
Preface to 1st Edition

Control abstraction was the message of the first programming revolution seen in
high-level programming languages such as Algol and Pascal. The focus of the next
revolution was data abstraction, which proposed languages such as Modula and Ada.

The object-oriented revolution began slowly in the 1960s with the programming
language Simula, but moved onto more languages such as Smalltalk, Objective-C
and C++. Java is almost a hybrid between Smalltalk and C++, and has gained
widespread acceptance due to its association with the Internet, its availability to a
large user base and reusable libraries for programming in a graphical environment.

Our programming lineage has passed through Pascal, C and C++. As with
many other programmers, good run-time checks with automatic memory manage-
ment and a reusable API made Java a very attractive option. After a half-day on the
original Java Whitepaper and the early Java online tutorial, we were sold on the Java
bandwagon and already writing code. In another two days’ time, we were using
the Abstract Windowing Toolkit (AWT) package for graphical applications. In
situations where there is no large investment into older languages, we are quite
happy to abandon them completely.

Effective programming in Java comes from understanding three key areas –
object-oriented concepts, the syntax and semantics of the Java programming language
and the Java Application Programming Interface (API). This is our emphasis when
we conduct professional courses, and in this book as well.

Much of the material in this book is based on previous courses which we
have conducted over the past two years to the industry and the National University
of Singapore (NUS). Courses conducted for the industry last about 5 to 7 days,
depending on the amount of coaching that participants require. In the Department of
Information Systems and Computer Science at NUS, a course on “Object-Oriented
Methods” runs over 13 weeks.

As you might have noticed, we have taken to Java as ducks to water. Java has
allowed us to think about and specify object behavior. This results in executable
code which is merely secondary. What is important is the clean specification of
object behavior. Similarly, in getting accustomed to working with objects, we
believe that you will enjoy it too.

Preface to 2nd Edition

Since publishing the first edition almost 10 years ago, we have seen Java being used
in many high school and university programming courses. Further, many projects
now use Java as the implementation language. Similarly, at the Institute of Systems
Science, we have seen professional developers warming up to Java for the first time
in 1998, to those who use Java in their daily work in 2007.

We have thus updated the material to cover J2EE topics such as JDBC, RMI,
Serialization and Java Servlets. We have also added a chapter on Generics as the
Java language evolved to allow this elegant feature.

For those who might be embarking on a Java journey now, we wish you a
pleasant journey and a well-used road map. Many have taken this journey before and
are enjoying the fruits of their learning investment.

2
Object, Class, Message and Method

We had our first introduction to objects, message and method in Chapter 1. Another
concept closely associated with the concept of objects is class. In object-oriented
programming, a class is a definition template for structuring and creating objects.

In this chapter, we will discuss the concept of object, message, method and
class and how these concepts are used in a computer model.

2.1 Objects and Class

In Chapter 1, we introduced Benjamin. Now, meet Bernie, another customer at
HomeCare. As customers of HomeCare, Benjamin and Bernie share some similar
information. For example, both have a name, an address, and a budget—information
that is relevant when describing customers. This information is known as object
attributes.

An object attribute definition allows for objects to have independent attribute
values. For example, Benjamin may have a larger budget and thus a larger budget
value (say $2000) than Bernie whose budget may be $1000. Collectively, the values
of an object’s attributes represent the state of the object.

Besides attributes, Benjamin and Bernie also exhibit some behavior typical of a
customer. For instance, Benjamin and Bernie execute a method when making a
purchase. Let us call this method purchase(). The method purchase() is made up
of a set of operations that Benjamin and Bernie would use to send a purchase request
to a salesperson.

Structurally, Benjamin and Bernie can be represented as follows:

8 Object-Oriented Programming and Java

name, address and budget are attributes while purchase() and getBudget()

are methods of the two objects. Note that both objects share a common definition of
attributes and methods. In fact, all customers of HomeCare share the same set of
attribute and method definitions. They all have attributes name, address and budget,
and methods purchase() and getBudget(). In defining these objects, a common
definition known as class is used.

A class is a definition template for structuring and creating objects with the
same attributes and methods. Benjamin and Bernie, being customers of HomeCare,
can therefore be defined by a class called Customer as follows:

One major difference between objects and class is in the way attributes and

methods are treated in objects and classes. A class is a definition about objects; the
attributes and methods in a class are thus declarations that do not contain values.
However, objects are created instances of a class. Each has its own attributes and
methods. The values of the set of attributes describe the state of the objects.

Let us now examine the salespersons. Salespersons also have attributes and
methods. Sean and Sara are two salespersons at HomeCare. They are thus capable of
a behavior typical of a salesperson, for example, taking orders from customers. To
fulfill their role as salespersons in a purchase transaction, Sean and Sara perform a
method. We shall call this method takeOrder(), and represent Sean and Sara as
follows:

Benjamin as an Object
 Attributes:
 name = Benjamin
 address = 1, Robinson Road
 budget = 2000
 Methods:
 purchase() {send a purchase request to a salesperson}
 getBudget() {return budget}
Bernie as an Object
 Attributes:
 name = Bernie

 budget = 1000
 Methods:
 purchase() {send a purchase request to a salesperson}
 getBudget() {return budget}

Class Customer
 Attributes:
 name
 address
 budget
 Methods:
 purchase() {send a purchase request to a salesperson}
 getBudget() {return budget}

 address = 18, Sophia Road"
""

""
" "

""

"
" "

Object, Class, Message and Method 9

Being salespersons, Sean and Sara share similar attributes and methods as

expected. Like the customers, their definition can be described by a class called
SalesPerson with the following representation:

Note that the definition of the SalesPerson class is different from the Customer

class since customers and salespersons behave differently—customers make orders
and salespersons take orders.

2.2 Message and Method

Objects communicate with one another by sending messages. A message is a method
call from a message-sending object to a message-receiving object. A message-
sending object is a sender while a message-receiving object is a receiver.

Sean as an Object
 Attributes:
 name = Sean
 Methods:
 takeOrder() {
 check with warehouse on stock availability
 check with warehouse on delivery schedule
 if ok
 then {instruct warehouse to deliver stock(address, date)
 return ok}
 else return not ok
 }

Sara as an Object
 Attributes:
 name = Sara
 Methods:
 takeOrder() {
 check with warehouse on stock availability
 check with warehouse on delivery schedule
 if ok
 then {instruct warehouse to deliver stock(address, date)
 return ok}
 else return not ok
 }

Class SalesPerson
 Attributes:
 name
 Methods:
 takeOrder() {
 check with warehouse on stock availability
 check with warehouse on delivery schedule
 if ok
 then {instruct warehouse to deliver stock(address, date)
 return ok}
 else return not ok
 }

""

""

10 Object-Oriented Programming and Java

An object responds to a message by executing one of its methods. Additional

information, known as arguments, may accompany a method call. Such para-
meterization allows for added flexibility in message passing. The set of methods
collectively defines the dynamic behavior of an object. An object may have as many
methods as required.

2.2.1 Message Components

A message is composed of three components:

• an object identifier that indicates the message receiver,
• a method name (corresponding to a method of the receiver), and
• arguments (additional information required for the execution of the method).

Earlier we saw that Benjamin sent a message to Sean when Benjamin wanted to

buy a sofa set. The reasonable location for Benjamin to send the message to Sean is
in Benjamin’s purchase() method as shown below (indicated in bold):

The message Sean.takeOrder(who, stock, address, date) is interpreted as
follows:

• Sean is the receiver of the message;
• takeOrder is a method call on Sean;

2.2.2 Method

A message is valid if the receiver has a method that corresponds to the method
named in the message and the appropriate arguments, if any, are supplied with the
message. Only valid messages are executed by the receiver. The takeOrder()
message is valid because Sean has a corresponding method and the required
arguments (who, stock, address, date) are supplied with the message.

Sean’s takeOrder() method is made up of a set of operations (indicated in
bold below) as follows:

Benjamin as an Object
 Attributes:
 name = Benjamin
 address = 1, Robinson Road
 budget = 2000
 Methods:
 purchase() {

 }
 getBudget() {return budget}

""
" "
" "

• "Benjamin", "stock", "address", "date" are arguments of the message.

 Sean.takeOrder("Benjamin", "sofa", "1, Robinson Road",
 "12 November")

Object, Class, Message and Method 11

In the above description, a message is sent from Sean to a Warehouse object to

inquire on the order and delivery schedule in Sean’s takeOrder() method. If both
conditions are satisfied, Sean will instruct the Warehouse object to arrange for
delivery.

How Sean carries out the method is known only to Sean. Neither Benjamin nor
the other customers know how Sean does it. For example, to check on the stock and
delivery schedule with the warehouse, Sean may have called the warehouse over the
phone or he may have checked the information against a list he had gotten from the
warehouse. What Benjamin knows of Sean is that Sean is capable of responding to
his request since his message to Sean is acceptable by Sean.

In object-oriented programming, Benjamin and Sean are said to have followed
the principle of information hiding—How Sean is going to satisfy Benjamin’s request
is hidden from Benjamin. In this way, Sean is free to select whatever way he chooses
to satisfy Benjamin’s request; he may phone the warehouse or look up the pre-
prepared list and vice versa.

2.2.3 Client and Server

By executing a method, a message-receiving object (such as Sean) is said to serve
the message-sending object (such as Benjamin). A message-receiving object is thus a
server to a message-sending object and the message-sending object is thus a client of
the server.

takeOrder

result

Benjamin Sean

yes/no

available?

send
ok

Figure 2-1: Object communication process.

In any object communication, there are at least a client and a server. The client

sends a message to request a server to perform a task. The task is fulfilled by a

Sean as an Object

 Methods:
 takeOrder(who, stock, address, date) {
 check with warehouse on stock availability
 check with warehouse on delivery schedule
 if ok then {
 instruct warehouse to deliver stock to address on date

 } else return not ok
 }

 Attributes:
 name = Sean " "

 return ok

12 Object-Oriented Programming and Java

message-corresponding method of the server. In sending a message to the ware-
house, Sean is said to be the client and the warehouse is said to be the server.

Benjamin, Sean, and the warehouse are three objects involved in a communi-
cation process. Benjamin is the initiator, with Sean and the warehouse as partners in
the communication process. Figure 2-1 depicts a typical communication process
amongst objects.

2.3 Creating Objects

In object-oriented programming, objects are created from classes. Instances of
Customer objects are created from a Customer class and SalesPerson objects from a
SalesPerson class.

Created object instances are individuals with their own state. To illustrate, let
us consider the example of counters. A counter is a device that keeps account of the
number of times an event has occurred. It has two buttons: an initialize button that
resets the counter to 0, and an add button that adds 1 to its present number. Figure 2-2
shows a counter with a number 10.

initialize add

10

Figure 2-2: A counter.

Structurally, the first counter object can be represented as follows:

Figure 2-3 shows two more counters.

initialize add

2

add

7

initialize

Figure 2-3: Two Additional Counters

Like the first counter, these two counters may be reset to zero and incremented

through the initialize and add buttons respectively, and represented as follows:

First Counter Object
 Attributes:
 number = 10
 Methods:
 add() {number = number + 1}
 initialize() {number = 0}
 getNumber() {return number}

Object, Class, Message and Method 13

All the three counters share the same definition of attributes and methods, and

like in the previous examples, they can be defined by a class as follows:

The Counter class has:

• an attribute, number;
• an initialize() method that causes a counter to reset its number to 0.
• an add() method that causes a counter to add 1 to its number; and
• a getNumber() method that returns the current value of the attribute

number.

Suppose a new object is created from the Counter class. Although the new

Counter object would have the same definition of attributes and methods as the
previous three counters, its attribute value may not be the same as the other counters.
This suggests that the state of the counters may be different from one another.

For the newly created fourth Counter object, it has a state represented by the

attribute number with a value of 0, the value at initialization:

Second Counter Object
 Attributes:
 number = 2
 Methods:
 add() {number = number + 1}
 initialize() {number = 0}
 getNumber() {return number}

Third Counter Object
 Attributes:
 number = 7
 Methods:
 add() {number = number + 1}
 initialize() {number = 0}
 getNumber() {return number}

Class Counter
 Attributes:
 number
 Methods:
 add() {number = number + 1}
 initialize() {number = 0}
 getNumber() {return number}

Fourth Counter Object
 Attributes:
 number = 0
 Methods:
 add() {number = number + 1}
 initialize() {number = 0}
 getNumber() {return number}

14 Object-Oriented Programming and Java

Note that the attribute value of the fourth Counter object is different from the

other three counters.

2.4 Summary

In this chapter, we discussed:

• Objects are defined by classes.
• Objects from the same class share the same definition of attributes and

methods.
• Objects from the same class may not have the same attribute values.
• Objects from different classes do not share the same definition of attributes

or methods.
• Objects created from the same class share the same definition of attributes

and methods but their state may differ.
• A method is a set of operations executed by an object upon the receipt of a

message.
• A message has three components: an object identifier, a method name and

arguments.
• A message-receiving object is a server to a message-sending object known

as a client.

2.5 Exercises

1. Distinguish the terms “Object” and “Class”.
2. Consider the scenario of buying flowers from a florist. Outline the

objects in such a transaction together with the messages exchanged.
3. Given a class definition Rectangle below, describe the structure of

any 3 instances of Rectangle.

4. How would you implement the concept of class and method in a

non-object-oriented programming language such as COBOL,
Pascal or C?

5. Define using the following structure a class definition for cars. A
car generally has abilities to start, move forward, move backward,

class Rectangle {
Attributes:
 length
 width
Methods:
 getLength() { return length }
 getWidth() { return width }
 draw() { ... }

 }

Object, Class, Message and Method 15

stop and off. A car can also return to its relative location. The
starting location is a value 0.

6. Distinguish between a client and a server.
7. A client communicates with a server by sending a ___________ to

the server. The ___________ is a call on a ___________ of the
server.

class Car {
Attributes:
 ...
Methods:
 ...

}

