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Cooling and Trapping of Atoms
Peter van der Straten and Harold Metcalf

1.1
Introduction

The idea to use laser radiation to cool and trap atoms was first suggested by
Wineland and Dehmelt [1] and independently by Hansch and Schawlow [2]. Since
photons carry momentum, the momentum exchange between the laser radiation
and the atoms in an absorption process can be used to apply a force on the atoms.
Since the absorption depends on the difference between frequency of the laser
radiation and the absorption frequency of the atoms, the absorption process can be
made velocity-selective due to the Doppler effect, which shifts the atoms absorption
frequency depending on its velocity. It is this simple notion that forms the basis
for the research that has been carried out in the last 20 years in the field of laser
cooling and trapping. Especially the velocity dependence of the process, leading to
the fact that the forces are no longer conservative but can instead dissipate kinetic
energy of the atoms, allows the experimentalists to cool atoms down to extremely
low temperatures.

The initial ideas came about, since in atomic spectroscopy the resolution is
limited by the Doppler effect, which shifts the absorption frequency. Since a
thermal gas of atoms has a distribution of velocities, the Doppler shift leads
to broadening of the absorption frequency. Already in the 1960s careful tricks
have been designed to overcome this problem, but they always lead to smaller
signals and therefore they ultimately limit the signal-to-noise in these experiments.
Being able to cool the velocity distribution of the atoms and thus reduce its
width without changing the number of atoms, is therefore very beneficial in those
experiments.

Since the early experiments have been very successful in reducing the tempera-
ture of a cloud of atoms by many orders of magnitude, it became clear that laser
cooling and trapping could be used in many more experiments and this opened
a whole new field, which is nowadays known as laser cooling and trapping. For
instance, since the temperature of the atoms is very low, the interaction energy
becomes very small and thus interactions between the atoms can be studied in
a whole new regime, the ultracold collision regime. Since the interaction time
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4 1 Cooling and Trapping of Atoms

between the atoms in this regime is much larger than the lifetime of the atoms in
an excited state, absorption processes have to take place during the collision and
thus the collisional system is probed during its interaction.

Furthermore, the energies of the atoms are becoming so small that atoms can be
trapped in optical potentials, which have dimensions comparable to the wavelength
of the light. This trapping of atoms in such small potentials with a periodicity given
by the light field, the so-called optical lattice, is very reminiscent of the periodic
potential an electron experiences in a crystal. Thus the physics to be studied in
these optical lattices sheds light on the similarities and differences of phenomena,
which take place at a very different length scale.

One of the most intriguing aspects of laser cooling and trapping is its ability to
cool down a sample of atoms without losing any particles. Thus it became possible
to increase the phase-space density of the atoms. Already from the onset of laser
cooling and trapping it became clear that it could be instrumental in achieving a new
phase of matter, the so-called Bose–Einstein condensed (BEC) phase. This phase
had been predicted by Einstein on some original ideas by Bose in the 1920s, but its
observation had always been hampered by the fact that it required a high density
of atoms at very small temperatures. Compressing the atoms leads to an increase
of the density, but at the same time increasing their temperature, yielding their
phase-space density to remain constant. Adiabatic expanding the atoms volume
leads to lowering of their temperature, but to a decrease of the density as well.
However, using laser cooling techniques the temperature of the atoms can be
lowered without changing the density, and thus it leads to an increase in the
phase-space density.

In this chapter, we will not describe all the different schemes and techniques
of laser cooling and trapping. Many of them can be found for instance in the
Laser Cooling and Trapping book [3], which we recently published about the subject.
Instead, we will focus on one aspect of it, namely on the techniques that have been
used in the quest for BEC. In the beginning of the 1990s different experimental
groups started to use laser cooling and trapping techniques to obtain the Bose
condensed phase for the alkali-metal atoms. Although the actual quest for BEC
took only 5 years, the ideas and techniques used originated back to all the work
of the preceding 20 years. Not only did they rely on the results of laser cooling
and trapping, in which the alkalies have been the prime atom to investigate due
to its simple internal structure, it also relied on the work that took place to Bose
condense atomic hydrogen, which had been carried out in parallel during the same
period.

In the quest for BEC there have been many groups active and three American
groups published the first results at about the same time (1995). These groups are
listed in Table 1.1. They all used a different alkali with different atomic properties
that are important for the achievement of BEC. The laser cooling techniques they
used are different, but they all provided the low temperatures necessary for BEC.
They all employed in the last phase of the cooling process the evaporation of
atoms, which will be explained in detail at the end of this chapter. In this last
phase the atoms were no longer held in an optical trap, since in the experiments
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Table 1.1 Summary of the achieved results of the three groups that pub-
lished the first results on BEC for alkali-metal atoms in the year 1995.a

JILA Rice MIT

Group Cornell/Wieman Hulet Ketterle
Place Colorado Houston Boston
Atom 87Rb 7Li 23Na
Nuclear spin I 3/2 3/2 3/2

Scattering length a(a0) +110 −30 +60
Cooling Vapor cell MOT Doppler slowing Zeeman slowing
Trap TOP Permanent Magnetic trap

magnetic trap with optical plug
First BEC June ’95 [4] July ’95 [5] September ’95 [6]
NC 2 × 104 2 × 105 2 × 106

TC (µK) 0.1 0.4 2
nC (cm−3) 2 × 1012 2 × 1012 1.5 × 1014

τ (s) 15 20 1

aIn the table, we list the number of atoms in the condensate NC , the temperature TC at
which the phase transition took place, and the density nC of the atoms. Finally, the
lifetime τ of the condensate is shown.

it was discovered that in the final phase the use of light inhibited the further
cooling and compression of the atoms. The numbers for the number of particles,
the temperature, and the density given in the table are indicative for many other
experiments in this field.

The chapter is designed as follows. After we discuss in Section 1.2 the general
considerations regarding phase-space density, we will discuss in Section 1.3 the
simplest model of laser cooling, the Doppler cooling. In Section 1.4, we will show,
how laser light can be used to slow down a beam of atoms. Next in Section 1.5,
we will show how laser light can be used to cool atoms in the so-called optical
molasses. For the trapping of atoms in an optical trap many different schemes
have been proposed, but in Section 1.6 we will only discuss the most popular
version, the magneto-optical trap (MOT). In the experiments carried out at the
end of the 1980s it became clear that the limit for laser cooling was not given
by the result of the Doppler theory, as discussed in Section 1.3, but that atoms
can be cooled to much lower temperatures. This work, nowadays referred to as
sub-Doppler cooling, is described in Section 1.7. To trap atoms without laser light
magnetic traps have been designed and implemented and we will describe them
in Section 1.8. In Section 1.9, we will describe in a simple model the cooling
technique that is most commonly used in the last phase of the cooling process,
the evaporation of the atoms. In the last section, Section 1.10, we will describe the
latest attempts to achieve BEC purely with optical techniques, before drawing some
conclusions.
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1.2
Phase-Space Density

The phase-space density ρ(�r, �p, t) can be defined in terms of the probability that a
single particle is at position �r and has momentum �p at time t. In classical mechanics
it is possible to know position and momentum of a single particle with certainty
simultaneously. In that case the phase-space density for a system of N particles is
the sum of the phase-space densities of the single-particle phase-space densities
of all the particles in the system divided by N. Since the phase-space density is a
probability, it is always positive and can be normalized over the six-dimensional
volume spanned by position �r and momentum �p.

For a gas of cold atoms it is convenient to define the phase-space density ρ as a
dimensionless quantity

ρ = nλ3
deB, (1.1)

with λdeB the deBroglie wavelength of the atoms in the sample as determined by
their average velocity v:

λdeB = h

Mv
= h√

3MkBT
. (1.2)

Note that the phase-space density can be increased by either increasing the density
or by decreasing the average velocity v of the atoms in the sample. For a thermal
beam of atoms at room temperature at typical densities of 1010 atoms/cm3, the
phase-space density is of the order of 10−17 (see Table 1.2). It can be shown that
for a homogeneous gas of noninteracting atoms the transition from gas phase to
the Bose–Einstein condensed phase occurs exactly at ρ = 2.612 [7]. It is the object
of laser cooling to increase the phase-space density over these many orders of
magnitude.

In order to guide the discussion about the phase-space density and the road
to BEC, Table 1.2 shows typical numbers of the phase-space density in different
stages of laser cooling. Starting from the distribution of atoms in the oven, the

Table 1.2 Typical numbers for the phase-space density as obtained in the
experiments aimed at achieving BEC.a

Stages T λdeB n (/cm3) nλ3
deB

Oven 300 ◦C 0.02 nm 1010 10−17

Slowing 30 mK 2 nm 108 10−12

Cooling 1 mK 10 nm 109 10−9

Trapping 1 mK 10 nm 1012 10−6

Evaporation 70 nK 1 µm 1012 2.612

aThe different stages of cooling and trapping the atoms will be explained in
more detail in this chapter.
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Figure 1.1 By applying a conservative force the surface of
phase space can be transformed into different shapes, but
the total surface area is conserved.

effusive beam of atoms is slowed down from the thermal velocity down to tens of
meters per second by slowing the atoms with laser light. Subsequently the atoms
are cooled down by molasses cooling and trapped. Phase-space densities are of the
order of 10−6, which is still six orders of magnitude away from the transition point.
In the last step, evaporative cooling is used to increase the phase-space density to
more than unity.

One important aspect to realize, is that the phase-space density cannot be changed
by using conservative forces. In Figure 1.1, a schematic diagram is shown of a
phase-space volume with spatial coordinates q and momentum coordinates p. If
we now apply a transformation T in phase space, we can deform the volume and
change its shape. However, the total volume in phase space remains constant and
this is a result of the Liouville’s theorem. For instance, in light optics one can focus
a parallel beam of light with a lens to one point. In that case one has exchanged
the high phase-space density due to the parallelism of the beam to a high density
of light rays in the focus. However, the light rays in the focus are divergent. For
classical particles the same principle applies. By increasing the strength of the
trapping potential of particles in a trap, one can increase the density of the atoms
in the trap, but at the same time the temperature of the sample increases leaving
the phase-space density unchanged.

In order to increase the phase-space density, one has to apply a force on the
atoms, which is no longer conservative. This can be achieved by having a force,
which is dependent on the velocity or momentum of the atoms. In laser cooling we
will see that the force on the atoms under certain conditions becomes a damping
force, i.e., always directed opposite to the atomic velocity. In that case the phase-
space density in momentum space increases. This process is irreversible caused by
the spontaneous emission of the photons.

Laser cooling changes the temperature of the atoms. In thermodynamics we
can only speak of a temperature, if the sample of atoms is in equilibrium with
its surroundings. In laser cooling, this is usually not the case and in many
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Figure 1.2 Temperature scale.

cases the atoms having temperatures far below 1 mK are trapped close to the
walls of the vacuum chamber, which is at room temperature. However, for a
Maxwell–Boltzmann distribution the spread of velocities is a direct measure of the
temperature and we will use this fact to assign a temperature to a cooled sample of
atoms, although the atoms are not in equilibrium. Typical temperatures involved
in laser cooling are shown in Figure 1.2. As one can see laser cooling can cool
down atoms from room temperature to below 1 µm. The lowest temperatures are
obtained by further cooling down the atoms by using evaporative cooling.

In order to show in more detail, how laser cooling can be used to increase
phase-space density, we consider the cooling and collimation of an atomic beam
(see Figure 1.3). Atoms emerging from an oven under different angles are first
collimated by optical molasses into a parallel beam. This parallel beam is then
focused down to a very small spot size by a laser or magnetic lens. In the focus
of the lens the transverse velocity of the atoms are again damped by an optical
molasses, leading to a very bright atomic beam. In the region between the first
optical molasses section and the lens the beam has a very small divergence and in
this part of the beamline the atoms can be slowed down using laser slowing. This
bright beam can be used to load a trap of atoms, where the atoms can be cooled
down further by laser light.

It is instructive to look in more detail for the increase of phase-space density
that can be achieved using laser cooling values for rubidium (for a overview of
these values for several alkalis and metastable rare gases, see Appendix A). In the
first optical molasses section the atoms are collimated in two dimensions from
the capture velocity of the molasses (typically vc ≈ 5 m/s) to the Doppler limit
vD = 12 cm/s, which is a compression with a factor 1500. By slowing down the
longitudinal velocity of the atoms from thermal velocities vth = 350 m/s to vD an
additional factor 3000 can be gained. Once the atoms are trapped they can be
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Figure 1.3 Collimation of an atomic beam using laser cooling techniques.

cooled by sub-Doppler cooling from vD to vr = 0.6 cm/s, yielding another factor
8000. Finally, by creating an optical lattice the atoms can be localized in the
potential wells within an optical wavelength, leading to a compression factor of
108. Thus, in principle laser cooling and trapping should be able to bridge the gap
between phase-space density of a thermal cloud of atoms and atoms in a BEC.
However, this analysis assumes that laser cooling and trapping can be applied
on all atoms individually, whereas at these temperatures and densities the atoms
strongly interact. This causes that the cooling process will no longer be efficient
and limits the obtainable temperatures and densities.

In Table 1.3, the different stages of the cooling and trapping of atoms are shown
for the experiment of the JILA group, where BEC was observed for the first time [4].
The table shows for this particular experiment which experimental techniques were
employed in different stages of the experiment. The total experiment runs about
10 min and in some stages the temperature of the atoms was decreased, whereas
in other stages only the density was increased. In the last stage the atoms were

Table 1.3 The road to BEC, as used in the first experiment to observe BEC [4].

Stages Action

0 Start in a vapor cell with a background pressure of 10−11 Torr.
1 Create a dark-spot MOT and collect 107 atoms in 300 s.
2 Cool them to 20 µK by adjusting field gradient and laser frequency.
3 Pump them over to the ‘‘stretched’’ state (Fg , Mg ) = (2, 2).
4 Make the TOP trap by switching off the light.
5 Increase quadrupole magnetic field to increase elastic collision rate.

Temperature is 90 µK and still 4 × 106 atoms are present. This leads to
an elastic collision rate of 3/s, compared to 0.015/s for the background.

6 Evaporative cool for 70 s to 170 nK and 2.5 × 1012 atoms/cm3. BEC!
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cooled evaporatively, which relies on the ejection of the fastest atoms from the trap
thereby lowering the temperature of the remaining atoms.

Finally, laser cooling has been discussed as a way to decrease the temperature
of a sample of atoms. Lowering the temperature of a sample leads to less disorder
in the system and therefore to a decrease of entropy. However, this seems to be
in conflict with the second law of thermodynamics, which states that the entropy
of a closed system should always increase in time. This apparent contradiction
relies on the fact that in laser cooling the atoms do not form a closed system,
but interact strongly with the light field. The decrease of entropy of the atoms
is accompanied by an increase in entropy of the light field, where the photons
in the well-collimated laser beam are scattered in random directions in the
spontaneous emission process. Entropy considerations for a laser beam are far
from trivial, but recently it has been shown that the entropy decrease of the atoms
is many orders of magnitude smaller compared to the entropy increase of the light
field.

1.3
Doppler Cooling

Laser cooling relies on the exchange of momentum between the light field and
the atoms. To describe this process, one has to consider the interaction between
the light field and the atoms. Atom-light interaction has been the topic of many
textbooks [8–16] and it is not the purpose of this chapter to teach this subject.
However, it is worthwhile to consider some of the steps to provide some background
for the physics involved. In particular, we will only consider the simplest model of
laser cooling, namely Doppler cooling of a two-level atom.

1.3.1
Two-Level Atom in a Light Field

The Hamiltonian for atom–light interaction is given by

H′(t) = −e�E(�r, t) · �r, (1.3)

where the electric component �E of the electromagnetic field interacts with the
dipole moment �µ = −e�r of the atoms. The interaction can be considered as a small
perturbation on the total Hamiltonian of the atom and subsequently perturbation
theory can be used to calculate the effects of the atom–light interaction on the
internal state of the atoms. Since the light field is nearly monochromatic, the light
field only couples two states, which we will indicate with g (ground state) and e
(excited state). Due to the atom–light interaction the amplitudes ce,g of these states
are coupled and the time-derivatives are given by

i�
dcg (t)

dt
= ce(t)H′

ge(t)e
−iω0t (1.4)
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and

i�
dce(t)

dt
= cg (t)H′

eg (t)eiω0 t, (1.5)

with H′
eg the matrix element that couples the ground and excited state through the

atom–light interaction. In the case that we can describe the laser field by a traveling
plane wave �E(�r, t) = E0ε̂ cos(kz − ωt), the atom–light interaction is given in terms
of one parameter, the Rabi frequency:

� ≡ −eE0

�
〈e|r|g〉. (1.6)

This Rabi frequency determines how strongly the field with amplitude E0 couples
the two states in the atoms, which have a dipole moment −e〈e|r|g〉.1) The atom–light
interaction causes the amplitudes of ground and excited state to oscillate back and
forth with the Rabi frequency �.

Using the rotating wave approximation, we can write the coherent evolution of
the amplitude �c = (cg , ce) in terms of an effective Hamiltonian:

i�
d�c
dt

= H′�c, (1.7)

with

H′ = �
2

[ −2δ �

� 0

]
, (1.8)

where δ = ω − ω0 is the laser detuning from resonance, ω is the laser frequency and
ω0 is the atomic resonance frequency. By diagonalizing this effective Hamiltonian,
we obtain the eigenstates of the coupled system. The solution is given by

Ee,g = �
2

(−δ ∓ �′), (1.9)

with

�′ ≡
√

�2 + δ2. (1.10)

In the limit of � 
 |δ| this leads to

�Eg,e = ±��
2

4δ
. (1.11)

Depending on the sign of the detuning δ of the laser light from resonance the
energy of the ground state is shifted upward or downward. This is important in
laser traps, where by detuning the laser below resonance atoms can be attracted
to the laser focus, or by detuning the laser above resonance repelled from that
region. In Figure 1.4 this shift of the energy levels in the atoms has been depicted
schematically for a negative detuning.

1) Note that the first symbol e refers to the charge
of the electron, whereas the second symbol e
refers to the excited state.
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Figure 1.4 Energies of the two coupled states with the light
field off and the light field on. The states are shifted due to
the atom–light interaction and the shift is called light shift.

1.3.2
Optical Bloch Equations

For atom–light interaction the atoms do not form a closed system. We have already
discussed this issue in relation to the entropy of the atoms. However, in case of the
atom–light interaction this plays a crucial role. So far we have only introduced the
two internal states of the atoms and left out the discussion of the light field. It can
be shown that by quantizing the light field, we can include the light field in the
Hamiltonian and thus obtain a closed system. However, the spontaneous emission
process leads to the emission of photons in random directions and thereby lost
from the system. This process is irreversible, which accounts for the irreversibility
of the cooling process. Since information from the system is lost, we can no longer
describe the system in terms of amplitudes and the system has evolved from a pure
state to a mixture. Although Eqs. (1.4) and (1.5) still account for coherent evolution
of the atomic states in the presence of the light field, it does not account for the
spontaneous emission. In order to do so, we will introduce the density matrix to
describe the mixed system.

For a pure state, the density matrix is given in terms of the amplitudes cg,e of the
two coupled states as

ρ =
(

ρee ρeg

ρge ρgg

)
=

(
cec∗

e cec∗
g

cgc∗
e cgc∗

g

)
. (1.12)

The diagonal element is the probability for the atoms to be in that state, whereas
the nondiagonal elements are called the optical coherences. The evolution of the
density matrix due to the coherent atom–light interaction is given by

i�
dρ

dt
= [H′, ρ], (1.13)
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where the effective Hamiltonian H′ is given by (1.8). This leads to the so-called
optical Bloch equations:

dρgg

dt
= +γρee + i

2

(
�∗ρ̃eg − �ρ̃ge

)
dρee

dt
= −γρee + i

2

(
�ρ̃ge − �∗ρ̃eg

)
dρ̃ge

dt
= −

(γ

2
+ iδ

)
ρ̃ge + i

2
�∗ (

ρee − ρgg
)

dρ̃eg

dt
= −

(γ

2
− iδ

)
ρ̃eg + i

2
�

(
ρgg − ρee

)
.

In these equation the terms proportional to the spontaneous decay rate γ have
been put in ‘‘by hand,’’ i.e., they have been introduced in the Bloch equations to
account for the effects of spontaneous emission. For the ground state the decay
of the excited state leads to an increase of the probability ρgg to be in the ground
state proportional to γρee, whereas for the excited state it leads to a decrease of ρee

proportional to γρee. These equations have to be solved in order to calculate the
force of the laser light on the atoms.

1.3.3
Steady State

In most cases laser light is applied for a period long compared to the typical
evolution times of atom–light interaction, i.e., the lifetime of the excited state
τ = 1/γ . Thus only the steady-state solution of the optical Bloch equations has
to be considered. For the probability ρee to be in the excited state the solution is
given by

ρee = s

2(1 + s)
= s0/2

1 + s0 + (2δ/γ )2
, (1.14)

where we have defined the off-resonance saturation parameter s as

s ≡ |�|2/2
δ2 + γ 2/4

≡ s0

1 + (2δ/γ )2
(1.15)

and the on-resonance saturation parameter s0 as

s0 ≡ 2|�|2
γ 2

= I

Is
. (1.16)

The probability ρee increases linearly with the saturation parameter s for small
values for s, but for s of the order of 1 the probability starts to saturates to a value of
1/2. Thus for very high s the atom divides its time equally between the ground and
excited state. The on-resonance saturation parameters can be expressed in terms
of the saturation intensity Is ≡ πhc/3λ3τ , where Is is typically of the order of a few
mW/cm2 (see Table A.2).
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In steady state the atoms cycles between the ground and excited state. In
laser cooling the scattering rate of photons from the laser beam is an important
parameter, where the absorption of a photon from the light field is followed by
spontaneous emission. Since the decay rate of the excited state due to spontaneous
emission is given by γ , the scattering rate is given by

γp = γρee = s0γ /2
1 + s0 + (2δ/γ )2

. (1.17)

In Figure 1.5, the scattering rate is plotted as a function of detuning for several
saturation parameters. For small s0 the scattering rate is directly proportional to
s0 and the line profile is given by the well-known Lorentz profile. For s0 in the
order of 1 the scattering rate does no longer increase on resonance and obtains
its maximal value γ /2. The line profile broadens considerably, since far from
resonance the scattering rate is still proportional to s0. This effect is referred to as
power broadening. The width of the profile is given by γ ′ = γ

√
1 + s0 and thus for

very high s0 becomes proportional to the square root of s0.

1.3.4
Force on a Two-Level Atom

The force on the atoms due to the atom–light interaction can be calculated by using
the Ehrenfest theorem, which states that the force is given by the expectation value
of the gradient of the Hamiltonian:

F = −
〈
∂H
∂z

〉
. (1.18)

This is analogous to the notion that the force on a classical object is given by
the gradient of the potential acting on it. For a two-level atom, we can insert the
effective Hamiltonian to obtain

Figure 1.5 Scattering rate γp as a function of the detuning δ

for several values of the saturation parameter s0. Note that
for s0 > 1 the line profiles start to broaden substantially due
to power broadening.
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F = �
(

∂�

∂z
ρ∗

eg + ∂�∗

∂z
ρeg

)
. (1.19)

So the force on the atoms only depends on the optical coherences ρeg = ρ∗
ge. In

order to gain some insight in this result, we express the gradient of the Rabi
frequency in terms of a real and imaginary part:

∂�

∂z
= (qr + iqi)�. (1.20)

Although this separation may occur a bit artificial at this stage, we will shortly show
that this separation is meaningful. We arrive at the following expression for the
force:

F = �qr(�ρ∗
eg + �∗ρeg ) + i�qi(�ρ∗

eg − �∗ρeg ). (1.21)

The first part of the force is proportional to the real part of the optical coherence
and thus proportional to the dispersive part of the atom–light interaction, whereas
the second part is proportional to the imaginary part and thus proportional to the
absorptive part of the atom–light interaction.

To see, why such a separation is meaningful, consider the interaction of atoms
with a traveling plane wave:

E(z) = E0

2

(
ei(kz−ωt) + c.c.

)
. (1.22)

In that case we have qr = 0 and qi = k and the force can only be due to absorption.
The force is given by

Fsp = �k γ ρee = �ks0γ /2

1 + s0 + (2δ/γ )2
. (1.23)

This force is often called the spontaneous force and can be written as Fsp = �k γp,
so it is given by the momentum transfer �k of one absorption of a photon times the
scattering rate γp. For the case of two traveling plane waves traveling in opposite
directions, one has a standing wave and the electric field is given by

E(z) = E0 cos(kz)
(

e−iωt + c.c.
)

. (1.24)

Thus we have qr = −k tan(kz) and qi = 0 and we only retain the dispersive part of
the force, which is given by

Fdip = 2�kδs0 sin 2kz

1 + 4s0 cos2 kz + (2δ/γ )2
. (1.25)

This force is often referred to as dipole force and if one averages this force over a
wavelength it averages down to zero. However, this force can be used to trap atoms
to dimensions smaller than the wavelength of the light.
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1.3.5
Atoms in Motion

In order to show how these forces can be used to cool atoms, one has to consider
the force on atoms, which are in motion. Assuming that the velocity of the atoms
is small so that we can treat the velocity v as a small perturbation on the evolution,
the first-order result is given by

d�

dt
= ∂�

∂t
+ v

∂�

∂z
= ∂�

∂t
+ v(qr + iqi)�. (1.26)

Using this expression, we find for the force on a two-level atom in traveling plane
wave:

F ≈ F0 − βv, (1.27)

with

β = −�k2 4s0(δ/γ )

(1 + s0 + (2δ/γ )2)2
. (1.28)

Note that the second term in the force is a true damping force. The damping
coefficient β is shown as a function of detuning for several values of s0 in
Figure 1.6. Note that for small s0 the maximum damping coefficient increases
with increasing s0, obtains a maximum and decreases for larger values of s0. The
maximum damping coefficient is given by βmax = �k2/4 and occurs for s0 = 2
and δ = −γ /2. Note that the damping rate 
 is proportional to the damping
coefficient, namely 
 ≡ β/M and thus the maximum damping rate is given by

max = �k2/4M = ωr/2. For most atoms this damping rate leads to a damping
time, which is of the order of tens of µs. Note that the constant term F0 in
(1.27) leads to a cooling of the atoms to a nonzero velocity of v = F0/β, but by
using two counterpropagating laser beams the constant term can be cancelled (see
Section 1.5).

Figure 1.6 The damping coefficient β for atoms in a trav-
eling wave as a function of detuning for different values
of the saturation parameter s0. The damping coefficient is
maximum for intermediate detunings and intensities.
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1.4
Laser Slowing

1.4.1
Introduction

The origin of optical forces on atoms has been discussed in Section 1.3.4, and here
a specific application is introduced. The use of electromagnetic forces to influence
the motion of neutral atoms has been a subject of interest for some years [17–21].
The force caused by radiation, particularly by light at or near the resonance
frequencies of atomic transitions, originates from the momentum associated with
light. In addition to energy E = �ω, each photon carries momentum �k and angular
momentum �. When an atom absorbs light, it stores the energy by going into an
excited state; it stores the momentum by recoiling from the light source with a
momentum �k; and it stores the angular momentum in the form of internal motion
of its electrons (see Figure 1.7). The converse applies for emission, whether it is
stimulated or spontaneous. It is the velocity change of the atoms, vr = �k/M � few
cm/s that is of special interest here, and although it is very small compared with
thermal velocity, multiple absorptions can be used to produce a large total velocity
change. Proper control of this velocity change constitutes a radiative force that can
be used to decelerate and/or to cool free atoms.

Although there are many ways to decelerate and cool atoms from room temper-
ature or higher, the one that has received the most attention by far depends on
the scattering force that uses this momentum transfer between the atoms and a
radiation field resonant with an atomic transition. By making a careful choice of
geometry and of the light frequency one can exploit the Doppler shift to make the
momentum exchange (hence the force) velocity dependent. Because the force is
velocity dependent, it can not only be used for deceleration, but also for cooling,
which results in increased phase-space density (see Section 1.2).

Figure 1.7 Schematic diagram for the pres-
sure of light on atoms. Initially the atom
has a momentum mv0 and the photon has
a momentum �k in the opposite direction.
Once the light is absorbed, the momen-
tum of the atom is reduced to mv0 − �k. In
the next step light is emitted in a random

direction and the recoil of the photon on
the atom averages over a large number of
cycles out to zero. The final momentum of
the atom is thus on the average reduced
during an absorption and spontaneous emis-
sion cycle.
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1.4.2
Slowing of an Atomic Beam

The idea that the radiation scattering force on free atoms could be velocity
dependent and therefore be used for cooling a gas was suggested by Wineland and
Dehmelt [1], Hansch and Schawlow [2], and Wineland and Itano [22], although
Kastler, Landau, and others had made allusions to it in earlier years. The possibility
for cooling stems from the fact that atomic absorption of light near a resonance
is strongly frequency dependent, and is therefore velocity dependent because of
the Doppler shift of the laser frequency seen by the atoms moving relative to the
laboratory-fixed laser. Of course, a velocity-dependent dissipative force is needed
for cooling.

One very obvious implementation of radiative deceleration and cooling is to
direct a laser beam opposite to an atomic beam as shown in Figure 1.8 [23, 24].
In this case each atom can absorb light many times along its path through the
apparatus. Of course, excited-state atoms cannot absorb light efficiently from the
laser that excited them, so between absorptions they must return to the ground
state by spontaneous decay, accompanied by emission of fluorescent light. The
emitted fluorescent light will also change the momentum of the atoms, but its
spatial symmetry results in an average of zero net momentum transfer after many
such fluorescence events. So the net deceleration of the atoms is in the direction
of the laser beam, and the maximum deceleration is limited by the spontaneous
fluorescence rate.

The maximum attainable deceleration is obtained for very high light intensities,
and is limited because the atom must then divide its time equally between
ground and excited states. High-intensity light can produce faster absorption, but
it also causes equally fast stimulated emission; the combination produces neither
deceleration nor cooling because the momentum transfer to the atom in emission
is then in the opposite direction to what it was in absorption. The deceleration

Figure 1.8 Schematic diagram of apparatus for beam
slowing. The tapered magnetic field is produced by layers
of varying length on the solenoid. A plot of Bz versus z is
also shown.
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therefore saturates at a value �amax = ��kγ /2M, where the factor of 2 arises because
the atoms spend half of their time in each state.

The Doppler shifted laser frequency in the moving atoms’ reference frame should
match that of the atomic transition to maximize the light absorption and scattering
rate. This rate γp is given by the Lorentzian (see Eq. (1.17))

γp = s0γ /2

1 + s0 + [
2(δ + ωD)/γ

]2 , (1.29)

where s0 is defined in (1.16). The Doppler shift seen by the moving atoms is
ωD = −�k · �v (note that �k opposite to �v produces a positive Doppler shift). Maximum
deceleration requires (δ + ωD) 
 γ , so that the laser light is nearly resonant with
the atoms in their rest frame. The net force on the atoms is �F = ��kγp (see Eq. (1.23)),
which saturates at large s0 to M�amax = �Fmax ≡ ��kγ /2.

Table 1.4 shows some of the parameters for slowing a few atomic species of
interest from the peak of the thermal velocity distribution. Since the maximum
deceleration �amax is fixed by atomic parameters, it is straightforward to calculate
the minimum stopping length Lmin and time tmin for the rms velocity of atoms
v = 2

√
kBT/M at the chosen temperature. The result is Lmin = v2/2amax and

tmin = v/amax. It is comforting to note that |�Fmax|Lmin is just the atomic kinetic
energy and that Lmin is just tminv/2.

If the light source is spectrally narrow, then as the atoms in the beam slow down,
their changing Doppler shif will take them out of resonance. They will eventually
cease deceleration after their Doppler shift has been decreased by a few times the
power-broadened width γ ′ = γ

√
1 + s0 as derived from (1.17), corresponding to

�v of a few times γ /k. Although this �v of a few m/s is considerably larger than the
typical atomic recoil velocity vr of a few cm/s, it is still only a small fraction of the

Table 1.4 Parameters of interest for slowing various atoms.a

Atom Toven v Lmin tmin

(K) (m/s) (m) (ms)

H 1000 5000 0.012 0.005
He∗ 4 158 0.03 0.34
He∗ 650 2013 4.4 4.4
Li 1017 2051 1.15 1.12
Na 712 876 0.42 0.96
K 617 626 0.77 2.45
Rb 568 402 0.75 3.72
Cs 544 319 0.93 5.82

aThe stopping length Lmin and time tmin are minimum values. The oven
temperature Toven that determines the peak velocity is chosen to give a vapor
pressure of 1 Torr. Special cases are H at 1000 K and He in the metastable
triplet state, for which two rows are shown: one for a 4 K source and another
for the typical discharge temperature.
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atoms’ average thermal velocity, so that significant further cooling or deceleration
cannot be accomplished.

In order to accomplish deceleration that changes the atomic speeds by hundreds
of m/s, it is necessary to maintain (δ + ωD) 
 γ by compensating such changes
of the Doppler shif. This can be done by changing ωD, or δ via either ω or ω0.
The most common method for overcoming this problem is spatially varying the
atomic resonance frequency with an inhomogeneous dc magnetic field to keep the
decelerating atoms in resonance with the fixed frequency laser [23, 25].

1.4.3
Zeeman-Compensated Slowing

The use of a spatially varying magnetic field to tune the atomic levels along the
beam path was the first method to succeed in slowing atoms [23]. It works as long
as the Zeeman shifts of the ground and excited states are different so that the
resonant frequency is shifted. The field can be tailored to provide the appropriate
Doppler shift along the moving atom’s path. For uniform deceleration a ≡ ηamax

from initial velocity v0, the appropriate field profile is

B(z) = B0

√
1 − z/z0, (1.30)

where z0 ≡ Mv2
0/η�kγ is the length of the magnet, B0 = �kv0/µ

′, µ′ ≡ (geMe −
ggMg )µB, subscripts g and e refer to ground and excited states, respectively, gg,e is
the Landé g-factor, µB is the Bohr magneton, and Mg,e is the magnetic quantum
number. The design parameter η < 1 determines the length of the magnet z0. A
solenoid that can produce such a spatially varying field has layers of decreasing
lengths as shown schematically in Figure 1.8. The technical problem of extracting
the beam of slow atoms from the end of the solenoid can be simplified by
reversing the field gradient and choosing a transition whose frequency decreases
with increasing field [26].

The equation of motion of atoms in the magnet cannot be easily solved in general
because of the velocity-dependent force, but by transforming to a decelerating frame
R [27] the problem can be addressed. For the special case of uniform deceleration
the velocity of this frame in the lab is vR = v0

√
1 − z/z0 , and the Doppler shift

associated with this velocity is compensated by the position-dependent Zeeman
shift in the magnet. The resulting equation of motion for the velocity of atoms
v′ ≡ v − vR relative to this frame is given by

M
d�v ′

dt
= −�Fmax


 s0

1 + s0 +
(

2(δ − �k · �v′)/γ
)2 − η


 , (1.31)

where �Fmax = ��kγ /2. For dv′/dt = 0 the steady-state velocity v′
ss is given by

kv′
ss = δ ± γ

2

√
s0

1 − η

η
− 1. (1.32)
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There are two values of v′
ss but the one with the (+) sign is unstable. The magnitude

of v′
ss is typically of order δ/k. This velocity is approximately constant as atoms

decelerate along their paths through the magnet so the decreasing Doppler shift is
compensated by the decreasing Zeeman shifts.

1.4.4
Measurements and Results

This section presents some results of experiments that used the Zeeman tuning
technique to compensate the changing Doppler shift. The most common way to
measure the slowed velocity distribution is to detect the fluorescence from atoms
excited by a second laser beam propagating at a small angle to the atomic beam [23].
Because of the Doppler shift, the frequency dependence of this fluorescence
provides a measure of the atomic velocity distribution. In this method, the velocity
resolution �v is limited by the natural width of the excited state to �v = γ /k
(≈6 m/s for Na).

In 1997, a new time-of-flight (TOF) method to accomplish the same result was
reported, however, with a much improved resolution [28]. In addition, it provided a
much more powerful diagnostic of the deceleration process. The TOF method has
the capability to map out the velocity distribution for both hyperfine ground states
of alkali atoms along their entire path through the solenoid. The experimental
arrangement is shown in Figure 1.9. The atoms emerge through an aperture of
1 mm2 from an effusive Na source heated to approximately 300 ◦C. During their
subsequent flight through a solenoid, they are slowed by the counterpropagating
laser light from laser 2, and the changing Doppler shift is compensated with a field
that is well described by (1.30).

For the TOF technique there are two additional beams labeled pump and probe as
shown in Figure 1.9. Because these beams cross the atomic beam at 90◦, �k · �v = 0
and they excite atoms at all velocities. The pump beam is tuned to excite and
empty a selected ground hyperfine state (hfs), and it transfers more than 98% of

Figure 1.9 The TOF apparatus, showing the solenoid mag-
net and the location of the two laser beams used as the
pump and probe.
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Figure 1.10 Schematic diagram of the opti-
cal pumping process that is used to mea-
sure the velocity of the atoms by TOF. The
pump beam pumps all the atoms toward the
lowest hyperfine ground state. Shortly inter-
rupting the pump beam then acts as a gate,

leaving the atoms in the upper hyperfine
ground state. The arrival time of those
atoms at the position of the probe is mea-
sured using fluorescence detection and this
is a measure of the atomic velocity.

the population as the atoms pass through its 0.5 mm width (see Figure 1.10). To
measure the velocity distribution of atoms in the selected hfs, this pump laser
beam is interrupted for a period �t = 10–50 µs with an acoustic optical modulator
(AOM). A pulse of atoms in the selected hfs passes the pump region and travels
to the probe beam. The time dependence of the fluorescence induced by the probe
laser, tuned to excite the selected hfs, gives the time of arrival, and this signal is
readily converted to a velocity distribution. Figure 1.11 shows the measured velocity
distribution of the atoms slowed by the cooling laser.

With this TOF technique, the resolution is limited by the duration of the
pump laser gate �t and the diameter d of the probe laser beam (d ≤ 1.0 mm)
to �v = v(v�t + d)/zp, typically less than 1 m/s. This provides the capability of
measuring the shape of the velocity distribution with resolution ≈10 times better

Figure 1.11 The velocity distribution mea-
sured with the TOF method. Trace A
show the velocity distribution of atoms
from the oven, where the cooling beam
is blocked. The distribution is a typical
Maxwell–Boltzmann distribution with a
temperature of 500 K. Trace B shows the

velocity distribution, when the cooling laser
starts to cool atoms down from about
1000 m/s. All atoms below this velocity are
slowed down to 220 m/s. The inset shows
an enlargement of the velocities around
220 m/s, showing that the width of the dis-
tribution is about 6.8 m/s.
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than γ /k as compared with the Doppler method. Furthermore, the resolution
improves for decreasing velocity v; �v is smaller than the Doppler cooling limit
of

√
�γ /2M ≈ 30 cm/s for v ≈ 80 m/s and Na atoms. Figure 1.11 shows the final

velocity distribution for such a measurement giving a FWHM of 3.0 m/s at a central
velocity of 138 m/s. The width is about one half of γ /k.

The method of shutting off the slowing laser beam a variable time τoff before
the short shut-off of the pump beam offers a much more informative scheme of
data acquisition. The atoms that pass through the pump region during the short
time when the pump beam is off have already traveled a distance �z = v(z)τoff (at
constant velocity v(z) because the slowing laser was off), and their time of arrival at
the probe laser is zp/v(z) = zpτoff /�z. Thus the TOF signal contains information
not only about the velocity of the detected atoms, but also about their position z
in the magnet at the time the slowing laser light was shut off. Since the spatial

Figure 1.12 Contour map of the mea-
sured velocity and position of atoms in the
solenoid, (a) for Fg = 2 atoms and (b) for
Fg = 1 atoms. The dashed line indicates the
resonance frequency for the (F, MF)= (2,

2) → (3, 3) cycling transition. The density
of atoms per unit phase-space area �v�z
has been indicated with different gray levels
(figure from Ref. [28]).
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dependence of the magnetic field is known (Figure 1.8), both the field and atomic
velocity at that position can be determined, and the TOF signal is proportional to
the number of atoms in that particular region of phase space. This new technique
therefore gives a mapping of the atomic population in the z-direction of the phase
space, z and v(z), within the solenoid.

Such mapping of the velocity distribution within the solenoid is a powerful
diagnostic tool. The contours of Figures 1.12(a) and (b) represent the strength of
the TOF signal for each of the two hfs levels, and thus the density of atoms,
at each velocity and position in the magnet. The dashed line shows the velocity
v(z) = (µ′B(z)/�− δ)/k for which the magnetic field tunes the atomic transition
(F, MF) = (2, 2) → (3, 3) into resonance with the decelerating beam. The most
obvious new information in Figure 1.12(a) is that atoms are strongly concentrated
at velocities just below that of the resonance condition. This corresponds to the
strong peak of slow atoms shown in Figure 1.11.

1.5
Laser Cooling

1.5.1
Optical Molasses

Section 1.4 presented a discussion of the radiative force on atoms moving in a
single laser beam. Here this notion is extended to include the radiative force
from more than just one beam. For example, if two low-intensity laser beams
of the same frequency, intensity, and polarization are directed opposite to one
another (e.g., by retroreflection of a single beam from a mirror), the net force
found by adding the radiative forces given in (1.23) from each of the two beams
obviously vanishes for atoms at rest because �k is opposite for the two beams.
However, atoms moving slowly along the light beams experience a net force
proportional to their velocity whose sign depends on the laser frequency. If the
laser is tuned below atomic resonance, the frequency of the light in the beam
opposing the atomic motion is Doppler shifted toward the blue in the atomic
rest frame, and is therefore closer to resonance; similarly, the light in the beam
moving parallel to the atom will be shifted toward the red, further out of resonance
(see Figure 1.13). Atoms will therefore interact more strongly with the laser
beam that opposes their velocity and they will slow down. This is illustrated in
Figure 1.14.

The slowing force is proportional to velocity for small enough velocities, resulting
in viscous damping [29, 30] as shown in Eq. (1.27) that gives this technique the
name ‘‘optical molasses’’ (OM). By using three intersecting orthogonal pairs of
oppositely directed beams, the movement of atoms in the intersection region can
be severely restricted in all three dimensions, and many atoms can thereby be
collected and cooled in a small volume. OM has been demonstrated at several
laboratories [31], often with the use of low-cost diode lasers [32].
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Figure 1.13 Standard configuration for laser cooling in an
optical molasses. By detuning the laser frequency ω be-
low the resonance frequency ω0 the frequency of the laser
opposing the atomic motion is shifted toward resonance,
whereas the frequency of the other laser beam is shifted out
of resonance.

Figure 1.14 Velocity dependence of the op-
tical damping forces for one-dimensional
optical molasses. The two dotted traces
show the force from each beam, and the
solid curve is their sum. The straight line

shows how this force mimics a pure damp-
ing force over a restricted velocity range.
These are calculated for s0 = 2 and δ = −γ

so there is some power broadening evident
(see Section 1.3.3).

Note that OM is not a trap for neutral atoms because there is no restoring
force on atoms that have been displaced from the center. Still, the detainment
times of atoms caught in OM of several mm diameter can be remarkably long.
It can be very instructive to carry out your own experiment at home. For this
experiment the only thing that is needed is a jar of molasses (Deutsch, der
Sirup; français, mélasse; English, syrup; nederlands, stroop; lingua latina, mel-
laceus; italiano, melassa; espanol, melaza; ελληνικoς , µελασσα) and a marble.
By throwing the marble in the molasses one can witness the extraordinary abil-
ity of the molasses to damp the velocity of the marble. If one tries to move
the marble around, its motion will be strongly damped by the thick and sticky
molasses.
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1.5.2
Low-Intensity Theory for a Two-Level Atom in One Dimension

It is straightforward to estimate the force on atoms in OM from (1.23). The
discussion here is limited to the case where the light intensity is low enough so that
stimulated emission is not important. This eliminates consideration of excitation
of an atom by light from one beam and stimulated emission by light from the
other, a sequence that can lead to very large, velocity-independent changes in the
atom’s speed. In this low-intensity case, the forces from the two light beams are
simply added to give �FOM = �F+ + �F−, where

�F± = ±�
�kγ
2

s0

1 + s0 + [
2(δ ∓ |ωD|)/γ ]2 . (1.33)

Then the sum of the two forces is

�FOM ∼= 8�k2δs0�v
γ (1 + s0 + (2δ/γ )2)2

≡ −β �v, (1.34)

where terms of order (kv/γ )4 and higher have been neglected (see (1.27)). For
δ < 0, this force opposes the velocity and therefore viscously damps the atomic
motion. For large δ, the force �FOM has maxima near v = ±δ/k as expected.

If there were no other influence on the atomic motion, all atoms would quickly
decelerate to v = 0 and the sample would reach T = 0, a clearly unphysical result.
There is also some heating caused by the light beams that must be considered, and it
derives from the discrete size of the momentum steps the atoms undergo with each
emission or absorption. Since the atomic momentum changes by �k, their kinetic
energy changes on the average by at least the recoil energy Er = �2k2/2M = �ωr .
This means that the average frequency of each absorption is ωabs = ω0 + ωr and the
average frequency of each emission is ωemit = ω0 − ωr . Thus the light field loses
an average energy of �(ωabs − ωemit) = 2�ωr for each scattering. This loss occurs at
a rate 2γp (two beams), and the energy becomes atomic kinetic energy because the
atoms recoil from each event. The atomic sample is thereby heated because these
recoils are in random directions.

The competition between this heating with the damping force of (1.34) results
in a nonzero kinetic energy in steady state. At steady state, the rates of heating and
cooling for atoms in OM are equal. Equating the cooling rate, �F · �v, to the heating
rate, 4�ωrγp, the steady-state kinetic energy is found to be (�γ /8)(2|δ|/γ + γ /2|δ|).
This result is dependent on |δ|, and it has a minimum at 2|δ|/γ = 1, whence
δ = −γ /2. The temperature found from the kinetic energy is then TD = �γ /2kB,
where kB is Boltzmann’s constant and TD is called the Doppler temperature or
the Doppler cooling limit. For ordinary atomic transitions TD is below 1 mK, and
several typical values are given in Table A.3 (see Appendix A).

Another instructive way to determine TD is to note that the average momentum
transfer of many spontaneous emissions is zero, but the rms scatter of these
about zero is finite. One can imagine these decays as causing a random walk
in momentum space with step size �k and step frequency 2γp, where the factor
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of 2 arises because of the two beams. The random walk results in diffusion
in momentum space with diffusion coefficient D0 ≡ 2(�p)2/�t = 4γp(�k)2. Then
Brownian motion theory gives the steady-state temperature in terms of the damping
coefficient β to be kBT = D0/β. This turns out to be �γ /2 as above for the case
s0 
 1 when δ = −γ /2. There are many other independent ways to derive this
remarkable result that predicts that the final temperature of atoms in OM is
independent of the optical wavelength, atomic mass, and laser intensity (as long as
it is not too large).

1.5.3
Experiments in Three-Dimensional Optical Molasses

Optical molasses experiments can also work in three dimensions at the intersection
of three mutually orthogonal pairs of opposing laser beams (see Ref. [18]). Even
though atoms can be collected and cooled in the intersection region, it is important
to stress again that this is not a trap. That is, atoms that wander away from the
center experience no force directing them back. They are allowed to diffuse freely
and even escape, as long as there is enough time for their very slow diffusive
movement to allow them to reach the edge of the region of the intersection of the
laser beams. Because the atomic velocities are randomized during the damping
time 1/ωr , atoms execute a random walk with a step size of vD/ωr = λ/2π

√
2ε ∼=

few µm. To diffuse a distance of 1 cm requires about 107 steps or about 30 s [33,34].
Three-dimensional OM was first observed in 1985 [30]. Preliminary measure-

ments of the average kinetic energy of the atoms were done by blinking off the
laser beams for a fixed interval. Comparison of the brightness of the fluorescence
before and after the turnoff was used to calculate the fraction of atoms that left the
region while it was in the dark. The dependence of this fraction on the duration of
the dark interval was used to estimate the velocity distribution and hence the tem-
perature. The result was not inconsistent with the two-level atom theory described
in Section. 1.5.2.

Soon other laboratories had produced 3D OM. The photograph in Figure 1.15
shows OM in Na at the laboratory in the National Bureau of Standards (now NIST)
in Gaithersburg. The phenomenon is readily visible to the unaided eye, and the
photograph was made under ordinary snapshot conditions. The three mutually
perpendicular pairs of laser beams appear as a star because they are viewed along
a diagonal.

This NIST group developed a more accurate ballistic method to measure the
velocity distribution of atoms in OM [36]. The limitation of the first measurements
was determined by the size of the OM region and the unknown spatial distribution
of atoms [30]. The new method at NIST used a separate measuring region composed
of a 1D OM about 2 cm below the 3D region, thereby reducing the effect of this
limitation. When the laser beams forming the 3D OM were shut off, the atoms
dropped because of gravity into the 1D region, and the time-of-arrival distribution
was measured. This was compared with calculated distributions for TD and 40 µK
as shown in Figure 1.16. Using a series of plots like Figure 1.16 it was possible
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Figure 1.15 Photograph of optical molasses
in Na taken under ordinary snapshot con-
ditions in the lab at NIST. The upper hori-
zontal streak is from the slowing laser while
the three beams that cross at the center are

on mutually orthogonal axes viewed from
the (111) direction. Atoms in the optical
molasses glow brightly at the center (figure
from Ref. [35]).

Figure 1.16 Data from dropping atoms out
of optical molasses into a probe beam about
18 mm below. The calculated TOF spectra
are for 240 and 40 µK. The shaded area
indicates the range of error in the 40 µK

calculation from geometric uncertainties. The
width of the data is slightly larger than the
calculation, presumably because of shot-to-
shot instabilities (figure from Ref. [36]).

to determine the dependence of temperature on detuning, and that is shown in
Figure 1.17, along with the theoretical calculations for a two-level atom, as given in
Section 1.5.2.

It was an enormous surprise to observe that the ballistically measured temper-
ature of the Na atoms was as much as 10 times lower than TD = 240 µK [36], the
temperature minimum calculated from the theory. This breaching of the Doppler
limit forced the development of an entirely new picture of OM that accounts for the
fact that in 3D, a two-level picture of atomic structure is inadequate. The multilevel
structure of atomic states, and optical pumping among these sublevels, must be
considered in the description of 3D OM, as discussed in Section 1.7.

These experiments also found that OM was less sensitive to perturbations and
more tolerant of alignment errors than was predicted by the 1D, two-level atom
theory. For example, if the intensities of the two counterpropagating laser beams
forming an OM were unequal, then the force on atoms at rest would not vanish,
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Figure 1.17 Temperature versus detuning de-
termined from time-of-flight data for various
separations d between the optical molasses
and the probe laser (data points). The solid
curve represents the measured molasses de-
cay rate; it is not a fit to the temperature

data points, but its scale (shown at right)
was chosen to emphasize its proportional-
ity to the temperature data. The dashed line
shows the temperature expected on the basis
of the two-level atom theory of Section 1.5.2
(figure from Ref. [36]).

but the force on atoms with some nonzero drift velocity would vanish. This drift
velocity can be easily calculated by using (1.33) with unequal intensities s0+ and s0−,
and following the derivation of (1.34). Thus atoms would drift out of an OM, and
the calculated rate would be much faster than observed by deliberately unbalancing
the beams in the experiments [31].

Section 1.7 describes the startling new view of OM that emerged in the late
1980s as a result of these surprising measurements. The need for a new theoretical
description resulting from incontrovertible measurements provides an excellent
pedagogical example of how physics is truly an experimental science, depending on
the interactions between observations and theory, and always prepared to discard
oversimplified descriptions as soon as it is shown that they are inadequate.

1.6
Magneto-Optical Traps

1.6.1
Introduction

The most widely used trap for neutral atoms is a hybrid, employing both optical
and magnetic fields, to make a magneto-optical trap (MOT) first demonstrated in
1987 [37]. The operation of an MOT depends on both inhomogeneous magnetic
fields and radiative selection rules to exploit both optical pumping and the strong
radiative force [37, 38]. The radiative interaction provides cooling that helps in
loading the trap, and enables very easy operation. The MOT is a very robust trap
that does not depend on precise balancing of the counterpropagating laser beams or
on a very high degree of polarization. The magnetic field gradients are modest and
can readily be achieved with simple, air-cooled coils. The trap is easy to construct
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because it can be operated with a room-temperature cell, where alkali atoms are
captured from the vapor. Furthermore, low-cost diode lasers can be used to produce
the light appropriate for all the alkalis except Na, so the MOT has become one of the
least expensive ways to produce atomic samples with temperatures below 1 mK.

Trapping in an MOT works by optical pumping of slowly moving atoms in a
linearly inhomogeneous magnetic field B = B(z) ≡ Az, such as that formed by a
magnetic quadrupole field as discussed in Section 1.8. Atomic transitions with the
simple scheme of Jg = 0 → Je = 1 have three Zeeman components in a magnetic
field, excited by each of three polarizations, whose frequencies tune with field (and
therefore with position) as shown in Figure 1.18 for 1D. Two counterpropagating
laser beams of opposite circular polarization, each detuned below the zero-field
atomic resonance by δ, are incident as shown.

Because of the Zeeman shift, the excited state Me = +1 is shifted up for B > 0,
whereas the state with Me = −1 is shifted down. At position z′ in Figure 1.18 the
magnetic field therefore tunes the �M = −1 transition closer to resonance and the
�M = +1 transition further out of resonance. If the polarization of the laser beam
incident from the right is chosen to be σ− and correspondingly σ+ for the other
beam, then more light is scattered from the σ− beam than from the σ+ beam.
Thus the atoms are driven toward the center of the trap where the magnetic field
is zero. On the other side of the center of the trap, the roles of the Me = ±1 states
are reversed and now more light is scattered from the σ+ beam, again driving the
atoms toward the center.

The situation is analogous to the velocity damping in an optical molasses from
the Doppler effect as discussed in Section 1.5.2, but here the effect operates in

Figure 1.18 Arrangement for a MOT in 1D.
The horizontal dashed line represents the
laser frequency seen by atoms at rest in the
center of the trap. Because of the Zeeman
shifts of the atomic transition frequencies in

the inhomogeneous magnetic field, atoms
at z = z′ are closer to resonance with the
σ− laser beam than with the σ+ beam, and
are therefore driven toward the center of the
trap.
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position space, whereas for molasses it operates in velocity space. Since the laser
light is detuned below the atomic resonance in both the cases, compression and
cooling of the atoms is obtained simultaneously in an MOT.

So far the discussion has been limited to the motion of atoms in 1D. However,
the MOT scheme can easily be extended to 3D by using six instead of two laser
beams. Furthermore, even though very few atomic species have transitions as
simple as Jg = 0 → Je = 1, the scheme works for any Jg → Je = Jg + 1 transition.
Atoms that scatter mainly from the σ+ laser beam will be optically pumped toward
the Mg = +Jg substate, which forms a closed system with the Me = +Je substate.

1.6.2
Cooling and Compressing Atoms in an MOT

For a description of the motion of the atoms in an MOT, consider the radiative
force in the low-intensity limit (see Eq. (1.23)). The total force on the atoms is given
by �F = �F+ + �F−, where

�F± = ±�
�kγ
2

s0

1 + s0 + (2δ±/γ )2 (1.35)

and the detuning δ± for each laser beam is given by

δ± = δ ∓ �k · �v ± µ′B/�. (1.36)

Here µ′ ≡ (geMe − ggMg )µB is the effective magnetic moment for the transition
used (see Section 1.4.3). Note that the Doppler shift ωD ≡ −�k · �v and the Zeeman
shift ωZ = µ′B/� both have opposite signs for opposite beams.

When both the Doppler and Zeeman shifts are small compared to the detuning
δ, the denominator of the force can be expanded as in Section 1.5.2 and the result
becomes

�F = −β �v − κ�r, (1.37)

where the damping coefficient β is defined in (1.34). The spring constant κ arises
from the similar dependence of �F on the Doppler and Zeeman shifts, and is
given by

κ = µ′A
�k

β. (1.38)

The force of (1.37) leads to damped harmonic motion of the atoms, where the
damping rate is given by 
MOT = β/M and the oscillation frequency ωMOT =√

κ/M. For magnetic field gradients A ≈ 10 G/cm, the oscillation frequency is
typically a few kHz, and this is much smaller than the damping rate that is typically
a few hundred kHz. Thus the motion is overdamped, with a characteristic restoring
time to the center of the trap of 2
MOT/ω2

MOT ≈ several ms for typical values of the
detuning and intensity of the lasers.

It is instructive to compare the optical and magnetic forces in an MOT. The optical
force for an atom at rest is κz, where κ is given in (1.38) and A is the field gradient.
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Figure 1.19 Trajectories of the atoms after they are released
from the trap. Atoms having sufficient speed will reach the
edge of the laser beam, shown here schematically with the
dashed circle, before the laser beams are switched on again
and thus they are lost from the trap.

The magnetic force is simply µA, so their ratio is x ≡ Fopt/Fmag = µ′βz/µ�k,
where β is given in (1.34). Since µ and µ′ do not usually differ by more than a factor
of 2, x ∼ βz/�k ∼ kzδ/γ for typical MOT parameters (δ ∼ −2γ , s0 ∼ 1). Thus the
optical force dominates the magnetic force at any distances from the MOT center
that exceed a few wavelengths.

Since the MOT constants β and κ are proportional, the size of the atomic cloud
can easily be deduced from the temperature of the sample. The equipartition of the
energy of the system over the degrees of freedom requires that the velocity spread
and the position spread are related by

kBT = mv2
rms = κz2

rms. (1.39)

For a temperature in the range of the Doppler temperature, the size of the MOT
should be of the order of a few tenths of a mm, which is generally the case in
experiments.

1.6.3
Measurements and Results

In this section we describe some of the results, which we have obtained in the
laboratory in Utrecht with a standard vapor-cell MOT for Na. Here the atoms are
captured from the background vapor of Na, which is produced by a small piece of
Na in the cell. Since the technique does not rely on capturing atoms from a slowed
beam, the setup is rather simple, which explains the popularity of the technique.
Typically we capture a few million atoms and cool them to a temperature of 200 µK
at a density of 1010 atoms/cm3. The last two numbers are very typical for an MOT,
but the first number can be increased by many orders of magnitude by increasing
the diameter of the laser beams, which are used to capture, cool, and trap the
atoms.

Different techniques can be employed in order to measure the temperature of
the atoms Most commonly the technique of release-and-recapture is used. In this
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technique, the atoms are released from the trap by shutting off the laser beam
for a certain period. Since the atoms have a velocity in the trap, they will fly away
ballistically, as shown in Figure 1.19. When the trapping lasers are switched on
again, some of the atoms will be over the edge of the laser beam and thus will not
be recaptured by the lasers. Since the atoms recaptured will fluoresce immediately
after they are recaptured, the fluorescence after the laser beams are switched on
again is a measure for the atoms remaining in the trap. This recapture probability
as a function of the switch-off time is a direct measure of the temperature of
the sample. Namely, if we neglect gravity for a moment and assume the atomic
velocities have a Maxwellian distribution, the recapture probability is given by

Precap = −
(

2√
π

)√
κve exp−κv2

e +Erf
(√

κve
)

(1.40)

with

κ = m

2kBT
. (1.41)

Here ve = d/2τ is the velocity that is sufficient for the atoms to travel to the edge
of the laser beam with diameter d in the switch-off time τ . In Figure 1.20, a typical
measurement is shown, where the solid line is the fit of the data points to (1.40).
The temperature extracted from this data set is approximately 147 µK, but the
spread between different measurements is of the order of 25 µK, depending on
the alignment of the laser beams. At these temperatures the effects of gravity are
small, but if the temperature becomes smaller gravity does play a role and for very
low temperatures the recapture probability no longer depends on the temperature,
since the initial velocity of the atoms becomes small compared to the velocity
acquired due to gravity.

To measure the spatial profile of the atoms, the fluorescence of the atoms can
be imaged on a CCD camera, which makes a two-dimensional projection of the
density distribution of the atoms. In Figure 1.21(a), an image of the atomic cloud
is shown. Due to the large forces that act on the atoms, the alignment of the laser
beams is crucial to obtain a well-balanced force of different beams and spatially
filtering the laser beams helps a lot in that respect. In Figure 1.21(b), a cut through
the middle of the projection is made. The spatial distribution is Gaussian and
the width of the cloud in the horizontal direction is of the order of 0.29 mm. A
Gaussian distribution is to be expected at low density, since the spatial spread and
velocity spread are related by (1.39) and the velocity distribution is Maxwellian.
However, for higher densities the density in the center of the cloud is limited due
to rescattering of the fluorescent light by the atoms and the density at the center
becomes constant. This leads to a flattening of the intensity in the center of the
profile. Some care has to be taken when analyzing these images. When the density
in the center is so large that light can no longer escape the cloud before being
reabsorbed, the fluorescence is no longer a measure for the density distribution
and other means to measure it have to be devised.
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Figure 1.20 The recapture probability Precap of the atoms as
a function of the shut-off time τ . The data are shown by the
squares and the fit to (1.40) is shown by the solid line.

1.7
Cooling Below the Doppler Limit

1.7.1
Introduction

In response to the surprising measurements of temperatures below TD, two groups
developed a model of laser cooling that could explain the lower temperatures [39,40].
The key feature of this model that distinguishes it from the earlier picture was
the inclusion of the multiplicity of sublevels that make up an atomic state (e.g.,
Zeeman and hfs). The dynamics of optically pumping atoms among these sublevels
provides the new mechanism for producing the ultralow temperatures [35].

The nature of this cooling process is fundamentally different from the Doppler
laser cooling process discussed in the previous section. In that case, the differential
absorption from the laser beams was caused by the Doppler shift of the laser
frequency, and the process is therefore known as Doppler cooling. In the cooling
process described in this section, the force is still caused by differential absorption
of light from the two laser beams, but the velocity-dependent differential rates, and
hence the cooling, relies on the nonadiabaticity of the optical pumping process.
Since lower temperatures can usually be obtained with this cooling process, it is
called sub-Doppler laser cooling [35, 36, 41].
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Figure 1.21 (a) Image taken with a CCD camera of the flu-
orescence of a cloud of atoms in an MOT. (b) Cut of the
intensity distribution through the center of the cloud. The
distribution is Gaussian with a width of 0.29 mm in this
case.

1.7.2
Linear ⊥ Linear Polarization Gradient Cooling

One of the most instructive models for discussion of sub-Doppler laser cooling was
introduced by Dalibard and Cohen–Tannoudji [39] and their work serves as the
basis for this section. They considered the case of orthogonal linear polarization of
two counterpropagating laser beams that damp atomic motion in one dimension.
The polarization of this light field varies over half of a wavelength from linear at
45◦ to the polarization of the two beams, to σ+, to linear but perpendicular to the
first direction, to σ−, and then it cycles (see Figure 1.22). To study the effects of this
polarization gradient on the cooling process, they considered a Jg = 1/2 to Je = 3/2

transition. This is one of the simplest transitions that shows sub-Doppler cooling.
In the place where the light field is purely σ+, the pumping process drives the

ground-state population to the Mg = +1/2 sublevel. This optical pumping occurs
because absorption always produces �M = +1 transitions, whereas the subsequent
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Figure 1.22 Spatial variation of the optical electric field in
the lin ⊥ lin configuration showing the polarization gradient
used for laser cooling.

spontaneous emission produces �M = ±1, 0. Thus the average is �M ≥ 0 for each
scattering event. For σ−-light the population will be pumped toward the Mg = −1/2

sublevel. Thus in traveling through a half wavelength in the light field, atoms have
to readjust their population completely from Mg = +1/2 to Mg = −1/2 and back
again.

The light shift of the atomic energy levels plays a crucial role in this scheme
of sub-Doppler cooling, and the changing polarization has a strong influence on
the light shifts. Since the coupling between the states depends on the magnetic
quantum numbers and on the polarization of the light field, the light shifts are
different for different magnetic sublevels. The ground-state light shift is negative
for a laser tuning below resonance (δ < 0) and positive for δ > 0 (see Eq. (1.11)).

In the present case of orthogonal linear polarizations and J = 1/2 → 3/2, the
light shift for the magnetic substate Mg = 1/2 is three times larger than that of the
Mg = −1/2 substate when the light field is completely σ+. On the other hand, when
the light field becomes σ−, the shift of Mg = −1/2 is three times larger. So in this
case the optical pumping discussed above causes there to be a larger population in
the state with the larger light shift. This is generally true for any transition Jg to
Je = Jg + 1. A schematic diagram showing the populations and light shifts for this
particular case of negative detuning is shown in Figure 1.23.

To discuss the origin of the cooling process in this polarization gradient scheme,
consider atoms with a velocity v at a position where the light is σ+-polarized, as
shown at the lower left of Figure 1.23. The light optically pumps such atoms to the
strongly negative light-shifted Mg = +1/2 state. In moving through the light field,
atoms must increase their potential energy (climb a hill) because the polarization
of the light is changing and the state Mg = 1/2 becomes less strongly coupled to
the light field. After traveling a distance λ/4, atoms arrive at a position where the
light field is σ−-polarized, and are optically pumped to Mg = −1/2, which is now
lower than the Mg = 1/2 state. Again the moving atoms are at the bottom of a hill
and start to climb. In climbing the hills, the kinetic energy is converted to potential
energy, and in the optical pumping process, the potential energy is radiated away
because the spontaneous emission is at a higher frequency than the absorption (see
Figure 1.23). Thus atoms seem to be always climbing hills and losing energy in the
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Figure 1.23 The spatial dependence of the
light shifts of the ground-state sublevels of
the J = 1/2 ⇔ 3/2 transition for the case of
the lin ⊥ lin polarization configuration. The
arrows show the path followed by atoms
being cooled in this arrangement. Atoms
starting at z = 0 in the Mg = +1/2 sublevel
must climb the potential hill as they ap-
proach the z = λ/4 point where the light
becomes σ− polarized, and there they are

optically pumped to the Mg = −1/2 sublevel.
Then they must begin climbing another hill
toward the z = λ/2 point where the light is
σ+ polarized and they are optically pumped
back to the Mg = +1/2 sublevel. The process
repeats until the atomic kinetic energy is
too small to climb the next hill. Each optical
pumping event results in absorption of light
at a lower frequency than emission, thus dis-
sipating energy to the radiation field.

process. This process brings to mind a Greek myth, and is thus called ‘‘Sisyphus
laser cooling.’’

The cooling process described above is effective over a limited range of atomic
velocities. The damping is maximum for atoms that undergo one optical pumping
process while traveling over a distance λ/4. Slower atoms will not reach the hilltop
before the pumping process occurs and faster atoms will already be descending the
hill before being pumped toward the other sublevel. In both the cases the energy
loss are smaller and therefore the cooling process less efficient.

The friction coefficient for this sub-Doppler process is larger by a factor (2|δ|/γ )
than the maximum friction coefficient for Doppler laser cooling. It can be shown
that the momentum diffusion coefficient of this process is of the same order of
magnitude as that of Doppler cooling, so that the temperature will be smaller than
the Doppler temperature by the same factor (Figure 1.24). Furthermore, it shows
that the friction coefficient for this case is independent of intensity, since both �E
and γp are proportional to the intensity.

1.7.3
Magnetically Induced Laser Cooling

Although the first models that described sub-Doppler cooling relied on the polar-
ization gradient of the light field as above, it was soon realized that a light field
of constant polarization in combination with a magnetic field could also produce
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Figure 1.24 The force as a function of ve-
locity for atoms in a lin ⊥ lin polarization
gradient cooling configuration with s0 = 0.5
and δ = 1.5γ . The solid line is the combined
force of Doppler and sub-Doppler cooling,
whereas the dashed line represents the force

for Doppler cooling only. The inset shows
an enlargement of the curve around v = 0.
Note, the strong increase in the damping
rate over a very narrow velocity range that
arises from the sub-Doppler process.

sub-Doppler cooling [42]. In this process, the atoms are cooled in a standing wave
of circularly polarized light.

There is a simple model using the Jg = 1/2 to Je = 3/2 transition to describe this
phenomenon [41]. In the absence of a magnetic field, the σ+ light field drives
the population to the Mg = +1/2 sublevel. Since the Mg = +1/2 sublevel is more
strongly coupled to the light field than Mg = −1/2, the light shift of this state is
larger. Thus atoms traveling through this standing wave will descend and climb
the same potential hills corresponding to Mg = 1/2 and will experience no average
force.

The situation changes if a small transverse magnetic field is applied. Optical
pumping processes determine the atomic states in the antinodes of the standing
wave light field where the light is strong. But in the nodes, where the intensity of
the light field is zero, the small transverse magnetic field precesses the population
from Mg = 1/2 toward Mg = −1/2. Atoms that leave the nodes with Mg = −1/2 are
returned to Mg = +1/2 in the antinodes by optical pumping in the σ+ light.

This cooling process is depicted in Figure 1.25 for negative detuning δ < 0.
Potential energy is radiated away in the optical pumping process as before, and
kinetic energy is converted to potential energy when the atoms climb the hills again
into the nodes. The whole process is repeated when the atoms travel through the
next node of the light field. Again the cooling process is caused by a ‘‘Sisyphus’’
effect, similar to the case of lin ⊥ lin. Since this damping force is absent without
the magnetic field, it is called magnetically induced laser cooling (MILC).

Efficient cooling by MILC depends critically on the relation between the Zeeman
precession frequency ωZ and the optical pumping rate γp in the antinodes. It is
clearly necessary that γp � ωZ in the antinodes where the light is strong. But as
in any cooling process that depends on nonadiabatic processes, there is a limited
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Figure 1.25 The spatial dependence of the
light shifts of the ground-state sublevels of
the J = 1/2 ⇔ 3/2 transition for the case of
a purely σ+ standing wave that has no po-
larization gradient, and is appropriate for
magnetically induced laser cooling. The ar-
rows show the path followed by atoms being
cooled in this arrangement. Atoms start-
ing at z = 0 in the strongly light-shifted
Mg = +1/2 sublevel must climb the potential
hill as they approach the node at z = λ/4.
There they undergo Zeeman mixing in the

absence of any light and may emerge in
the Mg = −1/2 sublevel. They will then gain
less energy as they approach the antinode
at z = λ/2 than they lost climbing into the
node. Then they are optically pumped back
to the Mg = +1/2 sublevel in the strong light
of the antinode, and the process repeats un-
til the atomic kinetic energy is too small to
climb the next hill. Each optical pumping
event results in absorption of light at a lower
frequency than emission, thus dissipating
energy to the radiation field.

velocity range where the force is effective. For efficient cooling by MILC, the velocity
cannot be too small compared to ωZ/k or atoms will undergo many precession
cycles near the nodes and no effective cooling will result. On the other hand, if the
velocity is large compared to γp/k, then atoms will pass through the antinodes in
a time too short to be optically pumped to Mg = +1/2 and no cooling will result
either. Thus, in addition to the requirement δ < 0, there are two other conditions
on the experimental parameters that can be combined to give

ωZ < kv < γp. (1.42)

Sub-Doppler cooling has been observed for MILC as shown in Figure 1.26 for
Rb atoms cooled on the λ = 780 nm transition in one dimension [41]. The width
of the velocity distribution near v = 0 is as low as 2 cm/s, much lower than the
one-dimensional Doppler limit vD = √

7�γ /20M ≈ 10 cm/s for Rb.

1.7.4
Optical Molasses in Three Dimensions

The theoretical models and experimental results discussed so far in this section are
all for the case of one dimension. The theoretical models are not easily extended
to more dimensions and do not provide the same kind of analytical solutions as
does 1D. One of the limitations of 3D experiments is that they are not able to



40 1 Cooling and Trapping of Atoms

Figure 1.26 Typical data of atomic beam collimation us-
ing circularly polarized light and a weak magnetic field on
a beam of 85Rb atoms. The scanning hot wire was 1.3 m
downstream from the interaction region. The laser parame-
ters are defined as in Section 1.3.3 (figure from Ref. [43]).

study cooling schemes without polarization gradients, since the transverse nature
of electromagnetic radiation prevents the construction of 3D radiation fields with
all polarizations parallel.

One of the outcomes of the models presented in Section 1.7.2 is that the final
temperature Tlim in polarization gradient cooling scales with the light shift �Eg of
the ground states, i.e.,

kBTlim = b�Eg , (1.43)

where �Eg is the light shift of the ground state. The value of the coefficient b
depends on the polarization scheme used and is 0.125 for lin ⊥ lin and 0.097 for
σ+− σ−. Note that lowering the temperature can easily be achieved by lowering
the light shift, either by increasing the detuning δ or decreasing the intensity s0.
Since this is a result of the semiclassical theory, the temperature will always be
limited by the recoil temperature.

In the experiments reported by Salomon et al. [44], the temperature was measured
in a 3D molasses under various configurations of the polarization. All beams were
linearly polarized, but in one configuration the polarization of two counterpropa-
gating beams was chosen to be parallel to one another and in another configuration
they were chosen to be perpendicular. Results of their measurements are shown in
Figure 1.27(a), where the measured temperature is plotted for different detunings
as a function of the intensity. For each detuning, the data lie on a straight line
through the origin. The lowest temperature obtained is 3 µK, which is a factor 40
below the Doppler temperature and a factor 15 above the recoil temperature of Cs.
If the temperature is plotted as a function of the light shift (see Figure 1.27(b)), all
the data are on a single universal straight line. The slope of the line is 0.45 for the
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Figure 1.27 Temperature as a function of laser intensity and
detuning for Cs atoms in an optical molasses from Ref. [44].
(a) Temperature as a function of detuning for various inten-
sities. (b) Temperature as a function of the light shift. All
the data points are on a universal straight line.

parallel configuration and 0.35 for the perpendicular configuration. Both slopes
are a factor of about 3 higher than the theoretical estimates of 1D and the authors
ascribe this discrepancy to the three-fold increase of the number of laser beams.

1.8
Magnetic Trapping

The low temperatures and high densities required for BEC are not compatible with
the recoil heating associated with ordinary laser cooling and optical trapping, and
so different cooling and trapping mechanisms must be brought to bear on the final
stages of approach to BEC. Section 1.9 describes the evaporative cooling process
that is most commonly used in the final stages, and this section describes magnetic
trapping that works in the dark.

The magnetic field causes a Zeeman shift �EZ of the energies of the atomic
states by

�EZ = −�µ · �B, (1.44)

where �µ is the atomic magnetic moment. Since a local maximum of the magnetic
field cannot be created in free space [45], atoms can only be trapped in magnetic
field minima and thus can only be trapped in states that are ‘‘low field seeking,’’
i.e., states that shift upward with increasing field. In magnetic fields that are readily
produced in the laboratory (0.1 T), typical trap depths are ∼1 K. Note that these
same energy level shifts occur in the MOT, but that the force on the atoms in the
MOT is predominantly from differential light scattering. As shown in Section 1.6.2,



42 1 Cooling and Trapping of Atoms

this magneto-optical force dominates the purely magnetic force a few wavelengths
away from the center of the trap.

For small magnetic fields, the projection MF of the total angular momentum F
is a good quantum number and the Zeeman shift is linear and given by

�EZ = gFMFµBB, (1.45)

where µB = e�/2mec is the Bohr magneton and gF is the Landé factor, which is
given by Eq. (4.4) of Ref. [3]. For larger magnetic field values where the Zeeman
shifts become comparable to the atomic hyperfine splitting, the states from different
hyperfine states start to repel one another and the shifts become more complicated.
The Zeeman structure of the ground state of Na is shown in Figure 1.28. The state
with MF = 2 connected to the upper hyperfine state is the easiest to trap since it has
the largest shift of �EZ = µBB. However, for small fields the MF = −1 state of the
lower hyperfine state can also be trapped, although the energy shift �EZ = µBB/2
is smaller than the shift for upper hyperfine state and the maximum magnetic field
for trapping is limited. This state has the advantage that collisions of atoms in the
trap at very low temperatures cannot lead to inelastic losses and thus heating of the
gas, since the atoms are already in the lowest energy state.

In Ref. [46] different configurations for magnetic trapping are discussed and a
few of them are shown in Figure 1.29. The simplest configuration is the quadrupole
configuration that is also employed for the MOT. Magnetic field contours for this
trap are shown in Figure 1.30(a). When the coils are separated by 1.25 times their
radius, the gradient in the radial direction is twice the gradient in the axial direction.
In the case of a hexapole trap (see Figure 1.29(b)) the gradient in the center of
the trap is strongly reduced (see Figure 1.30(b)), which is not very advantageous
if evaporative cooling is used. Furthermore, the optical access to the atoms is
inhibited by the coil on the axis.

Figure 1.28 Zeeman shifts of the ground
state of Na, where the states are labeled
with the projection of the total angular
momentum F on the magnetic field axis.
At small magnetic fields the shift are linear,

but in the range where the Zeeman shifts
become comparable to the hyperfine split-
ting, the states start to repel each other and
a more complicated pattern arises.
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Figure 1.29 Different magnetic field configurations to trap
cold atoms with the magnetic field (adapted from Ref. [46]).

Another type of trap is the Ioffe trap, which is shown in Figure 1.29(c). The
radial confinement is provided by the four bars, whereas the confinement in the
axial direction is produced by the two pinch coils. In Figure 1.31 the magnetic field
contours for this type of trap are shown in two different symmetry planes of the
trap. The confinement in the radial direction is much stronger than in the axial
direction, which allows the creation of samples with a strong asymmetry.

The advantage of the Ioffe trap over the quadrupole configuration is that the
field on the axis is nonzero. Since slow atoms will always follow the magnetic field
adiabatically, atoms in the center of the quadrupole trap can make a Majorana
transition to the nontrapping state if the field in the center is zero. Therefore new
designs for the quadrupole fields have been utilized, such as the cloverleaf [47] and
QUIC trap [48], where additional coils lift the field in the center of the trap.

For the two-coil quadrupole magnetic trap of Figure 1.29(a), stable circular orbits
of radius ρ in the z = 0 plane can be found classically by setting µ∇B = Mv2/ρ, so
v = √

ρa, where a ≡ µ∇B/M is the centripetal acceleration supplied by the field
gradient. In order for the trap to work, the atomic magnetic moments must be
preserved while the atoms move around in the trap even though the trap fields
change directions in a very complicated way. The condition for adiabatic motion
can be written as ωZ � |dB/dt|/B, where ωZ = µB/� is the Larmor precession
rate in the field. The orbital frequency for circular motion is ωT = v/ρ, and since
v/ρ = |dB/dt|/B for a uniform field gradient, the adiabaticity condition is

ωZ � ωT . (1.46)

For the two-coil quadrupole trap, the adiabaticity condition can be easily cal-
culated. The adiabatic condition for a practical trap (A ∼1 T/m) requires
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Figure 1.30 Magnetic field contours for the quadrupole trap
and the spherical hexapole trap. The current through all the
coils is 100 A, the distance between the rings is 2 cm and
the contours are plotted 10 G (adapted from Ref. [46]).

ρ � (�2/M2a)1/3 ∼ 1 µm as well as v � (�a/M)1/3 ∼ 1 cm/s. Since the nona-
diabatic region of the trap is so small (less than 10−18 m3 compared with typical
sizes of ∼2 cm corresponding to 10−5 m3), nearly all the orbits of most atoms are
restricted to regions where they are adiabatic. Therefore, most of such laser-cooled
atoms stay trapped for many thousands of orbits corresponding to several minutes.
However, evaporative cooling (see Section 1.9) reduces the average total energy of
a trapped sample sufficiently that the orbits are confined to regions near the origin
so such losses dominate, and several schemes have been developed to prevent such
losses from nonadiabatic transitions.

There have been different solutions to this problem. In the JILA-experiment the
hole was rotated by rotating the magnetic field and thus the atoms do not spend
sufficient time in the hole to make a spin flip. In the MIT experiment the hole was
plugged by using a focused laser beam that expelled the atoms from the center of
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Figure 1.31 Magnetic field contours for the
Ioffe trap in the plane of the wires (a) and
in the plane midway between the wires. The
current through the wires is 100 A, the dis-
tance between the wires is 2 cm, the coils

have a radius of 1.5 cm and the distance
between the coils is 4.5 cm. The contours
for the magnetic field are plotted every 10 G
(adapted from Ref. [46]).

the magnetic trap. In the Rice experiment the atoms were trapped in a Ioffe trap
that has a nonzero field minimum.

1.9
Evaporative Cooling

1.9.1
Introduction

Laser cooling leads to the production of samples of atoms with low temperature
and high density. In the 1920s Bose and Einstein predicted that for sufficiently low
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temperature and high density, a gas of atoms undergoes a phase transition that is
now called Bose–Einstein condensation (BEC). This phase transition is predicted
to occur at a phase-space density ρ ≡ nλ3

deB
∼= 2.612, where n is the density of

the gas and λdeB = h/Mv = h/
√

3MkBT is the deBroglie wavelength of the atoms.
For ordinary gases at room temperature and pressure, ρ ∼ 10−6, but in a practical
atomic beam oven, ρ ∼ 3 × 10−10.

Achieving BEC has been one of the holy grails in physics for many years, and
from the beginning of laser cooling it was clear that this could be one of the possible
routes for achieving it. With laser cooling one can obtain µK temperatures with
small loss of atoms so that the phase-space density can be increased. However,
in the mid-1990s it became clear that the increase in phase-space density by laser
cooling of alkali atoms had reached its limit. If the density of the sample becomes
too large, light scattered by one atom is reabsorbed by others, causing a repulsion
between them. For resonant light, the optical thickness of a sample of atoms
that has been laser cooled to the recoil limit and compressed to ρ ∼ 1 is only
one optical wavelength, so light can neither enter nor escape a reasonably sized
sample.

The increase of density also leads to an increase in the collision rate. The collision
rate between atoms with one in the excited state (S+P collisions) is also much larger
at low temperatures than the rate for such collisions with both atoms in the ground
state (S+S collisions). Since S+P collisions are generally inelastic, and since the
inelastic energy exchange generally leads to heating of the atoms, increasing the
density increases the loss of cold atoms. To achieve BEC, resonant light should
therefore be avoided, and thus laser cooling alone is not the most likely route for
achieving BEC.

A more promising route to BEC is the technique of evaporative cooling. This
method is based on the preferential removal of those atoms from a confined
sample with an energy higher than the average energy, followed by a rether-
malization of the remaining gas by elastic collisions. Although evaporation is
a process that occurs in nature, it was applied to atom cooling for the first
time in 1988 [49]. One way to think about evaporative cooling is to consider
cooling of a cup of coffee. Since the most energetic molecules evaporate from
the coffee and leave the cup, the remaining atoms obtain a lower tempera-
ture and are cooled. Furthermore, it requires the evaporation of only a small
fraction of the coffee to cool it by a considerable amount. Thus even though
the method results in the removal of some of the atoms in a trap, those that
remain have much lower average energy (temperature) and so they occupy a
smaller volume near the bottom of the trap, thereby increasing their density.
Since both the temperature and the volume decrease, the phase-space density
increases.

This section describes a model of evaporative cooling. Since such cooling is not
achieved for single atoms but for the whole ensemble, an atomic description of the
cooling process must be replaced by thermodynamic methods. These methods are
completely different from the rest of the material in the chapter, and will therefore
remain rather elementary.
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Figure 1.32 Principle of the evaporation technique. Once
the trap depth is lowered, atoms with energy above the trap
depth can escape and the remaining atoms reach a lower
temperature.

1.9.2
Basic Assumptions

Evaporative cooling works by the preferential removal of atoms having an energy
higher than the average energy, as suggested schematically in Figure 1.32. If the
atoms are trapped, it can be achieved by lowering the depth of the trap, thereby
allowing the atoms with energies higher than the trap depth to escape, as discussed
first by Hess [50]. Elastic collisions in the trap then lead to a rethermalization of
the gas. To sustain the cooling process the trap depth can be lowered continuously,
achieving a continuous decrease of the temperature. Such a process is called
forced evaporation. Although more refined techniques have been developed, this
technique was first employed for evaporative cooling of hydrogen [49, 51–53].

Several models have been developed for this process, but the simplest one was
developed by Davis et al. [54], and is mainly of pedagogical value [55]. In this model
the trap depth is lowered in one single step and the effect on the thermodynamic
quantities, such as temperature, density, and volume, is calculated. Although the
process can be repeated and the effects of multiple steps added up cumulatively,
forced evaporative cooling is a continuous process and should be described by other
models. However, the results of the simple model provide considerable insight to
the process without resorting to tedious calculations.

In many models of evaporative cooling the following assumptions are made:

1. The gas behaves sufficiently ergodically, i.e., the distribution of atoms in phase
space (both position and momentum) depends only on the energy of the atoms
and the nature of the trap.

2. The gas is described by classical statistics and is assumed to be far from the
transition point to the BEC phase (ρ 
 1).

3. The quantum mechanical scattering is pure s-wave, i.e., the temperature is
sufficiently low that all higher partial waves do not contribute to the cross section.
Furthermore, the cross section for elastic scattering is energy-independent and
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is given by σ = 8πa2, where a is the scattering length. Also, it is assumed that
the ratio of elastic to inelastic collision rates is sufficiently large that the elastic
collisions dominate.

4. Evaporation preserves the thermal nature of the distribution, i.e., the thermal-
ization is much faster than the rate of cooling.

5. Atoms that escape from the trap neither collide with the remaining atoms nor
exchange energy with them. This is called full evaporation.

The simple model uses all of these assumptions, and their implications will be
discussed later in the section.

1.9.3
The Simple Model

The first step in applying this simple model is to characterize the trap by calculating
how the volume of a trapped sample of atoms changes with temperature T . Consider
a trapping potential that can be expressed as a power law given by

U(x, y, z) = ε1

∣∣∣∣ x

a1

∣∣∣∣
s1

+ ε2

∣∣∣∣ y

a2

∣∣∣∣
s2

+ ε3

∣∣∣∣ z

a3

∣∣∣∣
s3

, (1.47)

where aj is a characteristic length and sj the power for a certain direction j. Then
one can prove [56] that the volume occupied by trapped atoms scales as V ∝ Tξ ,
where

ξ ≡ 1

s1
+ 1

s2
+ 1

s3
. (1.48)

Thus the effect of the potential on the volume of the trapped sample for a given
temperature can be reduced to a single parameter ξ . This parameter is independent
of how the occupied volume is defined, since many different definitions lead to
the same scaling. When a gas is held in a 3D box with infinitely high walls, then
s1 = s2 = s3 = ∞ and ξ = 0, which means that V is independent of T , as expected.
For a harmonic potential in 3D, ξ = 3/2, for a linear potential in 2D ξ = 2, and for
a linear potential in 3D, ξ = 3.

The evaporative cooling model itself [54] starts with a sample of N atoms having
a temperature T held in an infinitely deep trap. The strategy for using the model
is to choose a finite quantity η, and then (1) lower the trap depth to a value ηkBT ,
(2) allow for a thermalization of the sample by collisions, and (3) determine the
change in phase-space density ρ.

Only two parameters are needed to completely determine all the thermodynamic
quantities for this process (the values after the process are denoted by a prime).
One of these is ν ≡ N′/N, the fraction of atoms remaining in the trap after the
cooling. The other2) is γ , a measure of the decrease in temperature caused by the
release of hot atoms and subsequent cooling, modified by ν, and defined as

2) This γ is not to be confused with the natural
width of the excited state.
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γ ≡ log(T ′/T)

log(N′/N)
= log(T ′/T)

log ν
. (1.49)

This yields a power-law dependence for the decrease of the temperature caused
by the loss of the evaporated particles, namely, T ′ = Tνγ . The dependence of the
other thermodynamic quantities on the parameters ν and γ can then be calculated.

The scaling of N′ = Nν, T ′ = Tνγ , and V ′ = Vνγ ξ can provide the scaling of
all the other thermodynamic quantities of interest by using the definitions for
the density n = N/V , the phase-space density ρ = nλ3

deB ∝ nT−3/2, and the elastic

collision rate kel ≡ nσv ∝ nT
1/2. The results are given in Table 1.5. For a given

value of η, the scaling of all quantities depends only on γ . Note that for successive
steps j, ν has to be replaced with ν j.

In order to determine the change of the temperature in the cooling process, it is
necessary to consider in detail the distribution of the atoms in the trap. The density
of states for an ideal gas in free space is given by [7]

D(E) = 2π (2M)
3/2VE

1/2

h3
. (1.50)

However, for atoms in a trap the density of states is affected by the trapping potential
U(x, y, z) and becomes [56]

D(E) = 2π (2M)
3/2

h3

∫
V

√
E − U(x, y, z) d3r. (1.51)

The fraction of atoms remaining in the trap after decreasing the trap depth to ηkBT
becomes

ν = 1

N

∫ ηkBT

0
D(E)e−(E−µ)/kBT dE, (1.52)

where the exponential factor stems from the Maxwell–Boltzmann distribution of
the atoms, and µ is the chemical potential. For η = ∞, ν = 1 and this determines
the chemical potential µ for N atoms [56]. Substituting this relation for µ into
(1.52) yields

ν =
∫ η

0
�(ε)e−εdε, (1.53)

Table 1.5 Exponent q for the scaling of the thermodynamic quantities X ′ =
Xνq with the reduction ν of the number of atoms in the trap.

Thermodynamic variable Symbol Exponent q

Number of atoms N 1
Temperature T γ

Volume V γ ξ

Density n 1 − γ ξ

Phase-space density ρ 1 − γ (ξ + 3/2)
Collision rate k 1 − γ (ξ − 1/2)
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Figure 1.33 Reduced density of states �(ε) as a function of
the scaled energy ε̃ = ε/(ξ + 3/2) for various trapping poten-
tials, indicated by their parameter ξ .

where the reduced energy is defined as ε ≡ E/kBT . Furthermore, the reduced
density of states �(ε) is given by

�(ε) ≡ εξ+1/2


(ξ + 3/2)
, (1.54)

with 
(x) the complete gamma function. Figure 1.33 shows the reduced density
of states as a function of ε̃ = ε/(ξ + 3/2) for various values of ξ . The scaling of ε

is performed so that the reduced density of states is nearly independent of ξ . The
results for different potentials can therefore be compared directly.

The integral in (1.53) can be written in terms of the incomplete gamma function

inc to give

ν = 
inc(ξ + 3/2, η)

(ξ + 3/2)

. (1.55)

Note that the fraction of atoms remaining is fully determined by the final trap
depth η for given potential characterized by the trap parameter ξ .

The averaged reduced energy ε of the atoms before truncation is given by

ε =
∫ ∞

0 ε �(ε)e−εdε∫ ∞
0 �(ε)e−εdε

= 
(ξ + 5/2)

(ξ + 3/2)

= ξ + 3/2. (1.56)

The average energy ε′ after truncation is given by the same expression, when the
upper boundary is changed from ∞ to η. The average energy is thus

ε′ = 
inc(ξ + 5/2, η)


inc(ξ + 3/2, η)
. (1.57)

Since the average energy is directly proportional to the temperature, the ratio T ′/T
is given by

T ′

T
= ε′

ε
= νγ , (1.58)
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or

γ = log(T ′/T)
log(N′/N)

= log(ε′/ε)
log ν

. (1.59)

For each evaporated atom the energy carried away εout is given by

εout = ε − ε′

1 − ν
= (ξ + 3/2)

1 − νγ+1

1 − ν
. (1.60)

For large η, the value of ν approaches 1 so the denominator (1 − ν) can be treated
as small. Then

γ = εout

ξ + 3/2
− 1. (1.61)

so in that case, γ is just the excess energy above the average energy, which is carried
away by the evaporated atoms.

The results of the model are given in Figure 1.34. Apart from the 3D box potential
(ξ = 0) the results for the number of atoms and the temperature are nearly identical
for different potentials. However, for a stronger potential (larger ξ ) the decrease
in the volume with decreasing temperature is much larger and therefore the
increase in density n is much larger. Not only does this lead to a larger increase
in phase-space density ρ, but this is also important for the rethermalization of the
atoms. As the results show, the elastic collision rate also increases strongly for a
stronger potential. This way the rethermalization speeds up considerably and the
cooling process can be accelerated. In the case of a weak potential (ξ between 0 and
1) the collision rate decreases for all values of η and therefore the cooling process
eventually stops. Thus the model indicates that BEC cannot be obtained in such
potentials.

1.9.4
Speed and Limits of Evaporative Cooling

So far the speed of the evaporative cooling process has not been considered. As
an extreme example, consider the case of an extremely large value of η where one
just has to wait for a single event where one particle has all the energy of the
system. Evaporation of that single particle then cools the whole system to zero
temperature [55]. More realistically one can consider the following two cases. If the
trap depth is ramped down too quickly, the thermalization process does not have
time to run its course and the process becomes less efficient. On the other hand, if
the trap depth is ramped down too slowly, the loss of particles by inelastic collisions
becomes important, thereby making the evaporation inefficient.

The speed of the evaporation can be found from the principle of detailed
balance [55]. It states that elastic collisions produce atoms with energy larger than
ηkBT at a rate that is given by the number of atoms with energy larger than this
divided by their collision time. The velocity of atoms with this energy is given by
v = √

2ηkBT/M = v
√

3η/2, where v is the average velocity for given temperature.
The fraction of atoms in the MB-distribution with ε > η for large η is given by
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Figure 1.34 Result of the model for evaporation for differ-
ent values of ξ (see Figure 1.33) for the thermodynamic
quantities: (1) γ , (2) number of atoms, (3) temperature,
(4) density, (5) phase-space density, and (6) elastic collision
rate (figure adapted from Ref. [54]).

f (ε > η) = e−η
√

3η/2. (1.62)

The elastic collision rate is given by kel = nσv. The rate of evaporated atoms dN/dt
becomes

dN

dt
= −Nf (ε > η)kel = −nσvηe−ηN ≡ −
evN. (1.63)

The average elastic scattering rate depends on the relative velocity and not on the
average velocity of the atoms. Thus the average of kel is kel = 4nσv/

√
3π . The ratio

of the evaporation time and the elastic collision time then becomes
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τev

τel
=

√
2eη

η
. (1.64)

Note that this ratio increases exponentially with η.
For the evaporation of the atoms, it is important that atoms with an energy above

the cut-off are expelled from the trap. By lowering the depth of the trap on one
side, atoms can only escape in one dimension, but by using rf-evaporation, one
can expel the atoms in all three dimensions equally and thus obtain a true 3D
evaporation. However, in the case of the TOP-trap, even rf evaporation takes place
in 2D because the atoms are evaporated along the outer side of the cloud that is
exposed to the highest magnetic field on the average. This is a cylinder along the
direction of rotation axis of the magnetic field and thus is only 2D.

Once the average energy of the atoms becomes very small, the atoms sag in the
magnetic field due to gravity and the outer side of the cloud is no longer at a constant
magnetic field. Atoms at the bottom of the trap experience the highest magnetic
field and thus the evaporation becomes 1D. In case of harmonic confinement,
Utrap = U′′z2/2, atoms with an energy of ηkBT make excursions of the order of

z ≈
√

2ηkBT/U′′. (1.65)

Now the gravitational energy is given by Ugrav = mgz and when this energy becomes
comparable to total energy, 3D evaporation stops and the evaporation becomes 1D.
Thus the limiting temperature for 1D evaporation to take place is given by [55]

kBT <
2η(mg)2

µB′′ . (1.66)

For a value of a curvature of B′′ = 500 G/cm2 the limiting temperature becomes
1 µK for 7Li, 10 µK for 23Na, and 150 µK for 87Rb. Beyond this temperature
evaporation becomes less efficient.

In the three experiments that obtained BEC for the first time in 1995, this
problem of ‘‘gravitational sag’’ was not known but its presence did not prevent
the experimentalists from observing BEC. The experiments succeeded for different
reasons: the light mass (7Li), tight confinement (23Na), and TOP trap (87Rb). It is
another violation of Murphy’s law that the solutions in these experiments were
found without really knowing the problem [55].

1.9.5
Experimental Results

In all the earliest experiments that achieved BEC, the evaporative cooling was
‘‘forced’’ by inducing rf transitions to magnetic sublevels that are not bound in
the magnetic trap. Atoms with the highest energies can access regions of the trap
where the magnetic field is stronger, and thus their Zeeman shifts would be larger.
A correspondingly high-frequency rf field would cause only these most energetic
atoms to undergo transitions to states that are not trapped, and in so doing, the
departing atoms carry away more than the average energy. Thus a slow sweep of
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Table 1.6 Results obtained with evaporative cooling for the achievement of BEC [55].a

Group Atom N n T ρ ηtot

(106) (1012 cm−3) (µK) (10−6)

Rice 7Li 200 0.07 200 7 1.7
0.1 1.4 0.4

MIT 23Na 1000 0.1 200 2 1.9
0.7 150 2

JILA 87Rb 4 0.04 90 0.3 3.0
0.02 3 0.17

aThe first line represents the starting point in each case, and the
second line the end point.

the rf frequency from high to low would continuously shave off the high-energy tail
of the energy distribution, and thereby continuously drive the temperature lower
and the phase-space density higher.

In Table 1.6 the results of evaporative cooling from the first three groups that
have obtained BEC are given. The success of evaporative cooling using this rf-
shaving technique demonstrates that it is much easier to select high-energy atoms
and waste them than to cool them.

1.10
Beyond Optical Molasses

Although evaporative is a very powerful technique to obtain BEC, at least for the
final phase of the cooling process, the quest for obtaining BEC in an all optical
way remained open. One advantage of obtaining BEC in an all optical way is the
fact that in the cooling process the number of atoms remains constant. Using
evaporation, one loses orders of magnitude of atoms in the cooling process (see
Table 1.6). There have been two ways to obtain an all optical BEC. One way is to
cool atoms in an optical lattice and another way is to cool atoms held in an optical
trap using a CO2 laser.

1.10.1
Raman Sideband Cooling

Raman sideband cooling of atoms in an optical lattice is very reminiscent of the
same cooling process introduced for ions. In an optical lattice atoms are bound
in optical traps with dimensions of λ/2, where λ is the optical wavelength. If the
trapping potential is sufficiently deep, the atomic energy is restricted to narrow
bands in the harmonic optical potential. By careful choice of the laser parameters,
atoms can be pumped toward the lowest vibrational state and thus cooled.
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Figure 1.35 Atoms in different magnetic substates are cou-
pled by Raman transitions, which are resonant due to a
Zeeman shift of the magnetic substates. By optical pumping
atoms can be pumped back to the lowest state, thus making
the cooling cycle complete [58].

To utilize the band structure a method was proposed by Hamann et al. [57]. Here
we will describe the 3D-version of the same scheme by Kerman et al. [58], which
is shown schematically in Figure 1.35. A far detuned optical lattice is used to trap
the atoms in different MF states. A small magnetic field shifts different MF states
with respect of each other and by introducing a small angle between the magnetic
field axis and the optical lattice, the light of the optical lattice induces Raman
transitions between different MF states. By using the appropriate magnetic field,
the vibrational state n of magnetic substate MF = 3 can be made resonant with state
n − 1 of MF = 2 or n − 2 of MF = 1. In the Raman process the atoms loses one or
two quanta of vibrational energy. If the atom in state MF = 1 is optically pumped
to the excited state by an additional σ+ laser beam and subsequently decays to
the MF = 3 state by spontaneous emission, the vibrational quantum number is
conserved in the Lamb–Dicke regime. Thus the atoms loses in this process (2
Raman transitions followed by absorption and spontaneous emission) 2 quanta
of vibrational energy. Since the process can be repeated, the atoms can be cooled
to the lowest vibrational state and spin polarized in the same time. Note that by
choosing the optical pumping beam resonant from the F = 3 ground state to the
F = 2 upper state, atoms in the MF = 3 ground state cannot be optically pumped
and thus are decoupled in the lowest vibrational state from the light. To depopulate
the lowest state of the MF = 2 ground state, a small π component is added to the
optical pumping beam.

This cooling in an optical lattice has two advantages over cooling of free atoms in
an optical molasses. Firstly, atoms are isolated in the optical lattice from each other
and thus cannot undergo inelastic collisions, which heat the atoms. Secondly, since
the reabsorption of spontaneously emitted photon by the other atoms is strongly
reduced, the heating of the atoms in this process is reduced [59]. In Figure 1.36 it
is shown that the heating of the atoms of 8 nK/1010atoms/cm3 is strongly reduced
due to the optical lattice compared to 600 nK/1010 atoms/cm3 for optical molasses.
This way phase-space densities have been obtained for Cs of 1/500, which is 3
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Figure 1.36 Phase-space density ρ as a function of the den-
sity n for Raman sideband cooling. Circles indicated data
points and solid line is a fit to the data with a heating rate
of 8 nK/1010atoms/cm3. For comparison, dotted line indi-
cates the results for optical molasses, whereas dashed line
indicate the result for ‘‘gray’’ optical molasses [58].

orders of magnitude larger compared to ordinary optical molasses, but still 2 orders
of magnitude away from quantum degeneracy. A pulsed version of this scheme as
implemented by Han et al. [60] yielded a phase-space density of 1/30, still short of
quantum degeneracy.

1.10.2
Trapping Atoms with a CO2 Laser

Another way to trap atoms in optical fields is the QUasi-ElectroStatic Trap (QUEST),
where the light of a CO2 laser is used. Although the light of a CO2 laser at
λ = 10.6 µm is far detuned from the atomic resonance in many atoms, the lasers
are very powerful (P ≈ 10 W) and can be focused down to small spotsizes (w ≈ 50
µm), which yields a very high intensity. This provides a trap depth of the order
of 100 µK. Since the light is detuned so far from resonance, the scattering rate of
photons is negligible.

The QUEST trap has been studied extensively and the results are reviewed by
Grimm et al. [61]. Recently, Barrett et al. [62] succeeded in using the QUEST trap
to obtain quantum degeneracy. They loaded about 30 × 106 atoms in an MOT
and cooled the atoms by sub-Doppler cooling before being loaded in the QUEST
trap. In the trap the initial phase-space density ρ is 1/200, which is much higher
than the usual. It then takes about 2 s to ramp down the power of the lasers and
evaporatively cool the atoms over the BEC transition point, as shown in Figure 1.37.
The number of condensed atoms is about 3.5 × 104. Recently, the group of Grimm
in Innsbruck has succeeded in obtaining in a QUEST trap BEC for Cs. BEC for Cs
has been searched for by many groups, but due to the special collision properties of
the element at low energies large inelastic collision losses in magnetic traps have
excluded evaporative cooling to the BEC transition point. In the QUEST atoms
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Figure 1.37 Absorption images of (a) atoms above the BEC
transition point (P = 480 mW), (b) atoms below the transi-
tion point (P = 260 mW), and (c) atoms in a pure conden-
sate (P = 190 mW). Here P denotes the power of the CO2

laser beam at the end of the evaporation cycle [62].

can be trapped in the lowest hyperfine state, where two-body inelastic losses are
inhibited.

1.11
Conclusions

In this chapter, we have described the laser cooling and trapping techniques that
have been used to cool and trap alkali-metal atoms for the attainment of BEC. We
have emphasized the principles of the techniques used and described the most
salient experimental results. Laser cooling and trapping is not only used to Bose
condense atoms, but also is used in many experiments as a primary tool to obtain
atoms with sufficient density and low temperatures to observed novel phenomena
that cannot be studied otherwise. Based on the many experimental groups that
work in this area, and the awarding of the Nobel prize twice in this field in the
last 5 years, the field is very active and promises to deliver many new results in the
years to come.
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Appendix
A Cooling Limits

In the tables in this appendix, characteristic values are given for the most important
elements, which are laser cooled and trapped. In the case of metastable helium,
two values are given, since there are two optical transitions, which can be used for
laser cooling and trapping.

Table A.1 Spectroscopic data for optical transitions that are used for laser cooling.a

H He∗ He∗ Li Ne∗ Na

Mass M 1 4 4 7 20 23

Wavelength λ (nm) 121.57 1083.0 388.86 670.08 640.2 589.0
Lifetime τ (ns) 1.6 97.85 98.38 27.3 19.42 16.1
Decay rate γ (106/s) 625.0 10.2 10.2 36.6 51.5 62.1
Force Fmax (10−21 N) 1703.0 3.12 8.7 18.1 26.6 34.9
Acceleration amax 106 m/s2 1017.0 0.47 1.30 1.55 0.80 0.94

Ar∗ K Kr∗ Rb Xe∗ Cs

Mass M 40 39 84 85 132 133

Wavelength λ (nm) 811.5 766.49 811.3 780.0 881.9 852.0
Lifetime τ (ns) 27.3 27.3 28.6 26.5 33.0 30.6
Decay rate γ (106/s) 36.6 36.6 34.9 37.7 30.3 32.7
Force Fmax (10−21 N) 14.9 15.8 14.3 16.0 11.4 12.7
Acceleration amax 106 m/s2 0.22 0.24 0.10 0.11 0.052 0.058

aFrom the spectroscopic data the maximum force and acceleration of the atoms can be calculated.

Table A.2 Characteristic values for the excitation of the elements with laser light.a

H He∗ He∗ Li Ne∗ Na

Transition energy �ω0 (eV) 10.199 1.144 3.188 1.850 1.937 2.105
wavenumber k (106/m) 51.684 5.802 16.158 9.377 9.814 10.667
Decay rate γ (106/s) 625 10.2 10.2 36.6 51.4 62.1
Cross section σge (10−15/m) 7.1 560.0 72.2 214.4 195.7 165.6
Saturation intensity Is (W/m2) 72362 1.67 35.96 25.33 40.82 63.23

continued overleaf
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Table A.2 Continued.

Ar∗ K Kr∗ Rb Xe∗ Cs

Transition energy �ω0 (eV) 1.528 1.618 1.528 1.590 1.406 1.455
Wavenumber k (106/m) 7.743 8.197 7.745 8.055 7.125 7.374
Decay rate γ (106/s) 36.6 36.6 35.0 37.7 30.3 32.7
Cross section σge (10−15 m2) 314.4 280.5 314.3 290.5 371.3 346.6
Saturation intensity Is (W/m2) 14.26 16.92 13.62 16.54 9.19 10.99

aThe cross section and saturation intensity are valid for the strongest transition.

Table A.3 Cooling limits for the velocity and temperature of laser cooling
for different elements.a

H He∗ He∗ Li Ne∗ Na

Capture limit:
Velocity vin (m/s) 12.09 1.76 0.63 3.91 5.25 5.82
temperature Tin (mK) 17.7 1.49 0.19 12.9 66.2 93.8

Doppler limit:
velocity vD (m/s) 4.44 0.28 0.28 0.41 0.29 0.29
temperature TD (µK) 2386 39.0 38.8 139.9 196.7 237.2

Recoil limit:
velocity vr (m/s) 3.25 0.092 0.26 0.085 0.031 0.029
temperature Tr (µK) 1285 4.08 31.6 6.07 2.34 2.40

Ar∗ K Kr∗ Rb Xe∗ Cs

Capture limit:
velocity vin (m/s) 4.73 4.47 4.51 4.68 4.25 4.43
temperature Tin (mK) 107.6 93.6 205.8 224.2 287.1 314.0

Doppler limit:
velocity vD (m/s) 0.17 0.17 0.11 0.12 0.085 0.088
temperature TD (µK) 139.9 139.9 133.5 144.1 115.7 124.8

Recoil limit:
velocity vr (m/s) 0.012 0.013 0.006 0.006 0.0034 0.0035
temperature Tr (µK) 0.73 0.84 0.35 0.37 0.19 0.20

aThe capture limit is characteristic for the range of velocities that can be captured in optical molasses.
The Doppler limit is the limit for cooling on a two-level atom. The recoil limit is the limit for laser
cooling using sub-Doppler processes.


