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CHAPTER ONE

A General Introduction to 3-D
Structures

PRIMER The three-dimensional structure of nucleic acids and proteins
as it pertains to the mechanisms involved in gene regulation is the major
focus of this book. Therefore, the reader will encounter many 3-D struc-
tures. The first chapter of the book presents the very basic ideas behind the
three-dimensional aspects of biomolecules. The first part deals with the
techniques used to determine 3-D structures. The presentation is virtually
for the layperson. Then the basic structural elements found in proteins are
examined. Having done this, we examine a particular 3-D structure (that
includes both DNA and protein) presented with different modeling. This
exercise will help you to become familiar with the different ways that sci-
entists present their 3-D structures. We use different models because one
aspect of structure and function can be better represented with one model,
whereas another aspect is more suited to a different model.

This book deals with the three-dimensional aspects of gene regulation.
The reader will encounter numerous three-dimensional structures, but this
should not scare anybody away. Unfamiliar readers might think that inter-
preting these structures is difficult, but this is not true. All we need is a basic
introduction into the three-dimensional aspects of proteins and nucleic acids
and the way that it can be represented. The basic 3-D structure of a protein can
be reduced to two elements: the alpha helix and the beta strand (and loops that
connect them). The complicated 3-D structure of a protein is a combination
of several of these elements. Also, depending on the presentation, the alpha
helix or the beta strand might be shown with different styles. To get started, let
us review the main elements of the 3-D structures, the different representation

1
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2 Anatomy of Gene Regulation

styles, and the basic methods used in the determination of the three-dimensional
structures.

Two methods are generally used to determine the 3-D structure of a
biomolecule (nucleic acid or protein). One method is Nuclear Magnetic
Resonance (NMR) spectroscopy, and the other is X-ray diffraction (or X-ray
crystallography). NMR uses properties of the atomic nuclei to determine how
closely they are positioned. The so-called nuclear Overhauser effect (NOE) is
a nuclear relaxation effect. This intensity is a measure of the distance between
two nuclei that are close together. The two nuclei might be far apart in the
primary sequence, but they could be close in 3-D because the protein is folded.
Gathering data from all atoms enables the researcher to create a 3-D model of
the molecule under investigation. NOE(s) are detected by NOE spectroscopy
(NOESY) NMR experiments. The intensity of NOESY determines the actual
distance between two nuclei. A strong intensity indicates that the two nuclei
are 3 Å apart, a medium intensity measures less than 4 Å, and weak intensity
is less than 6 Å. Because structure determination by NMR is in solution, ends
or loops of proteins, which are flexible, are sometimes not solved well. For this,
more than 20 calculated structures should be received and superimposed. At
this point, we should be able to see the regions that are not defined well. Finally,
based on all calculated structures, an average structural model can be produced.
These superimposed structures appear throughout the text. One limitation of
this method is that it can resolve structures of small proteins (about 30 kDa).
However, a few proteins of about 50 kDa have also been solved, and future de-
velopments might push these limits. Also, because NMR determines structures
in solution, the protein should be stable in solution.

The other method, using X-ray diffraction, can be applied to large molecules
or even complexes of them. When using X-ray diffraction, the protein must be
crystallized. The crystal is then exposed to X-rays, and a picture is received on
a film where the diffracted light from the crystal produces patterns, depending
on the 3-D structure of the protein. For example, the celebrated 3-D structure
of DNA, which is a periodic pattern, produced spots on the film, which were
symmetrically arranged. This symmetry led Watson and Crick to deduce that
the DNA must have two periodicities, one from base to base and the other
every helical turn (nearly every 10 bases; see Chapter 2). Obviously, most com-
plicated 3-D structures, such as the ones found in proteins, would produce a
more elaborate pattern on the film, but algorithms and techniques have been
developed to put these patterns into a 3-D structure. X-ray diffraction would
provide very clear 3-D solutions and does not have the limitations with the
flexible regions as in NMR. The only limitation is that not all proteins can
be crystallized efficiently. When the same structure has been solved with both
NMR and X-ray diffraction, the results usually match very well, indicating that
both methods are quite reliable.

Let us now familiarize ourselves with the basic structures in a protein. As
noted earlier, the primary amino acid sequence can assume either a helical or a
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beta strand conformation. Some amino acids are more likely than others to be in
an alpha helix, and the same is true for amino acids found in beta strands. First,
we will examine the basic structure of an amino acid and the peptide bond. All
amino acids have a central carbon, Cα , to which a hydrogen atom, NH2 (amino
group), and COOH (carboxyl group) are attached. What discriminates the 20
different amino acids is the side chain, R, which is attached to the central
carbon atom (Figure 1.1A). Amino acids are joined via the peptide bond
to create polypeptides (Figure 1.1B). When amino acids are arranged in an
alpha helix, there is hydrogen bonding between the C−−−−O of a residue and
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Figure 1.1. A: The basic chemical structure of an amino acid, indicating the standard H, NH2,and
COOH groups. R is the side chain that can vary in different amino acids. In the ball-and-stick
representation, R is a CH3 group and the amino acid is alanine. C is gray with the Cα cyan, N is
blue, oxygen is red, and H is white. B: A dipeptide showing the creation of the peptide bond.
C: An illustration of alpha helix. Note that residue 1 and residue 5 interact via hydrogen bonding
(dashed line) using their C−−−−O and NH groups, respectively. D: Two antiparallel beta strands
creating a beta sheet via hydrogen bonding (dashed line) using an NH group from one strand
and a C−−−−O group from another. From F. R. Gorga, Protein Data Bank (PDB), Nucleic Acids Res.
28: 235–42.
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the NH of another residue four positions away. In other words, there would be
hydrogen bonds between residue 1 and 5, 2 and 6, and so on (Figure 1.1C). The
alpha helix has 3.6 residues per turn, but variations exist with hydrogen bonds
to residue n + 5 (pi helix) or n + 3 (310 helix). Most of these helices are found
at the end of alpha helices. The alpha helices are usually depicted as ribbons or
cylinders in the 3-D structure of a protein.

The beta strand, and the resulting beta sheets from their interaction, is the
second major element found in proteins. A beta strand contains 5 to 10 amino
acids, which are in almost fully extended conformation. Interactions with ad-
jacent beta strands can form a beta sheet. These interactions involve hydro-
gen bonding between the C−−−−O of one strand and the NH group of another
(Figure 1.1D). From such a configuration, we can see that the beta strands are
pleated with Cα atoms successively above or below the plane of a sheet. The side
chains follow this pattern as well. A beta sheet is called parallel when the strands
run in the same direction or antiparallel when they do not. The example in
Figure 1.1D is an antiparallel beta sheet. The beta strands are usually repre-
sented as arrows in the 3-D structure of a protein with the arrowhead pointing
to the direction (N → C).

This book contains numerous structures that are represented as different
models. This approach is deliberate because some models can show a particu-
lar feature much better than others. To illustrate, Figure 1.2 presents a particular
structure using four different models. The structure shows the interaction be-
tween the paired domain of the activator pax-6 with DNA. It is a good example

Figure 1.2. Different models of pax-6 bound to DNA. A: Ball-and-stick diagram. Phosphates are
yellow, the sugar moiety is blue, nucleotide bases are gray, and pax-6 is red. B: Same as in A, but
the helices of pax-6 are shown as red cylinders, and the connecting parts, as green strings. The
DNA phosphates are yellow and have been traced to highlight the DNA. C: CPK (space-filling)
model with same colors as in A. D: Surface representation with the same colors as in A. Images
generated by E. Fuentes; Xu et al., Genes Develop. 13: 1263–75 (1999).
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because we can examine both a nucleic acid and a protein. In Figure 1.2A,
we can see the so-called ball-and-stick diagram, where atoms or groups are
represented by balls (usually different colors; see also the model of alanine
in Figure 1.1) and connected by sticks. In Figure 1.2B, we can see the same
model as in Figure 1.2A, but the protein helices are represented as cylinders
here. Helices can also be represented as ribbons. Both cylinder and ribbon
models are used throughout this book. In Figure 1.2C, we can see the so-called
CPK (Corey-Pauling-Kultun) model or spacefill (filling) model, which shows
the surface of each atoms or group. Finally, in Figure 1.2D, we can see the sol-
vent surface of the structure. This looks like the CPK model, but it represents
the surface of the whole molecule instead of showing the surface of the atom or
a group. This model is used mostly to represent the potential of a molecule, with
red representing negative electrostatic potential and blue, positive. Variations
of these models exist, but these models are the most common ones.


