
4. Primary Decomposition and Related Topics

4.1 The Theory of Primary Decomposition

It is well–known that every integer is a product of prime numbers, for instance
10 = 2 · 5. This equation can also be written as an equality of ideals, 〈10〉 =
〈2〉 ∩ 〈5〉 in the ring Z. The aim of this section is to generalize this fact to
ideals in arbitrary Noetherian rings.

Ideals generated by prime elements are prime ideals. Therefore, 〈10〉 is
the intersection of finitely many prime ideals. In Proposition 3.3.5 this is
generalized to radical ideals: in a Noetherian ring every radical ideal I, that
is, I =

√
I, is the intersection of finitely many prime ideals. However, what

can we expect if the ideal is not radical? For example, 20 = 22 · 5, respectively
〈20〉 = 〈2〉2 ∩ 〈5〉; in the ring of integers Z every ideal is the intersection of
finitely many ideals which are powers of prime ideals. This is, for arbitrary
Noetherian rings, no longer true. A generalization of the powers of prime
ideals are the so–called primary ideals. We shall prove in this section that,
in a Noetherian ring, every ideal is the intersection of finitely many primary
ideals.

Definition 4.1.1. Let A be a Noetherian ring, and let I � A be an ideal.

(1) The set of associated primes of I, denoted by Ass(I), is defined as

Ass(I) =
{
P ⊂ A

∣∣ P prime, P = I : 〈b〉 for some b ∈ A} .

Elements of Ass(〈0〉) are also called associated primes of A.
(2) Let P,Q ∈ Ass(I) and Q � P , then P is called an embedded prime ideal

of I. We define Ass(I, P ) := {Q | Q ∈ Ass(I), Q ⊂ P}.
(3) I is called equidimensional or pure dimensional if all associated primes

of I have the same dimension.
(4) I is a primary ideal if, for any a, b ∈ A, ab ∈ I and a �∈ I imply b ∈ √I.

Let P be a prime ideal, then a primary ideal I is called P–primary if
P =

√
I.

(5) A primary decomposition of I, that is, a decomposition I = Q1∩· · ·∩Qs
with Qi primary ideals, is called irredundant if no Qi can be omitted in
the decomposition and if

√
Qi �=

√
Qj for all i �= j.
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Example 4.1.2.

(1) Let A be a ring, and let I ⊂ A be an ideal such that
√
I is a maximal

ideal, then I is primary (cf. Exercise 4.1.4).
(2) Let A = K[x, y] and I = 〈x2, xy〉 = 〈x〉 ∩ 〈x, y〉2 = 〈x〉 ∩ 〈x2, y〉. Then

〈x〉, 〈x, y〉2, 〈x2, y〉 are primary ideals, and Ass(I) = {〈x〉, 〈x, y〉}. In par-
ticular, 〈x, y〉 is an embedded prime of I with Ass(I, 〈x, y〉) = {〈x〉, 〈x, y〉},
while Ass(I, 〈x〉) = {〈x〉}. Note that both decompositions are irredundant
primary decompositions of I, which shows that an irredundant primary
decomposition might be not unique.

(3) minAss(I) ⊂ Ass(I) and minAss(I) = Ass(I) if and only if I has no em-
bedded primes (Exercise 4.1.5), showing that minAss(I) is the set of
minimal elements (with respect to inclusion) of Ass(I).

The following lemma collects the properties of primary ideals needed for the
primary decomposition.

Lemma 4.1.3. Let A be a Noetherian ring and Q ⊂ A a P–primary ideal.

(1) The radical of a primary ideal is a prime ideal.
(2) Let Q′ be a P–primary ideal, then Q ∩Q′ is a P–primary ideal.
(3) Let b ∈ A, b �∈ Q, then Q : 〈b〉 is P–primary. b ∈ P if and only if

Q � Q : 〈b〉.
(4) Let P ′ ⊃ Q be a prime ideal, then QAP ′ ∩A = Q.
(5) There exists d ∈ A such that P = Q : 〈d〉. Especially, P ∈ Ass(Q).

Proof. (1) and (2) are left as exercises. To prove (3), let b ∈ A, b �∈ Q. If b �∈ P ,
then Q : 〈b〉 = Q because ab ∈ Q, a �∈ Q implies b ∈ P by definition of a pri-
mary ideal. If b ∈ P then bn ∈ Q for a suitable n. We may assume n ≥ 2 and
bn−1 �∈ Q. Then bn−1∈ Q : 〈b〉 and, therefore, Q � Q : 〈b〉. Let xy ∈ Q : 〈b〉
and x �∈ Q : 〈b〉. This implies bxy ∈ Q and bx �∈ Q. By definition of a primary
ideal, we obtain yn ∈ Q for a suitable n. This implies that Q : 〈b〉 is a pri-
mary ideal. Finally,

√
Q : 〈b〉 ⊃ √Q = P . Let x ∈√

Q : 〈b〉, that is, bxn ∈ Q
for some n but b �∈ Q and, therefore, xn ∈ P . Now P is prime and we obtain
x ∈ P which proves

√
Q : 〈b〉 = P .

To prove (4), let x ∈ QAP ′ ∩A. This means that sx ∈ Q for a suitable
s �∈ P ′. If x �∈ Q, then, by definition of a primary ideal, s ∈ √Q ⊂ P ′ in con-
tradiction to the choice of s. We obtain QAP ′ ∩A ⊂ Q. The other inclusion
is trivial.

To prove (5), we consider first the case Q = P . In this case, we can use
d = 1 and are finished. If Q � P we choose g1 ∈ P �Q and obtain, using (3),
that Q : 〈g1〉 � Q is P–primary and

√
Q : 〈g1〉 = P . Again, if Q : 〈g1〉 � P

we can choose g2 ∈ P � (Q : 〈g1〉) such that (Q : 〈g1〉) : 〈g2〉 � Q : 〈g1〉. Now
(Q : 〈g1〉) : 〈g2〉 = Q : 〈g1g2〉 (Exercise 4.1.2), and continuing in this way we
obtain an increasing chain of ideals Q � Q : 〈g1〉 � Q : 〈g1g2〉 � . . . . The ring
A is Noetherian and, therefore, this chain has to stop, that is, we find n and
g1, . . . , gn ∈ P such that Q : 〈g1 · · · gn〉 = P .
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Theorem 4.1.4. Let A be a Noetherian ring and I � A be an ideal, then
there exists an irredundant decomposition I = Q1 ∩ · · · ∩Qr of I as intersec-
tion of primary ideals Q1, . . . , Qr.

Proof. Because of Lemma 4.1.3 (2) it is enough to prove that every ideal is
the intersection of finitely many primary ideals. Suppose this is not true,
and let M be the set of ideals which are not an intersection of finitely
many primary ideals. The ring A is Noetherian and, by Proposition 1.3.6,
M has a maximal element with respect to the inclusion. Let I ∈M be max-
imal. Since I is not primary, there exist a, b ∈ A, a �∈ I, bn �∈ I for all n and
ab ∈ I. Now consider the chain I : 〈b〉 ⊂ I : 〈b2〉 ⊂ · · · . As A is Noetherian,
there exists an n with I : 〈bn〉 = I : 〈bn+1〉 = · · · . Using Lemma 3.3.6, we
obtain I = (I : 〈bn〉) ∩ 〈I, bn〉. Since bn �∈ I we have I � 〈I, bn〉. Since a �∈ I
and abn ∈ I we have I � I : 〈bn〉. As I is maximal in M, I : 〈bn〉 and 〈I, bn〉
are not in M. This implies that both ideals are intersections of finitely many
primary ideals and, therefore, I is an intersection of finitely many primary
ideals, too, in contradiction to the assumption.

Theorem 4.1.5. Let A be a ring and I ⊂ A be an ideal with irredundant
primary decomposition I = Q1 ∩ · · · ∩Qr. Then r = #Ass(I),

Ass(I) = {
√
Q1, . . . ,

√
Qr} ,

and if {√Qi1 , . . . ,
√
Qis} = Ass(I, P ) for P ∈ Ass(I) then Qi1∩ · · · ∩Qis is

independent of the decomposition.

Proof. Let I = Q1 ∩ · · · ∩Qr be an irredundant primary decomposition. If
P ∈ Ass(I), P = I : 〈b〉 for a suitable b, then P = (Q1 : 〈b〉) ∩ · · · ∩ (Qr : 〈b〉)
(Exercise 4.1.3). In particular,

⋂r
i=1(Qi : 〈b〉) ⊂ P , hence, Qj : 〈b〉 ⊂ P for a

suitable j (Lemma 1.3.12). On the other hand, since P = I : 〈b〉 ⊂ Qj : 〈b〉, we
obtain P = Qj : 〈b〉. Now Qj : 〈b〉 ⊂√

Qj (Lemma 4.1.3 (3)), which implies
P =

√
Qj . This proves that {√Q1, . . . ,

√
Qr } ⊃ Ass(I).

It remains to prove that
√
Qi = I : 〈bi〉 for a suitable bi. But this is a con-

sequence of Lemma 4.1.3 (5): let J = Q1 ∩ · · · ∩Qi−1 ∩Qi+1 ∩ · · · ∩Qr, then
J �⊂ Qi, since the decomposition is irredundant. We can choose d ∈ J \Qi
and obtain, using Exercise 4.1.3, I : 〈d〉 = Qi : 〈d〉. By Lemma 4.1.3 (3), (5),
respectively Exercise 4.1.2,

√
Qi =

√
Qi : 〈d〉 = (Qi : 〈d〉) : 〈g〉 = I : 〈dg〉 for

a suitable g. We obtain Ass(I) = {√Q1, . . . ,
√
Qr}.

Now let Ass(I, P ) = {√Qi1 , . . . ,
√
Qis}, then Lemma 4.1.3 (4) gives that

QiνAP ∩A = Qiν . If j �∈ {i1, . . . , is} then Qj �⊂ P , therefore, QjAP = AP .
This implies that IAP ∩A =

⋂r
j=1(QjAP ∩A) = Qi1 ∩ · · · ∩Qis is indepen-

dent of the decomposition, since Ass(I, P ) is.

Example 4.1.6.

(1) If I = 〈f〉 ⊂ K[x1, . . . , xn] is a principal ideal and f = fn1
1 · · · fns

s is the
factorization of f into irreducible factors, then
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I = 〈fn1
1 〉 ∩ · · · ∩ 〈fnr

r 〉

is the primary decomposition, and the 〈fi〉 are the associated prime ideals
which are all minimal.

(2) Let I = 〈xy, xz, yz〉 = 〈x, y〉∩〈x, z〉∩〈y, z〉 ⊂ K[x, y, z]. Then the zero–set
V (I) (cf. A.1) is the union of the coordinate axes (cf. Figure 4.1).

Fig. 4.1. The zero–set of 〈xy, xz, yz〉.

(3) Let I = 〈(y2− xz) · (z2− x2y), (y2− xz) · z〉 ⊂ K[x, y, z]. Then we obtain
the irredundant primary decomposition I = 〈y2− xz〉 ∩ 〈x2, z〉 ∩ 〈y, z2〉,
Ass(I) = {〈y2− xz〉, 〈x, z〉, 〈y, z〉} and minAss(I) = {〈y2− xz〉, 〈x, z〉}.
〈y, z〉 is an embedded prime with Ass(I, 〈y, z〉) = {〈y2− xz〉, 〈y, z〉}. The
zero–set of I (cf. A.1) is displayed in Figure 4.2.

Fig. 4.2. The zero–set of I = 〈y2− xz〉 ∩ 〈x2, z〉 ∩ 〈y, z2〉.
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Remark 4.1.7.

(1) Primary decomposition does not hold, in general, in non–Noetherian
rings, even if we allow infinite intersections.

(2) There exists a concept of primary decomposition for finitely gener-
ated modules over Noetherian rings (Exercise 4.1.13). Primary decom-
position of modules has been implemented in the Singular library
mprimdec.lib.

Exercises

For these exercises let A be a Noetherian ring, K a field and I, J ideals in A.

4.1.1. Prove that
√
I is prime if I is primary.

4.1.2. Prove that, for a, b ∈ A, (I : 〈a〉) : 〈b〉 = I : 〈ab〉.
4.1.3. Prove that, for any b ∈ A, (I ∩ J) : 〈b〉 = (I : 〈b〉) ∩ (J : 〈b〉).
4.1.4. Prove that I is primary if

√
I is a maximal ideal.

4.1.5. Prove that minAss(I) ⊂ Ass(I) with equality if and only if I has no
embedded primes.

4.1.6. Let P ⊂ A be a prime ideal, and let Q1, Q2 ⊂ A be P–primary. Prove
that Q1 ∩Q2 is a P–primary ideal.

4.1.7. Let f1, f2 ∈ A such that f = f1 · f2 ∈ I and 〈f1, f2〉 = A. Prove that
I = 〈I, f1〉 ∩ 〈I, f2〉.
4.1.8. Let I ⊂ K[x1, . . . , xn] be a homogeneous ideal (that is, generated by
homogeneous polynomials). Prove that the ideals in Ass(I) are homogeneous.

4.1.9. Let w = (w1, . . . , wn) ∈ Z
n, wi �= 0 for all i, and let I ⊂ K[x1, . . . , xn]

be an ideal. Moreover, let Ih ⊂ K[x1, . . . , xn, t] be the ideal generated by the
weighted homogenizations of the elements of I with respect to t (see Exercise
1.7.5). Prove the following statements:

(1) Ih is primary (prime) if and only if I is primary (prime).
(2) Let I = Q1 ∩ . . . ∩Qr be an irredundant primary decomposition, then

Ih = Qh1 ∩ . . . ∩Qhr is an irredundant primary decomposition, too.

(Hint: to show (1), first prove the analogue of Exercise 2.2.5 for primary
instead of prime ideals. For (2), prove that (I1 ∩ I2)h = Ih1 ∩ Ih2 .)

4.1.10. Let Ass(〈0〉) = {P1, . . . , Ps}. Prove that
⋃s
i=1 Pi is the set of zerodi-

visors of A.

4.1.11. Let I = Q1 ∩ · · · ∩Qm be an irredundant primary decomposition,
and let J := Q2 ∩ · · · ∩Qm. Prove that dim

(
A
/
(Q1 + J)

)
< dim(A/J).
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4.1.12. Use Singular to show the following equality of ideals in K[x, y, z]:

〈y2− xz〉 ∩ 〈x2, z〉 ∩ 〈y, z2〉 =
〈
(y2− xz)(z2− x2y), (y2− xz) · z〉 .

4.1.13. Let M be a finitely generated A–module and N ⊂M a submodule.
Then N is called primary in M if N �= M and for every zerodivisor x of M/N
there exists ρ such that xρ ∈ Ann(M/N). Prove the following statements:

(1) If N ⊂ M is primary then N : M is a primary ideal (
√
N : M is called

the associated prime to N).
(2) N has an irredundant primary decomposition and the associated primes

are uniquely determined.
(3) If P is an associated prime of N , then P = N : 〈m〉 for some m ∈M .
(4) Let P1, . . . , Ps be the set of associated primes of N , then the zerodivisors

of M/N are
⋃s
i=1 Pi.

(Hint: recall that
√
N : M =

√
Ann(M/N) = M

√
N , see Exercise 2.8.6.)

4.1.14. Let M be a finitely generated A–module. Let Ass(M) be the set of
associated prime ideals to 〈0〉 ⊂M in the sense of Exercise 4.1.13, that is,

Ass(M) :=
{
P ⊂ A prime

∣∣ P = Ann(m), m ∈M � {0}} .
Let M := {Ann(m) | 0 �= m ∈M}. Prove that the maximal elements in M
are associated prime ideals.

4.1.15. Let A be a Noetherian ring and M �= 〈0〉 a finitely generated A–
module. Prove that there exists a chain M = M0 ⊃M1 ⊃ · · · ⊃Mn = 〈0〉
of submodules of M such that Mi/Mi+1

∼= A/Pi for a suitable prime ideal
Pi ⊂ A, i = 0, . . . , n− 1.
(Hint: choose an associated prime P1 ∈ Ass(M), and let P1 = Ann(m1). If
M = 〈m1〉 then M ∼= A/P1, otherwise continue with M/〈m1〉.)

4.2 Zero–dimensional Primary Decomposition

In this section we shall give an algorithm to compute a primary decomposition
for zero–dimensional ideals in a polynomial ring over a field of characteris-
tic 0. This algorithm was published by Gianni, Trager, and Zacharias ([90]).
Let K be a field of characteristic 0. In the case of one variable x, any ideal
I ⊂ K[x] is a principal ideal and the primary decomposition is given by the
factorization of a generator of I: let I = 〈f〉, f = fn1

1 . . . fnr
r with fi irre-

ducible and 〈fi, fj〉 = K[x] for i �= j, then I = 〈f1〉n1 ∩ · · · ∩ 〈fr〉nr is the
primary decomposition of I. In the case of n variables, the univariate poly-
nomial factorization is also an essential ingredient. We shall see that, after a
generic coordinate change, the factorization of a polynomial in one variable
leads to a primary decomposition. By definition, all associated prime ideals
of a zero–dimensional ideal are maximal. We need the concept for an ideal in
general position.
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Definition 4.2.1.

(1) A maximal ideal M ⊂ K[x1, . . . , xn] is called in general position with
respect to the lexicographical ordering with x1 > · · · > xn, if there exist
g1, . . . , gn ∈ K[xn] with M = 〈x1 +g1(xn), . . . , xn−1 +gn−1(xn), gn(xn)〉.

(2) A zero–dimensional ideal I ⊂ K[x1, . . . , xn] is called in general position
with respect to the lexicographical ordering with x1 > · · · > xn, if all
associated primes P1, . . . , Pk are in general position and if Pi ∩K[xn] �=
Pj ∩K[xn] for i �= j.

Proposition 4.2.2. Let K be a field of characteristic 0, and let I ⊂ K[x],
x = (x1, . . . , xn), be a zero–dimensional ideal. Then there exists a non–empty,
Zariski open subset U ⊂ Kn−1 such that for all a = (a1, . . . , an−1) ∈ U , the
coordinate change ϕa : K[x]→ K[x] defined by ϕa(xi) = xi if i < n, and

ϕa(xn) = xn +
n−1∑

i=1

aixi

has the property that ϕa(I) is in general position with respect to the lexico-
graphical ordering defined by x1 > · · · > xn.

Proof. We consider first the case that I ⊂ K[x1, . . . , xn] is a maximal ideal.
The fieldK[x1, . . . , xn]/I is a finite extension ofK (Theorem 3.5.1), and there
exists a dense, Zariski open subset U ⊂ Kn−1 such that for a ∈ U the element
z = xn +

∑n−1
i=1 aixi is a primitive element for the field extension (Primitive

Element Theorem, cf. [238], here it is necessary that K is a perfect, infinite
field).

Since ϕa+b = ϕb ◦ ϕa, we may assume that 0 ∈ U , that is,

K[x1, . . . , xn]/I ∼= K[xn]/〈fn(xn)〉

for some irreducible polynomial fn(xn). Via this isomorphism xi mod I cor-
responds to some fi(xn) mod 〈fn(xn)〉 and we obtain

〈x1 − f1(xn), . . . , xn−1 − fn−1(xn), fn(xn)〉 = I .

The set of these generators is obviously a Gröbner basis with the required
properties.

Now let I be an arbitrary zero–dimensional ideal and let P1, . . . , Ps be the
associated primes of I, then ϕa(Pj) are in general position with respect to the
lexicographical ordering x1 > · · · > xn for almost all a ∈ Kn−1. It remains
to prove that ϕa(Pi) ∩ K[xn] �= ϕa(Pj) ∩ K[xn] for i �= j and almost all a.
We may assume that the Pi’s are already in general position with respect
to the lexicographical ordering x1 > · · · > xn. We study the behaviour of
a maximal ideal P = 〈x1 − g1(xn), . . . , xn−1 − gn−1(xn), gn(xn)〉 under the
automorphism ϕa.
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If ϕa(P ) is again in general position with respect to the lexicographical
ordering x1 > · · · > xn, then ϕa(P )∩K[xn] = 〈h(a)〉 for a monic polynomial
h(a) of degree

r := dimK K[xn]/〈h(a)〉 = dimK K[x]/ϕa(P ) = dimK K[x]/P = deg(gn) .

To compute h(a), we consider the algebraic closureK ofK. Let α1, . . . , αr ∈ K
be the roots of gn(xn). Because of Exercise 4.2.1 (b), gn(xn) is squarefree in
K[xn]. Then gn(xn) = c(xn − α1) · . . . · (xn − αr), c ∈ K and, because of Ex-
ercise 4.1.7,

PK[x] =
r⋂

i=1

〈x1 − g1(αi), . . . , xn−1 − gn−1(αi), xn − αi〉 .

Now

ϕa
(〈x1 − g1(αi), . . . , xn−1 − gn−1(αi), xn − αi〉

)

=
〈
x1 − g1(αi), . . . , xn−1 − gn−1(αi), xn − αi +

n−1∑

ν=1

aνgν(αi)
〉
.

This implies that ϕa(PK[x]) ∩K[xn] ⊃ 〈
∏r
i=1

(
xn − αi +

∑n−1
ν=1 aνgν(αi)

)〉.
Since 〈h(a)〉 = ϕa(P ) ∩K[xn] = ϕa(PK[x]) ∩K[xn] (Exercise 4.2.1 (a)),

and since h(a), as well as
∏r
i=1

(
xn − αi +

∑n−1
ν=1 aνgν(αi)

)
, are monic poly-

nomials in K[xn]1 of degree r, it follows that

h(a) =
r∏

i=1

(
xn − αi +

n−1∑

ν=1

aνgν(αi)

)
.

Now let ϕa(P1) ∩K[xn] = 〈h(a)
1 〉, . . . , ϕa(Ps) ∩K[xn] = 〈h(a)

s 〉 with monic
polynomials h(a)

i ∈ K[xn], and assume that the prime ideals ϕa(Pi) are in
general position with respect to the lexicographical ordering x1 > · · · > xn.
The condition ϕa(Pi) ∩K[xn] = ϕa(Pj) ∩K[xn], that is, h(a)

i = h
(a)
j leads,

because of Pi �= Pj , to a non–trivial polynomial system of equations for a.
This implies that for almost all a, ϕa(Pi) ∩K[xn] �= ϕa(Pj) ∩K[xn] if i �= j.

Proposition 4.2.3. Let I ⊂ K[x1, . . . , xn] be a zero–dimensional ideal. Let
〈g〉 = I ∩K[xn], g = gν11 . . . gνs

s , gi monic and prime and gi �= gj for i �= j.
Then
1 ∏r

i=1

(
xn − αi +

∑n−1
ν=1 aνgν(αi)

) ∈ K[xn] is a consequence of Galois theory,
since the product is invariant under the action of the Galois group (the
K–automorphisms of K(α1, . . . , αr) are given by permutations of the roots
α1, . . . , αr).
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(1) I =
⋂s
i=1〈I, gνi

i 〉.
If I is in general position with respect to the lexicographical ordering with
x1 > · · · > xn, then

(2) 〈I, gνi

i 〉 is a primary ideal for all i.

Proof. To prove (1) note that, obviously, I ⊂ ⋂s
i=1〈I, gνi

i 〉. To prove the other
inclusion let g(i) := g/gνi

i for i = 1, . . . , s. Then the univariate polynomials
g(1), . . . , g(s) ∈ K[xn] have the greatest common divisor 1. Hence, we can find
a1, . . . , as ∈ K[xn] with

∑s
i=1 aig

(i) = 1. Now let f ∈ ⋂s
i=1〈I, gνi

i 〉, in particu-
lar, there exist fi ∈ I, ξi ∈ K[x] such that f = fi + ξig

νi

i , i = 1, . . . , s. Hence,

f =
s∑

i=1

aig
(i)(fi + ξig

νi

i ) =
s∑

i=1

(aig(i)fi + aiξig) ∈ I ,

which proves (1).
(2) First note that 〈I, gνi

i 〉 � K[x] and Ass(〈I, gνi

i 〉) ⊂ Ass(I). This can be
seen as follows: if we could write 1 = f + agνi

i for some f ∈ I, a ∈ K[x], then
g/gνi

i ∈ 〈f, g〉 ⊂ I, contradicting the assumption I ∩K[xn] = 〈g〉. Moreover,
I ⊂ 〈I, gνi

i 〉 and the uniqueness of associated primes implies that each asso-
ciated prime of 〈I, gνi

i 〉 has to contain some associated prime of I. But, since
I is zero–dimensional, its associated primes are maximal ideals.

Now, let P1, . . . , P	 be the associated primes of I and let Pi ∩K[xn] = 〈pi〉.
Then, by assumption, the polynomials p1, . . . , p	 are pairwise coprime and,
therefore,

⋂	
i=1(Pi ∩K[xn]) =

⋂	
i=1〈pi〉 =

〈∏	
i=1 pi

〉
. On the other hand, we

have
⋂	
i=1(Pi ∩K[xn]) =

(⋂	
i=1 Pi

) ∩K[xn] =
√
I ∩K[xn]. Hence, the as-

sumption I ∩K[xn] = 〈g〉 implies that
∏	
i=1 pi divides g and g divides a

power of
∏	
i=1 pi. The latter implies � = s, and we may assume gi = pi for

i = 1, . . . , s. It follows that Pi is the unique associated prime of I containing
gνi

i , and, by the above, we can conclude that Ass(〈I, gνi

i 〉) = {Pi}. Hence,
〈I, gνi

i 〉 is a primary ideal.

Proposition 4.2.3 shows how to obtain a primary decomposition of a zero–
dimensional ideal in general position by using the factorization of g. In the
algorithm for the zero–dimensional decomposition we try to put I in general
position via a map ϕa, a ∈ Kn−1 chosen randomly. But we cannot be sure,
in practice, that for a random choice of a made by the computer, ϕa(I) is in
general position. We need a test to decide whether 〈I, gνi

i 〉 is primary and in
general position. Using Definition 4.2.1 we obtain the following criterion:

Criterion 4.2.4. Let I ⊂ K[x1, . . . , xn] be a proper ideal. Then the following
conditions are equivalent:

(1) I is zero–dimensional, primary and in general position with respect to
the lexicographical ordering with x1 > · · · > xn.
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(2) There exist g1, . . . , gn ∈ K[xn] and positive integers ν1, . . . , νn such that
a) I ∩K[xn] = 〈gνn

n 〉, gn irreducible;
b) for each j < n, I contains the element

(
xj + gj

)νj .
(3) Let S be a reduced Gröbner basis of I with respect to the lexicographi-

cal ordering with x1 > . . . > xn. Then there exist g1, . . . , gn ∈ K[xn] and
positive integers ν1, . . . , νn such that
a) gνn

n ∈ S and gn is irreducible;
b) (xj + gj)νj is congruent to an element in S ∩K[xj , . . . , xn] modulo
〈gn, xn−1 + gn−1, . . . , xj+1 + gj+1〉 ⊂ K[x] for j = 1, . . . , n− 1.

Proof. To prove (3)⇒ (2), let M :=
√
I. Then gn ∈M , and, inductively, we

obtain xj + gj ∈M for all j. This implies

M = 〈x1 + g1, . . . , xn−1 + gn−1, gn〉 ,

because gn is irreducible and, therefore, 〈x1 + g1, . . . , xn−1 + gn−1, gn〉 ⊂ K[x]
is a maximal ideal. Finally, M =

√
I implies now a) and b) in (2).

(2)⇒ (1) is clear because M = 〈x1 + g1, . . . , xn−1 + gn−1, gn〉 ⊂
√
I is a

maximal ideal and, by definition, in general position with respect to the
lexicographical ordering with x1 > · · · > xn.

To prove (1)⇒ (3), let M :=
√
I. Since I is in general position and pri-

mary, M = 〈x1 + g1, . . . , xn−1 + gn−1, gn〉 with gn ∈ K[xn] irreducible and
g1, . . . , gn−1 ∈ K[xn]. We may assume that gn is monic. Now, let S be a
reduced Gröbner basis of I (in particular, all elements are supposed to be
monic, too). Then, due to the elimination property of >lp, S ∩K[xn] = {g}
generates I ∩K[xn], which is a primary ideal with

√
I ∩K[xn] = 〈gn〉. This

implies g = gνn
n for a suitable νn.

Now let j ∈ {1, . . . , n− 1}. Since I is zero-dimensional and S is a reduced
Gröbner basis of I, there exists a unique h ∈ S such that LM(h) is a power of
xj , LM(h) = xmj (Theorem 3.5.1 (7)). Note that the latter implies, in particu-
lar, that h ∈ K[xj , . . . , xn] (again due to the elimination property of >lp). We
set M ′ := M ∩K[xj+1, . . . , xn] , K ′ := K[xj+1, . . . , xn]

/
M ′ ∼= K[xn]

/〈gn〉,
and consider the canonical projection

Φ : K[x1, . . . , xn] = (K[xj+1, . . . , xn])[x1, . . . , xj ] −→ K ′[x1, . . . , xj ] .

Step 1. We show Φ(S ∩K[xj , . . . , xn]) = {Φ(h), 0}. Since S ∩K[xj , . . . , xn] is
a standard basis (w.r.t. >lp) of I ∩K[xj , . . . , xn], this implies

I ∩K[xj , . . . , xn] ≡ 〈h〉K[xj ,...,xn] mod M ′ ·K[xj, . . . , xn] .

Let K[x′] := K[xj+1, . . . , xn] and consider

L :=

〈
fs ∈ K[x′]

∣∣∣∣∣ ∃ f0, . . . , fs−1 ∈ K[x′], s < m, such that
s∑

i=0

fix
i
j ∈ I

〉
.
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Then, clearly, I ∩K[x′] ⊂ L � K[x′]. Since I ∩K[x′] is primary and zero-
dimensional,

√
I ∩K[x′] is the unique associated prime of I ∩K[x′] (Theo-

rem 4.1.5) and a maximal ideal in K[x′]. Hence, L ⊂√
I ∩K[x′] � K[x′].

Now, let f ∈ S ∩K[xj , . . . , xn] ⊂ I, f �= h. We write f =
∑s
i=0 fix

i
j , with

fi ∈ K[x′]. Since S is reduced and LM(h) = xmj , we have s < m, hence
fs ∈ L. Moreover, f ′ := xm−s

j f − fsh ∈ I, and, writing f ′ =
∑m−1
i=0 f ′

ix
i
j , we

obtain f ′
m−1 ∈ L and f ′

i ≡ fi+s−m mod L, i = m− s, . . . ,m− 1. Therefore,
fs−1 ∈ L, and proceeding inductively we obtain fi ∈ L, i = 0, . . . , s.

The above implies now that fi ∈
√
I ∩K[x′] = M ′ for i = 0, . . . , s. Thus,

Φ(f) = 0.

Step 2. On the other hand,
√
Φ(I) = Φ

(√
I + Ker(Φ)

)
= Φ(M). It follows

that
√
Φ(I) ∩K ′[xj ] = 〈xj + gj〉K′[xj], where gj := gj mod M ′, and we con-

clude that Φ(I ∩K[xj , . . . , xn]) ∩K ′[xj ] = Φ(I) ∩K ′[xj ] =
〈
(xj + gj)

	
〉
K′[xj ]

for a positive integer �. Together with the result of Step 1, this implies that
h ≡ (xj + gj)	 mod M ′ ·K[xj, . . . , xn], in particular, � = m =: νj .

Criterion 4.2.4 is the basis of the following algorithm to test whether a zero–
dimensional ideal is primary and in general position.

Algorithm 4.2.5 (primaryTest(I)).

Input: A zero–dimensional ideal I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: 〈0〉 if I is either not primary or not in general position, or

√
I if I is

primary and in general position.

• compute a reduced Gröbner basis S of I with respect to the lexicographical
ordering with x1 > · · · > xn;

• factorize g ∈ S, the element with smallest leading monomial;
• if (g = gνn

n with gn irreducible)
prim := 〈gn〉

else
return 〈0〉.

• i := n;
while (i > 1)

i := i− 1;
choose f ∈ S with LM(f) = xmi ;
b := the coefficient of xm−1

i in f considered as polynomial in xi;
q := xi + b/m;
if (qm ≡ f mod prim)

prim := prim + 〈q〉;
else

return 〈0〉;
• return prim.
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SINGULAR Example 4.2.6 (primary test).

option(redSB);
ring R=0,(x,y),lp;
ideal I=y4-4y3-10y2+28y+49,x3-6x2y+3x2+12xy2-12xy+3x-8y3
+13y2-8y-6;
//the generators are a Groebner basis

We want to check whether the ideal I is primary and in general position.

factorize(I[1]); //to test if Criterion 4.2.4 (3) a) holds
//-> [1]:
//-> _[1]=1
//-> _[2]=y2-2y-7
//-> [2]:
//-> 1,2 //I[1] is the square of an irreducible element
ideal prim=std(y2-2y-7);
poly q=3x-6y+3;
poly f2=I[2];
reduce(q^3-27*f2,prim);

//-> 0

The ideal is primary and in general position and 〈y2 − 2y− 7, x− 2y+ 1〉 is
the associated prime ideal.

Now we are ready to give the procedure for the zero–dimensional decompo-
sition. We describe first the main steps:

Algorithm 4.2.7 (zeroDecomp(I)).

Input: a zero-dimensional ideal I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: a set of pairs (Qi, Pi) of ideals in K[x], i = 1, . . . , r, such that

− I = Q1 ∩ · · · ∩Qr is a primary decomposition of I, and
− Pi =

√
Qi, i = 1, . . . , r.

• result := ∅;
• choose a random a ∈ Kn−1, and apply the coordinate change I ′ := ϕa(I)

(cf. Proposition 4.2.2);
• compute a Gröbner basis G of I ′ with respect to the lexicographical order-

ing with x1 > · · · > xn, and let g ∈ G be the element with smallest leading
monomial.

• factorize g = gν11 · . . . · gνs
s ∈ K[xn];

• for i = 1 to s do
set Q′

i := 〈I ′, gνi

i 〉 and Qi := 〈I, ϕ−1
a (gi)νi〉;

set P ′
i := primaryTest(Q′

i);
if P ′

i �= 〈0〉
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set Pi := ϕ−1
a (P ′

i );
result := result ∪{(Qi, Pi)};

else
result := result ∪ zeroDecomp (Qi);

• return result.

In the programming language of Singular the procedure can be found in
Section 4.6.

SINGULAR Example 4.2.8 (zero–dim primary decomposition).
We give an example for a zero-dimensional primary decomposition.

option(redSB);
ring R=0,(x,y),lp;
ideal I=(y2-1)^2,x2-(y+1)^3;

The ideal I is not in general position with respect to lp, since the minimal
associated prime 〈x2 − 8, y − 1〉 is not.

map phi=R,x,x+y; //we choose a generic coordinate change
map psi=R,x,-x+y; //and the inverse map
I=std(phi(I));
I;
//-> I[1]=y7-y6-19y5-13y4+99y3+221y2+175y+49
//-> I[2]=112xy+112x-27y6+64y5+431y4-264y3-2277y2-2520y-847
//-> I[3]=56x2+65y6-159y5-1014y4+662y3+5505y2+6153y+2100
factorize(I[1]);
//-> [1]:
//-> _[1]=1
//-> _[2]=y2-2y-7
//-> _[3]=y+1
//-> [2]:
//-> 1,2,3

ideal Q1=std(I,(y2-2y-7)^2); //the candidates for the
//primary ideals

ideal Q2=std(I,(y+1)^3); //in general position
Q1; Q2;

//-> Q1[1]=y4-4y3-10y2+28y+49 Q2[1]=y3+3y2+3y+1
//-> Q1[2]=56x+y3-9y2+63y-7 Q2[2]=2xy+2x+y2+2y+1

Q2[3]=x2

factorize(Q1[1]); //primary and general position test
//for Q1

//-> [1]:
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//-> _[1]=1
//-> _[2]=y2-2y-7
//-> [2]:
//-> 1,2

factorize(Q2[1]); //primary and general position test
//for Q2

//-> [1]:
//-> _[1]=1
//-> _[2]=y+1
//-> [2]:
//-> 1,3

Both ideals are primary and in general position.

Q1=std(psi(Q1)); //the inverse coordinate change
Q2=std(psi(Q2)); //the result
Q1; Q2;

//-> Q1[1]=y2-2y+1 Q2[1]=y2+2y+1
//-> Q1[2]=x2-12y+4 Q2[2]=x2

We obtain that I is the intersection of the primary ideals Q1 and Q2 with
associated prime ideals 〈y − 1, x2− 8〉 and 〈y + 1, x〉.

Exercises

4.2.1. Let K be a field of characteristic 0, K the algebraic closure of K and
I ⊂ K[x] an ideal. Prove that

(1) IK[x] ∩K[x] = I;
(2) if f ∈ K[x] is squarefree, then f ∈ K[x] is squarefree.

Condition (1) says that K[x] is a flat K[x]–module (cf. Chapter 7).

4.2.2. Let I ⊂ K[x] = K[x1, . . . , xn] be a zero–dimensional, and J ⊂ K[x] a
homogeneous ideal with I ⊂ J ⊂ √I. Prove that

√
I = 〈x1, . . . , xn〉.

4.2.3. Let I ⊂ K[x1, . . . , xn] be a zero–dimensional ideal, and let f ∈ K[xn]
be irreducible such that I ∩K[xn] = 〈f〉. Let dimK K[x1, . . . , xn]/I = deg(f).
Prove that I is a prime ideal in general position with respect to the lexico-
graphical ordering with x1 > · · · > xn.

4.2.4. Compute a primary decomposition of 〈x2+ 1, y2+ 1〉 ⊂ Q[x, y], by fol-
lowing Algorithm 4.2.7 (without using Singular).

4.2.5. Let K be a field of characteristic 0 and M ⊂ K[x1, . . . , xn] a maximal
ideal. Prove that K[x1, . . . , xn]M ∼= K[x1, . . . , xn]〈x1,...,xn−1,f〉 for a suitable
f ∈ K[xn].
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4.2.6. Give an example for a zero–dimensional ideal in F2[x, y] which is not
in general position with respect to the lexicographical ordering with x > y.

4.3 Higher Dimensional Primary Decomposition

In this section we show how to reduce the primary decomposition of an arbi-
trary ideal in K[x] to the zero–dimensional case. We use the following idea:

Let K be a field and I ⊂ K[x] an ideal. Let u ⊂ x = {x1, . . . , xn} be a
maximal independent set with respect to the ideal I (cf. Definition 3.5.3) then
∅ ⊂ x� u is a maximal independent set with respect to IK(u)[x� u] and,
therefore, IK(u)[x� u] ⊂ K(u)[x� u] is a zero–dimensional ideal (Theorem
3.5.1 (6)). Now, let Q1 ∩ · · · ∩Qs = IK(u)[x� u] be an irredundant primary
decomposition (which we can compute as we are in the zero–dimensional
case), then also IK(u)[x� u] ∩K[x] = (Q1 ∩K[x]) ∩ · · · ∩ (Qs ∩K[x]) is an
irredundant primary decomposition. It turns out that IK(u)[x� u] ∩K[x]
is equal to the saturation I : 〈h∞〉 =

⋃
m>0 I : 〈hm〉 for some h ∈ K[u] which

can be read from an appropriate Gröbner basis of IK(u)[x� u]. Assume
that I : 〈h∞〉 = I : 〈hm〉 for a suitable m (the ring is Noetherian). Then,
using Lemma 3.3.6, we have I = (I : 〈hm〉) ∩ 〈I, hm〉. Because we computed
already the primary decomposition for I : 〈hm〉 (an equidimensional ideal of
dimension dim(I)) we can use induction, that is, apply the procedure again
to 〈I, hm〉.

This approach terminates because either dim(〈I, hm〉) < dim(I) or the
number of maximal independent sets with respect to 〈I, hm〉 is smaller than
the number of maximal independent sets with respect to I (since u is not an
independent set with respect to 〈I, hm〉). The basis of this reduction proce-
dure to the zero–dimensional case is the following proposition:

Proposition 4.3.1. Let I ⊂ K[x] be an ideal and u ⊂ x = {x1, . . . , xn} be
a maximal independent set of variables with respect to I.

(1) IK(u)[x� u] ⊂ K(u)[x� u] is a zero–dimensional ideal.
(2) Let S = {g1, . . . , gs} ⊂ I ⊂ K[x] be a Gröbner basis of IK(u)[x� u], and

let h := lcm
(
LC(g1), . . . ,LC(gs)

) ∈ K[u], then

IK(u)[x� u] ∩K[x] = I : 〈h∞〉 ,
and this ideal is equidimensional of dimension dim(I).

(3) Let IK(u)[x� u] = Q1 ∩ · · · ∩Qs be an irredundant primary decomposi-
tion, then also IK(u)[x� u] ∩K[x] = (Q1 ∩K[x]) ∩ · · · ∩ (Qs ∩K[x]) is
an irredundant primary decomposition.

Proof. (1) is obvious by definition of u and Theorem 3.5.1 (6).
(2) Obviously, I : 〈h∞〉 ⊂ IK(u)[x� u]. To prove the inverse inclusion, let

f ∈ IK(u)[x� u] ∩K[x]. S being a Gröbner basis, we obtain NF(f | S) = 0,
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where NF denotes the Buchberger normal form in K(u)[x� u]. But the Buch-
berger normal form algorithm requires only to divide by the leading coeffi-
cients LC(gi) of the gi, i = 1, . . . , s. Hence, we obtain a standard representa-
tion f =

∑s
i=1 ξigi with ξi ∈ K[x]h. Therefore, hNf ∈ K[x] for some N . This

proves IK(u)[x� u] ∩K[x] ⊂ I : 〈h∞〉.
To show that I : 〈h∞〉 ⊂ K[x] is an equidimensional ideal, suppose that

I = Q1 ∩ · · · ∩Qr is a primary decomposition of I with Qi ∩K[u] = 〈0〉 for
i = 1, . . . , s and Qi ∩K[u] �= 〈0〉 for i = s+ 1, . . . , r. Then IK(u)[x � u] =⋂s
i=1QiK(u)[x�u] is a primary decomposition (Exercise 4.3.3). Since u is an

independent set w.r.t. the ideals
√
QiK(u)[x� u], i = 1, . . . , s, it follows that

all associated primes of IK(u)[x� u] have at least dimension dim(I) = #u
(cf. Theorem 3.5.1 (6)).

(3) Obviously Qi ∩K[x] is primary and
√
Qi ∩K[x] �= √

Qj ∩K[x] for
i �= j. Namely, f ∈ √Qi implies fm ∈ Qi for a suitable m. It follows that
hfm ∈ Qi ∩K[x] for a suitable h ∈ K[u], in particular, (hf)m ∈ Qi ∩K[x].
This implies hf ∈√

Qi ∩K[x]. Assuming
√
Qi ∩K[x] =

√
Qj ∩K[x], we

would obtain (hf)	 ∈ Qj ∩K[x] for a suitable �, that is, f ∈√
Qj . This,

together with the same reasoning applied to (j, i) in place of (i, j), would
give

√
Qi =

√
Qj, contradicting the irredundance assumption. Similarly, we

obtain a contradiction if we assume that Qi ∩K[x] can be omitted in the
decomposition.

Now we are prepared to give the algorithms. We start with a “universal”
algorithm to compute all the ingredients we need for the reduction to the
zero–dimensional case, as described above. We need this procedure for the
primary decomposition and also for the computation of the equidimensional
decomposition and the radical.

Algorithm 4.3.2 (reductionToZero(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: A list (u,G, h), where

− u ⊂ x is a maximal independent set with respect to I,
− G = {g1, . . . , gs} ⊂ I is a Gröbner basis of IK(u)[x� u],
− h ∈ K[u] such that IK(u)[x� u] ∩K[x] = I : 〈h〉 = I : 〈h∞〉.

• compute a maximal independent set u ⊂ x with respect to I; 2

• compute a Gröbner basis G = {g1, . . . , gs} of I with respect to the lexico-
graphical ordering with x� u > u;

• h :=
∏s
i=1 LC(gi) ∈ K[u], where the gi are considered as polynomials in

x� u with coefficients in K(u);
• compute m such that 〈g1, . . . , gs〉 : 〈hm〉 = 〈g1, . . . , gs〉 : 〈hm+1〉; 3

• return u, {g1, . . . , gs}, hm.

2 For the computation of a maximal independent set, cf. Exercises 3.5.1 and 3.5.2.
3 For the computation of the saturation exponent m, cf. Section 1.8.9.
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Note that G is, indeed, a Gröbner basis of IK(u)[x� u] (with respect to
the induced lexicographical ordering), since, for each f ∈ IK(u)[x� u], we
obtain LM(f) ∈ L(I) ·K(u).

SINGULAR Example 4.3.3 (reduction to zero–dimensional case).

option(redSB);
ring R=0,(x,y),lp;
ideal a1=x; //preparation of the example
ideal a2=y2+2y+1,x-1;
ideal a3=y2-2y+1,x-1;
ideal I=intersect(a1,a2,a3);
I;
//-> I[1]=xy4-2xy2+x
//-> I[2]=x2-x

ideal G=std(I);
indepSet(G);
//-> 0,1 //the independent set is u={y}

ring S=(0,y),(x),lp; //the ring K(u)[x\u]
ideal G=imap(R,G);
G;
//-> G[1]=(y4-2y2+1)*x
//-> G[2]=x2-x

This ideal in K(y)[x] is obviously the prime ideal generated by x.

setring R;
poly h=y4-2y2+1; //the lcm of the leading coefficients

ideal I1=quotient(I,h);
I1;
//-> I1[1]=x

Therefore, we obtain I : 〈h〉 = I : 〈h∞〉 = G ∩K[x, y] = 〈x〉, as predicted by
Proposition 4.3.1 (2).

Combining everything so far, we obtain the following algorithm to compute
a higher dimensional primary decomposition:

Algorithm 4.3.4 (decomp(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: a set of pairs (Qi, Pi) of ideals in K[x], i = 1, . . . , r, such that

− I = Q1 ∩ · · · ∩Qr is a primary decomposition of I, and
− Pi =

√
(Qi), i = 1, . . . , r.
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• (u,G, h) := reductionToZero (I);
• change ring to K(u)[x� u] and compute

qprimary := zeroDecomp (〈G〉K(u)[x�u]);
• change ring to K[x] and compute

primary := {(Q′ ∩K[x], P ′ ∩K[x]) | (Q′, P ′) ∈ qprimary};
• primary := primary ∪ decomp (〈I, h〉);
• return primary.

The intersection Q′ ∩K[x] may be computed by saturation: let Q′ be given
by a Gröbner basis {g′1, . . . , g′m} ⊂ K[x], and let g′ :=

∏m
i=1 LC(g′i) ∈ K[u],

then Q′ ∩K[x] = 〈g′1, . . . , g′m〉 : 〈g′∞〉 ⊂ K[x] (Exercise 4.3.4).

The procedure in the Singular programming language can be found in Sec-
tion 4.6.4

SINGULAR Example 4.3.5 (primary decomposition).
Use the results of Example 4.3.3.

ideal I2=std(I+ideal(h));
//we compute now the decomposition of I2
indepSet(I2);
//-> 0,0 // we are in the zero-dimensional case now

list fac=factorize(I2[1]);
fac;
//-> [1]:
//-> _[1]=1
//-> _[2]=y+1
//-> _[3]=y-1
//-> [2]:
//-> 1,2,2

ideal J1=std(I2,(y+1)^2); // the two candidates
ideal J2=std(I2,(y-1)^2); // for primary ideals

J1; J2;
//-> J1[1]=y2+2y+1 J2[1]=y2-2y+1
//-> J1[2]=x2-x J2[2]=x2-x

J1 and J2 are not in general position with respect to lp. We choose a generic
coordinate change.

map phi=R,x,x+y; // coordinate change
map psi=R,x,-x+y; // and the inverse map

4 Note that the algorithm described above computes a primary decomposition
which is not necessarily irredundant. Check this using Example 4.1.6 (3).
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ideal K1=std(phi(J1));
ideal K2=std(phi(J2));
factorize(K1[1]);
//-> [1]:
//-> _[1]=1
//-> _[2]=y+2
//-> _[3]=y+1
//-> [2]:
//-> 1,2,2

ideal K11=std(K1,(y+1)^2); // the new candidates
// for primary ideals

ideal K12=std(K1,(y+2)^2); // coming from K1
factorize(K2[1]);
//-> [1]:
//-> _[1]=1
//-> _[2]=y
//-> _[3]=y-1
//-> [2]:
//-> 1,2,2

ideal K21=std(K2,(y-1)^2); // the new candidates
// for primary ideals

ideal K22=std(K2,y2); // coming from K2
K11=std(psi(K11)); // the inverse coordinate

// transformation
K12=std(psi(K12));
K21=std(psi(K21));
K22=std(psi(K22));

K11; K12; K21; K22; // the result
//-> K11[1]=y2+2y+1 K12[1]=y2+2y+1
//-> K11[2]=x K12[2]=x-1

//-> K21[1]=y2-2y+1 K22[1]=y2-2y+1
//-> K21[2]=x K22[2]=x-1

K11, . . . ,K22 are now primary and in general position with respect to lp.
K11 and K21 are redundant, because they contain I1. We obtain a1 = I1,
a2 = K12, a3 = K22 for the primary decomposition of I, as it should be, from
the definition of I in Example 4.3.3.
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Exercises

4.3.1. Compute the primary decomposition of the ideals 〈xy, xz〉 and 〈x2, xy〉
in Q[x, y] using the algorithm decomp.

4.3.2. Let I ⊂ K[x1, . . . , xn] be an ideal, and let u ⊂ x = {x1, . . . , xn} be
an independent set with respect to I. Prove that IK(u)[x� u] is primary
(respectively prime) if I is primary (respectively prime).

4.3.3. Let I ⊂ K[x1, . . . , xn] be an ideal, and let I = Q1 ∩ · · · ∩Qr be an
irredundant primary decomposition. Moreover, let u ⊂ x = {x1, . . . , xn} be
an independent set with respect to I. Assume that Qi ∩K[u] = 〈0〉 for
i = 1, . . . , s and Qi ∩K[u] �= 〈0〉 for i = s+ 1, . . . , r.

Prove that IK(u)[x� u] =
⋂s
i=1QiK(u)[x� u] is an irredundant primary

decomposition.

4.3.4. Let u ⊂ x = {x1, . . . , xn} be a subset, J ⊂ K(u)[x� u] an ideal, and
let {g1, . . . , gs} ⊂ K[x1, . . . , xn] be a Gröbner basis of J with respect to any
global monomial ordering on K(u)[x� u]. Let h̃ ∈ K[u] be the least common
multiple of the leading coefficients of the gi and h the squarefree part of h̃.
Prove that J ∩K[x] = 〈g1, . . . , gs〉 : 〈h∞〉.
4.3.5. Follow Examples 4.3.3 and 4.3.5 to compute an irredundant primary
decomposition of the intersection of the Clebsch cubic (Figure A.1) and the
Cayley cubic (Figure A.2).

4.4 The Equidimensional Part of an Ideal

In this section we shall compute the equidimensional part of an ideal and an
equidimensional decomposition.

Definition 4.4.1. Let A be a Noetherian ring, let I ⊂ A be an ideal,
and let I = Q1 ∩ · · · ∩Qs be an irredundant primary decomposition. The
equidimensional part E(I) is the intersection of all primary ideals Qi with
dim(Qi) = dim(I).5 The ideal I (respectively the ring A/I) is called equidi-
mensional or pure dimensional if E(I) = I. In particular, the ring A is called
equidimensional if E(〈0〉) = 〈0〉.
Example 4.4.2.

(1) Let I = 〈x2, xy〉 = 〈x〉 ∩ 〈x, y〉2 ⊂ K[x, y], K any field. Then E(I) = 〈x〉.
(2) Let A = K[x, y, z] and I = 〈xy, xz〉 = 〈x〉 ∩ 〈y, z〉 then E(I) = 〈x〉. The

zero–set of I is shown in Figure 4.3, the plane being the zero–set of the
equidimensional part.

5 Note that because of Theorem 4.1.5 the definition is independent of the choice
of the irredundant primary decomposition.
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Fig. 4.3. The zero–set of 〈xy, xz〉 ⊂ K[x, y, z].

Using Proposition 4.3.1 (2) we obtain the following algorithm to compute the
equidimensional part of an ideal:

Algorithm 4.4.3 (equidimensional(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: E(I) ⊂ K[x], the equidimensional part of I.

• set (u,G, h) := reductionToZero (I);
• if (dim(〈I, h〉) < dim(I))

return (〈G〉 : 〈h〉);
else

return
(
(〈G〉 : 〈h〉)∩ equidimensional (〈I, h〉)).

SINGULAR Example 4.4.4 (equidimensional part).
We compute E(I) for I = 〈xy4− 2xy2 + x, x2− x〉 ⊂ K[x, y] (cf. Singular

Example 4.3.3). As seen above, reductionToZero(I) returns u = {y},
G = {xy4− 2xy2 + x, x2− x} and h = y4− 2y2+ 1. Using the results of Ex-
ample 4.3.3, we compute the dimension of 〈I, h〉:

dim(std(I+ideal(h)));
//-> 0

Since dim(I) = #u = 1 and dim(〈I, h〉) = 0 as computed, we can stop here.
The equidimensional part is I1 = 〈x〉.
A little more advanced algorithm, returning the equidimensional part E(I)
and an ideal J ⊂ K[x] with I = E(I) ∩ J , written in the Singular program-
ming language, can be found in Section 4.6.

We should just like to mention another method to compute the equidi-
mensional part of an ideal (cf. [67]). Let A = K[x1, . . . , xn], K a field, and
I ⊂ A be an ideal. Then
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E(I) = Ann
(
Extn−dA (A/I,A)

)
, d = dim(A/I)

(for the definition of Ext see Chapter 7).

Definition 4.4.5. Let A be a Noetherian ring, and let I ⊂ A be an ideal
without embedded prime ideals. Moreover, let I =

⋂s
i=1Qi be an irredun-

dant primary decomposition. For ν ≤ d = dim(I) we define the ν–th equidi-
mensional part Eν(I) to be the intersection of all Qi with dim(Qi) = ν.6

Example 4.4.6. Let I = 〈xy, xz〉 = 〈x〉 ∩ 〈y, z〉 ⊂ K[x, y, z], then E2(I) = 〈x〉
and E1(I) = 〈y, z〉.
Lemma 4.4.7. Let A be a Noetherian ring and I ⊂ A be an ideal without
embedded prime ideals. Let I =

⋂s
i=1Qi be an irredundant primary decompo-

sition such that E(I) =
⋂k
i=1Qi. Then

I : E(I) =
s⋂

i=k+1

Qi .

In particular, I = E(I) ∩ (
I : E(I)

)
.

Proof. I : E(I) =
⋂s
i=1

(
Qi : E(I)

)
=
⋂s
i=k+1

(
Qi : E(I)

)
. Now E(I) �⊂ √Qi

for i = k + 1, . . . , s, because the primary decomposition is irredundant and all
associated primes are minimal by assumption. This implies Qi : E(I) = Qi,
since otherwise E(I) ⊂ Qi : 〈f〉 for some f �∈ Qi and, by Lemma 4.1.3 (3),
E(I) ⊂√

Qi : 〈f〉 =
√
Qi.

Remark 4.4.8. Let A be a Noetherian ring, let I ⊂ A be an ideal, and let
I =

⋂s
i=1Qi be an irredundant primary decomposition with E(I) =

⋂k
i=1Qi.

Then I : E(I) =
⋂s
i=k+1 Q̃i for some primary ideals Q̃i with Qi ⊂ Q̃i ⊂

√
Qi,

but I = E(I) ∩ (
I : E(I)

)
need not be true. Just consider the following ex-

ample: I = 〈x2, xy〉 = 〈x〉 ∩ 〈x2, y〉, E(I) = 〈x〉 and I : E(I) = 〈x, y〉.
The following algorithm, based on Lemma 4.4.7, computes, for a given ideal
I without embedded primes, all equidimensional parts.7

Algorithm 4.4.9 (equidimensionalDecomp(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: A list of ideals I1, . . . , In ⊂ K[x] such that I1 = E(I), I2 = E(I : I1),

. . . , In = E(In−2 : In−1), and
√
I =

⋂n
j=1

√
Ij . If I is radical then

the Ij are radical, too. for all j.
6 The Eν(I) are well-defined, because, under the above assumptions, the primary

decomposition is uniquely determined (Theorem 4.1.5).
7 If we apply the algorithm to an arbitrary ideal then we obtain a set of equidi-

mensional ideals such that the intersection of their radicals is the radical of the
given ideal. In case of 〈x2, xy〉 we obtain 〈x〉, 〈x, y〉.
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• E := equidimensional (I);
• return {E}∪ equidimensionalDecomp (I : E).

SINGULAR Example 4.4.10 (equidimensional decomposition).
We use the results of Singular Example 4.3.3:

ideal I2=quotient(I,I1);
I2;
//-> I2[1]=y4-2y2+1
//-> I2[2]=x-1

I2 = E(I2), because I2 is zero–dimensional (Singular Example 4.4.4). There-
fore, we obtain E1(I) = I1 = 〈x〉 and E0(I) = I2 = 〈y4− 2y2 + 1, x− 1〉 as
the equidimensional components of I.

Exercises

4.4.1. Write a Singular procedure to compute the equidimensional decom-
position using Procedure 4.8.6.

4.4.2. Use the algorithm equidimensional to compute the equidimensional
part of 〈xy, xz〉 ⊂ K[x, y, z].

4.4.3. Let I ⊂ K[x1, . . . , xn] be an ideal and assume that K[x1, . . . , xr] ⊂
K[x1, . . . , xn]/I is a Noether normalization. Prove that I is equidimen-
sional if and only if every non–zero f ∈ K[x1, . . . , xr] is a non–zerodivisor
in K[x1, . . . , xn]/I.

4.4.4. Use Exercise 4.4.3 to check whether 〈x2+ xy, xz〉 is equidimensional.

4.4.5. Follow the Singular Examples of this section to compute an equidi-
mensional decomposition of the ideal

〈x3+ x2y + x2z − x2− xz − yz − z2+ z, x2xz + x2y − yz2− yz,
x2y2− x2y − y2z + yz〉 ,

and verify it by using the procedure equidimensional.

4.5 The Radical

In this section we describe the algorithm of Krick and Logar (cf. [139]) to
compute the radical of an ideal. Similarly to the algorithm for primary de-
composition, using maximal independent sets, the computation of the radical
is reduced to the zero–dimensional case.
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Proposition 4.5.1. Let I ⊂ K[x1, . . . , xn] be a zero–dimensional ideal and
I ∩K[xi] = 〈fi〉 for i = 1, . . . , n. Moreover, let gi be the squarefree part of fi,
then

√
I = I + 〈g1, . . . , gn〉.

Proof. Obviously, I ⊂ I + 〈g1, . . . , gn〉 ⊂
√
I. Hence, it remains to show that

ak ∈ I implies that a ∈ I + 〈g1, . . . , gn〉. Let K be the algebraic closure of
K. Using Exercise 4.2.1 we see that each gi is the product of different linear
factors of K[xi]. Due to Exercise 4.1.7, these linear factors of the gi induce
a splitting of the ideal (I + 〈g1, . . . , gn〉)K[x] into an intersection of maximal
ideals. Hence, (I + 〈g1, . . . , gn〉)K[x] is radical (Exercise 4.5.7). Now consider
a ∈ K[x] with ak ∈ I + 〈g1, . . . , gn〉. Using Exercise 4.2.1 again, we obtain
a ∈ (I + 〈g1, . . . , gn〉)K[x] ∩K[x] = I + 〈g1, . . . , gn〉.
This leads to the following algorithm:

Algorithm 4.5.2 (zeroradical(I)).

Input: a zero–dimensional ideal I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output:

√
I ⊂ K[x], the radical of I.

• for i = 1, . . . , n, compute fi ∈ K[xi] such that I ∩K[xi] = 〈fi〉;
• return I + 〈squarefree (f1), . . . , squarefree (fn)〉.
To reduce the computation of the radical for an arbitrary ideal to the zero–
dimensional case we proceed as in Section 4.3. Let u ⊂ x be a maximal inde-
pendent set for the ideal I ⊂ K[x], x = (x1, . . . , xn), and let h ∈ K[u] satisfy

IK(u)[x� u] ∩K[x] = I : 〈h〉 = I : 〈h∞〉

(cf. Proposition 4.3.1 (2)). Then I = (I : 〈h〉) ∩ 〈I, h〉 (Lemma 3.3.6), which
implies that

√
I =

√
I : 〈h〉 ∩√〈I, h〉 (Exercise 4.5.7). Now IK(u)[x� u] is

a zero–dimensional ideal (Theorem 3.5.1 (6)), hence, we may compute its
radical by applying zeroradical. Clearly,

√
IK(u)[x� u] ∩K[x] =

√
IK(u)[x� u] ∩K[x] =

√
I : 〈h〉 ,

and it remains to compute the radical of the ideal 〈I, h〉 ⊂ K[x]. This in-
ductive approach terminates similarly to the corresponding approach for the
primary decomposition.

We obtain the following algorithm for computing the radical of an arbitrary
ideal:

Algorithm 4.5.3 (radical(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output:

√
I ⊂ K[x], the radical of I.

• (u,G, h) := reductionToZero (I);
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• change ring to K(u)[x� u] and compute J := zeroradical (〈G〉);
• compute a Gröbner basis {g1, . . . , g	} ⊂ K[x] of J ;
• set p :=

∏	
i=1 LC(gi) ∈ K[u];

• change ring to K[x] and compute J ∩K[x] = 〈g1, . . . , g	〉 : 〈p∞〉;
• return (J ∩K[x]) ∩ radical (〈I, h〉).
SINGULAR Example 4.5.4 (radical).
Use the results of Example 4.3.3.

ideal rad=I1;
ideal I2=std(I+ideal(h));
dim(I2);
//-> 0 //we are in the zero-dimensional case now

ideal u=finduni(I2); //finds univariate polynomials
//in each variable in I2

u;
//-> u[1]=x2-x
//-> u[2]=y4-2y2+1

I2=I2,x2-1,y2-1; //the squarefree parts of
//u[1],u[2] are added to I2

rad=intersect(rad,I2);
rad;
//-> rad[1]=xy2-x
//-> rad[2]=x2-x

From the output, we read
√
I = 〈xy2− x, x2− x〉.

Exercises

4.5.1. Let K be a field of characteristic 0, K its algebraic closure and P ⊂
K[x1, . . . , xn] a maximal ideal. Prove that PK[x1, . . . , xn] is a radical ideal.

4.5.2. Let K be a field of characteristic 0, let K be its algebraic closure,
and let I ⊂ K[x1, . . . , xn] be a zero–dimensional radical ideal. Prove that
dimK K[x1, . . . , xn]/I is equal to the number of associated prime ideals of
IK[x1, . . . , xn]. This means, geometrically, that the number of points of the
zero–set V (I) ⊂ Kn is equal to the dimension of the factor ring.
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4.5.3. Let A be a ring, I ⊂ A an ideal. Prove that

(1)
√〈I, fg〉 =

√〈I, f〉 ∩√〈I, g〉,
(2)

√
I =

√
IAf ∩A ∩

√〈I, f〉.
4.5.4 (Factorizing Gröbner basis algorithm). The idea of the factorizing
Gröbner basis algorithm is to factorize, during Algorithm 1.7.1, a new poly-
nomial when it occurs and then split the computations. A simple version is
described in the following algorithm (we use the notations of Chapter 1).

Algorithm (Facstd(G,NF)).
Let > be a well–ordering.

Input: G ∈ G, NF an algorithm returning a weak normal form.
Output: S1, . . . , Sr ∈ G such that

√〈S1〉 ∩ · · · ∩
√〈Sr〉 =

√〈G〉 and Si is a
standard basis of 〈Si〉.

• S := G;
• if there exist non–constant polynomials g1, g2 with g1g2 ∈ S

return Facstd(S ∪ {g1},NF) ∪ Facstd(S ∪ {g2},NF);
• P := {(f, g) | f, g ∈ S, f �= g}, the pair–set;
• while (P �= ∅)

choose (f, g) ∈ P ;
P := P � {(f, g)};
h := NF(spoly(f, g) | S);
if (h �= 0)

if (h = h1h2 with non–constant polynomials h1, h2)
return Facstd(S ∪ {h1},NF)∪ Facstd(S ∪ {h2},NF);

P := P ∪ {(h, f) | f ∈ S};
S := S ∪ {h};

• return S.

Prove that the output of Facstd has the required properties. Moreover, use
the command facstd of Singular to compute a decomposition of the ideal
I of Example 4.3.3.

Note that Facstd can be used for the computation of the radical.

4.5.5. Let I1 be primary and I2 �⊂
√
I1. Prove that

√
I1 : Ii2 =

√
I1 for i ≥ 1.

4.5.6. Let I be a radical ideal. Prove that, for every h �∈ I, the ideal quotient
I : 〈h〉 is a radical ideal.

4.5.7. Prove that
√
I ∩ J =

√
I ∩√J .

4.5.8. (Shape Lemma) Let K be a field of characteristic 0, and let I ⊂
K[x], x = (x1, . . . , xn), be a zero–dimensional radical ideal. Prove that for al-
most all changes of coordinates I = 〈x1+g1(xn), . . . , xn−1+gn−1(xn), gn(xn)〉
for suitable g1, . . . , gn ∈ K[xn].
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4.6 Characteristic Sets

In this chapter we introduce characteristic sets and develop another method
to compute the minimal associated primes of an ideal. The concept of char-
acteristic sets goes back to Ritt and Wu (cf. [195], [236]).

Let R be an integral domain and f, g ∈ R[x], the univariate polynomial
ring over R. For f =

∑m
ν=0 fνx

ν of degree deg(f) = m with fm �= 0 we
call fm =: In(f, x) the initial form of f (with respect to x). Here and in the
following discussion we mention x explicitly since in our application, R[x]
will be a polynomial ring in several variables x1, . . . , xn where x will be one
of the variables xi.

Proposition 4.6.1. For f ∈ R[x] � {0} and g ∈ R[x] there exist uniquely
determined q, r ∈ R[x] with the following properties:

(1) In(f, x)α · g = qf + r, α = max{0, deg(g)− deg(f) + 1},
(2) r = 0 or deg(r) < deg(f).

Definition 4.6.2. The element q =: pquot(g | f, x), is called the pseudo
quotient of g with respect to f (and the variable x) and r =: prem(g | f, x)
the pseudo remainder of g with respect to f .

Proof. We use induction on α. If α = 0 then deg(g) < deg(f) = m and (1)
holds with q = 0 and r = g.

Let α ≥ 1 and g =
s∑

ν=0
gνx

ν , gs �= 0, then s ≥ m and

fs−m+1
m g − fs−mm gsfx

s−m = fs−mm

s−1∑

ν=0

(fmgν − gsfν−s+m)xν

(here we use the convention fν = 0 if ν < 0).
Now, using the induction hypothesis, we obtain

fs−mm

s−1∑

ν=0

(fmgν − gsfν−s+m)xν = q′f + r

and r = 0 or deg(r) < m.
Then for q = q′ + fs−mm gsx

s−m we have

fs−m+1
m g = qf + r.

To see uniqueness assume qf + r = q′f + r′ which implies (q − q′)f = r′ − r.
If r′− r �= 0 then deg(r′ − r) < m = deg(f). But this is impossible since R is
an integral domain. Hence, r = r′ and q = q′ since R[x] is an integral domain
too.
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Now we extend this concept to several variables:
LetK be a field and x1, . . . , xn be variables8. Let f1, . . . , fr∈K[x1, . . . , xn]

be given with the property that for 1 ≤ i1 < i2 < · · · < ir ≤ n, fk ∈
K[x1, . . . , xik ] � K[x1, . . . , xik−1] does not depend on the variables > xik
but xik really appears in fk for k = 1, . . . , r. The variable xik is called the
principal variable of fk. We additionally allow that f1 ∈ K with the principal
variable x1.

For g ∈ K[x1, . . . , xn] define a sequence of pseudo–remainders (with re-
spect to 1 ≤ i1 < i2 < · · · < ir ≤ n and f1, . . . , fr as above) inductively as
follows:

Rr := g and for 0 ≤ k < r,

Rk := prem(Rk+1|fk+1, xik+1),

to be understood in the polynomial ring (K[x1, . . . , x̂ik+1 , . . . , xn])[xik+1 ]
9.

Applying 4.6.1 successively we get In(fr, xir )αrRr = qrfr +Rr−1,
In(fr−1, xir−1)αr−1Rr−1 = qr−1fr−1+Rr−2 and so on. Substituting, we finally
obtain

Lemma 4.6.3. With the notations above we have:

(1) In(f1, xi1)α1 · . . . · In(fr, xir )αrg =
r∑

ν=1
pquot(Rν |fν , xiν )fν +R0,

αk = max{0, degxik
(Rk)− degxik

(fk) + 1},
(2) R0 = 0 or degxik

(R0) < degxik
(fk).

Definition 4.6.4. Keeping the above notations we define for given f1, . . . , fr:

(1) In(fν) := In(fν , xiν ) the initial form of fν (w.r.t. the principal variable).
(2) R0 =:prem(g|{f1, . . . , fr}), the pseudo remainder of g (w.r.t.{f1, . . . , fr}).
(3) If g = prem(g|{f1, . . . , fr}) we say that g is reduced with respect to

{f1, . . . , fr}.
(4) {f1, . . . , fr} is called an ascending set10 if fi is reduced with respect to

{f1, . . . , fi−1} for i = 2, . . . , r.

(5) Let tν :=

{
degxik

(fk) if ν = ik for some k

∞ else
then type({f1, . . . , fr}) := (t1, . . . , tn) is called the type of {f1, . . . , fr}.

(6) The type of fν is the type of {fν}.
Hence, if xν is a principal variable of some fk then tν = degxν

(fk), oth-
erwise tν = ∞.
8 In this chapter we fix an ordering of the variables such that x1 < x2 < . . . < xn.

The definitions and constructions will depend on this ordering.
9 ̂ means that the variable below ̂ is omitted

10 We consider ascending sets (and later characteristic sets) as ordered sets but
keep the notation {f1, . . . , fr}.
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Example 4.6.5. Let f1 = (x1 + 1)2, f2 = (x1 + 1)x2
2 + x1, g = (x2

2 + 1)2f1,
and h = f2(f2 + 2). Then we have

(1) {f1, f2} is an ascending set of type (2, 2),
(2) 0 = prem(g|{f1, f2}),
(3) 0 = prem(h|{f1, f2}),
(4) 1 = g − h, that is, prem(g − h|{f1, f2}) = 1.

To see this just check that (x1 + 1)3 = prem(g | f2, x2).
The example shows that prem(− | {f1, f2}) is not additive, hence not a

good notion in general. Especially the set
{
h| prem(h|{f1, f2)} = 0

}
is not

an ideal. In good cases, however, this set is a (prime) ideal and an important
object as we shall see below (cf. Proposition 4.6.16 and 4.6.18).

The aim now is to prove the following proposition:

Proposition 4.6.6. Let K be a field and let I = 〈h1, . . . , hs〉 � K[x1, . . . , xn]
be an ideal. There exists an ascending set T = {g1, . . . , gr} with the following
properties:

(1) gi ∈ I, i = 1, . . . , r.
(2) prem(hj |T ) = 0, j = 1, . . . , s.

To prove the proposition we need the possibility to compare ascending
sets.

Definition 4.6.7. Let T = {f1, . . . , fr}, T ′ = {g1, . . . , gs} be ascending sets.
We define T < T ′ if type(T ) < type(T ′) with respect to the lexicographical
ordering.

Example 4.6.8. Let f1 = (x1 + 1)2, f2 = (x1 + 1)x2
2 + x1 then type(f1) =

(1,∞), type(f2) = (∞, 2), type({x1, f2}) = (1, 2), type({f1, f2}) = (2, 2),
type(x3

1) = (3,∞). Hence, {x1, f2} < {f1, f2} < {x3
1}.

Lemma 4.6.9. Let T = {f1, . . . , fr} be an ascending set in K[x1, . . . , xn]
and assume g �= 0 is reduced with respect to T . Then T ∪ {g} contains an
ascending subset T ′ such that T ′ < T .

Proof. Since g is reduced with respect to T we have, for each i, either {g} <
{fi} or {fi} < {g}.
If {g} < {f1} then T ′ := {g} < T .
If {fr} < {g} then T ′ := {f1, . . . , fr, g} < T .
If {fi} < {g} < {fi+1} then T ′ := {f1, . . . , fi, g} < T .

Lemma 4.6.10. Let M be a set of ascending subsets of K[x1, . . . , xn], then
M has a minimal element ( M is partially well–ordered with respect to <).

Proof. Let τ = {type(T )|T ∈ M} ⊂ (N∪{∞})n. The lexicographical ordering
is a well–ordering and, therefore, τ has a minimal element. By definition, the
corresponding element in M is minimal.
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Proof of Proposition 4.6.6. Let F (0) := {h1, . . . , hs} and T (0) be minimal
among the ascending sets contained in F (0) and let R(0) = F (0)

� T (0).
Assume T (i−1), F (i−1) and R(i−1) are already defined. If R(i−1) �= ∅ and

P :=
{
prem(g|T (i−1))|g ∈ R(i−1)

}
�= {0}

then let T (i) be a minimal ascending set in F (i) := F (i−1) ∪ P . In this case
we have (Lemma 4.6.9) that T (i) < T (i−1) and we define R(i) := F (i)

� T (i).
If R(i) = ∅ or P = {0} we are done with T = T (i) because F (0) ⊆ F (i).

Moreover, due to Lemma 4.6.10 this case occurs after finitely many steps.

Definition 4.6.11. Let F = {f1, . . . , fs} be a subset of K[x1, . . . , xn] and
let I = 〈f1, . . . , fs〉. An ascending set T with the properties (1) and (2) of
Proposition 4.6.6 is called a characteristic set for F .

The proof of Proposition 4.6.6 provides the following algorithm to com-
pute a characteristic set for F :

Algorithm 4.6.12 (Characteristic(F )).

Input: F = {f1, . . . , fs}
Output: a characteristic set for F

• Rest = F ; G = F ;

• While Rest �= ∅
Result = minAscending(G)
If Result = {f} with f ∈ K

Rest = ∅
else

Rest = {prem(g|Result) �= 0 | g ∈ G� Result}
G = G∪Rest

• return Result

Note that the proof of Proposition 4.6.1 provides an algorithm to compute
the pseudo remainder (and the pseudo quotient). Moreover, we used in Al-
gorithm 4.6.12 the algorithm minAscending(G):

Algorithm 4.6.13 (minAscending(G)).

Input: G = {g1, . . . , gs}
Output: a minimal ascending subset of G

• Result = ∅; Rest = G;
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• While Rest �= ∅
Choose f ∈ Rest of minimal type
Result = Result ∪ {f}
If f ∈ K

Rest = ∅
else

Rest = {g ∈ Rest |g reduced with respect to f}
• return Result

Example 4.6.14. Let F = {f1, f2, f3} with f1 = x1x4 + x3 − x1x2, f2 =
x3x4 − 2x2

2 − x1x2 − 1, f3 = (x1 + 1)x2
4 − x2(x1 + 1)x4 + x1x2 + 3x2.

We follow Algorithms 4.6.12 and 4.6.13 to compute a characteristic set
for F . We start with Rest = F and G = F :

(1) Result = minAscending (G) = {f1}
Rest =

{
prem(f2|{f1}) =: f4, prem(f3|{f1}) =: f5

}

f4 = −x2
3 + x1x2x3 − 2x1x

2
2 − x2

1x2 − x1

f5 = (x1 + 1)x2
3 − x1(x1 + 1)x2x3 + x3

1x2 + 3x2
1x2

G = G ∪ Rest = {f1, . . . , f5}.
(2) Result = minAscending (G) = {f4, f1}

Rest =
{
prem(f3|{f4, f1}) =: f6, prem(f5|{f4, f1}) =: f7

}

f6 = −2x1(x1 + 1)x2
2 + 2x2

1x2 − x2
1 − x1

f7 = f6
G = G ∪ Rest = {f1, . . . , f7}.

(3) Result = minAscending (G) = {f6, f1}
Rest =

{
prem(f4|{f6, f1} =: f8

}
.

f8 = 2x1(x1 + 1)x2
3 − 2x2

1(x1 + 1)x2x3 + 2x3
1(x1 + 3)x2

G = G∪ Rest = {f1, . . . , f8}.
(4) Result = minAscending (G) = {f6, f8, f1}

Rest = ∅.
We obtain T = {f6, f8, f1} as characteristic set for F .

Remark 4.6.15. Different choices in the above algorithms give different char-
acteristic sets. We illustrate this with two examples. In step (2) we could have
chosen {f5, f1} as minimal ascending set. This would result in {f6, f5, f1} as
characteristic set for F .

In step (1) we could have chosen {f2} as minimal ascending set. This
would give {f̄6, f̄5, f2} as minimal ascending set with
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f̄5 = (−2x1x
3
2 + 2x1x

2
2 − x1x2 − 2x3

2 − x2)x3

+2x2
1x

3
2 − 2x2

1x
2
2 + x2

1x2 + 4x1x
4
2 − 2x1x

3
2 + 4x1x

2
2 − x1x2 + x1+

4x4
2 + 4x2

2 + 1

f̄6 = (−16x2
1 − 32x1 − 16)x8

2

+(−16x3
1 + 16x1)x7

2

+(−4x4
1 + 24x3

1 − 20x2
1 − 64x1 − 32)x6

2

+(8x4
1 − 32x3

1 + 24x1)x5
2

+(−8x4
1 + 24x3

1 − 12x2
1 − 48x1 − 24)x4

2

+(4x4
1 − 16x3

1 + 12x1)x3
2

+(−x4
1 + 6x3

1 − 5x2
1 − 16x1 − 8)x2

2

+(−2x3
1 + 2x1)x2

+(−x2
1 − 2x1 − 1).

The following proposition shows that, in general, a characteristic set G of
a set of generators of an ideal does not generate the ideal. The difference is,
however, controlled by products of initial forms of G.

Proposition 4.6.16. Let I = 〈f1, . . . , fr〉 ⊆ K[x1, . . . , xn] be an ideal and
G = {g1, . . . , gs} a characteristic set for {f1, . . . , fr}. Let J := 〈G〉 and
S := {In(g1)α1 ·. . .·In(gs)αs | α1, . . . , αs ∈ N}. Let H be the ideal generated by
all polynomials h with prem(h|G) = 0. Then we have the following inclusion
of ideals:

J ⊆ I ⊆ H ⊆ J : S.

Proof. We have J ⊆ I ⊆ H by definition of G being a characteristic set
for {f1, . . . , fr}. Now let h be a polynomial with prem(h|G) = 0. Then, by
Lemma 4.6.3, there exist g ∈ S such that gh ∈ J , that is, h ∈ J : S. This
implies H ⊆ J : S.

Let us now explain how characteristic sets are related to primary decom-
position.

Definition 4.6.17. Let F = {f1, . . . , fr} ⊂ K[x1, . . . , xn] be an ascending
set and assume that fν ∈ K[x1, . . . , xiν ]�K[x1, . . . , xiν−1] for all ν, 1 ≤ i1 <
· · · < ir ≤ n. Define inductively

K1 := K(x1, . . . , xi1−1) and
Kν = (Kν−1[xiν−1 ]/〈fν−1〉)(xiν−1+1, . . . , xiν−1)
for ν = 2, . . . , r.

F is called an irreducible ascending set if each fν is irreducible in Kν [xiν ].
Note that Kν is a field if fν−1 is irreducible. Hence, if F is an irreducible

ascending set then all rings Kν , ν = 1, . . . , r are field extensions of K.

Proposition 4.6.18. Let F = {f1, . . . , fr} ⊂ K[x1, . . . , xn] be an irreducible
ascending set, then the set

P = {g ∈ K[x1, . . . , xn] | prem(g|F ) = 0}
is a prime ideal.
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More precisely, let 1 ≤ i1 < · · · < ir ≤ n, fν ∈ K[x1, . . . , xiν ] �

K[x1, . . . , xiν−1] for ν = 1, . . . , r, and L := {1, . . . , n}� {i1, . . . , ir}. Then F
generates a maximal ideal in K({xν}ν∈L) [xi1 , . . . , xir ] and

P = (〈F 〉K({xν}ν∈L)[xi1 , . . . , xir ]) ∩K[x1, . . . , xn].

We call P the prime ideal associated to the irreducible ascending set F .

Proof. After a suitable coordinate change we may assume that (i1, . . . , ir) =
(n−r+1, . . . , n) and hence that fi ∈ K[x1, . . . , xn−r+i]�K[x1, . . . , xn−r+i−1].
With the notations of Proposition 4.6.16 we have

J := 〈F 〉 ⊆ H = 〈P 〉 ⊆ J : S.

Now, by definition of an irreducible ascending set, we have that

Kν [xn−r+ν ]/〈fν〉 = K(x1, . . . , xn−r)[xn−r+1, . . . , xn−r+ν ]/〈f1, . . . , fν〉

and hence K(x1, . . . , xn−r)[xn−r+1, . . . , xn]/J is a field.
Therefore, JK(x1, . . . , xn−r)[xn−r+1, . . . , xn] is a maximal ideal.

Let I := K[x1, . . . , xn] ∩ JK(x1, . . . , xn−r)[xn−r+1, . . . , xn], then, by
Lemma 4.6.3, P ⊆ I. We claim that prem(g|F ) = 0 for all g ∈ I, that
is, I ⊆ P . Let g ∈ I and choose a ∈ K[x1, . . . , xn−r] such that ag ∈ J .
Now a · prem(g|F ) = prem(Ag|F ) and, since F generates J , we may assume
that g ∈ J and g = prem(g|F ). We have to prove that g = 0. Assume
g �= 0 then g ∈ K[x1, . . . , xs] � K[x1, . . . , xs−1] for some s > n − r because
J ∩K[x1, . . . , xn−r] = 0.

On the other hand, since g is reduced, g satisfies the inequalities 0 <
degxs

(g) < degxs
(fs+r−n). But this is impossible, because g is in the ideal

generated by fs+r−n which is irreducible in the ring
(
K(x1, . . . , xn−r)[xn−r+1, . . . , xs−1]/〈f1, . . . , fs+r−n−1〉

)
[xs].

We proved I = P and, therefore, P is a prime ideal.

Remark : The condition that F is irreducible is used to prove that P is an
ideal which is wrong in general (cf. Example 4.6.5).

Let us now show the converse of Proposition 4.6.18

Proposition 4.6.19. Let F = {f1, . . . , fr} ⊂ K[x1, . . . , xn] be an ascending
set. If P = {g ∈ K[x1, . . . , xn] | prem(g|F ) = 0} is a prime ideal then F is
irreducible.

Proof. Assume that F is not irreducible and assume as in the proof of Propo-
sition 4.6.18 that fi ∈ K[x1, . . . , xn−r+i]� [x1, . . . , xn−r+i−1]. Choose i mini-
mal such that {f1, . . . , fi} is not reducible and assume fi = ḡ ·h̄ in Ki[xn−r+i]
with degxn−r+i

(ḡ) > 0, degxn−r+i
(h̄) > 0, where
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Ki := K(x1, . . . , xn−r)[xn−r+1, . . . , xn−r+i−1]/〈f1, . . . , fi−1〉.
This implies that afi − g · h =

∑i−1
ν=1 gνfν for suitable a ∈ K[x1, . . . , xn−r ],

g, h, gν ∈ K[x1, . . . , xn−r+i], degxn−r+i
(g) > 0 and degxn−r+i

(h) > 0 and
degxn−r+i

(g) + degxn−r+i
(h) = degxn−r+i

(fi).
Now g · h ∈ P by Proposition 4.6.16 and P is a prime ideal by assump-

tion. Therefore, we may assume that g ∈ P . This implies 0 = prem(g|F ) =
prem(g|{f1, . . . , fi}) = prem(g|{f1, . . . , fi−1}) because of degxn−r+i

(g) <
degxn−r+i

(fi). Hence, In(f1)α1 · . . . · In(fi−1)αi−1g ∈ 〈f1, . . . , fi−1〉 and, there-
fore, g is zero in Ki[xn−r+i] which implies fi is zero in Ki[xn−r+i] and this
gives a contradiction.

Let I = 〈f1, . . . , fr〉 be an ideal and
√
I = P1 ∩ · · · ∩ Ps, Pi the minimal

associated primes of I. We want to give an algorithm to compute irreducible
ascending sets G(1), . . . , G(s) such that Pi = {h | prem(h | G(i)) = 0}.

The algorithm is based on the following lemma.

Lemma 4.6.20. Let I = 〈f1, . . . , fr〉 be an ideal and G = {g1, . . . , gs} be a
characteristic set for {f1, . . . , fr}. Suppose that G is irreducible and let P be
the prime ideal associated to G, then

√
I = P ∩

√
〈F1〉 ∩ · · · ∩

√
〈Fs〉

with Fi = {f1, . . . , fr, In(gi)}.
Proof. The lemma is a special consequence of Proposition 4.6.16 and left as
an exercise (cf. proof of Proposition 3.3.5).

Lemma 4.6.21. Let F = {f1, . . . , fr} be an ascending set. Assume that
{f1, . . . , fk−1} is irreducible and F is not. With the notations of Proposition
4.6.18 there exist a, b ∈ K[{xν}ν∈L], irreducible polynomials h1, . . . , hs ∈
K[x1, . . . , xik ] �K[x1, . . . , xik−1] and ρ1, . . . , ρs, α1, . . . , αk−1 ∈ N such that

(1) afk = bhρ11 · . . . · hρs
s in Kk[xik ],

(2) In(f1)α1 · . . . · In(fk−1)αk−1bahρ11 · . . . · hρs
s ∈ 〈F 〉.

Here Kk = K({xν}ν∈L) [xi1 , . . . , xik−1 ]/〈f1, . . . , fk−1〉
Proof. Let fk = h̄ρ11 · . . . · h̄ρs

s be the factorisation of fk in Kk[xik ] into irre-
ducible factors. Then we can write h̄i = bihi

ai
, hi ∈ K[x1, . . . , xn] irreducible,

bi, ai ∈ K[{xν}ν∈L]. For a = aρ11 · . . . · aρs
s and b = bρ11 · . . . · bρs

s we obtain
afk = bhρ11 ·. . .·hρs

s inKk[xik ] and hence (1). Let g := afk−bhρ11 ·. . .·hρs
s . Since

the class of g in Kk[xik ], and hence in Kk is zero, g ∈ 〈f1, . . . , fk−1〉. Then
prem(g|{f1, . . . , fk−1}) = 0 by Proposition 4.6.18 because {f1, . . . , fk−1} is
irreducible. This implies (2).

If we combine now Exercise 4.5.3 Lemma 4.6.20 and Lemma 4.6.21 we
obtain an algorithm to compute irreducible ascending sets for the associated
prime ideals of an ideal:
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(1) We try to find an element in I which factors as f · g and apply Exercise
4.5.3 in order to reduce the problem to the consideration of 〈I, f〉 and
〈I, g〉 separately. Indeed, we try to factor the generators of I.

(2) If I = 〈g1, . . . , gm〉 with g1, . . . , gm irreducible, we compute an ascending
set T = {f1, . . . , fr} for {g1, . . . , gm}.

(3) If T = {f1} and f1 ∈ K then I = 〈1〉.
(4) If T is irreducible we obtain an associated prime P of I, where P =

{h| prem(h|T ) = 0}, and use Lemma 4.6.20 for a decomposition
√
I = P ∩ Rest

and continue with Rest.
(5) If T is not irreducible, we use Lemma 4.6.21 to obtain b, h1, . . . , hs such

that
In(f1) · . . . · In(fk−1) · b · h1 · . . . · hs ∈

√
I.

Then we use Exercise 4.5.3 to obtain
√
I =

√
〈I, In(f1)〉∩· · ·∩

√
〈I, In(fk−1)∩

√
〈I, b〉∩

√
〈I, h1〉∩· · ·∩

√
〈I, hs〉

and continue with the 〈I, In(fj)〉, 〈I, b〉 and 〈I, hj〉. If we know the factors
of b we may split 〈I, b〉 again.

Altogether we obtain the following algorithm which computes irreducible
ascending sets of a given set of generators of I such that the associated prime
ideals (Proposition 4.6.18) are the minimal prime ideals of I.

Algorithm 4.6.22 (Irrascending(F )).

Input: a set of polynomials F ⊆ K[x1, . . . , xn]
Output: a set of irreducible ascending sets of the minimal prime ideals of 〈F 〉
• Result = ∅; Rest = {F};
• While Rest �= ∅

Choose X ∈ Rest;
Rest = Rest �{X};
T = Characteristic(X);
If T = {f} with f ∈ K

If Rest = ∅ and Result = ∅
return

{{1}}
else

If T is irreducible
If Result �= ∅ and prem(S | T ) �= 0 for all S ∈ Result

Result = Result ∪{T }
Rest = Rest ∪( ⋃

f∈I,deg
(
In(f)

)
>0

{
T ∪X ∪ {In(f)}})

else
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choose f1, . . . , fk−1 ∈ T , b, h1, . . . , hs as in Lemma 4.6.21
Rest = Rest ∪( s∪

j=1

{
T ∪X ∪ {hj}

}) ∪ {
T ∪X ∪ {b}}

∪( ⋃

j=1,...,k−1,deg
(
In(fj)

)
>0

{
T ∪X ∪ {In(fj)}

})

Rest = Clear (Result)
• return Result.

We used the following procedure:

Algorithm 4.6.23 (Clear(R)).

Input: R, a set of polynomials
Output: S, a subset of the input R with the following properties:

(1) X,Y ∈ S implies prem(X |Y ) �= 0,
(2) given X ∈ R there exists Y ∈ S such that prem(X |Y ) = 0

• S = R
• t = 0;
• while t = 0;

If exist X,Y ∈ S such that prem(X |Y ) = 0
S = S �{X};
else

t = 1;
• return S

One possibility to refine the algorithm is to use a splitting with the fol-
lowing procedure before the computation of the ascending sets.

Algorithm 4.6.24 (Split(X)).

Input: X , a set of polynomials
Output: Result={W1, . . . ,Wk} , Wi set of irreducible polynomials such that

∩
i

√〈Wi〉 =
√〈X〉

• Rest = {X}; Result = ∅;
• While Rest�= ∅

Choose X ∈ Rest;
Rest = Rest � X ;
If all elements of X are irreducible

Result = Result ∪ {X};
else

Choose f = g · h ∈ X , g, h nontrivial factors of f ;
X = X � {f};
Rest = Rest ∪{X ∪ {g}, X ∪ {h}};

• return Result
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Example 4.6.25. Let F = {f1, f2, f3} be the set of polynomials of Example
4.6.14 and let I = 〈F 〉. Let us compute a primary decomposition of

√
I.

The initialisation of the algorithm gives
(0) Result = ∅, Rest = {F}.
(1) X = F , Rest = ∅.

As a result of Example 4.6.14 we obtain
T = Characteristic (X) = {f6, f8, f1}.
T is not irreducible:
f8 = 2x1(x1 + 1)(x3 − 2x1x2 + x1)(x3 + x1x2 − x1)− 2x2

1f6

and we obtain

h1 = x3 − 2x1x2 + x1

h2 = x3 + x1x2 − x1

b = 2x1(x1 + 1)
Rest = {Y1, Y2, Y3, Y4}
Y1 = F ∪ T ∪ {h1}
Y2 = F ∪ T ∪ {h2}
Y3 = F ∪ T ∪ {b}
Y4 = F ∪ T ∪ {In(f6)}

(2) X = Y1, Rest = {Y2, Y3, Y4}
T = Characteristic(X) = {f6, h1, f̄1}
f̄1 = x1x4 + x1x2 − x1

T is irreducible
Result = Result ∪ {T } =

{{f6, h1, f̄1}
}

Rest = Rest ∪ {Y5, Y6} (In(h1) = 1)
Y5 = Y1 ∪ T ∪ {−2x1(x1 + 1)} (

In(f6) = −2x1(x1 + 1)
)

Y6 = Y1 ∪ T ∪ {x1}
(
In(f̄1) = x1

)

(3) X = Y2, Rest = {Y3, . . . , Y6}
T = Characteristic(X) = {f6, h2, f̄2}
f̄2 = x1x4 − x1x2 + x1

T is irreducible
prem({f6, h1, f̄1}|T ) �= 0
Result = Result ∪ {T } =

{{f6, h1, f̄1}, {f6, h2, f̄2}
}

Rest = Rest ∪ {Y7, Y8}
Y7 = Y2 ∪ T ∪ {−2x1(x1 + 1)}
Y8 = Y2 ∪ T ∪ {x1}

Now we continue as before, leaving the details to the reader. If we
end with an irreducible ascending set T in the algorithm, we always have
prem({f6, h1, f̄1}|T ) = 0 or prem({f6, h2, f̄2}|T ) = 0.

No further ascending set is added to the result. We obtain as a result two
irreducible ascending sets

T1 := {f6, h1, f̄1}, T2 := {f6, h2, f̄2} ,
and as associated prime ideals
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P1 = 〈T1〉K(x1)[x2, x3, x4] ∩K[x1, x2, x3, x4]

= 〈−2(x1 + 1)x2
2 + 2x1x2 − x1 − 1, x3 − 2x1x2 + x1, x4 + x2 − 1〉 ,

P2 = 〈T2〉K(x1)[x2, x3, x4] ∩K[x1, x2, x3, x4]

= 〈−2(x1 + 1)x2
2 + 2x1x21− x1 − 1, x3 + x1x2 − x1, x4 − x2 + 1〉.

Finally, we have
√
I = P1 ∩ P2.

SINGULAR Example 4.6.26 (irreducible ascending set).
We compute Example 4.6.25 by using the command char series. This

command computes the irreducible ascending sets associated to the gene-
rators of a given ideal using some (internally chosen) heuristic ordering of
the variables. In this example internally the ordering x1 > x2 > x3 > x4 is
chosen.

ring R=0,x(4..1),dp;
ideal I=-x(1)*x(2)+x(1)*x(4)+x(3),

-x(1)*x(2)-2*x(2)^2+x(3)*x(4)-1,
-x(1)*x(2)*x(4)+x(1)*x(4)^2+x(1)*x(2)-x(2)*x(4)
+x(4)^2+3*x(2);

matrix M=char_series(I);
ring S=(0,x(4)),x(1..3),dp;//to see the result with re-
matrix M=imap(R,M); //spect to the choosen ordering
M;
//-> M[1,1]=(-2*x(4)^2+2*x(4)-1)*x(3)+(4*x(4)^3-10*x(4)^2

+10*x(4)-3)
//-> M[1,2]=x(2)+(x(4)-1)
//-> M[1,3]=(2*x(4)^2-2*x(4)+1)*x(1)+(2*x(4)^2-4*x(4)+3)
//-> M[2,1]=(-2*x(4)^2-2)*x(3)+(x(4)^3+x(4)^2+x(4)-3)
//-> M[2,2]=2*x(2)+(-x(4)-1)
//-> M[2,3]=(x(4)^2+1)*x(1)+(x(4)^2+2*x(4)+3)

So far, we developed characteristic sets for a given set of polynomials.
This is sufficient for practical computations and for implementations. In the
remaining part of this section we take an invariant point of view by consider-
ing the corresponding concept for ideals without a specific set of generators.
This is mainly of theoretical interest.

Definition 4.6.27. Let I ⊆ K[x1, . . . , xn] be an ideal and G ⊆ I an as-
cending set. G is called a characteristic set of I if prem(h|G) = 0 for all
h ∈ I.
Example 4.6.28. Let G be an irreducible ascending set. Then the set
P = {h| prem(h|G) = 0} is a (prime) ideal and G is a characteristic set of P .
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Example 4.6.29. Let I = 〈x2
1, x1x2, x

2
2〉 ⊆ K[x1, x2] then I is zero-dimensional

and F = {x2
1, x1x2} is a characteristic set of I. It is not difficult to

see that even 〈x2
1, x2〉 ⊆ {h| prem(h|F ) = 0}. On the other hand, also

prem(x2
2 + 1|F ) = 0. This implies that {h| prem(h|F ) = 0} is not an ideal.

Below, we show that characteristic sets of an ideal I can be computed
with the help of Gröbner basis. The examples below show that this is not
completely obvious: a lexicographical Gröbner basis needs not be a charac-
teristic set of I and even if we apply the algorithm Characteristic to a
lexicographical Gröbner basis, we need not get a characteristic set of I.

Example 4.6.30. Let P = 〈f1, f2〉 ⊆ K[x1, x2, x3, x4], f1 = x2x
2
3 + x1, f2 =

x2
4 + x3

3, then P is a prime ideal and {f1, f2} is a reduced Gröbner basis of
P with respect to the lexicographical ordering x1 < · · · < x4 but not an
ascending set because prem(f2|{f1}) = x2

2x
2
4 − x1x2 =: g2. However, {f1, g2}

is a characteristic set of P and 〈f1, g2〉 : x1x2 = P .

Example 4.6.31. Let I = 〈x1x
3
2, x

3
2x3〉 ⊆ K[x1, x2, x3]. Then {x1x

3
2, x

3
2x3} is

a reduced Gröbner basis with respect to the lexicographical ordering and
prem(x3

2x3|{x1x
3
2}) = 0. We get that {x1x

3
2} is a characteristic set of I but

{h| prem(h|{x1x
3
2} = 0} = 〈x3

2〉 is strictly bigger than I.

Example 4.6.32. Let I = 〈x2
1, x1x

2
2, x

5
2, x

3
3−x3

2〉 ⊆ K[x1, x2, x3] then I is zero-
dimensional and F := {x2

1, x1x
2
2, x

5
2, x

3
3 − x3

2} is a reduced Gröbner basis of I
with respect to the lexicographical ordering. The algorithm Characteristic

gives Characteristic (F ) = {x2
1, x1x

2
2} because prem(x5

2|{x2
1, x1x

2
2}) = 0

and prem(x3
3 − x3

2 | {x2
1, x1x

2
2}) = 0. This means that T := {x2

1, x1x
2
2} is

a characteristic set for F . But x1x
3
3 ∈ I and prem(x1x

3
3|T ) = x1x

3
3. This

implies that I � {h| prem(h|T ) = 0} even though we started with a reduced
Gröbner basis. Notice that {x2

1, x1x
2
2, x1x

3
3} is a characteristic set of I.

Proposition 4.6.33. Let I ⊆ K[x1, . . . , xn] be an ideal and G ⊆ I an as-
cending set. Then G is a characteristic set of I if and only if G is a minimal
ascending set of I (w.r.t. the ordering of Definition 4.6.7).

Proof. Suppose G is a minimal ascending set of I, that is, if G′ ⊆ I is
ascending then G′ < G is not possible. Let h ∈ I and h = prem(h|G). If
h �= 0, then, using Lemma 4.6.9, G ∪ {h} contains is an ascending subset G′

and G′ < G. This is a contradiction and hence G is a characteristic set of I.
Now assume that G is the a characteristic set of I and that G′ < G with

G′ ⊂ I is an ascending set. Let g′ ∈ G′ be responsible for G′ < G, that is, if
G = {g1, . . . , gs} then one of the following conditions is satisfied:

(1) {g1, . . . , gs, g′} ⊆ G′,
(2) {g′} < {g1},
(3) {g1, . . . , gi−1, g

′} ⊆ G′ and {g′} < {gi}.
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This implies that g′ is reduced with respect to G in all cases. Therefore,
g′ = prem(g′|G) �= 0 which is a contradiction to g′ ∈ I and G being a
characteristic set of I.

At the end of this chapter we shall give the idea of an algorithm to com-
pute a characteristic set for an ideal. It will not be used later on.

First of all we treat the zero–dimensional case.

Proposition 4.6.34. Let I ⊆ K[x1, . . . , xn] be a zero–dimensional ideal and
T = {g1, . . . , gs} a characteristic set of I. Then s = n, gi ∈ K[x1, . . . , xi] �

K[x1, . . . , xi−1] and degxi
(gi) ≤ degxi

(hi) where 〈hi〉 = I ∩K[xi].

Proof. Assume s < n, then there exist j < n such that gj ∈ K[x1, . . . , xj ] �

K[x1, . . . , xj−1] and, if j < s, gj+1 �∈ K[x1, . . . , xj+1].
But I ∩ K[xj+1] = 〈hj+1〉 �= 0 and, therefore, {g1, . . . , gj , hj+1, . . . , hn}

is an ascending set of smaller type than T , which is a contradiction to
the minimality of T by Proposition 4.6.33. Obviously, H := {h1, . . . , hn}
is an ascending set. If degxj

(gj) > degxj
(hj) for some j then we have

{g1, . . . , gj−1, hj , . . . , hn} < T which is again a contradiction to the mini-
mality of T .

Remark 4.6.35. With the notations of Proposition 4.6.34 the hi can be com-
puted from some given Gröbner basis (with respect to any given ordering) of
I using linear algebra. Therefore, especially their degrees can be computed.
This gives us an estimate for the degrees of the polynomials in a characteristic
set.

We obtain the following algorithm:

Algorithm 4.6.36 (ZeroCharsets (F )).

Input: A set F of polynomials such that 〈F 〉 is zero–dimensional
Output: A characteristic set T for 〈F 〉
• Choose a (global) monomial ordering and compute a Gröbner basis G of
〈F 〉;

• d = dim(〈G〉);
• i = 0;
• while i < n; i = i+ 1;

M = {1, xi, . . . , xdi };
hi = minRel(M,G); (computes 〈hi〉 = 〈F 〉 ∩K[xi])
di = deg(hi);

• T = {h1};
• I = {(α1, α2, 0, . . . , 0) | α1 < d1, α2 ≤ d2)}; i = 1;
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• while i < n
i = i+ 1;
M = {xα|α ∈ I};
f = minRel(M,G);
d = degxi

(f)
T = T ∪ {f}
I = I � {(β1, . . . , βi, 0, . . . , 0) ∈ I | βi ≥ d}
I = I ∪ {(α1, . . . , αi+1, 0 . . . , 0) | (α1, . . . , αi, 0, . . . , 0) ∈ I, αi+1 ≤ di}

• return T

In the algorithm above we used the algorithm minRel:

Algorithm 4.6.37 (minRel (M,G)).

Input: M = {m1, . . . ,ms} a set of monomials, ordered with respect to the
lexicographical ordering x1 < · · · < xn, G a Gröbner basis with
respect to a given ordering such that dim(〈G〉) = 0.

Output: 0 if M is linearly independent modulo 〈G〉 or a polynomial

h =
k∑
i=1

cimi, ck = 1, k ≤ s minimal such that h ∈ 〈G〉.

• i = 0;
• d = dimK K[x1, . . . , xn]/〈G〉
• while i < s

i = i+ 1;

f = NF(mi|G) =
d∑
j=1

cjix
αj

A = (cab)a≤d,b≤i

If A

( y1

...
yi

)
= 0 has a solution (y1, . . . , yi−1, 1)

return mi +
i−1∑
j=1

yjmj

• return 0

If the ideal I is not zero–dimensional we can reduce the computation of
a characteristic set to the zero–dimensional case using the following lemma:

Lemma 4.6.38. Let I ⊆ K[x1, . . . , xn] be an ideal, u ⊆ {x1, . . . , xn} a max-
imal independent set of variables for I.

Let T = {h1, . . . , hs} ⊆ K[x] be a characteristic set for IK(u)[x � u]
and assume that IK(u)[x � u] ∩ K[x] = I : h for h ∈ K[u]. Then T ′ =
{hh1, . . . , hhs} is a characteristic set for I.

Proof. Let f ∈ I then prem(f |T ) = 0. This implies prem(f |T ′) = 0. On the
other hand, by definition of h, we have T ′ ⊆ I. This proves the lemma.
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Example 4.6.39. Let F = {f1, f2, f3} be as in Example 4.6.14. Then u = {x1}
is a maximal independent set of variables for 〈F 〉.

In K(x1)[x2, x3, x4] we obtain

ZeroCharsets(F ) =
{
− 1
x1
f6,−(x1 + 1)f4 + f6, f1

}

(with the notations of Example 4.6.14).
Since − 1

x1
f6 ∈ 〈F 〉 we obtain {− 1

x1
f6,−(x1 + 1)f4 + f6, f1} as characte-

ristic set for 〈F 〉.

Exercises

4.6.1. Compute Example 4.6.25 with respect to the ordering x1 > x2 > x3 >
x4 and compare the result with 4.6.26.

4.6.2. Let > be the lexicographical ordering with x1 < . . . < xn and
f1, . . . , fn ∈ K[x1, . . . , xn]. Assume that LM(fi) = xmi

i for i = 1, . . . , n (such
a set of polynomials is called a triangular set and will be studied in the next
chapter). Prove that {f1, . . . , fn} is a Gröbner basis. Assume furthermore
that NF(fi | {f1, . . . , fi−1}) = fi and prove that {f1, . . . , fn} is a characte-
ristic set for I = 〈f1, . . . , fn〉.
4.6.3. Prove that {x2

1 + 1, x1x2 + 1} is the characteristic set of a prime ideal
in Q [x1, x2]. Note that it is not a Gröbner basis with respect to any well–
ordering, especially it is not a triangular set (cf. Exercise 4.6.2).

4.6.4. With the notations of Proposition 4.6.18 assume that F is a Gröbner
basis of 〈F 〉K({xν}ν∈L)[xi1 , . . . , xir ]. Prove that P = 〈F 〉 : h∞ where h =∏r
ν=1 In(fν).

4.6.5. Prove Lemma 4.6.20.

4.7 Triangular Sets

In this chapter we introduce another method, triangular sets, in order to
show how to decompose a zero–dimensional ideal in K[x1, . . . , xn] into so–
called triangular ideals, ideals generated by a lexicographical Gröbner basis
of n elements. This is a basic tool for symbolic pre-processing to solve zero–
dimensional systems of polynomial equations.

In this chapter we fix the lexicographical ordering lp.

Definition 4.7.1. A set of polynomials F = {f1, . . . , fn} ⊂ K[x1, . . . , xn] is
called a triangular set if for each i

(1) fi ∈ K[xn−i+1, . . . , xn],
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(2) LM(fi) = xmi

n−i+1, for some mi > 0.

Hence, f1 depends only on xn, f2 on xn−1, xn and so on, until fn which
depends on all variables.

A list of triangular sets F1, . . . , Fs is called a triangular decomposition of
the zero–dimensional ideal I if

√
I =

√
〈F1〉 ∩ . . . ∩

√
〈Fs〉.

Remark 4.7.2. If F is a triangular set then Exercise 1.7.1 implies that F is a
Gröbner basis of 〈F 〉.
Proposition 4.7.3. Let M ⊂ K[x1, . . . , xn] be a maximal ideal and G =
{g1, . . . , gr} a minimal Gröbner basis of M such that LM(g1) < . . . < LM(gr).
Then G is a triangular set, in particular r = n.

Proof. We use induction on the number of variables, the case n = 1 being
trivial. Since M ∩K[x2, . . . , xn] is maximal we may assume by Lemma 1.8.3
that G ∩ K[x2, . . . , xn] = {g1, . . . , gn−1} is a triangular set. In particular
r ≥ n, since M is a maximal ideal. Consider the ideal M induced by M
in (K[x2, . . . , xn]/M ∩ K[x2, . . . , xn])[x1]. M is generated by the elements
induced by gn, . . . , gr. Because LM(g1) < . . . < LM(gr) and since G is a
minimal lexicographical Gröbner basis we have

degx1
(gn) ≤ . . . ≤ degx1

(gr).

M is a principal ideal as K[x2, . . . , xn]/M ∩K[x2, . . . , xn] is a field. Using
Euclid’s algorithm we deduce that gn induces a generator of M , i.e. M =
〈g1, . . . , gn〉.

We have still to prove that r = n.
Assume r > n. M being 0–dimensional and LM(gr) maximal with respect

to lp implies that LM(gr) = xm1 for some integer m ≥ 1. By assumption we
have 1 ≤ degx1

(gn) < m. Let k ≥ n be defined by degx1
(gn) = . . . =

degx1
(gk) < degx1

(gk+1). We claim that G′ = {g1, . . . , gk} is a Gröbner basis
of M . Since G is a Gröbner basis we have NF(spoly(gi, gj) | G) = 0 for
i, j ≤ k. But

degx1
(spoly(gi, gj)) ≤ degx1

(gn) for all i, j ≤ k

implies that LM(spoly(gi, gj)) < LM(gl) if i, j ≤ k and l > k. This shows that
in the reduction process to compute the normal form of the s–polynomials the
elements gk+1, . . . , gr are not used. Therefore NF(spoly(gi, gj) | G′) = 0 for
i, j ≤ k, i.e. G′ is a Gröbner basis of M . This implies LM(gk) = xs1 for some
s because M is zero–dimensional. However, this contradicts the minimality
of G. We proved r = n and therefore the proposition.

Since a zero–dimensional prime ideal is maximal, we can apply Proposi-
tion 4.7.3 to a primary decomposition of

√
I and get the following existence

of a triangular decomposition of I.
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Corollary 4.7.4. If I is a zero–dimensional ideal then there exist triangular
sets F1, . . . , Fs such that

(1)
√
I =

√〈F1〉 ∩ . . . ∩
√〈Fs〉

(2) 〈Fi〉+ 〈Fj〉 = K[x1, . . . , xn] for i �= j.

Using a primary decomposition is not satisfactory for practical compu-
tation. Our aim is to find triangular decompositions of a zero–dimensional
ideal with less effort than the computation of the minimal associated primes.
The following lemma is the basis for the algorithm by Möller (see [122], [169])
which avoids this computation.

Lemma 4.7.5. Let G = {g1, . . . , gr} be a reduced (lexicographical) Gröbner
basis for the zero–dimensional ideal I ⊂ K[x1, . . . , xn] and assume LM(g1) <
. . . < LM(gr).

Let gi =
ni∑
j=0

h
(i)
j xj1, h

(i)
j ∈ K[x2, . . . , xn], h(i)

ni �= 0 and F =
{
h

(1)
n1 , . . . , h

(r−1)
nr−1

}
.

Then the following holds:
(1) F is a Gröbner basis for 〈g1, . . . , gr−1〉 : gr and
(2)

√〈F, gr〉 =
√〈F,G〉.

Proof. First we claim that {g1, . . . , gr−1} is a Gröbner basis of 〈g1, . . . , gr−1〉.
We have NF(spoly(gi, gj) | G) = 0 using Buchberger’s criterion (Theorem
2.5.9). But if i, j ≤ r−1 then gr is not used in the reduction of the spoly(gi, gj)
because LM(gr) = xm1 for some m ∈ N and LM(spoly(gi, gj)) < xm1 .
This implies NF(spoly(gi, gj |G � {gr}) = 0 for i, j ≤ r − 1 and therefore
{g1, . . . , gr−1} is a Gröbner basis again by Buchberger’s criterion. If we set
h(gi, gr) := h

(i)
ni · gr − xm−ni

1 · gi then NF(h(gi, gr)|G) = 0 and, as before, gr
is not used in the reduction, i.e. NF(h(gi, gr)|G� {gr}) = 0.

This implies that h(gi, gr) ∈ 〈g1, . . . , gr−1〉 and, by definition of h(gi, gr),
that h(i)

ni · gr ∈ 〈g1, . . . , gr−1〉. This implies that h(i)
ni ∈ 〈g1, . . . , gr−1〉 : gr, i.e.

F ⊆ 〈g1, . . . , gr−1〉 : gr.
Conversely, let f ∈ 〈g1, . . . , gr−1〉 : gr, i.e. fgr ∈ 〈g1, . . . , gr−1〉. There

exists an i such that LM(gi) | LM(fgr) = LM(f) · xm1 . However, this implies
LM(h(i)

ni ) | LM(f) because LM(gi) = LM(h(i)
ni )xni

1 and ni < m and therefore
F is a Gröbner basis of 〈g1, . . . , gr−1〉 : gr.

The proof of (2) is left as Exercise 4.7.3. This proves the lemma.

Example 4.7.6. Let I = 〈z2 − 2, y2 + 2y − 1, (y + z + 1)x+ yz + z + 2,
x2 + x+ y − 1〉 ⊂ Q[x, y, z]. Then I = P1 ∩ P2 ∩ P3 with the prime ideals

P1 = 〈z2 − 2, y − z + 1, x+ z〉,
P2 = 〈z2 − 2, y + z + 1, x− z〉,
P3 = 〈z2 − 2, y + z + 1, x+ z + 1〉,

which are generated by triangular sets.
There is another triangular decomposition of I, namely
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I = 〈I, y + z + 1〉 ∩ (I : (y + z + 1)),

with
〈I, y + z + 1〉 = 〈z2 − 2, y + z + 1, x2 + x+ y − 1〉
I : (y + z + 1) = 〈z2 − 1, y − z + 1, x+ z〉.

SINGULAR Example 4.7.7 (triangular decomposition).
We consider again Example 4.7.6 and compute the minimal associated

primes, a triangular decomposition by using the command triangMH, and by
applying the method of Lemma 4.7.5.

LIB"primdec.lib";
ring R=0,(x,y,z),lp;
ideal I=z2-2, y2+2y-1, (y+z+1)*x+yz+z+2, x2+x+y-1;
minAssGTZ(I);

//-> [1]: [2]: [3]:
//-> _[1]=z2-2 _[1]=z2-2 _[1]=z2-2
//-> _[2]=x+z _[2]=x-z _[2]=x2+x+y-1
//-> _[3]=x2+x+y-1 _[3]=x2+x+y-1 _[3]=x+z+1

option(redSB); //a reduced lex Groebner basis is needed
I=std(I); //as input for triangMH (algorithm
triangMH(I,2); //of Moeller, Hillebrand)

//-> [1]: [2]:
//-> _[1]=z2-2 _[1]=z2-2
//-> _[2]=y+z+1 _[2]=y-z+1
//-> _[3]=x2+x-z-2 _[3]=x+z

std(quotient(I,y+z+1)); //the second triangular set

//-> _[1]=z2-2
//-> _[2]=y-z+1
//-> _[3]=x+z

std(I,y+z+1); //the first triangular set
//(recall the meaning of std(I, f))

//-> _[1]=z2-2
//-> _[2]=y+z+1
//-> _[3]=x2+x-z-2

We will now describe an algorithm to compute a triangular decomposition
of a zero–dimensional ideal I

√
I =

√
〈F1〉 ∩ . . . ∩

√
〈Fs〉
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with triangular sets Fi satisfying

〈Fi〉+ 〈Fj〉 = K[x1 . . . xn] for i �= j.

The algorithm is based on Lemma 4.7.5 and Exercise 4.7.1. We use the
notations of Lemma 4.7.5. By applying first Exercise 4.7.1 and then 4.7.5 we
obtain the following (defining additionally h(r)

nr = 1):
√
I =

r−1∩
i=0

√
〈G, h(1)

n1 , . . . , h
(i)
ni 〉 : h(i+1)∞

ni+1

=
√〈gr, F 〉

⋂ (
r−2⋂
i=0

√
〈G, h(1)

n1 , . . . , h
(i)
ni 〉 : h(i+1)∞

ni+1

)

Now
√〈gr, F 〉 is nicely prepared for induction since F ⊆ K[x2, . . . , xn]

and LM(gr) = xm1 for some m ∈ N. This implies that a triangular set T ′ ⊂
K[x2, . . . , xn], 〈F 〉 ⊆

√〈T ′〉, leads to a triangular set T = T ′ ∪ {gr},
√
I ⊆√〈gr, F 〉 ⊆

√〈T 〉. Therefore the decomposition above gives the possibility to
compute a triangular decomposition inductively. This leads to the following
recursive algorithm.

Algorithm 4.7.8 (TriangDecomp (I)).

Input: a zero-dimensional ideal I := 〈f1, . . . , fm〉
Output: A list of triangular sets F1, . . . , Fs such that

√
I =

s⋂
i=1

√〈Fi〉 and

〈Fi〉+ 〈Fj〉 = K[x1, . . . , xn] for i �= j

• Compute G = {g1, . . . , gr} a reduced Gröbner basis for 〈f1, . . . , fm〉 with
respect to >lp such that LM(g1) < . . . < LM(gr).

• Compute G′ = {h1, . . . , hr−1} ⊂ K[x2, . . . , xn], with hi the leading coeffi-
cient of gi considered as polynomial in x1.

• L′ =TriangDecomp(〈G′〉)
• L = {T ′ ∪ {gr} | T ′ ∈ L′}
• i = 0
• while (i < r − 1)

i = i+ 1
If hi �∈ G
L = L∪TriangDecomp(〈G〉 : h∞i )
G = G ∪ {hi}

• return L

Exercises

4.7.1. Let I be an ideal in a Noetherian ring R and a1, . . . ar ∈ R, ar = 1.

Prove that
√
I =

r−1⋂
s=0

√〈I, a1, . . . , as〉 : a∞s+1.

Hint: Use Lemma 3.3.6 and Exercise 4.5.7.
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4.7.2. Compute a triangular decomposition for Example 4.7.6 considered as
an ideal in Q[z, y, x] (permutation of variables) and compare it with the result
from Example 4.7.6.

4.7.3. Prove (2) of Lemma 4.7.5.

4.7.4. Consider the following system of equations over Q(a)[x, y, z]:

ax2 + 2y + a+ 1 = 0
y2z + xy = 0
ayz2 + z − a2 + 1 = 0

Use the procedure triangL of the library triang.lib to compute the solu-
tions depending on the parameter a (you may assume that a is generic).

4.7.5. Use the procedure solve of the library solve.lib to compute the
solutions of the system of equations of 4.7.4 numerically for several specified
parameters a (including a = 1).

4.7.6. Substitute in 4.7.4 special values for a (including a = 1) and recom-
pute the triangular set. Substitute the same values for a in the result of the
computation in Exercise 4.7.4 and compare the results.

4.8 Procedures

We collect the main procedures of this section as fully functioning Singular

procedures. However, since they are in no way optimized, one cannot expect
them to be very fast. Each procedure has a small example to test it. This
section demonstrates that it is not too difficult to implement a full primary
decomposition, the equidimensional part and the radical.

4.8.1. We begin with a procedure to test whether a zero–dimensional ideal
is primary and in general position.

proc primaryTest (ideal i, poly p)

"USAGE: primaryTest(i,p); i standard basis with respect to
lp, p irreducible polynomial in K[var(n)],
p^a=i[1] for some a;

ASSUME: i is a zero-dimensional ideal.
RETURN: an ideal, the radical of i if i is primary and in

general position with respect to lp,
the zero ideal else.

"
{

int m,e;
int n=nvars(basering);
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poly t;
ideal prm=p;

for(m=2;m<=size(i);m++)
{
if(size(ideal(leadexp(i[m])))==1)
{

n--;
//----------------i[m] has a power of var(n) as leading term

attrib(prm,"isSB",1);
//--- ?? i[m]=(c*var(n)+h)^e modulo prm for h
// in K[var(n+1),...], c in K ??

e=deg(lead(i[m]));
t=leadcoef(i[m])*e*var(n)+(i[m]-lead(i[m]))
/var(n)^(e-1);
i[m]=poly(e)^e*leadcoef(i[m])^(e-1)*i[m];

//---if not (0) is returned, else c*var(n)+h is added to prm
if (reduce(i[m]-t^e,prm,1) !=0)
{
return(ideal(0));

}
prm = prm,cleardenom(simplify(t,1));

}
}
return(prm);

}

ring s=(0,x),(d,e,f,g),lp;
ideal i=g^5,(x*f-g)^3,5*e-g^2,x*d^3;
primaryTest(i,g);

4.8.2. The next procedure computes the primary decomposition of a zero–
dimensional ideal.

proc zeroDecomp (ideal i)

"USAGE: zeroDecomp(i); i zero-dimensional ideal
RETURN: list l of lists of two ideals such that the

intersection(l[j][1], j=1..)=i, the l[i][1] are
primary and the l[i][2] their radicals

NOTE: algorithm of Gianni/Trager/Zacharias
"
{

def BAS = basering;
//----the ordering is changed to the lexicographical one

changeord("R","lp");
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ideal i=fetch(BAS,i);
int n=nvars(R);
int k;
list result,rest;
ideal primary,prim;
option(redSB);

//------the random coordinate change and its inverse
ideal m=maxideal(1);
m[n]=0;
poly p=(random(100,1,n)*transpose(m))[1,1]+var(n);
m[n]=p;
map phi=R,m;
m[n]=2*var(n)-p;
map invphi=R,m;
ideal j=groebner(phi(i));

//-------------factorization of the first element in i
list fac=factorize(j[1],2);

//-------------computation of the primaries and primes
for(k=1;k<=size(fac[1]);k++)

p=fac[1][k]^fac[2][k];
primary=groebner(j+p);
prim=primaryTest(primary,fac[1][k]);

//---test whether all ideals were primary and in general
// position

if(prim==0)
{

rest[size(rest)+1]=i+invphi(p);
}
else
{

result[size(result)+1]=
list(std(i+invphi(p)),std(invphi(prim)));

}
}

//-------treat the bad cases collected in the rest again
for(k=1;k<=size(rest);k++)
{
result=result+zeroDecomp(rest[k]);

}
option(noredSB);
setring BAS;
list result=imap(R,result);
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kill R;
return(result);

}

ring r = 32003,(x,y,z),dp;
poly p = z2+1;
poly q = z4+2;
ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4;
list pr = zeroDecomp(i);
pr;

4.8.3. Procedure to define for an independent set u ⊂ x the ringK(u)[x� u].

proc prepareQuotientring(ideal i)

"USAGE: prepareQuotientring(i); i standard basis
RETURN: a list l of two strings:

l[1] to define K[x\u,u ], u a maximal independent
set for i
l[2] to define K(u)[x\u ], u a maximal independent
set for i
both rings with lexicographical ordering

"
{

string va,pa;
//v describes the independent set u: var(j) is in
//u iff v[j]!=0

intvec v=indepSet(i);
int k;

for(k=1;k<=size(v);k++)
{
if(v[k]!=0)
{
pa=pa+"var("+string(k)+"),";

}
else
{
va=va+"var("+string(k)+"),";

}
}

pa=pa[1..size(pa)-1];
va=va[1..size(va)-1];

string newring="
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ring nring=("+charstr(basering)+"),("+va+","+pa+"),lp;";
string quotring="
ring quring=("+charstr(basering)+","+pa+"),("+va+"),lp;";
return(newring,quotring);

}

ring s=(0,x),(a,b,c,d,e,f,g),dp;
ideal i=x*b*c,d^2,f-g;
i=std(i);
def Q=basering;
list l= prepareQuotientring(i);
l;
execute (l[1]);
basering;
execute (l[2]);
basering;
setring Q;

4.8.4. A procedure to collect the leading coefficients of a standard basis of
an ideal in K(u)[x� u]. They are needed to compute IK(u)[x� u] ∩K[x]
via saturation.

proc prepareSat(ideal i)

{
int k;
poly p=leadcoef(i[1]);
for(k=2;k<=size(i);k++)
{
p=p*leadcoef(i[k]);

}
return(p);

}

4.8.5. Using the above procedures, we can now present our procedure to
compute a primary decomposition of an ideal.

proc decomp (ideal i)

"USAGE: decomp(i); i ideal
RETURN: list l of lists of two ideals such that the

intersection(l[j][1], j=1..)=i, the l[i][1] are
primary and the l[i][2] their radicals

NOTE: algorithm of Gianni/Trager/Zacharias
"
{

if(i==0)
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{
return(list(i,i));

}
def BAS = basering;
ideal j;
int n=nvars(BAS);
int k;

ideal SBi=std(i);
int d=dim(SBi);

//---the trivial case and the zero-dimensional case
if ((d==0)||(d==-1))
{

return(zeroDecomp(i));
}

//---prepare the quotient ring with respect to a maximal
// independent set

list quotring=prepareQuotientring(SBi);
execute (quotring[1]);

//---used to compute a standard basis of i*quring
// which is in i

ideal i=std(imap(BAS,i));
//---pass to the quotient ring with respect to a maximal
// independent set

execute (quotring[2]);
ideal i=imap(nring,i);
kill nring;

//---computation of the zero-dimensional decomposition
list ra=zeroDecomp(i);

//---preparation for saturation
list p;
for(k=1;k<=size(ra);k++)
{
p[k]=list(prepareSat(ra[k][1]),prepareSat(ra[k][2]));

}
poly q=prepareSat(i);

//---back to the original ring
setring BAS;
list p=imap(quring,p);
list ra=imap(quring,ra);
poly q=imap(quring,q);
kill quring;

//---compute the intersection of ra with BAS
for(k=1;k<=size(ra);k++)
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{
ra[k]=list(sat(ra[k][1],p[k][1])[1],

sat(ra[k][2],p[k][2])[1]);
}
q=q^sat(i,q)[2];

//---i=intersection((i:q),(i,q)) and ra is the primary
// decomposition of i:q

if(deg(q)>0)
{
ra=ra+decomp(i+q);

}
return(ra);

}

ring r = 0,(x,y,z),dp;
ideal i = intersect(ideal(x,y,z)^3,ideal(x-y-z)^2,

ideal(x-y,x-z)^2);
list pr = decomp(i);
pr;

4.8.6. We pass to the computation of the equidimensional part of an ideal.

proc equidimensional (ideal i)

"USAGE: equidimensional(i); i ideal
RETURN: list l of two ideals such that intersection(l[1],

l[2])=i if there are no embedded primes
l[1] is equidimensional and dim(l[1])>dim(l[2])

"
{

def BAS = basering;

ideal SBi=std(i);
int d=dim(SBi);
int n=nvars(BAS);
int k;
list result;

//----the trivial cases
if ((d==-1)||(n==d)||(n==1)||(d==0))
{

result=i,ideal(1);
return(result);

}
//----prepare the quotient ring with respect to a maximal
// independent set
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list quotring=prepareQuotientring(SBi);
execute (quotring[1]);

//----we use this ring to compute a standard basis of
// i*quring which is in i

ideal eq=std(imap(BAS,i));
//----pass to the quotient ring with respect to a maximal
// independent set

execute (quotring[2]);
ideal eq=imap(nring,eq);
kill nring;

//----preparation for saturation
poly p=prepareSat(eq);

//----back to the original ring
setring BAS;
poly p=imap(quring,p);
ideal eq=imap(quring,eq);
kill quring;

//----compute the intersection of eq with BAS
eq=sat(eq,p)[1];
SBi=std(quotient(i,eq));

if(d>dim(SBi))
{
result=eq,SBi;
return(result);

}
result=equidimensional(i);
result=intersect(result[1],eq),result[2];
return(result);

}

ring r = 0,(x,y,z),dp;
ideal i = intersect(ideal(x,y,z)^3,ideal(x-y-z)^2,

ideal(x-y,x-z)^2);
list pr = equidimensional(i); pr;
dim(std(pr[1]));
dim(std(pr[2]));
option(redSB);
std(i);
std(intersect(pr[1],pr[2]));

4.8.7. Compute the squarefree part of a univariate polynomial f over a field
of characteristic 0, depending on the i–th variable.
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proc squarefree (poly f, int i)

{
poly h=gcd(f,diff(f,var(i)));
poly g=lift(h,f)[1][1];
return(g);

}

4.8.8. Finally, a procedure to compute the radical of an ideal.

proc radical(ideal i)

"USAGE: radical(i); i ideal
RETURN: ideal = the radical of i
NOTE: algorithm of Krick/Logar
"
{

def BAS = basering;
ideal j;
int n=nvars(BAS);
int k;

option(redSB);
ideal SBi=std(i);
option(noredSB);
int d=dim(SBi);

//-----the trivial cases
if ((d==-1)||(n==d)||(n==1))
{

return(ideal(squarefree(SBi[1],1)));
}

//-----the zero-dimensional case
if (d==0)
{

j=finduni(SBi);
for(k=1;k<=size(j);k++)
{

i=i,squarefree(cleardenom(j[k]),k);
}
return(std(i));

}
//-----prepare the quotientring with respect to a maximal
// independent set

list quotring=prepareQuotientring(SBi);
execute (quotring[1]);

//-----we use this ring to compute a standardbasis of



314 4. Primary Decomposition and Related Topics

// i*quring which is in i
ideal i=std(imap(BAS,i));

//-----pass to the quotientring with respect to a maximal
// independent set

execute( quotring[2]);
ideal i=imap(nring,i);
kill nring;

//-----computation of the zerodimensional radical
ideal ra=radical(i);

//-----preparation for saturation
poly p=prepareSat(ra);
poly q=prepareSat(i);

//-----back to the original ring
setring BAS;
poly p=imap(quring,p);
poly q=imap(quring,q);
ideal ra=imap(quring,ra);
kill quring;

//-----compute the intersection of ra with BAS
ra=sat(ra,p)[1];

//----now we have radical(i)=intersection(ra,radical((i,q)))
return(intersect(ra,radical(i+q)));

}

ring r = 0,(x,y,z),dp;
ideal i =
intersect(ideal(x,y,z)^3,ideal(x-y-z)^2,ideal(x-y,x-z)^2);
ideal pr= radical(i);
pr;

The algorithms and, hence, the procedures work in characteristic 0. However,
by our experience, the procedures in the library primdec.lib, distributed
with Singular, do also work for prime fields of finite characteristic provided
that it is not too small. In fact, the procedures, although designed for charac-
teristic 0, give a correct result for finite prime field whenever they terminate.


