition of
rational functions. Furthermore, invertible rational functions are exactly the
linear rational functions (see Exercise 4.1).

Definition 4.16. We define the degree of an affine rational parametrization
P(t) = (χ1(t), χ2(t)) as the maximum of the degrees of its rational compo-
nents; i.e.

deg(P(t)) = max {deg(χ1(t)), deg(χ2(t))} .

We start this study with a lemma that shows how proper and improper
parametrizations of an affine plane curve are related.

Lemma 4.17. Let P(t) be a proper parametrization of an affine rational curve
C, and let P ′(t) be any other rational parametrization of C.
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(1) There exists a nonconstant rational function R(t) ∈ K(t) such that
P ′(t) = P(R(t)).

(2) P ′(t) is proper if and only if there exists a linear rational function L(t) ∈
K(t) such that P ′(t) = P(L(t)).

Proof. (1) We consider the following diagram:

A
1(K)

P
� C ⊂ A

2(K)

P−1 ◦ P ′ P ′

�
�

�
�

�
���

�

A
1(K)

Then, since P is a birational mapping, it is clear that R(t) = P−1(P ′(t)) ∈
K(t).
(2) If P ′(t) is proper, then from the diagram above we see that ϕ := P−1 ◦P ′

is a birational mapping from A1(K) onto A1(K). Hence, by Theorem 2.38 one
has that ϕ induces an automorphism ϕ̃ of K(t) defined as:

ϕ̃ : K(t) −→ K(t)
t �−→ ϕ(t).

Therefore, sinceK-automorphisms ofK(t) are the invertible rational functions
(see e.g., [VaW70]), we see that ϕ̃ is our linear rational function.

Conversely, let ψ be the birational mapping from A1(K) onto A1(K)
defined by the linear rational function L(t) ∈ K(t). Then, it is clear that
P ′ = P ◦ ψ : A1(K) → C is a birational mapping, and therefore P ′(t) is
proper. 	


Lemma 4.17 seems to suggest that a parametrization of prime degree is
proper. But in fact, this is not true, as can easily be seen from the parametriza-
tion (t2, t2) of a line. Exercise 4.2 asks whether the line is the only curve for
which primality of a parametrization does not imply properness.

Proper parametrizations can always be normalized such that in every com-
ponent of the parametrization the degrees of the numerator and denominator
agree. This will be useful later.

Lemma 4.18. Every rational curve C has a proper parametrization P(t) =
(χ1(t), χ2(t)) such that if χi(t) is nonzero, then deg(χi1) = deg(χi2).

Proof. By Lemma 4.13 we know that C has a proper rational parametrization,
say P ′(t). Note that if the i−th component of a parametrization is zero, then
it is zero for every parametrization. Let us assume w.l.o.g that χ1 is nonzero.
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By Lemma 4.17, any linear reparametrization of a proper parametrization is
again proper. If 0 is a root of none of the numerator and denominator of χ1(t),
then P ′(1

t ) is still proper and the requirement on the degree is fulfilled. If 0
is a root of any of the numerator or denominator of χ1(t), we consider the
proper parametrization P ′(t+a), where a is not a root of any of the numerator
and denominator. This a always exists since χ1(t) is nonzero. Now, observe
that the numerator and the denominator of the first component of P ′(t + a)
do not vanish at 0. Therefore, we can always reparametrize the initial proper
parametrization into a proper one, for which the degree requirement holds.

	


Before we can characterize the properness of a parametrization via the
degree of the curve, we first derive the following technical property.

Lemma 4.19. Let p(x), q(x) ∈ K[x]� be relatively prime such that at least
one of them is nonconstant. There exist only finitely many values a ∈ K such
that the polynomial p(x) − aq(x) has multiple roots.

Proof. Let us consider the polynomial f(x, y) = p(x)− yq(x) ∈ K[x, y]. Since
gcd(p, q) = 1 and p(x), q(x) are nonzero, the polynomial f is irreducible.
Now we study the existence of roots of the discriminant of f w.r.t. y. Let
g(x, y) = ∂f

∂x . Note that g is nonzero, since at least one of the two polynomials
p(x) and q(x) is not constant. Since deg(g) < deg(f) and f is irreducible, we
get gcd(f, g) = 1. So discrx(f) �= 0. Hence the result follows immediately. 	


Corollary 4.20. Let p(x), q(x) ∈ K[x]� be relatively prime such that at least
one of them is nonconstant, and let R(y) be the resultant

R(y) = resx(p(x) − yq(x), p′(x) − yq′(x)).

Then, for all b ∈ K such that R(b) �= 0, the polynomial p(x) − bq(x) is
squarefree.

The next theorem characterizes the properness of a parametrization by
means of the degree of the implicit equation of the curve.

Theorem 4.21. Let C be an affine rational curve defined over K with defining
polynomial f(x, y) ∈ K[x, y], and let P(t) = (χ1(t), χ2(t)) be a parametriza-
tion of C. Then P(t) is proper if and only if

deg(P(t)) = max{degx(f), degy(f)}.

Furthermore, if P(t) is proper and χ1(t) is nonzero, then deg(χ1(t))=degy(f);
similarly, if χ2(t) is nonzero then deg(χ2(t))=degx(f).

Proof. First we prove the result for the special case of parametrizations having
a constant component; i.e., for horizontal or vertical lines. Afterwards, we
consider the general case. Let P(t) be a parametrization such that one of its
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two components is constant, say P(t) = (χ1(t), λ) for some λ ∈ K. Then the
curve C is the line of equation y = λ. Hence, by Lemma 4.17 (2) and because
(t, λ) parametrizes C properly, we get that all proper parametrizations of C
are of the form (at+b

ct+d , λ), where a, b, c, d,∈ K and ad − bc �= 0. Therefore,
deg(χ1) = 1, and the theorem clearly holds.

Now we consider the general case, i.e., C is not a horizontal or vertical line.
Let P(t) be proper and in reduced form, such that none of its components is
constant. Then we prove that deg(χ2(t))=degx(f), and analogously one can
prove that deg(χ1(t))=degy(f). From these relations we immediately get that
deg(P(t)) = max{degx(f), degy(f)}. Let χ2(t) = χ2 1(t)/χ2 2(t). We define S
as the subset of K containing

(a) all the second coordinates of those points on C that are either not gener-
ated by P(t), or more than once by different values of t,

(b) those b ∈ K such that the polynomial χ2 1(t)− bχ2 2(t) has multiple roots,
(c) lc(χ2 1)/lc(χ2 2), where “ lc” denotes the leading coefficient,
(d) those b ∈ K such that the polynomial f(x, b) has multiple roots,
(e) the roots of the leading coefficient of f(x, y) w.r.t. x.

We claim that S is finite. Indeed: Since P(t) is a proper parametrization,
there are only finitely many values satisfying (a). According to Lemma 4.19
there are only finitely many field elements satisfying (b). The argument for
(c) is trivial. An element b ∈ K satisfies (d) if and only if b is the second
coordinate of a singular point of C or the line y = b is tangent to the curve at
some simple point (see Theorem 2.50(6)). By Theorem 2.10, C has only finitely
many singular points, and y = b is tangent to C at some point (a, b) if (a, b)
is a solution of the system {f = 0, ∂f

∂x = 0}. However, by Bézout’s Theorem
(Theorem 2.48), this system has only finitely many solutions. So only finitely
many field elements satisfy (d). Since the leading coefficient of f(x, y) w.r.t.
x is a nonzero univariate polynomial, only finitely many field elements satisfy
(e). Therefore, S is finite.

Now we take an element b ∈ K \ S and we consider the intersection of C
and the line of equation y = b. Because of condition (e) the degree of f(x, b)
is exactly degx(f(x, y)), say m := degx(f(x, y)). Furthermore, by (d), f(x, b)
has m different roots, say {r1, . . . , rm}. So, there are m different points on
C having b as a second coordinate, namely {(ri, b)}i=1,...,m, and they can be
generated by P(t) because of (a).

On the other hand, we consider the polynomial M(t) = χ2 1(t) − bχ2 2(t).
We note that degt(M) ≥ m, since every point (ri, b) is generated by some
value of the parameter t. But, since every point (a, b) ∈ C is generated exactly
once by P (see condition (a)) and M cannot have multiple roots, we get that
degt(M) = m = degx(f(x, y)). Now, since b is not the quotient of the leading
coefficients of χ2 1 and χ2 2 (because of (c)), we finally see that degx(f(x, y)) =
deg(M) =max{deg(χ2 1), deg(χ2 2)}.

Conversely, let P(t) be a parametrization of C such that deg(P(t)) =
max{degx(f), degy(f)}, and let P ′(t) be any proper parametrization of C.
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Then, by Lemma 4.17(1), there exists R(t) ∈ K(t) such that P ′(R(t)) =
P(t). P ′(t) is proper, so deg(P ′(t)) = max{degx(f), degy(f)} = deg(P(t)).
Therefore, since the degree is multiplicative with respect to composition, R(t)
must be of degree 1, and hence invertible. Thus, by Lemma 4.17(2), P(t) is
proper. 	


The next corollary follow from Theorem 4.21 and Lemma 4.17(1).

Corollary 4.22. Let C be a rational affine plane curve defined by f(x, y) ∈
K[x, y]. Then the degree of any rational parametrization of C is a multiple of
max{degx(f), degy(f)}.

Example 4.23. We consider the rational quintic C defined by the polynomial
f(x, y) = y5+x2y3−3 x2y2+3 x2y−x2. By Theorem 4.21, any proper rational
parametrization of C must have a first component of degree 5, and a second
component of degree 2. It is easy to check that

P(t) =
(

t5

t2 + 1
,

t2

t2 + 1

)

properly parametrizes C. Note that f(P(t)) = 0.

For a generalization of the Theorem 4.21 to the surface case see [PDS05].

4.3 Tracing Index

In Sect. 2.2 we have introduced the notion of degree of a dominant rational
map between varieties (i.e., irreducible algebraic sets). In this section, we
investigate the degree of a special type of rational maps, namely those induced
by rational parametrizations of curves. That is, if P(t) is an affine rational
parametrization of C, we study the degree of the dominant rational map P :
A(K) −→ C: t �→ P(t). Later, in Sect. 4.5, we will see that the degree of the
rational map induced by the parametrization plays a role in the implicitization
problem.

In addition, we will work with the fibres of the map P . We will denote by
FP(P ) the fibre of a point P ∈ C; that is

FP(P ) = P−1(P ) = {t ∈ K | P(t) = P}.

In Theorem 2.43 we have seen that the degree of a dominant rational map
between two varieties of the same dimension is the cardinality of the fiber of
a generic element. Therefore, in the case of the mapping P , this implies that
almost all points of C are generated via P(t) by the same number of parameter
values, and this number is the degree. Thus, intuitively speaking, the degree
measures the number of times the parametrization traces the curve when the
parameter takes values in K. Taking into account this intuitive meaning of
the notion of degree, we will also call the degree of the mapping P the tracing
index of P(t).
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Definition 4.24. Let C be an affine rational curve, and let P(t) be a rational
parametrization of C. Then the tracing index of P(t), denoted by index(P(t)),
is the degree of P : A(K) −→ C, t �→ P(t); i.e., index(P(t)) is a natural
number such that almost all points on C are generated, via P(t), by exactly
index(P(t)) parameter values.

4.3.1 Computation of the Index of a Parametrization

Theorem 4.25. Let P(t) be a parametrization in reduced form. Then for
almost all α ∈ K we have

card(FP(P(α))) = degt(gcd(GP
1 (α, t), GP

2 (α, t))).

Proof. Let χi = χi 1/χi 2, in reduced form, be the i-th component of P(t).
Let S be the set of all α ∈ K such that either P(α) is not defined or both
polynomials GP

1 (α, t) and GP
2 (α, t) have multiple roots. First, we see that

S is a finite set. Indeed: clearly there exist only finitely many values such
that P(t) is not defined. Now, we assume w.l.o.g. that χ1(t) is nonconstant.
Let α be such that χ1 2(α)χ2 2(α) �= 0. If GP

1 (α, t) has multiple roots, then
HP

1 (t, χ1(α)) = 1/χ12(α)GP
1 (α, t) also has multiple roots. But by Lemma 4.19

this can only happen for finitely many values of α. Therefore, S is finite.
Now, let α ∈ K \ S. We observe that every element of the fibre FP(P(α))

is a common root of GP
1 (α, t) and GP

2 (α, t). On the other hand, let β be a root
of gcd(GP

1 (α, t), GP
2 (α, t)). Note that gcd(GP

1 (α, t), GP
2 (α, t)) is defined since

not both components of P(t) are constant, and therefore at least one of the
polynomials GP

i (α, t) is not zero. Let us assume that χ1 is not constant. Then
χ1 2(β) �= 0, since otherwise χ1 2(α)χ1 1(β) = 0. But χ1 2(α) �= 0 and hence
χ1 1(β) = 0, which is impossible because gcd(χ1 1, χ1 2) = 1. Similarly, if χ2 is
not constant, we get that χ2 2(β) �= 0. Note that if some χi is constant the
result is obtained trivially. Thus, β ∈ FP(P (α)). Therefore, since GP

1 (α, t)
and GP

2 (α, t) do not have multiple roots, the cardinality of the fibre is the
degree of the gcd. 	


Theorem 4.25 implies that almost all points (xα, yα) = P(α) ∈ C are
generated more than once if and only if degt(gcd(GP

1 (α, t), GP
2 (α, t))) > 1. In

Lemma 4.27 we will see that the degree of this gcd is preserved under almost
all specializations of the variable s. First we state the following result on gcds.
Let ϕa denote the natural evaluation homomorphism of K[x, y] into K[y], i.e.,
for a ∈ K,

ϕa : K[x, y] −→ K[y]
f(x, y) �−→ f(a, y).

Lemma 4.26. Let f, g ∈ K[x, y]∗, f = f̄ · gcd(f, g), g = ḡ · gcd(f, g). Let
a ∈ K be such that not both leading coefficients of f and g w.r.t. y vanish
at a.
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(1) degy(gcd(ϕa(f), ϕa(g))) ≥ degy(ϕa(gcd(f, g)) = degy(gcd(f, g)).
(2) If the resultant w.r.t. y of f̄ and ḡ does not vanish at a, then

gcd(ϕa(f), ϕa(g)) = ϕa(gcd(f, g)).

Proof. Let h = gcd(f, g). Since not both leading coefficients (w.r.t. y) of f and
g vanish under ϕa, also the leading coefficient of h cannot vanish under ϕa.
So degy(ϕa(h)) = degy(h). Furthermore, ϕa(f) = ϕa(f̄)ϕa(h) and ϕa(g) =
ϕa(ḡ)ϕa(h).
(1) ϕa(h) divides gcd(ϕa(f), ϕa(g)), so

degy(gcd(ϕa(f), ϕa(g))) ≥ degy(ϕa(h)) = degy(h).

(2) We have

gcd(ϕa(f), ϕa(g)) = gcd(ϕa(f̄), ϕa(ḡ)) · ϕa(h).

If gcd(ϕa(f), ϕa(g)) �= ϕa(h), then gcd(ϕa(f̄), ϕa(ḡ)) �= 1. Hence, the resul-
tant w.r.t. y of ϕa(f̄), ϕa(ḡ) is zero. Therefore, since ϕa is a ring homomor-
phism, one obtains that

0 = resy(ϕa(f̄), ϕa(ḡ)) = ϕa(resy(f̄ , ḡ)).

This, however, is excluded by the assumptions. 	


Lemma 4.27. Let P(t) be a rational parametrization in reduced form. Then
for almost all values α ∈ K of s we have

degt(gcd(GP
1 (s, t), GP

2 (s, t))) = degt(gcd(GP
1 (α, t), GP

2 (α, t))).

Proof. We distinguish two cases. First, we assume that no component of P(t)
is constant, soGP

1 (s, t) andGP
2 (s, t) cannot be zero. Thus, ifG = gcd(GP

1 , G
P
2 )

and GP
1 = GP

1 · G,GP
2 = GP

2 · G, then T (s) = rest(GP
1 , G

P
2 ) ∈ K[s] is not

identically zero. Therefore, T (s) and the leading coefficients of GP
1 and GP

2 ,
w.r.t. t, can only vanish at finitely many values. From Lemma 4.26 (2) we get
ϕα(gcd(GP

1 , G
P
2 )) = gcd(ϕα(GP

1 ), ϕα(GP
2 )) for almost all α ∈ K.

Second, if any component of the parametrization P(t) is constant, we obvi-
ously have ϕα(gcd(GP

1 , G
P
2 )) = gcd(ϕα(GP

1 ), ϕα(GP
2 )).

So, for almost all α ∈ K,

degt(gcd(ϕα(GP
1 ), ϕα(GP

2 )))=degt(ϕα(gcd(GP
1 , G

P
2 ))) ≤ degt(gcd(GP

1 , G
P
2 )).

On the other hand, by Lemma 4.26 (1), for almost all α ∈ K,

degt(gcd(ϕα(GP
1 ), ϕα(GP

2 ))) ≥ degt(gcd(GP
1 , G

P
2 )).

Thus, for almost all α∈K, degt(gcd(ϕα(GP
1 ), ϕα(GP

2 ))) = degt(gcd(GP
1 , G

P
2 )).
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Theorem 4.28. Let P(t) be a parametrization in reduced form of the curve C.
Then

index(P(t)) = degt(gcd(GP
1 (s, t), GP

2 (s, t)).

Proof. The result follows from Theorem 4.25, Lemma 4.27, and Theorem 2.43.
	


Now from Lemma 4.26, Theorem 4.28, and the proof of Lemma 4.27 we
get the following corollary.

Corollary 4.29. Let P(t) be a parametrization in reduced form, and let
GP(s, t) = gcd(GP

1 , G
P
2 ). We define T (s) = rest(

GP
1

GP ,
GP

2
GP ) if P does not have

constant components, and T (s) = 1 otherwise. Then, for α ∈ K such that
χ1 2(α)χ2 2(α)T (α) �= 0, and such that α is not a common root of the leading
coefficients of GP

1 and GP
2 w.r.t. t, we have

(1) card(FP(P(α))) = degt(G
P (α, t)) = degt(G

P (s, t)),
(2) FP(P(α)) = {β ∈ K |GP(α, β) = 0}. 	


Since a parametrization is proper if and only if it defines a birational map-
ping between the affine line and the curve, it is clear that a parametrization
is proper if and only if its tracing index is 1.

Theorem 4.30. A rational parametrization is proper if and only if its tracing
index is 1, i.e. if and only if degt(gcd(GP

1 , G
P
2 )) = 1.

The previous results can be used to derive the following algorithm for
computing the tracing index of a given parametrization. This algorithm can
also be used for checking the properness of a parametrization.

Algorithm TRACING INDEX
Given a rational parametrization P(t) in reduced form, the algo-
rithm computes index(P(t)), and decides whether the parametrization
is proper.

1. Compute the polynomials GP
1 (s, t), GP

2 (s, t).
2. Determine GP(s, t) := gcd(GP

1 , G
P
2 ).

3. � := degt(GP (s, t)).
4. If � = 1 then return “P(t) is proper and index(P(t)) = 1” else

return “P(t) is not proper and index(P(t)) = �”

We illustrate the algorithm by an example.

Example 4.31. Let P(t) be the rational parametrization

P(t) =

( (
t2 − 1

)
t

t4 − t2 + 1
,

(
t2 − 1

)
t2

t6 − 3 t4 + 3 t2 − 1 − 2 t3

)
.
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In Step 1 the polynomials

GP
1 (s, t) = s3t4 − st4 + s2t3 − s4t3 − t3 − s3t2 + st2 + s4t− s2t+ t+ s3 − s

GP
2 (s, t) = s4t6 − s2t6 − s6t4 + 2 s3t4 + t4 − 2 s4t3 + 2 s2t3 + s6t2 − 2 s3t2

−t2 − s4 + s2,

are generated. Their gcd, computed in Step 2, is GP(s, t) = st2 − s2t+ t− s.
Thus, index(P(t)) = 2, and therefore the parametrization is not proper.

For a generalization of these results to the surface case see [PDS04].

4.3.2 Tracing Index Under Reparametrizations

In order to study the behavior of the index under reparametrizations we first
prove a technical lemma where we show that, in the case of a single noncon-
stant rational function R(t), the degree w.r.t. t of R(t) is the degree of the
rational map from K to K induced by R(t).

Lemma 4.32. Let R(t) = p(t)/q(t) ∈ K(t) be nonconstant and in re-
duced form. Let R : K → K be the rational map induced by R(t). Then
card(R−1(a)) = deg(R(t)) for almost all a ∈ K.

Proof. Let W0 be the nonempty open subset of K where R is defined, and
let V0 be the subset of points a ∈ K such that p(t)− aq(t) is square-free, and
such that deg(p(t) − aq(t)) = deg(R(t)). From Lemma 4.19 we get that V0

is open and nonempty. Furthermore, since R is nonconstant, R(W0) is also a
nonempty open set (see Exercise 4.5). We consider the set U = V0 ∩ R(W0).
So also U is a nonempty open set. We show that card(R−1(a)) = deg(R(t))
for all a ∈ U . Indeed: take a ∈ U . Then R−1(a) is nonempty. Moreover, since
gcd(p, q) = 1, p(t) − aq(t) is square-free, and deg(p(t) − aq(t)) = deg(R(t)).
Then, card(R−1(a)) = deg(R(t)). 	

Theorem 4.33. Let P(t) be a rational parametrization, and R(t) ∈ K(t)\K.
Then

index(P(R(t))) = deg(R(t)) · index(P(t)).

Proof. The statement follows from Lemmas 2.42 and 4.32. 	

Corollary 4.34. Let C be an affine rational curve defined over K by f(x, y),
and let P(t) = (χ1(t), χ2(t)) be a parametrization of C. If χ1(t) is nonzero then
degy(f) = deg(χ1(t))

index(P) ; similarly if χ2(t) is nonzero then degx(f) = deg(χ2(t))
index(P) .

Proof. By Lemmas 4.13 and 4.17, there exists a proper parametrization
Q(t) = (ξ1(t), ξ2(t)) of C, and R(t) ∈ K(t) \ K such that P(t) = Q(R(t)).
By Theorem 4.33

index(P(t)) = deg(R(t)) · index(Q(t)) = deg(R(t)).

Moreover, deg(χi(t)) = deg(R(t)) · deg(ξi(t)). Now, the result follows from
Theorem 4.21. 	
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In Theorem 4.35 we show the relation between the index of a parametriza-
tion, the degree of a parametrization and the degree of the curve.

Theorem 4.35. Let C be an affine rational curve defined by f(x, y) ∈ K[x, y],
let n = max{degx(f), degy(f)}, and let P(t) be a rational parametrization of
C. Then,

index(P(t)) =
deg(P(t))

n
.

Proof. Because of Lemma 4.13 there exists a proper parametrization P ′(t) of
C, and because of Lemma 4.17 there exists R(t) ∈ K(t) \K such that P(t) =
P ′(R(t)). From Theorem 4.33 and the fact that P ′(t) is proper we get that

index(P(t)) = deg(R(t)) · index(P ′(t)) = deg(R(t)).

Furthermore, since the degree of rational functions under composition is mul-
tiplicative, we arrive at deg(P(t)) = deg(R(t)) · deg(P ′(t)). Thus

index(P(t)) =
deg(P(t))
deg(P ′(t))

.

Applying Theorem 4.21 we see that deg(P ′(t)) = n, which completes the proof.
	


4.4 Inversion of Proper Parametrizations

In Theorems 4.14, 4.21, and 4.30 we have deduced various different criteria for
deciding the properness of a parametrization. Now, we show how to compute
the inverse map of a proper rational parametrization. Let P(t) be a proper
parametrization of an affine rational curve C. Then the inversion problem
consists of computing the inverse rational mapping of the birational map
(compare Definition 4.12)

P : A
1(K) −→ C.

More precisely, we want to compute the rational map

ϕ : C −→ A
1(K)

(x, y) �−→ ϕ(x, y) ,

satisfying

(1) ϕ ◦ P = idA1(K), i.e. ϕ(P(t)) = t, and
(2) P ◦ ϕ = idC , i.e. χi 2(ϕ)x − χi 1(ϕ) = 0 mod I(C) for i = 1, 2,

where χi 1/χi 2 is the i–th component of P(t). In this case ϕ is the inverse
P−1 we are looking for.
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So the inversion problem is essentially an elimination problem, and there-
fore elimination techniques such as Gröbner bases can be applied. Here we
give a different approach to the problem based on the computation of gcds
over the function field of the curve. A generalization to surfaces of these ideas
can be found in [PDSS02]. For a more general statement of the problem,
namely inversion of birational maps, see [Sch98b]. Alternative methods for
inverting proper parametrizations can be found in [BuD06], [ChG92b], and
[GSA84].

In addition, in order to check whether a rational function is the inverse
of a given parametrization, it is enough to test one the two conditions given
above. A proof of this fact, for the general case of hypersurfaces, can be found
in [PDSS02]. Thus, in the sequel, we will choose freely one of the conditions
to check the rational invertibility of a parametrization.

Lemma 4.36. Let
P : A1(K) −→ C ⊂ A2(K)

t �−→ (χ1(t), χ2(t))

be a rational parametrization of a plane curve C, and let

U : C −→ A
1(K)

(x, y) �−→ U(x, y)

be a rational map, where the denominators of U do not belong to the ideal of
C. The following statements are equivalent:

(1) U is the inverse of P.
(2) P(U(P )) = P for almost all points P ∈ C.
(3) U(P(t)) = t for almost all values t ∈ K. 	


First we observe thatK(C)[t] is a Euclidean domain. Furthermore, since we
know how to computationally perform the arithmetic in the coordinate ring
Γ (C) (see Sect. 2.2), we know how to compute gcds in K(C)[t]. Moreover, since
I(C) is principal, all computations can be carried out by means of remainders
w.r.t. the defining polynomial. Alternatively we may use the parametrization
P(t) to check whether a class in the quotient ring Γ (C) is zero. Of course, this
second approach avoids the use of the implicit equation but representatives of
the classes are not reduced.

Theorem 4.37. Let P(t) be a proper parametrization in reduced form with
nonconstant components of a rational curve C. Let HP

1 (t, x), HP
2 (t, y) be con-

sidered as polynomials in K(C)[t]. Then,

degt( gcd
K(C)[t]

(HP
1 , H

P
2 )) = 1.

Moreover, the single root of this gcd is the inverse of P.
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Proof. Let R(t) = gcdK(C)[t](HP
1 , H

P
2 ), and let ϕ be the inverse of P .

Then ϕ is a root of R(t), and therefore degt(R) ≥ 1. Now, since R is the
gcd, there exist polynomials Mi(x, y, t) ∈ K(C)[t] such that HP

i (x, y, t) =
Mi(x, y, t)R(x, y, t) mod I(C). Thus, if f defines C, the above equality can be
written in K[x, y, t] as:

Ni(x, y)HP
i (x, y, t) = M∗

i (x, y, t)S(x, y, t) +A(x, y)f(x, y) ,

where degt(S) = degt(R), and neither Ni nor all coefficients of M∗
i w.r.t. t,

nor the leading coefficient of S w.r.t. t belong to I(C). Thus, substituting
P(s) into this formula and clearing denominators, we see that degt(S) ≤
degt(gcd(GP

1 (s, t), GP
1 (s, t))). Now, by Theorem 4.30, we get that degt(R) =

degt(S) ≤ 1. 	


In the following we outline an algorithm for inverting a proper parametriza-
tion, based on Theorem 4.37.

Algorithm INVERSE
Given an affine rational parametrization P(t), in reduced form, the algo-
rithm decides whether the parametrization is proper, and in the affirma-
tive case it determines the inverse of the mapping P .

1. Apply algorithm tracing index to check whether P(t) is proper. If
P(t) is not proper then return “not proper” and exit.

2. Compute HP
1 (t, x) and HP

2 (t, y).
3. Determine M(x, y, t) = gcdK(C)[t](HP

1 , H
P
2 ). By Theorem 4.37

M(x, y, t) is linear in t; let us say

M(x, y, t) = D1(x, y)t−D0(x, y) .

4. Return “the inverse is D0(x,y)
D1(x,y) .”

Example 4.38. Let C be the plane curve over C defined by the rational
parametrization

P(t) =
(
t3 + 1
t2 + 3

,
t3 + t+ 1
t2 + 1

)
.

It is easy to check, applying algorithm tracing index, that index(P(t)) = 1
and therefore P(t) is proper. Furthermore, the implicit equation of C is

f(x, y) = −4 x2y3 + 4 xy3 − 2 y3 + 4 x3y2 − 8 x2y2 + 4 xy2 + 3 y2 + 4 x3y
−3 x2y − 11 xy + 13 x3 + 8 x2 + 3 x− 1 .

For a method for computing the implicit equation see Theorem 4.39. In Step
2 we consider the polynomials in K(C)[t]

HP
1 (t, x) = −t3 + xt2 + 3 x− 1, HP

2 (t, y) = −t3 + yt2 − t+ y − 1.
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In Step 3, we determine gcd
C(C)[t](HP

1 , H
P
2 ). The polynomial remainder

sequence of HP
1 and HP

2 is:

R0(t) = −t3 + xt2 + 3 x− 1

R1(t) = −t3 + yt2 − t+ y − 1

R2(t) = (x− y)t2 + t+ 3x− y

R3(t) = 2 x2−3 yx−1+y2

(−x+y)2
t+

(−2 y−1)x2+(2 y2+2 y−3)x−y2+y

(−x+y)2

R4(t) = 0.

Thus, gcd
C(C)[t](H

P
1 , H

P
2 )

=

(
2 x2 − 3 yx− 1 + y2

)

(−x+ y)2
t+

−y2 + 2 y2x+ 2 yx− 3 x− 2 yx2 − x2 + y

(−x+ y)2
.

Therefore, the inverse mapping is:

P−1(x, y) = −−y2 + 2 y2x+ 2 yx− 3 x− 2 yx2 − x2 + y

2 x2 − 3 yx− 1 + y2
.

4.5 Implicitization

Given an affine rational parametrization P(t), the implicitization problem con-
sists of computing the defining polynomial for the Zariski closure of the set

S = {P(t) | t ∈ K such that P(t) is defined} .

Therefore, the problem consists of finding the smallest algebraic set in A2(K)
containing S. Note also, that if we are given a projective rational parametriza-
tion the implicitization problem is the same since the defining polynomial of
the projective curve is the homogenization of the defining polynomial of the
affine curve.

The problem can be solved by general elimination techniques such as
Gröbner bases ([AdL94] and [CLO97]). This approach is valid not only for
curves but for the more general case of parametric varieties in A(K)n. Also,
for surfaces, different approaches can be found in [BCD03], [ChG92a], [Gon97],
[Kot04], [SGD97]. However, for the case of plane curves, the implicit equation
can be found by means of gcd’s and resultants alone. For instance, apply-
ing Lemma 4.6, the defining polynomial of the curve parametrized by P(t)
can be obtained by computing the square-free part of a resultant. Moreover,
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if properness is guaranteed, Theorem 4.39 shows that the implicit equation
can be computed by a single resultant. This result can be found in [SGD97],
[SeW89], or in [SeW01a]. In addition to these results, in Theorem 4.41 we
see that in this resultant the implicit equation appears to the power of the
tracing index. Similar results on implicitization can be found in [ChG92a] and
[CLO97].

Theorem 4.39. Let P(t) be a proper parametrization in reduced form of a ra-
tional affine plane curve C. Then, the defining polynomial of C is the resultant

rest(HP
1 (t, x), HP

2 (t, y)).

Proof. Let P(t) = (χ1(t), χ2(t)). We know from Theorem 4.21 that, if f(x, y)
is the implicit equation of C, then degy(f) = deg(χ1(t)), and degx(f) =
deg(χ2(t)). The polynomials HP

i can be written as

HP
1 (t, x) = am(x)tm + · · · + a0(x), where m = degy(f),

HP
2 (t, y) = bn(y)tn + · · · + b0(y), where n = degx(f),

where degx(ai) ≤ 1 and degy(bi) ≤ 1.
Let R(x, y) be the resultant of HP

1 and HP
2 with respect to t, and let A be

the Sylvester matrix of HP
1 , H

P
2 ∈ K(x, y)[t] seen as univariate polynomials

in t:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

am(x) · · · · · · · · · a0(x)
. . . . . .

am(x) · · · · · · · · · a0(x)
bn(y) · · · · · · · · · b0(y)

. . . . . .
bn(y) · · · · · · · · · b0(y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, since only the entries in the first n rows depend on x, and this
dependence on x is linear, degx(R) ≤ n. Analogously, degy(R) ≤ m. On the
other hand, it is known that f(x, y) is a factor of R(x, y) (compare Lemma
4.6). Thus, degx(f) = degx(R) and degy(f) = degy(R). Therefore, up to a
constant, f(x, y) = R(x, y). 	


We finish this section showing how Lemma 4.6, Theorem 4.39, and the
notion of tracing index of a parametrization (compare Definition 4.24) are
related. Basically, the result follows from the next lemma on resultants, which
is valid for an arbitrary field.

Lemma 4.40. Let A,B ∈ L[t] be nonconstant polynomials over a field L:

A(t) = amt
m + · · · + a0, B(t) = bnt

n + · · · + b0, ambn �= 0
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and let R(t) = M(t)
N(t) ∈ L(t) be a nonconstant rational function in reduced

form, such that deg(M − βN) = deg(R) for every root β of A(t)B(t). Let
A′(t) and B′(t) be the polynomials

A′(t) = amM(t)m + am−1M(t)m−1N(t) + · · · + a0N(t)m,

B′(t) = bnM(t)n + bn−1M(t)n−1N(t) + · · · + b0N(t)n.

Then, if b′ is the leading coefficient of B′,

rest(A′, B′) =
(b′)m(deg(R)−deg(N))

b
m deg(R)
n

rest(A,B)deg(R) · rest(B′, N)m.

Proof. Let B decompose over the algebraic closure of L as

B(t) = bn

n∏
i=1

(t− βi).

Since B′(t) = Nn ·B(R) one has that

B′(t) = bn

n∏
i=1

(M(t) − biN(t)).

Therefore, since deg(M − βiN) = deg(R) for every i ∈ {1, . . . , n}, we have
deg(B′) = n·deg(R). In particular, since R is nonconstant,B′ is not a constant
polynomial. Similarly we see that deg(A′) = m · deg(R), and that A′ is also a
nonconstant polynomial.

Now, observe that if r = deg(R), every root βi of B generates r roots
{βi,1, . . . , βi,r} of B′(t), namely the roots of M(t)− βiN(t). Moreover, if α is
a root of B′ then N(α) �= 0, since otherwise one gets that M(α) = 0, which
is impossible because of gcd(M,N) = 1. Therefore,

βi =
M(βi,j)
N(βi,j)

= R(βi,j), j = 1, . . . , r.

Let S = rest(A,B), S′ = rest(A′, B′) and S′′ = rest(B′, N). From the relation
A′ = Nm · A(R) we get

S′=(b′)mr
∏

B′(α)=0

A′(α) = (b′)mr
n∏

i=1

r∏
j=1

A′(βi,j) = (b′)mr
n∏

i=1

A(βi)r
r∏

j=1

N(βi,j)m.

Furthermore, if k = deg(N), we have

S = bmn

n∏
i=1

A(βi), S′′ = (b′)k
n∏

i=1

r∏
j=1

N(βi,j).

Thus,

S′ =
(b′)mr

brm
n

Sr
n∏

i=1

r∏
j=1

N(βi,j)m =
(b′)mr−km

brm
n

Sr · (S′′)m. 	
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Theorem 4.41. Let P(t) be a parametrization in reduced form of an affine
rational plane curve C, and let f(x, y) be the defining polynomial of C. Then
for some nonzero constant c we have

rest(HP
1 (t, x), HP

2 (t, y)) = c · (f(x, y))index(P).

Proof. If C is a line parallel to one of the axes, let us say y = a, then P(t) =
(χ1 1(t)

χ1 2(t)
, a). By Lemma 4.32 index(P) = deg(P). Therefore,

rest(HP
1 (t), HP

2 (t))

= rest(x · χ1 2(t) − χ1 1(t), y − a) = (y − a)deg(P(t)) = (y − a)index(P) .

Let us now assume that the irreducible curve C is not a line parallel to
one of the axes, i.e. its defining polynomial depends on both variables x, y.
By Lemma 4.18 there is a proper parametrization of C in which the degrees
of numerator and denominator at each component agree. So let

P ′(t) =
(
ξ1 1(t)
ξ1 2(t)

,
ξ2 1(t)
ξ2 2(t)

)

be a proper parametrization, in reduced form, of C where deg(ξi 1) = deg(ξi 2).
By Lemma 4.17 there exists a nonconstant rational function R(t) such that
P(t) = P ′(R(t)) =

(
χ1 1(t)
χ1 2(t) ,

χ2 1(t)
χ2 2(t)

)
. Let R(t) = M(t)

N(t) be in reduced form. We
consider the polynomials

HP
1 (t) = x · χ1 2(t) − χ1 1(t), HP

2 (t) = y · χ2 2(t) − χ2 1(t),

HP′
1 (t) = x · ξ1 2(t) − ξ1 1(t), HP′

2 (t) = y · ξ2 2(t) − ξ2 1(t).

Note that HP
i , H

P′
i ∈ (K[x, y])[t].

We structure the remaining part of the proof in the following way:

(1) we relate the polynomials HP
i and H

P′

i (the result of substituting the
rational function R into HP′

i ),
(2) we extract common factors in these relations,

(3) we derive a nontrivial relation between rest(HP
1 , H

P
2 ) and rest(H

P′

1 , H
P′

2 ),
(4) these resultants contain powers of the defining polynomial of C. We express

the exponent as index(P).

So let us deal with step (1). Let

ξi 1(t) =
ni∑

j=0

ai,jt
j , ξi 2(t) =

ni∑
j=0

bi,jt
j , HP′

i (t) =
mi∑
j=0

hi,jt
j , for i = 1, 2.
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Observe that mi = ni. For i = 1, 2, we introduce the new polynomials

ξi 1(t) =
ni∑

j=0

ai,jM(t)jN(t)ni−j, ξi 2(t) =
ni∑

j=0

bi,jM(t)jN(t)ni−j ,

H
P′

i (t) =
mi∑
j=0

hi,jM(t)jN(t)mi−j,

which result from ξi 1, ξi 2, H
P′
i by substituting R(t) for t and clearing

denominators. In order to apply Lemma 4.40 to the nonconstant polynomials
HP′

1 (t), HP′
2 (t) ∈ K(x, y)[t] and the rational function R(t), let us see that

deg(M(t) − βN(t)) = deg(R) for every root β of HP′
1 (t) · HP′

2 (t). Indeed,
if β is such that deg(M(t) − βN(t)) < deg(R) then β ∈ K. Therefore,
either HP′

1 (β) = 0 or HP′
2 (β) = 0 and β ∈ K. This implies that either

gcd(ξ1 1, ξ1 2) �= 1 or gcd(ξ2 1, ξ2 2) �= 1, which is impossible. The application
of Lemma 4.40 leads to

rest(H
P′

1 , H
P′

2 ) =

(b′)m1(deg(R)−deg(N))

h
deg(R)m1
2,m2

· rest(HP′
1 , HP′

2 )deg(R) · rest(H
P′

2 , N)m1 , (4.1)

where b′ is the leading coefficient of H
P′

2 w.r.t. t. In addition, since P(t) =
P ′(R(t)), we have

χj 1(t) · ξj 2(R(t)) = ξj 1(R(t)) · χj 2(t), j = 1, 2.

Thus,
χj 1(t) ·HP′

j (R(t)) = ξj 1(R(t)) ·HP
j (t), j = 1, 2,

and (note that mj = nj)

χj 1(t)H
P′

j (t) = ξj 1(t)H
P
j (t), χj 1(t)ξj 2(t) = ξj 1(t)χj 2(t), for j = 1, 2.

Next we deal with step (2). We prove that gcd(χ1 1, χ2 1) = gcd(ξ1 1, ξ2 1).
Indeed: from the line above and the fact that the numerators and denom-
inators in the parametrization are relatively prime we deduce χj1|ξj1 and
thus gcd(χ11, χ21)| gcd(ξ11, ξ21). In order to prove that gcd(ξ1 1, ξ2 1) divides
gcd(χ1 1, χ2 1), we first see that gcd(ξj 1, ξj 2) = 1. Let a be a common root
of ξj 1 and ξj 2. Note that by definition of ξj 1 it follows that N(a) �= 0,
since otherwise it would imply that M(a) = 0, which is impossible since
gcd(M,N) = 1. Therefore, taking into account that ξj 1 = Nnjξj 1(R),
ξj 2 = Nnjξj 2(R), one deduces that ξj 1(R(a)) = ξj 2(R(a)) = 0 which
is impossible since gcd(ξj 1, ξj 2) = 1. So we have gcd(ξj 1, ξj 2) = 1, from
which we get by a similar reasoning as above that gcd(ξ1 1, ξ2 1) divides
gcd(χ1 1, χ2 1).
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As a consequence of this remark we can extract this gcd from the equalities
above and express them as:

χ∗
j 1(t)H

P′

j (t) = ξ
∗
j 1(t)H

P
j (t), χ∗

j 1(t)ξj 2(t) = ξ
∗
j 1(t)χ2 j(t), for j = 1, 2,

where gcd(χ∗
1 1, χ

∗
2 1) = gcd(ξ

∗
1 1, ξ

∗
2 1) = 1.

Now we come to step (3). Observe that

rest(χ∗
1 1H

P′

1 , χ∗
2 1H

P′

2 ) = rest(ξ
∗
1 1H

P
1 , ξ

∗
2 1H

P
2 ).

So,

rest(χ∗
1 1, χ

∗
2 1) · rest(χ∗

1 1, H
P′

2 ) · rest(H
P′

1 , χ∗
2 1) · rest(H

P′

1 , H
P′

2 )

= rest(ξ
∗
1 1, ξ

∗
2 1) · rest(ξ

∗
1 1, H

P
2 ) · rest(HP

1 , ξ
∗
2 1(t)) · rest(HP

1 , H
P
2 ).

Let us see that none of the factors involving χ∗
j 1 or ξ

∗
j 1 vanishes. Since χ∗

1 1, χ
∗
2 1

are relatively prime, their resultant does not vanish. Analogously for ξ
∗
j 1.

In order to see that the remaining factors do not vanish, we prove that if
L(t) ∈ K[t]� then gcd(L,HP

i ) = gcd(L,H
P′

i ) = 1; note that since we have
assumed that C is not a line parallel to the axes, none of the polynomial
ξ
∗
i j , χ

∗
i j can be zero. Indeed: if the gcd is not trivial there exists a ∈ K

such that, for instance, HP
i (a) = 0. But this implies that gcd(χi 1, χi 2) �= 1,

which is impossible. Also, if H
P′

i (a) = 0, from its definition it follows that

N(a) �= 0. Therefore, since H
P′

i (t) = NmiHP′
i (R(t)), one would deduce that

HP′
i (R(a)) = 0, and hence gcd(ξi 1, ξi 2) �= 1, which is impossible.
Taking into account this fact, the previous equality on resultants can be

written as

T1(y)T2(x)rest(H
P′

1 , H
P′

2 ) = T
′
1(y)T

′
2(x)rest(HP

1 , H
P
2 ), (4.2)

where Ti, T
′
i are univariate nonzero polynomials overK. Now, combining (4.1)

and (4.2) we get

T1(y)T2(x)

(
(b′)m1(deg(R)−deg(N))

h
deg(R)m1
2,m2

rest(HP′
1 , HP′

2 )deg(R) · rest(H
P′

2 , N)m1

)

= T
′
1(y)T

′
2(x)rest(HP

1 , H
P
2 ).

Finally we come to step (4). If f(x, y) is the implicit equation of C, from
Lemma 4.6 and Theorem 4.39 we see that there exists � ∈ N such that

T1(y)T2(x)

(
(b′)m1(deg(R)−deg(N))

h
deg(R)m1
2,m2

f(x, y)deg(R) · rest(H
P′

2 , N)m1

)

= T
′
1(y)T

′
2(x)f(x, y)�.
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Moreover, since b′, h2,m2 ∈ K[y]∗ and rest(H
P′

2 , N)m1 ∈ K[y]∗ (note that we

have already proved that the gcd of H
P′

2 and a nonzero polynomial depending
only on t is trivial) the above equality can be rewritten as

U1(y)U2(x)f(x, y)deg(R) = U
′
1(y)U

′
2(x)f(x, y)�

for some nonzero polynomials Ui, U
′
i . Therefore, since f(x, y) is irreducible

and it depends on both variables x, y (note that we are assuming that C is not
a line parallel to the axes), we conclude that deg(R) = �. Furthermore, from
Theorem 4.33 we get that

index(P(t)) = index(P ′(R(t)) = deg(R) · index(P ′(t)) = deg(R),

which finishes the proof. 	


4.6 Parametrization by Lines

In this section we treat some straight-forward cases in which we can easily
parametrize implicitly given algebraic curves. This approach will be general-
ized in Sect. 4.7. The basic idea consists in using a pencil of lines through a
suitable point on the curve such that by computing an intersection point of a
generic element of the pencil with the curve one determines a parametrization
of the curve. Of course every line L can be rationally parametrized, in fact
by a pencil of lines with a base point not on L. In the following we will not
consider lines.

4.6.1 Parametrization of Conics

Only irreducible curves can be rational (see Theorem 4.4). So let C be an
irreducible conic defined by the quadratic polynomial

f(x, y) = f2(x, y) + f1(x, y) + f0(x, y),

where fi(x, y) are homogeneous of degree i. Let us first assume w.l.o.g. that
C passes through the origin, so f0(x, y) = 0. Let H(t) be the linear system
H(1, O) of lines through the origin (compare Sect. 2.4), the elements of H(t)
being parametrized by their slope t. So the defining polynomial of H(t) is

h(x, y, t) = y − tx.

Now, we compute the intersection points of a generic element of H(t) and C.
That is, we solve the system

{
y = tx
f(x, y) = 0
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w.r.t. the variables x, y. The solutions are

O = (0, 0) and Q(t) =
(
−f1(1, t)
f2(1, t)

,− t · f1(1, t)
f2(1, t)

)
.

Note that f1(x, y) is not identically zero, since C is an irreducible curve. There-
fore, Q depends on the parameter t. Furthermore, f(Q(t)) = 0, so by Theo-
rem 4.7 Q(t) is a parametrization of C.

Theorem 4.42. The irreducible projective conic C defined by the polynomial
F (x, y, z) = f2(x, y) + f1(x, y)z (fi a form of degree i, respectively), has the
rational projective parametrization

P(t) = (−f1(1, t),−tf1(1, t), f2(1, t)).

Corollary 4.43. Every irreducible conic is rational.

So after a suitable change of coordinates, Theorem 4.42 yields a parametr-
ization of the irreducible conic C. We summarize this process in the following
algorithm.

Algorithm CONIC-PARAMETRIZATION.
Given the defining polynomial F (x, y, z) of an irreducible projective conic
C, the algorithm computes a rational parametrization.

1. Determine a point (a : b : 1) ∈ C.
2. g(x, y) = F (x+ a, y + b, 1). Let g2(x, y) and g1(x, y) be the homoge-

neous components of g(x, y) of degree 2 and 1, respectively.
3. Return P(t) = (−g1(1, t) + ag2(1, t),−tg1(1, t) + bg2(1, t), g2(1, t)).

Remarks. Note that, because of the geometric construction, the output
parametrization of algorithm conic-parametrization is proper. Moreover,
if P�,z(t) is the affine parametrization of C�,z derived from P(t), and (a : b : 1)
is the point on C used in the algorithm, then its inverse can be expressed as

P−1
�,z(x, y) =

y − b

x− a
. 	


Example 4.44. Let C be the ellipse defined by

F (x, y, z) = x2 + 2y2 − z2.

We apply algorithm conic-parametrization. In Step (1) we take the point
(1 : 0 : 1) on C. Then, performing Step (2), we get g(x, y) = x2 + 2x + 2y2.
So, a parametrization of C is

P(t) = (−1 + 2 t2,−2 t, 1 + 2 t2).
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4.6.2 Parametrization of Curves with a Point of High Multiplicity

Obviously, this approach can be immediately generalized to the situation
where we have an irreducible projective curve C of degree d with a (d−1)–fold
point P . W.l.o.g. we assume that P = (0 : 0 : 1). So the defining polynomial
of C is of the form

F (x, y, z) = fd(x, y) + fd−1(x, y)z ,

where fi is a form of degree i, respectively. Of course, there can be no other
singularity of C, since otherwise the line passing through the two singularities
would intersect C more than d times.

As above, let H(t) be the linear system of lines H(1, O) through O =
(0 : 0 : 1). Intersecting C with an element of H(t) we get the origin as an
intersection point of multiplicity at least d − 1. Reasoning as in the case of
conics, we see that

Q(t) = (−fd−1(1, t),−t · fd−1(1, t), fd(1, t)).

is a rational parametrization of the curve C. We summarize this in the following
theorem.

Theorem 4.45. Let C be an irreducible projective curve of degree d defined
by the polynomial F (x, y, z) = fd(x, y) + fd−1(x, y)z (fi a form of degree i,
resp.), i.e. having a (d− 1)–fold point at (0 : 0 : 1). Then C is rational and a
rational parametrization is

P(t) = (−fd−1(1, t),−tfd−1(1, t), fd(1, t)).

Corollary 4.46. Every irreducible curve of degree d with a (d− 1)-fold point
is rational.

So after a suitable change of coordinates Theorem 4.45 yields a parametr-
ization of the irreducible curve C. We summarize this process in the following
algorithm.

Algorithm PARAMETRIZATION-BY-LINES.
Given the defining polynomial F (x, y, z) of an irreducible projective curve
C of degree d, having a (d − 1)–fold point, the algorithm computes a
rational parametrization of C.

1. If d = 1, then proceed as in Remark to Definition 4.48. If d > 1,
compute the (d−1)–fold point P of C. W.l.o.g., perhaps after renaming
the variables, let P = (a : b : 1).

2. g(x, y) := F (x+ a, y + b, 1). Let gd(x, y) and gd−1(x, y) be the homo-
geneous components of g(x, y) of degree d and d− 1, respectively.

3. Return P(t) = (−gd−1(1, t)+agd(1, t),−tgd−1(1, t)+bgd(1, t), gd(1, t)).
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Fig. 4.2. Quartic C

Remarks. Note that, because of the underlying geometric construction,
the parametrization computed by algorithm parametrization-by-lines is
proper. Furthermore, if P�,z(t) is the affine parametrization of C�,z derived
from P(t), then its inverse can be computed as follows. W.l.o.g., perhaps
after renaming the variables, let P = (a : b : 1) be the singularity of the
curve. Then

P−1
�,z(x, y) =

y − b

x− a
.

Example 4.47. Let C be the affine quartic curve defined by (see Fig. 4.2)

f(x, y) = 1+x−15 x2−29 y2+30 y3−25 xy2+x3y+35 xy+x4−6 y4+6 x2y.

C has an affine triple point at (1, 1). We apply algorithm parametrization-

by-lines to parametrize C. In Step 2, we compute the polynomial

g(x, y) = 5 x3 + 6 y3 − 25 xy2 + x3y + x4 − 6 y4 + 9 x2y,

and determining the homogeneous forms of g(x, y), we get the rational
parametrization of C

P(t) =
(

4 + 6 t3 − 25 t2 + 8 t+ 6 t4

−1 + 6 t4 − t
,
4 t+ 12 t4 − 25 t3 + 9 t2 − 1

−1 + 6 t4 − t

)
.

Furthermore, taking into account the remark to the algorithm we have that

P−1(x, y) =
y − 1
x− 1

.
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4.6.3 The Class of Curves Parametrizable by Lines

A natural question is whether only the rational curves considered previously
are those parametrizable by lines. In order to answer this question, first of all,
we must be more precise and give a formal definition of what we mean by a
curve parametrizable by lines.

Definition 4.48. The irreducible projective curve C is parametrizable by lines
if there exists a linear system of curves H of degree 1 such that

(1) dim(H) = 1,
(2) the intersection of a generic element in H and C contains a nonconstant

point whose coordinates depend rationally on the free parameter of H.

We say that an irreducible affine curve is parametrizable by lines if its pro-
jective closure is parametrizable by lines.

Remarks. 1. Note that in Definition 4.48 we have not required that the
base point of H is on the curve. Later, we will see that in fact the base
point must lie on C, unless C is a line.

2. Any line is parametrizable by lines (see Exercise 4.12).
3. Note that an affine curve parametrizable by lines is in fact rational. More-

over, the implicit equation of C vanishes on the generic intersection point
depending rationally on the parameter. So, by Theorem 4.7, this generic
point is a rational parametrization of C. Furthermore, if the irreducibility
condition in Definition 4.48 is not imposed, then the curve has a rational
component (see Exercises 4.13 and 4.14).

4. Let C be an affine curve such that its associated projective curve C� is
parametrizable by the linear system of lines H(t) of equation L1(x, y, z)−
tL2(x, y, z). Then, the affine parametrization of C, generated by H(t), is
proper and L1(x,y,1)

L2(x,y,1) is its inverse (see Exercise 4.15). In fact, H(t) is a
pencil of lines (Definition 2.53) and its base point is L1 ∩ L2.

Theorem 4.49. Let C be an irreducible projective plane curve of degree d > 1.
The following statements are equivalent:

(1) C is parametrizable by a pencil of lines H(t).
(2) C has a point of multiplicity d− 1 which is the base point of H(t).

Proof. That (2) implies (1) follows from Definition 4.48 and Theorem 4.45.
Conversely, let L1(x, y, z) − tL2(x, y, z) be the defining polynomial of H(t),
let P(t) be the proper parametrization derived from H(t), and let Q be the
base point of H(t). Since d > 1, for almost all t0 ∈ K, H(t0) intersects C in
at least two points, and one of them is P(t0). First we prove that H(t0)∩C =
{P(t0), Q} for almost all t0 ∈ K. Let P ∈ [H(t0)∩C]\P(t0). If P is reachable
by P(t), then there exists t1 ∈ K, t1 �= t0, such that P(t1) = P . This implies
that P ∈ H(t1) ∩H(t0). Therefore, P = Q. If P is not reachable, the inverse
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of P(t) is not defined at P , and hence L2(P ) = 0. But, since P ∈ H(t0), then
L1(P ) = 0. Thus P is in all the lines of the system of lines H(t), so P = Q.

Now, since C is irreducible, it has only finitely many singularities. Thus
multP(t0)(C,H(t0)) = 1 for almost all t0 ∈ K. This implies, by Bézout’s
Theorem, that multQ(C,H(t0)) = d − 1 for almost all t0 ∈ K. Therefore,
d − 1 = multQ(C), i.e. the base point of H(t) is a point on C of multiplicity
d− 1. Thus, (1) implies (2). 	


We have seen that the inverse of an affine parametrization generated by the
algorithm parametrization-by-lines is linear. In the next theorem we see
that this phenomenon also characterizes the curves parametrizable by lines.

Theorem 4.50. Let C be an irreducible affine plane curve. The following
statements are equivalent:

(1) C is parametrizable by lines.
(2) There exists a proper affine parametrization of C with a linear inverse.
(3) The inverse of any proper affine parametrization of C is linear.

Proof. Let d be the degree of C. If d = 1 the result is trivial. Let us assume
that d > 1. If (1) holds, by Theorem 4.49 we know that C� has a (d− 1)–fold
point. Therefore, applying algorithm parametrization-by-lines one gets a
proper affine parametrization of C with linear inverse. Thus, (2) holds.

We prove now that (2) implies (3). Let P(t) be a proper affine parametriza-
tion with linear inverse, and let P ′(t) be any other proper affine para-
metrization of C. Because of Lemma 4.17 (2) there exists a linear rational
function L(t) such that P ′(t) = P(L(t)). Therefore, P ′−1 = L−1 ◦P−1 is also
linear.

Finally, we prove that (3) implies (1). Let P(t) be a proper affine parame-
trization of C with a rational inverse of the form (ax+by+c)/(a′x+b′y+c′). Let
P�(t) be the projective parametrization generated by P(t). Then, we consider
the pencil of lines H(t) defined by H(x, y, z, t) = (ax+ by+ cz)− (a′x+ b′y+
c′z)t. Clearly, H(P�(t), t) = 0. Thus, P�(t) ∈ H(t) ∩ C� . Therefore, C� is
parametrizable by lines. 	


4.7 Parametrization by Adjoint Curves

In Theorem 4.11 we saw that only curves of genus 0 have any chance of being
rationally parametrizable. In this section we conclude that the curves of genus
0 are exactly the rational curves.

In Theorem 4.49 we have seen that, in general, rational curves can not be
parametrized by lines. In fact, we have proved that a rational curve C of de-
gree d ≥ 2 is parametrizable by lines if and only if it has a (d− 1)–fold point.
In order to treat the general case, we develop here a method based on the
notion of adjoint curves that, intuitively speaking, is a generalization of the
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idea underlining the parametrization by lines method. The method described
in this section follows basically the approach in [Wal50] and [SeW91]. There
are alternative parametrization methods such as [VaH97] based on the com-
putation of the anticanonical divisor, or [Sch92] where adjoints of high degree
are used.

Throughout this section, C will be an irreducible projective curve of degree
d > 2 and genus 0. Note that this is not a loss of generality, because we
have seen in the previous section that lines and irreducible conics can be
parametrized by lines. Before showing how adjoints are defined and how they
can be used to solve the parametrization problem, we first generalize the
notion of parametrization by lines. We need to guarantee that every curve
in the parametrizing system H intersects C in finitely many points. This is
trivial when we parametrize by lines, but in the generalization it leads to an
additional condition.

Definition 4.51. A linear system of curves H parametrizes C iff

(1) dim(H) = 1,
(2) the intersection of a generic element in H and C contains a nonconstant

point whose coordinates depend rationally on the free parameter in H,
(3) C is not a component of any curve in H.

In this case we say that C is parametrizable by H.

Lemma 4.52. Let H(t) be a linear system of curves parametrizing C, then
there exists only one nonconstant intersection point of a generic element of
H(t) and C depending on t, and it is a proper parametrization of C.

Proof. By condition (2) in Definition 4.51 we know that there exists a non-
constant point P(t) in H(t) ∩ C depending rationally on t. Let us see that
P(t) is a proper parametrization of C. It is clear that the defining polynomial
of C vanishes at it. Thus, P(t) is a parametrization of C. In order to see that
it is proper, we find the inverse of the affine parametrization P�,z(t) of C�,z

generated by P(t). Let H(t, x, y, z) = H0(x, y, z)− tH1(x, y, z) be the defining
polynomial of H(t). Then, H(t,P(t)) = 0. Moreover, H1(P(t)) �= 0, because
otherwise we would have that H0(P(t)) = 0, which is impossible because of
condition (3) in Definition 4.51. Therefore, M = H0/H1 is defined at P(t)
and M(P(t)) = t. Thus, by Lemma 4.36, M(x, y, 1) is the inverse of P�,z(t).

Finally, let us see that P(t) is unique. Let Q(t) be another intersec-
tion point depending rationally on t. By the argument above, we know that
both are proper rational parametrizations, and that P−1

�,z (t) = Q−1
�,z(t). Thus,

P(t) = Q(t). 	


Now let us see how to actually compute a parametrization from a para-
metrizing linear system of curves. For this purpose, for a polynomial G in
K[x, y, z][t] we use the notation ppt(G) to denote the primitive part of G
w.r.t. t, i.e. G divided by the gcd of its coefficients.
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Theorem 4.53. Let F (x, y, z) be the defining polynomial of C, and let H(t, x,
y, z) be the defining polynomial of a linear system H(t) parametrizing C. Then,
the proper parametrization P(t) generated by H(t) is the solution in P2(K(t))
of the system of algebraic equations

ppt(resy(F,H)) = 0
ppt(resx(F,H)) = 0

}
.

Proof. Let {P1, . . . , Ps,P(t)} be the intersection points of H(t) and C. By
Lemma 4.52 we know that Pi ∈P2(K) and P(t)∈P2(K(t)). Let Pi = (ai : bi : ci)
and P(t) = (χ1(t), χ2(t), χ3(t)). Condition (3) in Definition 4.51 implies that
resy(F,H) and resx(F,H) are not identically zero. Furthermore, from Bézout’s
Theorem we get that

resy(F,H) = (χ3(t)x− χ1(t)z)β
s∏

i=1

(cix− aiz)αi

resx(F,H) = (χ3(t)y − χ2(t)z)β′
s∏

i=1

(ciy − biz)α′
i

for some αi, α
′
i, β, β

′ ∈ N. So, obviously, the parametrization is determined by
the primitive parts of these resultants. 	


The following theorem gives sufficient conditions for a linear system of
curves to be a parametrizing system.

Theorem 4.54. Let H be a linear system of curves of degree k and let B be
the set of base points of H (cf. Definition 2.54). If

(1) dim(H) = 1,
(2)
∑

P∈B multP (C, C′) = dk − 1 for almost all curves C′ ∈ H, and
(3) C is not a component of any curve in H,

then H parametrizes C.

Proof. We just have to prove that condition (2) in the statement of the the-
orem implies condition (2) in Definition 4.51. By condition (3) we know that
C is not a component of any curve in H. Thus, by Bézout’s Theorem and
condition (2) we see that (C′ ∩ C) \ B consists of a single point for almost all
C′ ∈ H. Therefore, this point depends rationally on the parameter of H. 	


Now, the natural question is how to determine parametrizing linear sys-
tems of curves. We will show that adjoints provide an answer to this question.
Adjoint curves can be defined for reducible curves. However, since our final
goal is to work with rational curves, we will only consider irreducible curves.
For the reducible case we refer to [BrK86],[Ful89],[Wal50].
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Before we introduce the notion of adjoint curves and establish some of their
important properties, we remind the reader of some of the notation introduced
in Sect. 3.2 concerning the blowing up of curves:

1. Sing(C) denotes the singular locus of C.
2. Ngr(C) denotes the neighboring graph of C, i.e. Ngr(C) comprises the sin-

gularities and neighboring singularities of C.
3. For P ∈ Sing(C), NgrP (C) denotes the subgraph of Ngr(C) with root at P .
4. For P ∈ Ngr(C) we denote by QP the sequence of quadratic transforma-

tions and linear transformations generating the neighborhood where P
belongs to. Moreover, for any projective curve C′ we denote by QP (C′)
the quadratic transform of C′ by QP .

Definition 4.55. A projective curve C′ is an adjoint curve of the irreducible
projective curve C iff multP (QP (C′)) ≥ multP (QP (C)) − 1 for every P ∈
Ngr(C). We say that C′ is an adjoint curve of degree k of C, if C′ is an adjoint
of C and deg(C′) = k.

All algebraic conditions required in the definition of adjoint curves are
linear. Therefore if one fixes the degree, the set of all adjoint curves of C
is a linear system of curves (see Sect. 2.4). In fact, if C has only ordinary
singularities, then the set of adjoint curves of degree k of C is the linear
system generated by the effective divisor∑

P∈Sing(C)

(multP (C) − 1)P.

This remark motivates the following definition.

Definition 4.56. The set of all adjoints of C of degree k, k ∈ N, is called the
system of adjoints of C of degree k. We denote this system by Ak(C).

Theorem 4.57. Let C be a projective curve of degree d and genus 0, and let
k ≥ d− 2, then Ak(C) �= ∅.

Proof. The full linear system of curves of degree k has dimension k(k + 3)/2
(cf. Sect. 2.4). Since genus(C) = 0, the number of linear conditions required
by Ak(C) is

∑
P∈Ngr(QP (C))

multP (QP (C))(multP (QP (C)) − 1)
2

=
(d− 1)(d− 2)

2
.

Therefore,
dim(Ak(C)) ≥ k(k + 3)

2
− (d− 1)(d− 2)

2
(compare to Theorem 2.59 for the case of curves with only ordinary singulari-
ties). Now, if k ≥ d−2, then dim(Ak(C)) ≥ d−2 > 0 and hence Ak(C) �= ∅. 	


In [Noe83], Sect. 50, the dimension of the linear system of adjoints of an
irreducible curve is determined. Applying this result one has the following
result.
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Theorem 4.58. Let C be a projective curve of degree d and genus 0, and let
k ≥ d− 2, then

dim(Ak(C)) =
k(k + 3)

2
− (d− 1)(d− 2)

2
.

Now, we proceed to show how from linear systems of adjoint curves we
may generate parametrizing linear systems. For this purpose, we first prove
two preliminary lemmas. In the first one, if C1, C2 are projective curves defined
respectively by the forms F1, F2, we denote by C1C2 the curve defined by F1F2,
and by λC1 + µC2 the curve defined by λF1 + µF2 where λ, µ ∈ K, assuming
that the corresponding polynomial is not identically zero.

Lemma 4.59. Let C be an irreducible projective curve of degree d, let k ∈
{d, d− 1, d− 2}, let F ⊂ C \ Sing(C) be a finite set and let

Hk := Ak(C) ∩H(k,
∑
P∈F

P ).

Then the following hold:

(1) If k = d, for every C′ ∈ Hd, and for almost all (λ, µ) ∈ K2 we have
µC′ + λC ∈ Hd, and µC′ + λC does not have multiple components.

(2) If we take a fixed k ∈ {d − 1, d − 2}, then for every C′ ∈ Hk, for every
projective curve M of degree d−k, and for almost all (λ, µ) ∈ K2 we have

µMC′ + λC ∈ Hd ∩H(d,
∑

P∈M∩C
P ),

and µMC′ + λC does not have multiple components.

Proof. If Hk = ∅, then there is nothing to prove. Let us assume that Hk �= ∅.
Let F,G,M be the defining polynomials of C, C′,M, respectively.

In order to prove Statement (1), we first observe that if C′ = C the result
trivially holds for λ, µ ∈ K such that λ + µ �= 0. Let us assume that C′ �= C.
We observe that C′, C ∈ Hd. Therefore, since Hd is a projective linear variety,
if λ, µ are such that µG + λF is not identically zero, then µC′ + λC ∈ Hd.
Moreover, since C′ �= C, for all (λ, µ) ∈ Ω1 := K2 \ {(0, 0)} we have that
µG+λF is not identically zero. Let us prove the second part of Statement (1).
For this purpose, we take the polynomial A(λ, µ, x, y, z) := µG + λF , where
λ, µ are considered as formal parameters. Let us see that A is irreducible as a
polynomial in K[λ, µ, x, y, z]. Indeed, if it factors, since A is linear in {λ, µ},
one factor belongs to K[x, y, z]. But this implies that F is either reducible or
F = G up to constant, which is impossible since F is irreducible and we have
assumed that C′ �= C. Moreover, taking into account that F is irreducible
and nonlinear (lines have been excluded), A does depend on {x, y, z}, and
hence A can be seen as a nonconstant polynomial in K[λ, µ, x, y][z]. Now,
because of the irreducibility of A, one has that A is primitive w.r.t. z, and it
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is square-free. Therefore, by Theorem 8.1, p. 338, in [GCL92], the discriminant
of A w.r.t. z is not identically zero. Thus, computing this discriminant, we
find a nonempty open Zariski subset Ω2 of K2, such that A(λ0, µ0, x, y, z) is
squarefree for every (λ0, µ0) ∈ Ω2. So, for every (λ, µ) ∈ Ω1 ∩ Ω2, which is
nonempty becauseK2 is irreducible, we have that µC′+λC ∈ Hd, and µC′+λC
does not have multiple components.

Let us prove Statement (2). F is irreducible and k < d, so µMG+ λF is
identically zero if and only if λ = µ = 0. We prove that if (λ, µ) �= (0, 0) then
µMC′ + λC ∈ Hd ∩H(d,

∑
P∈M∩C P ). Indeed:

(i) Let us see that µMC′+λC ∈ H(d,
∑

P∈F P ). Clearly, C ∈ H(d,
∑

P∈F P ).
Moreover, by hypothesis, C′ ∈ H(k,

∑
P∈F P ), hence multP (C′) ≥ 1 for

P ∈ F . Furthermore, multP (MC′) = multP (M) + multP (C′) ≥ 1 for
P ∈ F (see Exercise 2.10). So, since deg(MC′) = d, one gets that
MC′ ∈ H(d,

∑
P∈F P ). Now, the statement follows from the linearity

of H(d,
∑

P∈F P ); note that µMG+ λF is not identically zero.
(ii) Reasoning similarly as in (i) we deduce that µMC′+λC∈H(d,

∑
P∈M∩C P ).

(iii) Let us see that µMC′ + λC ∈ Ad(C). First, we observe that C ∈ Ad(C),
so we have to prove that MC′ ∈ Ad(C). For this purpose, we first note
that deg(MC′) = d. We analyze separately the required conditions on
the singularities and on the neighboring points (see Definition 4.55).
(iii.i) Let P ∈ Sing(C). Then, taking into account that C′ ∈ Ak(C), we

have

multP (MC′) = multP (M) + multP (C′) ≥ multP (C′) ≥ multP (C) − 1.

(iii.ii) Let P ∈ Ngr(C), and let QP as above. Observe that QP (MC′) =
QP (M)QP (C′). Therefore,

multP (QP (MC′)) = multP (QP (M)QP (C′)) =
multP (QP (M)) + multP (QP (C′)) ≥ multP (QP (C′))
≥ multP (QP (C)) − 1.

Summarizing, we get that if (λ, µ) �= (0, 0) then µMC′ + λC ∈ Hd ∩
H(d,

∑
P∈M∩C P ). In order to prove that for almost all (λ, µ) ∈ K2 the curve

µMC′ + λC does not have multiple components, one reasons analogously as
in the proof of Statement (1). In this case, A(λ, µ, x, y, z) := µMG+ λF . 	


The following lemma can be found in [Wal50] Chap. III, Theorem 7.6.

Lemma 4.60. Let C1 and C2 be two projective curves of degrees d1 and d2

respectively, having no common components and neither C1 nor C2 having any
multiple components. Then

d1d2 ≥
∑

P ∈ NgrP ′(C1)
P ′ ∈ C1 ∩ C2

multP (Qp(C1))multP (Qp(C2)),

where NgrP ′(C1) = {P ′} if P ′ ∈ [C1 ∩ C2] \ Sing(C1).
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Now, we show how from linear systems of adjoint curves we may generate
parametrizing linear systems.

Theorem 4.61. Let C be a projective curve of degree d and genus 0, let
k ∈ {d− 1, d− 2}, and let Sk ⊂ C \ Sing(C) be such that card(Sk) = kd −
(d− 1)(d− 2) − 1. Then

Ak(C) ∩H(k,
∑

P∈Sk

P )

parametrizes C.

Proof. Let H = Ak(C)∩H(k,
∑

P∈Sk
P ). We check whether the conditions in

Theorem 4.54 are satisfied. Note that Condition (3) holds trivially, because
C is irreducible and k < d. Let us check Condition (1), i.e. dim(H) = 1.
dim(H) ≥ dim(Ak(C)) − [kd − (d − 1)(d − 2) − 1], and by Theorem 4.58
we know that dim(H) ≥ 1. Now, let us assume that dim(H) > 1. We take
two different points Q1, Q2 ∈ C \ (Sing(C) ∪ Sk), and we consider the linear
subsystem

H′ = H ∩H(k,Q1 +Q2).

Observe that dim(H′) ≥ 0. Thus, H′ �= ∅. Let C′ ∈ H′. Since deg(C′) < deg(C)
and C is irreducible, we know that C′ and C do not have common components.
Now, we distinguish two different cases:

(i) If C′ does not have multiple components, then since C does not have com-
mon components either, by Lemma 4.60 and the fact that genus(C) = 0,
we get that

kd ≥∑
P∈Ngr(C)

multP (QP (C))multP (QP (C′)) +
∑

P∈Sk∪{Q1,Q2}
multP (C)multP (C′) ≥

∑
P∈Ngr(C)

multP (QP (C)) (multP (QP (C)) − 1) +
∑

P∈Sk∪{Q1,Q2}
multP (C)multP (C′)

≥ (d− 1)(d− 2) + [kd− (d− 1)(d− 2) − 1] + 2 = kd+ 1,

which is impossible.
(ii) Let us assume that C′ has multiple components. Then, we consider d− k

different lines L1, . . . ,Ld−k such that Li and C intersects in d different
points and

(Li ∩ C) ∩ (Sing(C) ∪ Sk ∪ {Q1, Q2} ∪j �=i (Lj ∩ C)) = ∅.

Let Li be the defining polynomial of Li and let M be the curve of defining
polynomial L1 · · ·Ld−k. Now, applying Lemma 4.59 (2) to C and taking
F as Sk ∪ {Q1, Q2}, we take λ, µ ∈ K such that

C′′ := µMC′ + λC ∈ Ad(C) ∩H(d,
∑

P∈Sk∪{Q1,Q2}
P ) ∩H(d,

∑
p∈M∩C

P ),
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and C′′ does not have common components. In this situation we apply
Lemma 4.60 to C′′ and C; note that C′′ and C do not have common com-
ponents because both curves have the same degree and C is irreducible. So

d2 ≥
∑

P∈Ngr(C)

multP (QP (C))multP (QP (C′′)) +
∑

P∈Sk∪{Q1,Q2}
multP (C)multP (C′′)+

∑
P∈M∩C

multP (C)multP (C′′) ≥
∑

P∈Ngr(C)

multP (QP (C)) (multP (QP (C)) − 1)

+
∑

P∈Sk∪{Q1,Q2}
multP (C)multP (C′′) + d(d − k)

= (d− 1)(d− 2) +
∑

P∈Sk∪{Q1,Q2}
multP (C)multP (C′′) + d(d − k)

≥ (d− 1)(d− 2) + [kd− (d− 1)(d− 2) − 1] + 2 + d(d− k)

= kd+ 1 + d(d− k) = d2 + 1,

which is impossible.

Now, let us check that Condition (2) holds in Theorem 4.54. For this
purpose, we first prove that the set of base points B of H is Sing(C) ∪ Sk. It
is clear that Sing(C)∪Sk ⊂ B. Let us assume that B �= Sing(C)∪Sk, so there
exists Q ∈ B \ (Sing(C) ∪ Sk). We choose a curve C′ ∈ H passing through a
point Q′ ∈ C \ B. This is possible because dim(H) = 1. Then, since C and C′

do not have common components, we argue similarly as above distinguishing
two different cases:

(i) Let C′ be without multiple components. Since C does not have multiple
components either, we can apply Lemma 4.60. Reasoning as in (i) above,
we arrive at the contradiction kd ≥ kd+ 1. Thus, B = Sing(C) ∪ Sk.

(ii) Let us assume that C′ has multiple components. We consider d−k different
lines L1, . . . ,Ld−k such that Li and C intersect in d different points and

(Li ∩ C) ∩ (Sing(C) ∪ Sk ∪ {Q,Q′} ∪j �=i (Lj ∩ C)) = ∅.

Let Li be the defining polynomial of Li and let M be the curve defined
by L1 · · ·Ld−k. Now, applying Lemma 4.59 (2) to C and taking F as
Sk ∪ {Q,Q′}, we take λ, µ ∈ K such that

C′′ := µMC′ + λC ∈ Ad(C) ∩H(d,
∑

P∈Sk∪{Q,Q′}
P ) ∩H(d,

∑
p∈M∩C

P ),

and C′′ does not have multiple components. In this situation we apply
Lemma 4.60 to C′′ and C; note that C′′ and C do not have common com-
ponents because both curves have the same degree and C is irreducible.
So, reasoning as in (ii) above, we arrive at the contradiction d2 ≥ d2 + 1.
Thus, B = Sing(C) ∪ Sk.
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Now that we have proved that B = Sing(C)∪Sk, we show that Statement (2)
in Theorem 4.54 holds. That is, we have to prove

∑
P∈B

multP (C, C′) = dk − 1

for almost all C′ ∈ H. We structure the proof as follows: First, we prove that
for all C′ ∈ H we have

∑
P∈B

multP (C, C′) ≥ dk − 1.

Second, we show that there exists at least one curve C′ ∈ H such that
∑
P∈B

multP (C, C′) = dk − 1,

and finally we show that the equality holds for almost all curves in H.

(a) Let us assume that there exists C′ ∈ H such that the sum of multiplicities
of intersection at B is equal to dk − �, where � > 1. Then, since C and
C′ do not have common components, by Bézout Theorem we deduce that
there exists a set of points E ⊂ (C ∩ C′) \ B such that

∑
P∈E

multP (C, C′) = �.

Now we argue similarly as above distinguishing two different cases:
(a.1) Let C′ be without multiple components. Since C does not have mul-

tiple components either, we can apply Lemma 4.60. Reasoning as
in (i) above, and using the fact that B = Sing(C) ∪ Sk, we derive
kd ≥ kd+ �− 1, which is impossible since � > 1.

(a.2) Let us assume that C′ has multiple components. Then, we consider
d− k different lines L1, . . . ,Ld−k such that Li and C intersect in d
different points and

(Li ∩ C) ∩ (Sing(C) ∪ Sk ∪ E ∪j �=i (Lj ∩ C)) = ∅.

Let Li be the defining polynomial of Li and let M be the curve of
defining polynomial L1 · · ·Ld−k. Now, applying Lemma 4.59(2) to
C, and taking F as Sk ∪A, we take λ, µ ∈ K such that

C′′ := µMC′ + λC ∈ Ad(C) ∩H(d,
∑

P∈Sk∪A
P ) ∩H(d,

∑
p∈M∩C

P ),

and C′′ does not have multiple components. In this situation we
apply Lemma 4.60 to C′′ and C; note that C′′ and C do not have
common components because both curves have the same degree and
C is irreducible. So, reasoning as in (ii), we derive d2 ≥ d2 + � − 1,
which is impossible since � > 1.
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(b) Let us assume that for all curves in H the sum of multiplicities of inter-
section at B is dk. Then, since dim(H) = 1, we consider a point Q ∈ C \B,
and we take C′ ∈ H such that Q ∈ C′. In this situation we have

∑
P∈C′∩C

multP (C, C′) ≥
∑
P∈B

multP (C, C′) + multQ(C, C′) ≥ dk + 1.

Therefore, by Bézout’s theorem, the curves C and C′ have a common
component, which is impossible.

(c) Let C′ ∈ H be the curve whose existence ensures step (b) of our rea-
soning. Since the sum of multiplicities of intersection at B is dk − 1,
and since C′ and C do not have common components, by Bézout’s the-
orem we know that C ∩ C′ = B ∪ {Q}, where Q := (a : b : c) �∈ B.
Now, let H(t0, t1, x, y, z) := t0G0 + t1G1 be the defining polynomial of
a generic element in H, where we assume w.l.o.g. that G0 is the defin-
ing polynomial of C′. Furthermore we assume w.l.o.g., probably after
performing a suitable linear change of coordinates, that F (0, 0, 1) �= 0,
Gi(0, 0, 1) �= 0, and that (0 : 0 : 1) is not on any line connecting two
different points in B ∪ {Q}. Note that if F (0, 0, 1) �= 0 then, in partic-
ular, one has that the leading coefficient of F w.r.t. z is constant and
that (0 : 0 : 1) �∈ B ∪ {Q}. Also, condition Gi(0, 0, 1) �= 0 implies
that (0 : 0 : 1) is neither on C′ nor on the curve defined by H over
the algebraic closure of K(t0, t1). Then let R(t0, t1, x, y) := resz(H,F ).
Taking into account the previous steps (a) and (b), one has that R fac-
tors as

R(t0, t1, x, y) = (α2(t0, t1)x− α1(t0, t1)y)
∏

(ai:bi:ci)∈B
(bix− aiy)ri ,

where
∑
ri = dk − 1.

Now, for every i we introduce the polynomials δi(t0, t1) = α2ai − α1bi.
Let us see that none of these polynomials is identically zero. For this
purpose, we first observe that, since the leading coefficient of F w.r.t. z
is constant, the resultant specializes properly and therefore (α2(1, 0)x −
α1(1, 0)y) = λ(bx − ay) for some λ ∈ K∗. Therefore if δi is identi-
cally zero then bai − abi = 0, which is impossible because (0 : 0 :
1) is not on any line connecting a point in B and Q. We consider
the set

Ω = {(t0, t1) ∈ K2 \ {(0, 0)} |
∏

δi(t0, t1) �= 0} .

Note that Ω is open and nonempty. Moreover, because of the construction,
for every (t0, t1) ∈ Ω, if C′′ is the curve defined by H(t0, t1, x, y, z), then

∑
P∈B

multP (C, C′′) = dk − 1. 	
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Theorem 4.62. Let C be a projective curve of degree d and genus 0, let Q /∈ C,
and let Sd ⊂ C \ Sing(C) be such that card(Sd) = 3(d− 1). Then

Ad(C) ∩H(d,Q+
∑

P∈Sd

P )

parametrizes C.

Proof. Let H = Ad(C) ∩ H(d,
∑

P∈Sd
P + Q). We prove that the conditions

in Theorem 4.54 are satisfied. First, we observe that for every C′ ∈ H, since
deg(C) = deg(C′), since Q ∈ C′ but Q �∈ C, and since C is irreducible, the
curves C and C′ do not have common components. Therefore, Condition (3)
holds.

Let us now check Condition (1), i.e. dim(H) = 1. Since dim(H) ≥
dim(Ad(C)) − [3(d − 1)] − 1, by Theorem 4.58, we know that dim(H) ≥ 1.
Now, let us assume that dim(H) > 1. Then, we take two different points
Q1, Q2 ∈ C \ (Sing(C) ∪ Sd), and we consider the linear subsystem

H′ = H∩H(d,Q1 +Q2).

Observe that dim(H′) ≥ 0. Thus, H′ �= ∅. Let C′ ∈ H′. Note that, since
C′ ∈ H′ ⊂ H, reasoning as above one has that C′ and C do not have common
components. Now, we distinguish two different cases:

(i) If C′ does not have multiple components, then since C does not have com-
mon components either, applying Lemma 4.60 and that genus(C) = 0, one
has that (note that Q �∈ C ∩ C′)

d2 ≥
∑

P∈Ngr(C)

multP (QP (C))multP (QP (C′)) +
∑

P∈Sd∪{Q1,Q2}
multP (C)multP (C′) ≥

∑
P∈Ngr(C)

multP (QP (C)) (multP (QP (C)) − 1) +
∑

P∈Sd∪{Q1,Q2}
multP (C)multP (C′)

= (d− 1)(d− 2) +
∑

P∈Sd∪{Q1,Q2}
multP (C)multP (C′)

≥ (d− 1)(d− 2) + 3(d− 1) + 2 = d2 + 1,

which is impossible.
(ii) Let us assume that C′ has multiple components. Then, we consider the

linear system H∗ := Ad(C)∩H(d,
∑

P∈Sd
P )∩H(d,Q1 +Q2). We observe

that, since C′ ∈ H′, then C′ ∈ H∗. Now, we apply Lemma 4.59(1) to C and
F := Sd ∪ {Q1, Q2}, and we take λ, µ ∈ K such that

C′′ := µC′ + λC ∈ H∗,
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and such that C′′ does not have common components. In this situation we
apply Lemma 4.60 to C′′ and C; note that C′′ and C do not have common
components because otherwise this would imply that C′ and C have a
common component, which is a contradiction.

d2 ≥
∑

P∈Ngr(C)

multP (QP (C))multP (QP (C′′)) +
∑

P∈Sd∪{Q1,Q2}
multP (C)multP (C′′) ≥

∑
P∈Ngr(C)

multP (QP (C)) (multP (QP (C)) − 1) +
∑

P∈Sd∪{Q1,Q2}
multP (C)multP (C′′)

≥ (d− 1)(d− 2) + 3(d− 1) + 2 = d2 + 1,

which is impossible.

Now, let us check whether Condition (2) in Theorem 4.54 holds. For this
purpose, we first prove that the set of base points B of H is Sing(C)∪Sd∪{Q}. It
is clear that Sing(C)∪Sd∪{Q} ⊂ B. Let us assume that B �= Sing(C)∪Sd∪{Q}.
Then there exists R ∈ B \ (Sing(C) ∪ Sd ∪ {Q}). We choose a curve C′ ∈ H
passing through a point R′ ∈ C \ B. This is possible because dim(H) = 1.
Then, since C and C′ do not have common components, we argue similarly as
above distinguishing two different cases:

(i) Let C′ be without multiple components. Since C does not have com-
mon components either, we can apply Lemma 4.60. Reasoning as in
(i) above, we arrive at the contradiction d2 ≥ d2 + 1. Thus, B =
Sing(C) ∪ Sd ∪ {Q}.

(ii) Let us assume that C′ has multiple components. Then, we consider the
linear system H∗ := Ad(C) ∩H(d,

∑
P∈Sd

P ) ∩H(d,R + R′). We observe
that, since C′ ∈ H ∩ H(d,R + R′), then C′ ∈ H∗. Now, we apply
Lemma 4.59(1) to C and F := Sd ∪ {R,R′}, and we take λ, µ ∈ K
such that

C′′ := µC′ + λC ∈ H∗,

and C′′ does not have multiple components. In this situation we apply
Lemma 4.60 to C′′ and C; note that C′′ and C do not have common
components because otherwise it would imply that C′ and C have a
common component, which is not the case. Now, reasoning as in (ii)
above, we arrive at the contradiction d2 ≥ d2 + 1. Thus, B = Sing(C) ∪
Sd ∪ {Q}.

Once we have proved that B = Sing(C)∪Sd∪{Q}, we show that Statement (2)
in Theorem 4.54 holds. That is, we have to prove that for almost all C′ ∈ H
one has that ∑

P∈B
multP (C, C′) = d2 − 1.
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We structure the proof as follows: First, we prove that for all C′ ∈ H it
holds that ∑

P∈B
multP (C, C′) ≥ d2 − 1.

Second, we show that there exists at least one curve C′ ∈ H such that
∑
P∈B

multP (C, C′) = d2 − 1,

and finally we show that the equality holds for almost all curves in H.

(a) Let us assume that there exists C′ ∈ H such that the sum of multiplicities
of intersection at B is equal to d2 − �, where � > 1. Then, since C and
C′ do not have common components, by Bézout Theorem we deduce that
there exists a set of points E ⊂ (C ∩ C′) \ B such that

∑
P∈E

multP (C, C′) = �.

Now we argue similarly as above distinguishing two different cases:
(a.1) Let C′ be without multiple components. Since C does not have mul-

tiple components either, we can apply Lemma 4.60. Reasoning as
in (i) above, and using the fact that B = Sing(C) ∪ Sk, we derive
d2 ≥ d2 + �− 1, which is impossible since � > 1.

(a.2) Let us assume that C′ has multiple components. Then, we consider
the linear system H∗ := Ad(C) ∩H(d,

∑
P∈Sd

P ). We observe that,
since C′ ∈ H, then C′ ∈ H∗. Now, we apply Lemma 4.59(1) to C and
F := Sd, and we take λ, µ ∈ K such that

C′′ := µC′ + λC ∈ H∗,

and C′′ does not have multiple components. In this situation we
apply Lemma 4.60 to C′′ and C; note that C′′ and C do not have
common components because otherwise also C′ and C would have
common components, which we have excluded. Also, note that by
assumption E ⊂ C′ ∩ C, and therefore E ⊂ C′′ ∩ C. So, reasoning as
in (ii), we derive d2 ≥ d2 + �− 1, which is impossible since � > 1.

(b) Let us assume that for all curves in H the sum of multiplicities of inter-
section is d2. Then, since dim(H) = 1, we consider a point R ∈ C \B, and
we take C′ ∈ H such that R ∈ C′. In this situation we have

∑
P∈C′∩C

multP (C, C′) ≥
∑
P∈B

multP (C, C′) + multR(C, C′) ≥ d2 + 1.

Therefore, by Bézout’s theorem, the curves C and C′ have a common
component, which is impossible.
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(c) Let C′ ∈ H be the curve whose existence ensures step (b) of our reasoning.
Since the sum of multiplicities of intersection at B is d2 − 1, since C′ and
C do not have common components, and since Q ∈ B but Q �∈ C ∩ C′, by
Bézout’s theorem we know that C ∩ C′ = (B \ {Q}) ∪ {R}, where R :=
(a : b : c) �∈ B. Now, let H(t0, t1, x, y, z) := t0G0 + t1G1 be the defining
polynomial of a generic element in H, where we assume w.l.o.g. that G0 is
the defining polynomial of C′, and let F be the defining polynomial of C.
We assume w.l.o.g., probably after performing a suitable linear change of
coordinates, that F (0, 0, 1) �= 0, Gi(0, 0, 1) �= 0, and that (0 : 0 : 1) is not
on any line connecting two different points in (B \ {Q})∪ {R}. Note that
if F (0, 0, 1) �= 0 then, in particular, one has that the leading coefficient
of F w.r.t. z is constant and that (0 : 0 : 1) �∈ (B \ {Q}) ∪ {R}. Also,
condition Gi(0, 0, 1) �= 0 implies that (0 : 0 : 1) is neither on C′ nor on
the curve defined by H over the algebraic closure of K(t0, t1). Then let
R(t0, t1, x, y) := resz(H,F ). Taking into account the previous steps (a)
and (b) one has that R factors as

R(t0, t1, x, y) = (α2(t0, t1)x− α1(t0, t1)y)
∏

(ai:bi:ci)∈B\{Q}
(bix− aiy)ri ,

where
∑
ri = d2 − 1.

Now, for every i we introduce the polynomials δi(t0, t1) = α2ai − α1bi.
Let us see that none of these polynomials is identically zero. For this
purpose, we first observe that, since the leading coefficient of F w.r.t. z
is constant, the resultant specializes properly and therefore (α2(1, 0)x −
α1(1, 0)y) = λ(bx−ay) for some λ ∈ K∗. Therefore if δi is identically zero
then bai − abi = 0 which is impossible because (0 : 0 : 1) is not on any
line connecting a point in (B \ {Q}) and R. We consider the set

Ω = {(t0, t1) ∈ K2 \ {(0, 0)} |
∏

δi(t0, t1) �= 0} .

Note that Ω is open and nonempty. Moreover, because of the construction,
for every (t0, t1) ∈ Ω, if C′′ is the curve defined by H(t0, t1, x, y, z), then

∑
P∈B

multP (C, C′′) = d2 − 1. 	


From these theorems, one deduces the following result:

Theorem 4.63. An algebraic curve C is rational if and only if genus(C) = 0.

Proof. One implication is already stated in Theorem 4.11. In this section we
have developed an algorithm which can parametrize every curve of genus 0.

	


The results proved in this section provide a family of algorithms for
parametrizing any rational curve by means of adjoints.
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Algorithm PARAMETRIZATION-BY-ADJOINTS.
Given the defining polynomial F (x, y, z) of an irreducible projective curve
C of degree d and genus 0, the algorithm computes a rational parametriza-
tion of C.

1. If d ≤ 3 or Sing(C) contains exactly one point of multiplicity d − 1,
apply algorithm parametrization-by-lines.

2. Choose k ∈ {d− 2, d− 1, d} and compute the defining polynomial of
Ak(C).

3. Choose a set S ⊂ (C \ Sing(C)) such that card(S) = kd − (d − 1)
(d− 2) − 1.

4. If k < d then
compute the defining polynomial H of Ak(C) ∩H(k,

∑
P∈S P );

else (i.e. k = d)
choose Q /∈ C and
compute the defining polynomial H of Ak(C)∩H(k,Q+

∑
P∈S P ).

5. Set one of the parameters in H to 1 and let t be the remaining pa-
rameter in H . Return the solution in P2(K(t)) of {ppt(resy(F,H)) =
0, ppt(resx(F,H)) = 0}.

From the point of view of time efficiency one must choose k = d − 2 in
Step 2, since then degrees of polynomials are the smallest. Nevertheless, the se-
lection of k = d can be also interesting in the sense that at most one algebraic
number of degree d has to be introduced (see Theorem 4.72), and therefore
it is a first approach to algebraic optimality of the output (see Chap. 5). In
the next section, we will consider the algebraic extensions of the field of defi-
nition required by the parametrization algorithm. But first, we illustrate the
algorithm by two examples.

Example 4.64. Let C be the quintic over C (see Figure 4.3) of defining poly-
nomial (see Example 3.13)

F (x, y, z) = y2z3 − x5.

From the implicit equation it is clear that (t2, t5, 1) is a parametrization of C.
Nevertheless, let us see how the algorithm works. In Example 3.13 we have
determined that

Sing(C) = {(0 : 1 : 0), (0 : 0 : 1)},

where P1 = (0 : 1 : 0) is a triple nonordinary point, and P2 = (0 : 0 : 1) is
a nonordinary double point. Furthermore, in Example 3.13 the neighboring
graph of C was computed. We have obtained that P1,1 = (1 : 1 : 0) is an
ordinary double point in the first neighborhood of P1, P2,1 = (1 : 1 : 0) is a
nonordinary double point in the first neighborhood of P2, and P2,2 = (−2 :
1 : 0) is a simple point in the second neighborhood of P2.
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Therefore, genus(C) = 0, and hence C is rational (see Theorem 4.63). We
proceed to parametrize the curve. In Step 2 we choose k = d−2 = 3. In order
to compute Ak(C), we consider a generic form in {x, y, z} of degree 3:

H = a00 z
3 + a01 yz

2 + a02 y
2z + a03 y

3 + a10 xz
2 + a11 xyz + a12 xy

2

+a20 x
2z + a21 x

2y + a30 x
3.

First, we require P1 to be a double point on A3(C), and P2 to be a simple
point on A3(C). That is, we consider the equations:

{
∂H

∂x
(P1) = 0,

∂H

∂y
(P1) = 0,

∂H

∂z
(P1) = 0, H(P2) = 0

}
.

Solving the linear system of equations in ai,j derived from the system above
one gets:

H = a01 yz
2 + a10 xz

2 + a11 xyz + a20 x
2z + a21 x

2y + a30 x
3

Next, we consider the neighboring points. That is, we impose that

{QP1(H)(P1,1) = 0, QP2(H)(P2,1) = 0} .

This leads to
H = a01yz

2 + a11xyz + a20x
2z + a30x

3,

as the defining polynomial of A3(C).
In Step 3 we choose a set S ⊂ (C \ Sing(C)) with 2 points, namely

S = {(1 : 1 : 1), (1 : −1 : 1)}.
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In Step 4 we compute the defining polynomial of A3(C)∩H(3, Q1+Q2), where
Q1 = (1 : 1 : 1) and Q2 = (1 : −1 : 1). That is, we solve the equations

H(1, 1, 1) = 0, H(1,−1, 1) = 0,

which leads to

H(x, y, z) = −a11yz
2 + a11xyz − x2za30 + a30x

3.

Setting a11 = 1, a30 = t, we get the defining polynomial

H(t, x, y, z) = −yz2 + xyz − x2zt+ tx3

of the parametrizing system. Finally, in Step 5, the solution of the system
{
−x+ t2z = 0
−y + t5z = 0

provides the parametrization

P(t) = (t2, t5, 1).

Example 4.65. Let C be the quartic over C (see Fig. 4.4) of

F (x, y, z) = −2xy2z − 48x2z2 + 4xyz2 − 2x3z + x3y − 6y4 + 48y2z2 + 6x4.
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Fig. 4.4. C�,z
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The singular locus of C is

Sing(C) = {(0 : 0 : 1), (2 : 2 : 1), (−2 : 2 : 1)},

all three points being double points. Therefore, genus(C) = 0, and hence C is
rational (see Theorem 4.63). Note that no blowing up is required. We proceed
to parametrize the curve. In Step 2 we choose k = d − 2 = 2. The defining
polynomial of A2(C) is

H(x, y, z) = (−2 a02 − 2 a20) yz + a02y
2 − 2 a11xz + a1,1xy + a20x

2.

In Step 3 we choose a set S ⊂ (C \Sing(C)) with 1 point, namely S = {(3 : 0 :
1)}. In Step 4, we compute the defining polynomial of H := A2(C)∩H(2, Q),
where Q = (3 : 0 : 1). This leads to

H(x, y, z) = (−2 a02 − 2 a20) yz + a02y
2 − 3 a20xz +

3
2
a20xy + a20x

2.

Setting a02 = 1, a20 = t, we get the defining polynomial

H(t, x, y, z) = (−2 − 2 t) yz + y2 − 3 txz +
3
2
txy + tx2

of the parametrizing system. Finally, in Step 5, the solution of the system
defined by the resultants provides the following affine parametrization of C:
P(t) =
(

12
9 t4 + t3 − 51 t2 + t+ 8

126 t4 − 297 t3 + 72 t2 + 8 t− 36
, −2

t(162 t3 − 459 t2 + 145 t+ 136)
126 t4 − 297 t3 + 72 t2 + 8 t− 36

)
.

4.8 Symbolic Treatment of Parametrization

In algorithm parametrization-by-adjoints we have described how to
parametrize rational curves. However, from the symbolic point of view, we
still want to clarify some steps. For instance, we want to explain how to sym-
bolically compute the system of adjoints, and how to choose and manipulate
the simple points that are taken in Step 3 of the algorithm. Obviously, one
can always approach the problem directly, by introducing algebraic numbers
and carrying out all computations over algebraic extensions of the ground
field. However, we take here a different approach, using the notion of a family
of conjugate points (see Definition 3.15). This means that we do not need to
work with individual points, and hence we safe time in computation.

In Sect. 3.3 we have seen how to symbolically analyze the genus by
introducing families of conjugate points. In this section we show how to use
the standard decomposition of the singularities to compute linear systems
of adjoints, and we describe a first approach for choosing the simple points.
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In the next chapter, we will develop an optimal approach for the choice of the
necessary simple points.

Throughout this section, we assume that C is a projective rational curve
of degree d, and that its not necessarily algebraically closed ground field K

(see Definition 3.14) is a computable field.
We start by proving that linear systems of adjoint curves can be computed

without extending K.

Theorem 4.66. Let C be a rational projective curve of degree d and ground
field K. Then K is also the ground field of Ak(C), k ≥ d− 2.

Proof. The linear system of adjoints Ak(C) can be expressed as

Ak(C) = H(k,
∑

P∈D(Ngr(C))

(multP (QP (C)) − 1) · P ),

where D(Ngr(C)) is the standard decomposition of the neighboring graph of C
(see Definition 3.27). Observe that all the transformations for dealing with the
neighboring graph of C are performed over the ground field. So Theorem 3.26
and Lemma 3.19 yield the result. 	


Combining the results in Sect. 4.6 and Theorem 4.66, we can guarantee
that the output of Step 2 in algorithm parametrization-by-adjoints is
defined over K. In Step 3 we have to compute simple points on C. In Chap. 5
we will see that we can find such points in a field extension of K of degree
at most 2. Here we prove a more modest result, namely that we can always
parametrize using a field extension of K of degree at most d. Note that if the
simple points are taken randomly, and adjoints of degree d−2 are considered,
then in general a field extension of degree (d − 3)d has to be introduced.
Moreover, this bound is even worse if adjoints of higher degree are used.

Lemma 4.67. Let P be a simple point on an irreducible projective curve C
of degree d > 1. There exist at most d(d− 1) tangents to C, at a simple point
on C, passing through P .

Proof. We assume w.l.o.g. that P = (0 : 0 : 1). If Q ∈ C \ Sing(C), then the
tangent to C at Q is given by

x
∂F

∂x
(Q) + y

∂F

∂y
(Q) + z

∂F

∂z
(Q) = 0 ,

where F is the defining polynomial of C (see Theorem 2.13). Thus, the simple
points of C with tangent passing through P are solutions of {∂F

∂z = 0, F = 0}.
Since F is irreducible and since ∂F/∂z has total degree d − 1, according to
Bézout’s Theorem there are at most d(d − 1) different solutions. 	


In the following we show how the simple points in algorithm parametri-

zation-by-adjoints can be taken in families of conjugate points for different
options of the degree of the adjoint curves.
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Theorem 4.68 (Parametrizing with adjoints of degree d− 2). If algo-
rithm parametrization-by-adjoints is performed with adjoints of degree
k = d− 2, the set S of simple points in Step 3 of the algorithm can be taken
as a family of conjugate points over a field extension of K of degree at most
d(d− 1)(d− 2).

Proof. Let F (x, y, z) ∈ K[x, y, z] be the defining polynomial of C. The theorem
obviously holds for curves of degree ≤ 4. So w.l.o.g. we may assume that
deg(C) > 4. Note that card(S) = d − 3 in Step 3. Take b1, b2 ∈ K such that
no singular point of C is of the form (b1 : b2 : c). Now, compute an irreducible
factor p1(t) of F (b1, b2, t) over K. Then,

P1 = (b1 : b2 : β1) ∈ P
2(K(β1)),

where p1(β1) = 0, is a simple point of C. Note that deg(p1) ≤ d. In this
situation, choose λ, µ ∈ K such that:

(1) b1 �= λβ1, b2 �= µβ1,
(2) rest

(
q(t), ∂q

∂t

)
�= 0, where q(t) = F (λt+ b1, µt+ b2, t+ β1) ∈ K(β1)[t].

Condition (2) implies that the line L = {(λt+b1 : µt+b2 : t+β1) | t ∈ K} does
not pass through the singularities and that L is not tangent to C. The reason
for Condition (1) will become clear later. Note that Lemma 4.67 implies that
Condition (2) can always be achieved. Condition (1) is clearly reachable. Now,
we consider the polynomial

q(t) =
q(t)
t

∈ K(β1)[t]

(note that q(0) = F (P1) = 0), and choose an irreducible factor p2(t) over
K(β1) of q(t). Thus, from the above construction we deduce that

P2 = (λβ2 + b1 : µβ2 + b2 : β2 + β1) ∈ P
2(K(β1, β2)),

where p2(β2) = 0, is a simple point of C because of (2). Note that deg(p2) ≤
d− 1. Then, we introduce the polynomial

q�(t) =
q(t)
t− β2

∈ K(β1, β2)[t].

Take an irreducible factor p3(t) of q�(t) over K(β1, β2), and consider the point

P3 = (λβ3 + b1 : µβ3 + b2 : β3 + β1) ∈ P
2(K(β1, β2, β3)),

where p3(β3) = 0. Note that deg(p3) ≤ d − 2. Observe that P3 is a simple
point on C because of (2). Finally, we introduce the polynomial

m(t) =
q�(t)
t− β3

∈ K(β1, β2, β3)[t].
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In this situation, we claim that

F = {(λt+ b1 : µt+ b2 : t+ β1)}m(t)

is a family of (d − 3) conjugate simple points on C over K(β1, β2, β3). First,
note that m(t) ∈ K(β1, β2, β3)[t], thus F contains conjugate points over
K(β1, β2, β3). Moreover, because of Condition (1), the coordinate polynomi-
als in F are coprime and with coefficients in K(β1) ⊂ K(β1, β2, β3). Hence,
Condition (1) in Definition 3.15 is satisfied. Furthermore, by construction q(t)
is squarefree. Thus, since m(t) is a factor of q(t), also m(t) must be squarefree.
So Condition (2) in Definition 3.15 is satisfied. Moreover deg(q(t)) = d > 4,
hence deg(m(t)) = d − 3 > 1 and the degree of the polynomials defining the
coordinates of F is 1. Thus, Condition (3) in Definition 3.15 is also satisfied.
Now, we check that card(F) = d − 3. Let α1, α2 be two different roots of
m(t), and let Pαi be the point in F generated by the root αi. If α1 = −β1

then α2 �= −β1 and hence Pα1 �= Pα2 (similarly if α2 = −β1). Let α1, α2 be
different from −β1. Then Pα1 = Pα2 implies

λα1 + b1
α1 + β1

=
λα2 + b1
α2 + β1

,
µα1 + b2
α1 + β1

=
µα2 + b2
α2 + β1

.

Since α1 �= α2, this implies λβ1 = b1 and µβ1 = b2, which is impossible
because of Condition (1) in the construction. Summarizing, F is a family of
(d− 3) conjugate simple points over K(β1, β2, β3), which is an extension of K

of degree at most d(d− 1)(d− 2). 	


Corollary 4.69. If algorithm parametrization-by-adjoints is performed
with adjoints of degree k = d−2, and S in Step 3 of the algorithm is taken as in
Theorem 4.68, the algorithm outputs a parametrization over a field extension
of K of degree at most d(d− 1)(d− 2).

Proof. In Theorem 4.66 we have seen that the defining polynomial of Ad−2(C)
has coefficients over K. By Theorem 4.68, points in S are in a family of
conjugate points over a field extension L of K of degree at most d(d−1)(d−2).
Thus, by Lemma 3.19 the defining polynomial of

Ad−2(C) ∩H
(
d− 2,

∑
P∈S

P

)

has coefficients in L. Therefore, the resultant polynomials in Step 5 are over
L, and hence also the parametrization. 	


Theorem 4.70 (Parametrizing with adjoints of degree d− 1). If algo-
rithm parametrization-by-adjoints is performed with adjoints of degree
k = d− 1, the set S of simple points in Step 3 of the algorithm can be taken
as the union of two families of conjugate points over a field extension of K of
degree at most d(d− 1).
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Proof. Let F (x, y, z) ∈ K[x, y, z] be the defining polynomial of C. The theorem
obviously holds for curves of degree ≤ 4. So w.l.o.g. we may assume that
deg(C) > 4. Note that card(S) = 2d − 3 = (d − 1) + (d − 2) in Step 3.
Then, the idea is to express S as the union of two families of conjugate simple
points, one with (d−2) points and the other with (d−1). More precisely, take
b1, b2 ∈ K such that no singular point of C is of the form (b1 : b2 : c). Now,
compute an irreducible factor p1(t) of F (b1, b2, t) over K. Then,

P1 = (b1 : b2 : β1) ∈ P
2(K(β1)),

where p1(β1) = 0, is a simple point of C. Note that deg(p1) ≤ d. In this
situation, choose λ1, λ2, µ1, µ2 ∈ K such that:

(1) λ1µ2 �= λ2µ1, b1 �= λiβ1, b2 �= µiβ1 for i = 1, 2,
(2) rest

(
qi(t), ∂qi

∂t

)
�= 0, for i = 1, 2, where qi(t) = F (λit+b1, µit+b2, t+β1) ∈

K(β1)[t].

Condition (1) implies in particular that the lines Li = {(λit + b1 : µit + b2 :
t + β1) | t ∈ K} are different. Condition (2) guarantees that the lines Li do
not pass through any singularities and that Li is not tangent to C. Note that
Lemma 4.67 implies that Condition (2) can always be achieved. Condition (1)
is easily reachable. Now, we consider the polynomials

qi(t) =
qi(t)
t

∈ K(β1)[t], i = 1, 2,

(note that qi(0) = F (P1) = 0). We claim that

F1 = {(λ1t+ b1 : µ1t+ b2 : t+ β1)}q1(t)

is a family of (d − 1) conjugate simple points on C over K(β1). The proof of
this fact is similar to the proof of Theorem 4.68 and we leave it to the reader.

In order to generate the second family we use q2(t). More precisely, let
p2(t) be an irreducible factor of q2(t) over K(β1). Then, we introduce the
point

P2 = (λ2β2 + b1 : µ2β2 + b2 : β2 + β1),

where p2(β2) = 0. Note that deg(p2) ≤ d− 1. P2 ∈ L2 ∩ C, and therefore it is
a simple point on C. Now, we take

m(t) =
q2(t)
t− β2

∈ K(β1, β2)[t].

Then, reasoning similarly as above, we deduce that

F2 = {(λ2t+ b1 : µ2t+ b2 : t+ β1)}m(t)

is a family of (d − 2) conjugate simple points on C over K(β1, β2). Thus, we
have expressed S as F1 ∪ F2. The only thing that we still have to prove is
that F1 ∩ F2 = ∅. Indeed, L1 ∩ L2 = {P1}, and Fi ⊂ Li ∩ C. Thus the only
common point of F1 and F2 is P1. But the root corresponding to P1 has been
crossed out in both polynomials defining the families. 	
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Corollary 4.71. If algorithm parametrization-by-adjoints is performed
with adjoints of degree k = d−1, and S in Step 3 of the algorithm is taken as in
Theorem 4.70, the algorithm outputs a parametrization over a field extension
of K of degree at most d(d− 1).

Proof. Similar to the proof of Corollary 4.69. 	


Theorem 4.72 (Parametrizing with adjoints of degree d). If algorithm
parametrization-by-adjoints is performed with adjoints of degree k = d,
the set S of simple points in Step 3 of the algorithm can be taken as the union
of three families of conjugate points over a field extension of K of degree at
most d.

Proof. Let F (x, y, z) ∈ K[x, y, z] be the defining polynomial of C. As in the
previous proofs we may assume w.l.o.g. that deg(C) > 4. Note that card(S) =
3(d − 1) in Step 3. The idea is to express S as the union of three families
of (d − 1) conjugate points. For this purpose, we proceed as in the previous
theorems. We take a simple point on the curve. This implies, in general, an
extension of degree d, and we consider three lines through this point. More
precisely, take b1, b2 ∈ K such that no singular point of C is of the form
(b1 : b2 : c). Now, compute an irreducible factor p1(t) of F (b1, b2, t) over K.
Therefore,

P1 = (b1 : b2 : β1) ∈ P
2(K(β1)),

where p1(β1) = 0, is a simple point of C. Note that deg(p1) ≤ d. In this
situation, choose λ1, λ2, λ3, µ1, µ2, µ3 ∈ K such that:

(1) λiµj �= λjµi, for i �= j, and b1 �= λiβ1, b2 �= µiβ1 for i = 1, 2, 3,

(2) rest

(
qi(t), ∂qi

∂t

)
�= 0, for i = 1, 2, 3, where qi(t) = F (λit+ b1, µit+ b2, t+

β1) ∈ K(β1)[t].

Condition (1) implies in particular that the lines Li = {(λit + b1 : µit + b2 :
t + β1) | t ∈ K} are pairwise different, i.e. Li �= Lj for i �= j. Condition (2)
guarantees that the lines Li do not pass through any singularities and that
Li is not tangent to C. Note that Lemma 4.67 implies that Condition (2) can
always be achieved. Condition (1) is easily reachable. Now, we consider the
polynomials

qi(t) =
qi(t)
t

∈ K(β1)[t], i = 1, 2, 3

(note that qi(0) = F (P1) = 0). We claim that

Fi = {(λit+ b1 : µit+ b2 : t+ β1)}qi(t), i = 1, 2, 3

are families of (d − 1) conjugate simple points on C over K(β1). The proof
of this fact is similar to the proof of Theorem 4.68 and we leave it to the
reader. 	
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Corollary 4.73. If algorithm parametrization-by-adjoints is performed
with adjoints of degree k = d, S in Step 3 of the algorithm is taken as in
Theorem 4.72, and Q in Step 4 is taken over K, the algorithm outputs a
parametrization over a field extension of K of degree at most d.

Proof. Similar to the proof of Corollary 4.69. 	


From the constructive proof of Theorem 4.72 it is clear that the field
extension of K introduced in the parametrization method is the one used
to define the simple point P1 through which the three families of (d − 1)
conjugate simple points are taken. Therefore, if P1 can be taken to be rational,
i.e. with coordinates in K, then the output parametrization is defined over
K. In addition, the following result can be also deduced from the proof of
Theorem 4.72.

Theorem 4.74. Let C be a rational projective curve with ground field K. Then
C is parametrizable over K if and only if there exists a simple point on C with
coordinates over K.

Proof. If C is parametrizable over K, giving values in K to the parameter,
one generates infinitely many points on C over K. Thus, since the curve has
finitely many singularities, one generates simple points on the curve with
coordinates in K. Conversely, let P ∈ C be simple with coordinates over K.
Then, P can be taken as the point P1 in the proof of Theorem 4.72 to generate
the 3 families of (d− 1) conjugate simple points on C. This implies that these
families are over K, and therefore the output parametrization of the algorithm
parametrization-by-adjoints is over K. 	


The proofs of the previous theorems are constructive and they provide
algorithms. We will outline the algorithm corresponding to adjoint curves of
degree d = deg(C) (see Theorem 4.72 and Corollary 4.73). Algorithms derived
from corollaries to Theorems 4.68 and 4.70 are left as exercises.

Algorithm SYMBOLIC-PARAMETRIZATION-BY-DEGREE-
d-ADJOINTS.
Given the defining polynomial F (x, y, z) ∈ K[x, y, z] of a rational irre-
ducible projective curve C of degree d, and the standard decomposition
D(Ngr(C)) of Ngr(C), the algorithm computes a rational parametrization
of C.

1. If d ≤ 3 or Sing(C) contains exactly one point of multiplicity d − 1,
apply algorithm parametrization-by-lines.

2. Take b1, b2 ∈ K such that no singular point of C is of the form
(b1 : b2 : c).

3. Compute an irreducible factor p(t) of F (b1, b2, t) over K. Let β be a
root of p(t).
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4. Choose λ1, λ2, λ3, µ1, µ2, µ3 ∈ K such that:
(i) λiµj �= λjµi, for i �= j,
(ii) b1 �= λiβ, b2 �= µiβ for i = 1, 2, 3,
(iii) rest

(
qi(t), ∂qi

∂t

)
�= 0, for i = 1, 2, 3, where qi(t) = F (λit+b1, µit+

b2, t+ β).
5. Compute qi(t) = qi(t)

t for i = 1, 2, 3.
6. Set Fi := {(λit+ b1 : µit+ b2 : t+ β)}qi(t) for i = 1, 2, 3.
7. Choose a point Q ∈ P

2(K) \ C.
8. Let H be the defining polynomial of H = Ad(C) ∩ H(d,Q +∑3

i=1

∑
P∈Fi

P ); use D(Ngr(C)) to compute symbolically H (see
Theorem 4.72).

9. Set one of the parameters in H to 1 and let t be the remaining param-
eter in H . Return the solution in P2(K(β)(t)) of {ppt(resy(F,H)) =
0, ppt(resx(F,H)) = 0}.

Remarks. Note that in Step 4 and also in the next step, we do not need to
isolate an individual root of p(t), but we can simply work modulo p(t).

Example 4.75. We consider the quintic curve C over C defined by the
polynomial

F (x, y, z) = 3y3z2 − 3xy2z2 − 2xy3z + y3x2 + x3z2.

The ground field of C is Q. In Step 2, we take b1 = −1, b2 = 1. Thus,

F (−1, 1, t) = 5t2 + 2t+ 1.

In Step 3, we consider p(t) = 5t2 + 2t + 1 and β with minimal polynomial
p(t). In Step 4, we take λ1 = 1, λ2 = 0, λ3 = 1 and µ1 = 0, µ2 = 1, µ3 = 2. It
is easy to check that conditions (i),(ii),(iii) are satisfied. In this situation, the
polynomials qi(t) in Step 5 are

q1(t) =
23
5
t+ t4 − 3 t3 − 1

5
t2 + 8 β + 2 βt3 − 32

5
βt2 +

6
5
βt,

q2(t) = 3 t4 + 14 t3 +
107
5
t2 +

58
5
t+ 2 + 6 βt3 +

124
5
βt2 +

156
5
βt+ 10 β,

q3(t) = 5 t4 + 21 t3 +
147
5
t2 +

47
5
t+ 10 βt3 +

264
5
βt2 +

294
5
βt+ 8 β.

Therefore, the families in Step 6 are

F1 = {(t− 1 : 1 : t+ β)}q1(t), F2 = {(−1 : t+ 1 : t+ β)}q2(t),

F3 = {(t− 1 : 2t+ 1 : t+ β)}q3(t).
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In Step 7, we consider Q = (1 : −1 : 1). In Step 8, we compute H. For this
purpose, first we apply the results on the symbolic computation of the genus
(see Sect. 3.3), and we determine the standard decomposition of the singular
locus:

D(Sing(C)) = D(Ngr(C)) =

triple︷ ︸︸ ︷
{(0 : 0 : 1)}∪

double︷ ︸︸ ︷
{(1 : 1 : 1)} ∪ {(1 : 0 : 0)} ∪ {(0 : 1 : 0)},

where the first singularity is a triple point and the others are double points.
Let H be the defining polynomial of a generic form in x, y, z of degree 5:

H = a00z
5 + a01yz

4 + a02y
2z3 + a03y

3z2 + a04y
4z + a05y

5 + a10xz
4 +

a11xyz
3 + a12xy

2z2 + a13xy
3z + a14xy

4 + a20x
2z3 + a21x

2yz2 + a22x
2y2z +

a23x
2y3 + a30x

3z2 + a31x
3yz + a32x

3y2 + a40x
4z + a41x

4y + a50x
5.

Next, we compute the defining polynomial of A5(C). That is, we consider
the equations

∂H

∂x
(0, 0, 1) = 0,

∂H

∂y
(0, 0, 1) = 0,

∂H

∂z
(0, 0, 1) = 0,

H(1, 1, 1) = 0, H(1, 0, 0) = 0, H(0, 1, 0) = 0.

Solving them and substituting in H we get the defining polynomial of the
linear system of adjoints, which we denote again by H :

H = (−a03−a04−a11−a12−a13−a14−a20−a21−a22−a23−a30−a31−
a32 − a40− a41)y2z3 + a03y

3z2 + a04y
4z + a11xyz

3 + a12xy
2z2 + a13xy

3z +
a14xy

4 + a20x
2z3 + a21x

2yz2 + a22x
2y2z + a23x

2y3 + a30x
3z2 + a31x

3yz +
a32x

3y2 + a40x
4z + a41x

4y.

Now, we introduce the new conditions

H(1,−1, 1) = 0,

H(t− 1, 1, t+ β) = 0 mod q1(t),

H(−1, t+ 1, t+ β) = 0 mod q2(t),

H(t− 1, 2t+ 1, t+ β) = 0 mod q3(t).

Solving these equations, and substituting in H we get the new linear subsys-
tem of dimension 1 corresponding to Step 8 (we denote it again by H):

H = a41−12340xy3za30 +47562xy3za41−4670xy2z2a30−3024xy2z2a41−
1275xyz3a30−3435xyz3a41 +4500y4za30β−47100y4zβa41−11280y3z2a30β+
7425y2z3a30β−2900x4za30β−9130x4zβa41+600x3y2a30β−16505x3y2βa41−
595x3yza30−16824x3yza41 +3160x2y3a30β−39113x2y3βa41 +7830y2z3a41 +
675y2z3a30−5940y2z3βa41+362x3yzβa41−10965x3yza30β+10565x2y2za30β+
48008x2y2zβa41 − 36677x2yz2βa41 + 13890x2yz2a30β + 7729x2yz2a41 −
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915x2z3a41 − 300x2z3a30 + 94094xy3zβa41 + 11420xy3za30β − 3200xy4a30 −
6120xy4a41 − 11590xy2z2a30β − 6225xyz3a30β + 22712xy2z2βa41 +
19005xyz3βa41 − 27633y3z2a41 + 4860y3z2a30 − 8700y4za41 + 7500y4za30 −
37671y3z2βa41 + 3600x3y2a30 − 4990x4za41 − 500x4za30 − 3115x3y2a41 −
9999x2y3a41 + 5180x2y3a30.

Normalizing to a30 = 1 and a41 = t and performing Step 9 we get the
output parametrization

P(t) =
(
χ1 1(t)
χ1 2(t)

,
χ2 1(t)
χ2 2(t)

)
,

where,
χ1 1(t) = −293257020t2−37389240βt2+1396500+12020500β+23655150t−

116431950βt+ 480367237t3 + 1072866719βt3,

χ1 2(t) = 54925000t3,

χ2 1(t) = −5618255790βt2 − 1542285990t2 + 2931800β − 38638880 +
693472350βt+ 588212970t+ 7167937919βt3 − 1401717583t3,

χ2 2(t) = −260t
(
−69001t+ 6701585βt− 201199− 839635β + 6739937t2

)
which requires a field extension of degree 2. However, if in Step 3 we consider
b1 = −3, b2 = 1, then β = 1, and the algorithm leads to the parametrization

P(t) =
(

21 t+ 343 t3 + 1 + 1470 t2

−9261t3
,
21 t+ 343 t3 + 1 + 1470 t2

21t (931 t2 + 14 t+ 1)

)

which is over the ground field. In the next chapter, we will see how to
parametrize over the smallest possible field extension.

Exercises

4.1. Let R(t) ∈ K(t) be nonconstant. Prove that the following statements are
equivalent:

(i) R(t) is invertible.
(ii) R(t) is linear.
(iii) R(t) = at+b

ct+d , where a, b, c, d ∈ K and ad− bc �= 0.

4.2. Consider a rational curve C and a parametrization P of C. Is it true that
if the degree of P is prime then P is proper? If not, what are the exceptions?.

4.3. Compute the tracing index of the parametrization

P(t) =
(
t4 + 3 t2 + 3
t4 + 3 t2 + 1

,
t4 + 2 t2 + 3

t2 + 2

)
.
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4.4. May it happen that a proper parametrization is not injective for finitely
many parameter values?. If so, give an example.

4.5. Let R(t) = p(t)
q(t) ∈ K(t) be a nonconstant rational function in reduced

form, let U = {α ∈ K | q(α) �= 0}, and let R : K −→ K be the rational
mapping induced by R(t). Prove that card(K \R(U)) ≤ 1.

4.6. Apply Exercise 4.5 to show that the number of exceptions in Lemma 4.32
is bounded by 2 deg(R(t)) + 1.

4.7. Carry out the computations in Example 4.38 without using the implicit
equation of the curve C.

4.8. Let C be the plane curve defined by the irreducible polynomial

f = −2+5y−2yx+5y2x−4y2+9yx2+y3−2x2−12y2x2+4y3x2−2y3x ∈ C[x, y],

and consider the rational parametrization

P(t) =
(
t+ 1
t3 + 1

,
t2 + 1

t2 + t+ 1

)
,

of C. Determine whether P is proper, and in the affirmative case compute its
inverse.

4.9. Compute the defining polynomial of the curve defined by the rational
parametrization

P(t) =
(
t5 + 1
t2 + 3

,
t3 + t+ 1
t2 + 1

)

and the inverse of P(t).

4.10. Prove that the curve C defining by the polynomial

f(x, y) = y4 + x− 75
8
x2y2 +

125
8
x3y − 1875

256
x4

is parametrizable by lines. Compute a proper parametrization of C and its
inverse.

4.11. Let C be the affine quintic curve defined by the polynomial

−75
8
x2y2 +

125
8
x3y − 1875

256
x4 + x+ y4 +

625
16

x3y2 − 9375
256

x4y

−125
8
x2y3 +

3125
256

x5 + y5.

Apply algorithm parametrization-by-lines to parametrize C.

4.12. Prove that any line can by parametrized by lines.
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4.13. Give an example of a nonrational curve for which there exists a pencil
of lines with the property required in Definition 4.48.

4.14. Prove that for a curve with no rational component, there does not exist
a pencil of lines with the property required in Definition 4.48.

4.15. Let C be an affine curve such that its associated projective curve C� is
parametrizable by the pencil of lines H(t) of equation L1(x, y, z)−tL2(x, y, z).
Then, the affine parametrization of C, generated by H(t), is proper and
L1(x,y,1)
L2(x,y,1) is its inverse.

4.16. Extend the notion of proper rational parametrization to hypersurfaces
over algebraically closed fields of characteristic zero.

4.17. Construct an algorithm that, given the defining polynomial of a plane
rational curve and the inverse ϕ of a proper rational parametrization, com-
putes the parametrization ϕ−1. Apply the algorithm to the inverse mapping
computed in Example 4.38.

4.18. Prove that irreducible nonrational curves of degree d may have adjoints
of degree d− 3.

4.19. Let C be the affine curve defined by f(x, y) = (x2 +4y+ y2)2 − 16(x2 +
y2) = 0. Compute a rational parametrization of C.

4.20. Let C be the affine curve defined by f(x, y) = x4 + 5xy3 + y4 − 20y3 +
23y2− 9x2y− 6x3y+16xy2− 11xy. Compute a rational parametrization of C.

4.21. Describe an algorithm for parametrizing curves based on Theorem 4.68.

4.22. Describe an algorithm for parametrizing curves based on Theorem 4.70.




