
‘‘Form follows function.’’
(Louis Henry Sullivan, Architect, 1896)
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Molecular Objects and Design Objectives

An ultimate goal of computer-aided molecular design (CAMD) is to propose

novel substances that exhibit desired properties, for example a particular biologi-

cal activity profile including selective binding to a single target or desired activity

modulation of multiple targets simultaneously. This design certainly must in-

clude proper physicochemical as well as ADMET (absorption, distribution, me-

tabolism, excretion, and toxicity) properties of the novel compounds. An

attempt to create molecules from scratch is called ‘‘de novo design’’.
There are several possible strategies that can be followed in order to succeed in

this game. Important concepts and prominent examples of the actual design pro-

cess will be presented and discussed. In any case, the molecule designer must

become familiar with the basic building blocks and properties of ‘‘druglike’’ mol-

ecules (Chapter 1), and the principles of ligand–receptor interaction (Chapter 2).

1.1

What is a Molecule?

Irrespective of the chosen design approach, one must have a profound under-

standing of the structure–activity relationship (SAR) that guides the receptor–

ligand interaction process. This in turn requires an adequate representation of

molecular structures and their physicochemical properties to allow the extraction

of molecular features that are responsible for a certain compound property or

pharmacological behavior. Ideally, we need to understand the various molecular

interactions of a particular molecule in different environments over time, which

can be addressed by molecular dynamics.

Consequent physical treatment of molecule dynamics can, in principle, be

achieved based on solutions of the Schrödinger equation (Eq. 1.1):

ĤC ¼ EC ð1:1Þ

where Ĥ is the Hamilton operator defining the operations that need to be per-

formed with the set of wavefunctions C (psi) of the electrons of a molecular

system, and E is the system’s potential energy; C2 represents the electron density.
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Each C and its corresponding energy relate to a single electron. They are called

‘‘one-electron orbitals’’ denoted as 1s, 2s, 2p, etc.

The Schrödinger equation provides a theoretical foundation for ab initio quan-

tum chemical and quantum mechanical (QM) calculations. The term ‘‘ab initio’’
indicates that no empirical values are required and a solid physical and mathe-

matical framework can be applied. QM calculations represent the formally most

accurate way of calculating energies of molecular systems, allowing an assess-

ment of conformational stability, chemical reactivity, etc. The problem is, how-

ever, that exact solutions of the Schrödinger equation cannot be obtained for

molecules that are more complex than H2
þ. For other molecules, approximations

are required. For example, the Born–Oppenheimer approximation treats atom

nuclei as fixed, and only the movement of electrons is taken into consideration.

A further approximation is the Hartree–Fock method that is grounded on solving

the Schrödinger equation for each electron of the molecular system individually,

thereby leading to single-electron wavefunctions (orbitals). Finally, semi-empirical

approximations lead to the Hückel theory of molecular orbitals. Molecular orbital

(MO) techniques result in a number of important molecular properties, for ex-

ample partial atomic charges and the electrostatic potential, which can be used

to describe molecule–molecule interactions.

QM methods are precise but rather slow, meaning they are computationally too

expensive to use for calculating the potential energy of ‘‘large systems’’ contain-

ing more than approximately 100 atoms. However, ‘‘hybrid potentials’’, that is,

combinations of methods that treat different parts of a system at different levels

of precision, permit QM calculations even for larger molecules.

1.2

Simplistic Molecular Representations

For drug design purposes, simplification and abstraction from the rigorous phys-

ically motivated conception of molecules goes even further. One reason is the

still comparatively long computing time needed to treat a single molecule. Long

computation times are acceptable if a calculation has to be done only once or for

single or only a few molecules. In early phases of drug design, many thousands

or millions of molecules need to be analyzed and ‘‘virtually screened’’ – here

QC/QM methods do not find their application domain (yet). Instead, appreciably

simpler molecular models and representations are employed.

A drastic simplification is in fact to neglect time-dependent behavior: Typically,

molecules are treated as static two-dimensional (2D) molecular graphs or as

three-dimensional (3D) space-filling rigid bodies with a defined surface (Fig.

1.1). While such models facilitate rational molecular design it is important to

keep in mind that they represent only crude approximations of the ‘‘true nature’’

of molecules. This is one reason why an appropriate molecule description

(choice of molecular ‘‘descriptors’’) is essential for successful SAR modeling. As

a consequence, the particular molecular representation that allowed for success-
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ful SAR modeling in one drug design project is not necessarily generally appli-

cable. Rather it should always be considered as a context-dependent model with a

local validity domain only.

1.3

The Molecular Surface

QM teaches us that atoms and molecules possess a ‘‘soft’’ hull based on electron

density. A useful – though not strictly accurate – simplification for molecular

design purposes is to treat atoms and molecules as objects with a ‘‘hard’’ surface.

Important concepts are molecular surfaces and surface properties, as molecules

are thought to interact with each other via their surfaces. Calculation of surface

properties, in particular the electrostatic surface potential, has received broad

attention by computational chemists. Surfaces define an ‘‘inside’’ and an ‘‘outside’’

of a molecule and greatly facilitate modeling of molecular objects as 3D bodies

with a finite shape and volume. Grounded on the work of Lee and Richards

(1971) the ‘‘Solvent Accessible Surface’’ (SAS) is the most frequently used sur-

face representation in drug design (Fig. 1.2). This is related to the aqueous

environment in which pharmacokinetic and pharmacodynamic processes like

ligand–receptor interaction, membrane permeation or drug metabolism take

Fig. 1.1 Simplified representations of

molecules. Left: two-dimensional (2D) sketch

with ‘‘implicit’’ (suppressed) hydrogen atoms.

Right: surface representations; (a) and (b)

show three-dimensional (3D) van-der-Waals

surface models with ‘‘explicit’’ hydrogens

(CPK model according to Corey, Pauling and

Koltun). In the CPK models, carbon and

chlorine atoms are shown in green, hydrogens

in grey, and the fluorine atom in turquoise. In

(c) a surface representation of acetylsalicylic

acid (trade name Aspirin�) is depicted, where

the coloring indicates the curvature of the

surface (blue: convex, green: concave). This

surface model was calculated using Gaussian

curve fitting and results in an analytically

treatable surface model. Such surface models

are used for comparison of molecular shapes.
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place. Molecular representations and the choice of appropriate descriptors must

take this into account. The Connolly algorithm is the most frequently used

method for SAS calculation (Fig. 1.2a). It leads to a smoothed representation of

the van der Waals (vdW) surface which can be obtained by simply representing

each atom by a ball with a fixed radius, its vdW radius (Table 1.1). These radii

Fig. 1.2 Definition of molecular surfaces.

For calculation of the solvent-accessible

molecular surface (SAS) several concepts

exist. According to Richmond (1984), the SAS

can be obtained simply through an extended

vdW surface. For most current small-molecule

design applications Connolly’s definition is

employed. The Connolly algorithm uses a

virtual solvent molecule represented as a

probe sphere that is rolled over the van-

der-Waals (vdW) surface of the molecule.

Usually, the radius of the sphere is chosen

to be 1.4 Å, which is the effective radius of

a water molecule. The resulting trace defines

the SAS, which consists of parts of the

vdW surface and the ‘‘smoothing’’ trace of

the probe sphere (a). In (b) parts of the SAS

of a protein structure are shown.

Table 1.1 Van der Waals radii of the most abundant atoms in druglike molecules.

Element symbol vdW radius/Å Approximate abundance in drug molecules (%)a)

H 1.20

C 1.85 37.2

O 1.40 7.6

N 1.54 4.8

P 1.90 0.7

S 1.85 0.6

F 1.35 0.5

Cl 1.81 0.5

a) Values were calculated from molecules contained in DrugBank

v. 10/2005 (URL: http://redpoll.pharmacy.ualberta.ca/drugbank/).
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can be experimentally determined from the distances of nonbonded atoms in

crystal lattices.

Average bond lengths and strengths of prominent covalent bonds in druglike

molecules are listed in Table 1.2. A schematic of two atoms approaching each

other and the corresponding potential energy (Morse potential) of covalent bond

formation is shown in Fig. 1.3.

Most drug–receptor interactions are reversible and dominated by non-covalent

interactions. We will discuss non-covalent interactions in detail later, as the

rational design of non-covalent interaction patterns is one of the most important

parts in molecular design. Note that among the molecular design community

atomic distances are usually given in Ångström units (1 Å¼ 10�10 m¼ 0.1 nm¼
100 pm).

Selected bond angles are given in Table 1.3. Such data provide the basis for mo-

lecular modeling and the atom-by-atom construction of new molecules. They are

contained and tabulated in respective software packages, some of which allow for

manual editing which can be essential if non-standard atom or bond types occur

in a molecule. Prominent examples of molecular modeling packages that contain

methods for molecular dynamics simulations and are often used as a reference

for atom type definitions include AMBER (‘‘Assisted Model Building with En-

ergy Refinement’’, by P. Kollman et al.), SYBYL (Tripos Inc.), and CHARMM

(‘‘Chemistry at HARvard Macromolecular Mechanics’’, by M. Karplus et al.).

Table 1.2 Average covalent bond lengths and their average dissociation

energy (‘‘bond energy’’). Note that the energy values may differ

depending on the substitution pattern.

Bond type Bond length/Å Energy/kJ molC1

CaC 1.54 348

CbC 1.34 614

CcC 1.20 839

CaH (sp3-H) 1.11 415

NaN 1.46 170

CaN 1.47 293

SO2aN 1.68 308

CaS 1.82 272

CaO 1.43 358

CbO 1.23 799

C(sp3)aH 1.09 413

N(sp3)aH 1.01 391

OaH 0.96 366

CaF 1.35 485

CaCl 1.77 328

CaBr 1.94 276

CaI 2.14 240
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Fig. 1.3 Covalent bond formation between two hydrogen atoms

(original figure by Prof. C. Chieh, adapted with kind permission).

Table 1.3 Bond geometry.

Bond type Bond angle

(sp
3
)

109.58

(sp
2
) 1208

(sp) 1808

CCN: 1228
CNC: 1168
peptide bond: planar

6 1 Molecular Objects and Design Objectives



1.4

Molecular Shape

One important prerequisite for tight ligand–receptor interaction – and conse-

quently ligand design – is shape complementarity. Surface representations of both

the receptor and the ligand thus reflect a level of abstraction from the atomic

structure that plays a pivotal role in molecular design. Molecules interact with

each other via their surfaces and their surface properties. Figure 1.4 shows the

Connolly surface of the active site of the enzyme dihydrofolate reductase

(DHFR) together with the inhibitor Methotrexate. Methotrexate’s anti-tumor

activity is a result of DHFR inhibition, as DHFR inhibition leads to inhibition

of DNA synthesis and hence to the arrest of cellular replication. The active site

of the enzyme is filled by the inhibitor, Methotrexate fits perfectly into the bind-

ing pocket. As with many drugs, this receptor–ligand interaction is probably not

strictly selective, since Methotrexate exhibits other pharmacological effects, for

example activity against rheumatoid arthritis via an unknown mechanism. Shape

complementarity between a ligand and a binding pocket is a necessary though

not sufficient attribute of a selective interaction. Proteins that have similar biolog-

ical function often have similar binding pockets or active sites (in the case of

enzymatic function). This similarity can be modeled by the analysis of comple-

mentary surface patches of known receptor–ligand pairs. The most widely used

public sources of information about such interactions are the Protein Data Base

(PDB) and Relibase.

Fig. 1.4 Cocrystal structure of DHFR from the bacterium Lactobacillus

casei complexed with Methotrexate (PDB identifier 3DFR) at a resolution

of 1.7 Å. Parts of the binding pocket are shown with the protein surface.

The inhibitor is drawn as a stick model. The 2D structure of Methotrexate

is shown on the right.
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1.5

The Topological Molecular Graph

A molecule can be represented in the form of a graph drawing. The molecular

graph and atom types represent principal concepts for empirical molecule repre-

sentation and molecule design. Atoms are the vertices of the graph, and chemical

bonds are the edges (Fig. 1.5). From the molecular graph matrix representations

of molecular structure and topology can be derived. The connection table is a

squared matrix that contains information about the type of bond connecting

atoms that are neighbors in the graph representation. It is completely defined by

the hydrogen-depleted, topological molecular graph. From this table many second-

ary matrices can be derived, which provide relevant information for automatic

molecule design. Two such matrices are particularly important for molecule

design, the adjacency matrix M and the distance matrix D. Both are squared sym-

metric matrices. The adjacency matrix contains the value 1 at positions repre-

senting adjacent nodes in the molecular graph, and 0 at all other positions. The

topological distance matrix contains the numbers of bonds along the shortest path

connecting the two respective atoms that define a position in the matrix. A dis-

tance matrix can also be used to represent a 3D conformation of a molecule; only

this time topographical (spatial) distance values are given in Ångström units (Å).

Such matrix representations of molecular features are ideally suited for computer

processing. The adjacency matrix is defined by the constitution of a molecule,

the distance matrix by its conformation. An example is given for the structure

Fig. 1.5 (a) 2D-structure of acetylsalicylic

acid (Aspirin�), a potent inhibitor of

cyclooxygenases and phospholipase A2;

(b) its molecular graph representation with

atom numbers; (c) the phospholipase

A2-bound conformation (from PDB struc-

ture 1OXR at 1.93 Å resolution, shown as a

secondary structure cartoon); (d) the con-

formation in the acetylsalicylic acid crystal

(from Cambridge Structure Database, CSD);

(e) multiple superimposed conformations

obtained from a semiempirical calculation.

Note that none of these calculated confor-

mations correspond to the annotated protein-

bound conformation. Keep in mind that atom

type assignment on the basis of an electron

density map obtained by X-ray crystallography

can be ambiguous and result in errors.
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of acetylsalicylic acid (Fig. 1.5). Canonical atom numbers (Fig. 1.5b) are obtained

by sophisticated algorithms, many of which are based on the Morgan algorithm

(see cheminformatics texts for details).

The connection table of acetylsalicylic acid.a)

C 1 2 3 4 5 6 7 8 9 10 11 12 13

1 C 2 0 0 0 1 0 0 0 0 0 0 0

2 C 1 0 0 0 0 0 0 0 0 0 0

3 C 2 0 0 0 0 0 0 0 0 0

4 C 1 0 0 0 0 0 0 0 0

5 C 2 0 0 0 1 0 0 0

6 C 1 0 0 0 0 0 0

7 C 1 2 0 0 0 0

8 O 0 0 0 0 0

9 O 0 0 0 0

10 O 1 0 0

11 C 1 2

12 C 0

13 O

a) Contains element symbols on the diagonal; bond order indices on the

off-diagonals (0: no bond, 1: single bond, 2: double bond)

The adjacency matrix of acetylsalicylic acid.a)

M 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 1 0 0 0 1 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0 0

5 0 1 0 0 0 1 0 0 0

6 0 1 0 0 0 0 0 0

7 0 1 1 0 0 0 0

8 0 0 0 0 0 0

9 0 0 0 0 0

10 0 1 0 0

11 0 1 1

12 0 0

13 0

a) Contains only values of 0 (non-adjacent atoms) and 1 (adjacent atoms)
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The topological distance matrix (shortest path in bonds) of acetylsalicylic acid.

D2D 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 1 2 3 2 1 2 3 3 3 4 5 5

2 0 1 2 3 2 3 4 4 4 5 6 6

3 0 1 2 3 4 5 5 3 4 5 5

4 0 1 2 3 4 4 2 3 4 4

5 0 1 2 3 3 1 2 3 3

6 0 1 2 2 2 3 4 4

7 0 1 1 3 4 5 5

8 0 2 4 5 6 6

9 0 4 5 6 6

10 0 1 2 2

11 0 1 1

12 0 2

13 0

A 3D distance matrix (distances in Å) of acetylsalicylic acid (cf. Fig. 1.5c).

D3D 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 1.38 2.40 2.78 2.42 1.40 2.49 2.85 3.59 3.66 4.80 4.94 5.93

2 0 1.39 2.40 2.78 2.40 3.75 4.23 4.73 4.13 5.26 5.39 6.36

3 0 1.38 2.40 2.77 4.25 5.06 4.97 3.64 4.70 4.97 5.70

4 0 1.39 2.41 3.76 4.86 4.18 2.38 3.45 3.96 4.37

5 0 1.40 2.49 3.71 2.79 1.36 2.58 3.22 3.60

6 0 1.47 2.44 2.33 2.39 3.62 3.84 4.62

7 0 1.35 1.21 2.83 3.73 4.03 4.69

8 0 2.22 4.17 4.98 5.06 5.93

9 0 2.50 3.18 3.65 3.93

10 0 1.48 2.62 2.31

11 0 1.51 1.22

12 0 2.36

13 0

The Structure Data Format (SDF) was developed by MDL Information Sys-

tems and represents a text-based file format that allows standardized exchange

of molecular structure information. Two- and three-dimensional atom coordi-

nates, the connection table, and molecular property information can be included.

The SDF of the 2D structure of Aspirin is shown in Fig. 1.6 (note that in this ex-
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ample the hydrogen atoms are suppressed. Such a molecule representation is re-

ferred to as an ‘‘implicit hydrogen’’ representation).

1.6

Molecular Properties and Graph Invariants

Any given molecule may be drawn in several equivalent ways, e.g. rotated and

translated on a piece of paper, as different mesomeric forms of aromatic systems,

or as tautomers. The human eye can often see if two drawings represent the

same molecule, that is, when two graphs are isomorphic. However, millions of

molecules in drug design require a fast computational differentiation and identi-

fication of molecular graphs. For this, we must represent any given molecule in a

unique form. Structure normalization is therefore essential prior to computa-

tional analysis.

Topological indices are instances of invariant graph properties (graph ‘‘invari-

ants’’) determined from the graph of a molecule. Basic invariants are, for exam-

Fig. 1.6 The structure data format of the 2D structure of Aspirin.
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ple, the number of vertices and the number of edges. They have received wide

attention in molecular modeling and design. Many topological indices include

or are grounded on the term (Eq. 1.2)

X
i; j

xixj ð1:2Þ

where i and j are vertices (atoms), and x is some vertex property, for example a

physicochemical property or atom type (vide infra). Topological autocorrelation is

such a descriptor (Eq. 1.3). The autocorrelation concept was introduced to the

field of molecular modeling and design by Moreau and Broto (1980) almost 30

years ago. Several molecular descriptors employ this idea, for example the

GRIND descriptors for 3D autocorrelation by Pastor and Cruciani (2000). We will

discuss additional applications of correlation vector coding of molecular features

in Chapter 2.

Ad ¼
1

L

X
fi; jg

for which
Di; j¼d

� � xixj ð1:3Þ

where Ad is a number that expresses the correlation of a property x at a distance

d, scaled by the number of non-hydrogen atoms L. There are other scaling

options, for example division by the number of summations. In this case, Ad

becomes the average autocorrelation 3Ad4.
Calculation of Ad is grounded on the distance matrix D. This index describes

the distribution of a property over the molecular graph or a 3D conformation

if the spatial autocorrelation index is calculated. Autocorrelation is one way to

denote a molecule in a compact form as a numerical vector, for example as

A¼ {A1, A2, A3, A4} which contains the autocorrelation values obtained for atom

pairs spaced one (d¼ 1) to four bonds (d¼ 4) apart (Fig. 1.7). This particular

molecular representation has a further desirable property: it is independent of

the orientation of the molecule – in other words, it represents a graph invariant.
This property provides an important concept for any comparison of molecules: if

we want to compare molecules that do not share a common structure or if we are

not able to find a meaningful alignment of the two structures, we can employ

alignment-free descriptors like topological autocorrelation.

This is certainly of high interest because there are many ways to define an

alignment of molecules, for example by structure, shape or property distribution.

Different alignment techniques most often result in varying superpositioning of

molecules. Obviously, a single ‘‘correct’’ alignment of molecules does not exist.

Alignment-free descriptors circumvent this issue. However, they do not allow for

an unambiguous conversion of the descriptor vector back to the original mole-

cule; they are non-bijective.
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The concept of substructure elements as generic molecular building blocks

can be used as a basis for calculation of molecular properties like ‘‘topological

polar surface area’’ (TPSA) or the n-octanol–water partition coefficient P (Eq.

1.4). The logarithm of the latter, logP, is often referred to as the ‘‘lipophilicity’’

or ‘‘hydrophobicity’’ of a molecule. It can be computed using a large look-up

table of predefined molecular fragments and their experimentally measured

logP contribution to the lipophilicity of a molecule. Currently, approximately

5000 such data records are available. The calculated logP estimation, ‘‘clogP ’’,
employs a weighted sum of the individual fragment contributions present in a

given molecular structure and associated correction factors accounting for poten-

tial interactions between the fragments, which result in modified fragment con-

tributions to the total lipophilicity of the molecule (Eq. 1.5).

logP ¼ log
½C �org
½C �aq

¼ log½C �org � log½C �aq ð1:4Þ

where [C ]org and [C ]aq are the concentrations of a compound in the organic and

aqueous phases of a mixture, usually octanol and water.

clogP ¼
Xn
i¼1

ai fi þ
Xm
j¼1

bjFj ð1:5Þ

where there are ai fragments of type i with their lipophilicity contribution fi, and
bj occurrences of correction factor j with Fj being the correction factor.

Fig. 1.7 Topological autocorrelation vector

representation of two molecules A and B

according to Eq. (1.3). The molecular structure

(a) is converted to the molecular graph with

atom numbers indicated (b), and a vertex

property is assigned (c). Here, electronega-

tivity values were considered as a property

of the vertices in the molecular graph (values

according to Allred-Rochow, note: for molec-

ular electrostatics calculations the electro-

negativity values according to R. S. Mulliken

are typically employed). Despite identical

structure graphs (b) of the compounds their

resulting autocorrelation vectors differ for the

distances of two (A2) and four (A4) bonds

(highlighted values) (d). The values of Ad are

scaled by the number of non-hydrogen atoms

(L¼ 6).
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Several variations of this scheme exist, and different software implementations

vary in their accuracy. For molecules containing known fragments and their con-

tribution factors the accuracy of such clogP methods is remarkably high (squared

correlation coefficient R24 0.97). However, these methods are not perfect and

likely fail for novel molecules.

Until today, far more than one thousand QM and empirical descriptors have

been devised over the past decades, approximating four main aspects of molec-

ular structure and molecular recognition:

• molecular distribution

• molecular shape

• directed interactions

• non-directed interactions

1.7

The Drug-likeness Concept

The term ‘‘druglike’’ describes various empirically found features of molecular

agents that are associated with pharmacological activity. It is not strictly defined

but provides a general concept of what makes a drug a drug. Drug-likeness may

be considered as a complex property representing various physicochemical and

structural features. Several drug-likeness indices have been proposed, most of

which are grounded on two-dimensional molecular structure and calculated

properties. We will present several such indices throughout this text. They can be

used as guidelines for the rational design of lead structures that can be further

optimized to become a drug. Typically, one considers the following basic attri-

butes for the construction of such a structure–property relationship (SPR):

• substructure elements

• lipophilicity (hydrophobicity)

• electronic distribution

• hydrogen-bonding characteristics

• molecule size and flexibility

• pharmacophore features

Lipinski’s rule-of-five (sometimes called ‘‘Pfizer rules’’, because its inventor,

Lipinski, worked at the pharmaceutical company Pfizer) is probably the best

known guideline that helps to raise awareness about properties and structural

features that make molecules more or less drug-like. In pharmaceutical drug

discovery it can help to avoid costly late-stage preclinical and clinical failures.

The guidelines predict that poor passive absorption or permeation of an orally

administered compound is more likely if the compound meets at least two of

the following criteria:

• molecular weight greater than 500 Da

• high lipophilicity (expressed as clogP4 5)
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• more than 5 hydrogen-bond donors (expressed as the sum of OHs and NHs)

• more than 10 hydrogen-bond acceptors (expressed as the sum of Os and Ns)

Figure 1.8 shows the distributions of molecular weight and lipophilicity of

4500 druglike molecules. From these histograms it becomes evident that inter-

preting Lipinski’s ‘‘rules’’ as strict threshold values is not appropriate. They repre-

sent empirically found guidelines for the design of orally bioavailable druglike

molecules. Several additional guidelines have been proposed addressing different

attributes of drugs. For example, a druglike molecule should not

• contain more than 5 rotatable bonds to limit its conformational freedom (this

recommendation is sometimes referred to as the fifth Lipinski rule);

• possess a polar surface area exceeding 120 Å2 to avoid potential bioavailability

problems of a compound;

• have predicted aqueous solubility (logS) below �4 (solubility in mol/l).

These criteria are particularly suited for assessing averaged property values of

sets of molecules (‘‘compound libraries’’), rather than individual agents. For a

particular indication however, the receptor tissue location (for example, in the

brain or periphery) and other criteria must be taken into account, leading to

adjusted (target-related) rules.

With the introduction of high throughput screening (HTS) in the 1970s and

combinatorial chemistry in the early 1990s, a new era in drug discovery emerged.

The synthesis and biological testing of thousands of compounds at comparatively

low costs became feasible. Despite their appeal these techniques have had sur-

prisingly small impact on the derivation of novel drugs and druglike candidates

for lead optimization. This low impact is presumably caused by limited structural

diversity and lack of ‘‘pharmacological relevance’’ of the underlying structures of

many of the combinatorial and screening libraries.

In contrast, natural products represent the richest source of inspiration for the

identification of novel scaffold structures that can serve as the basis for rational

drug design. Among the FDA-approved New Chemical Entities (NCEs) that were

Fig. 1.8 Distribution of calculated molecular weight (MW) and lipo-

philicity (clogP), expressed as a logarithm of the calculated octanol/

water partition coefficient P, for a collection of 4500 selected druglike

molecules containing marketed drugs and drug candidates.
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introduced between 1981 and 2002, 49% were of natural product origin or

were derived from natural products. As Costantino and Barlocco (2006) stated,

‘‘. . . natural products are considered to contain scaffolds with the potentiality to be
privileged structures because in many cases they are synthesized by biological systems
to specifically interact with protein targets.’’ Natural products could thus serve as

biologically validated starting points for combinatorial variation, and combinato-

rial libraries built around these ‘‘privileged structures’’ should facilitate hit and

lead finding.

1.8

Scaffolds, Linkers, and Side-chains

Generally, systematic investigations of molecular scaffolds are used as a way of

measuring the diversity of a compound library. Computer-based analysis revealed

that natural products exhibit a remarkable structural diversity of molecular

frameworks and scaffolds that could be systematically exploited for combinatorial

synthesis. Natural products offer a rich pool of unique molecular frameworks

that complement the known ‘‘drug space’’. They often possess desirable druglike

properties, rendering them ideal starting points for molecular design considera-

tions. Certainly, not all natural product-derived scaffolds will be directly acces-

sible to synthesis due to their inherent structural complexity or substitution

pattern. Still, systematic scaffold analysis can provide medicinal chemists with

ideas about chemotype variations.

In 1996 Bemis and Murcko introduced a formalistic approach for the dissec-

tion of molecules into ‘‘side-chains’’ and ‘‘frameworks’’. According to this con-

cept, a molecule can be segmented into four units: ring systems, linkers, side-

chains, and frameworks (Fig. 1.9). Formally, we can define these structural units:

• Ring systems are cycles within the molecular graph (rings) or rings sharing

an edge (a bond between two atoms) or vertex (atom) in the molecular graph.

A set of rings with fused or spiro connections is defined as a single-ring

system. For example, benzene, anthracene and spiro[5.5]undecane (Fig. 1.9)

are single-ring systems; benzene is a monocyclic, anthracene a tricyclic, and

spiro[5.5]undecane a bicyclic ring system.

• Linkers are defined as vertices (atoms) and/or edges (bonds) on the path con-

necting two different ring systems. Diphenylmethane (Fig. 1.9d) contains a one-

atom linker between two different ring systems.

• Side-chains are those atoms that are not classified as a ring system or linker

atoms.

• Frameworks are defined as ring systems (if no linker exists) and ring systems

connected by linkers, that is, everything that remains after removing the side-

chains. Acyclic molecules do not have any framework, by definition. The

framework of the molecule shown in Fig. 1.10 has two different ring systems

(one monocyclic and one tricyclic) connected by a three-atom linker.
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Recently, Xu and Johnson introduced the concept of the ‘‘reduced molecular

scaffold’’ (Fig. 1.11). At this level of abstraction from the atomic molecular struc-

ture only the numbers of ring systems and the existence of linkers are con-

sidered. The reduced scaffold representation is suited for the comparison of

different chemotypes present in a compound collection.

Manipulating living systems at the molecular level requires profound knowl-

edge of the variability of small molecule effectors that provoke a particular cellu-

lar response. Medicinal chemistry therefore relies on libraries of molecular

probes that can be rationally designed to contain a desired degree of chemotype

diversity. Despite great advances in the field of virtual screening and rational

compound library design, ‘‘scaffold-hopping’’ remains a challenging goal. The

concept of scaffold-hopping aims at finding molecules that possess different scaf-

folds but exhibit identical or very similar pharmacological activity. Ideal screening

methods that perform successful scaffold-hops would not only find a maximum

Fig. 1.10 Molecules can be formally divided into scaffolds or

frameworks, linkers, and side-chains which are attached to the ring

systems. Automated framework analyses following this concept were

pioneered by Bemis and Murcko at Vertex Pharmaceuticals.

Fig. 1.9 Benzene (a), anthracene (b), and spiro[5.5]undecane (c) are

three single-ring systems, diphenylmethane (d) contains two ring

systems and a one-atom linker.

1.8 Scaffolds, Linkers, and Side-chains 17



number but also a maximally diverse set of active compounds from a given chem-

ical subspace (cf . Chapter 4).

There are several reasons for seeking a set of diverse scaffolds. Different che-

motypes offer a choice in terms of chemical accessibility and prospects for lead

optimization. Multiple lead structures for a particular biological target lower the

chance of drug development attrition in the case of undesirable ADMET proper-

ties. Scaffold-hopping can also be applied to move from natural substrates to

more druglike or synthetically tractable chemotypes. Furthermore, the creation

of new intellectual property is facilitated when multiple novel bioactive agents

are available.

In Fig. 1.12 examples of prominent molecular drug scaffolds are shown. It is

evident that the aromatic six-membered ring represents the dominant building

block of known synthetic drugs. Chemotype diversity is often obtained only by

linker variation and different substitution patterns.

Fig. 1.11 Levels of abstraction from the two-dimensional atomic structure of a molecule.

Fig. 1.12 The ten most frequent molecular scaffolds (‘‘frameworks’’)

found in a collection of drugs and lead structures.
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Ertl (2003) from Novartis analyzed the Derwent World Drug Index (WDI), a

large collection of known pharmaceutically active agents, against frequently oc-

curring substituents. Figure 1.13 shows examples of druglike substituents. Such

substructures are not referred to as privileged motifs, as they are abundant in all

kinds of drugs and usually not restricted to one receptor or receptor family. We

will come back to this important topic later in this book when we discuss de novo
design strategies (cf . Chapter 3).

1.9

Substructure Similarity and ‘‘Privileged Motifs’’

Molecules that exhibit similar pharmacological behavior, e.g. binding to the same

receptor, often look similar. In fact, molecular design is grounded on the similar-
ity principle found by Johnson and Maggiora (1990): ‘‘Similar (structurally related)
compounds exhibit similar biological activities’’. Please keep in mind that multiple

exceptions to this rule are known.

It is sometimes possible to define mutual structural elements, privileged motifs,
which facilitate ligand binding to a particular receptor or receptor family. Figure

1.14 shows some of these motifs. For example, benzodiazepinones, arylpipera-

zines, and certain biphenyl motifs have been successfully employed for designing

ligands that bind to G-protein coupled receptors (GPCR). The spiropiperidine

motif is an example of a target-family preferring motif, because it frequently oc-

Fig. 1.13 Examples of substituents of known pharmacologically active

molecules from the World Drug Index (WDI), and selected examples of

druglike substituents.
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curs in GPCR inhibitors. Therefore, this motif might represent an attractive

starting point for the design of ligands that bind to various GPCRs. Privileged

motifs are also used as core structures (scaffolds) for combinatorial design and

synthesis. Several companies offer specifically tailored molecular libraries around

privileged motifs. Natural products provide useful molecular recognition motifs.

For example, the benzopyran motif shown in Fig. 1.14c is present in more than

4000 substances including numerous natural products exhibiting diverse phar-

macological activities. It can thus be considered a ‘‘generic druglike motif ’’ that

can be used as a scaffold for molecular design. It is important to keep in mind

that a privileged motif alone does not necessarily induce a desired pharmacolog-

Fig. 1.14 Examples of privileged substructure

motifs for drug design. (a) GPCR-privileged

motifs, (b) examples of GPCR ligands con-

taining the spiropiperidine motif, (c) examples

of protease and kinase inhibitor motifs, and

two examples of generic privileged scaffolds

that have been shown to be present in

many different biologically active molecules,

including natural products. Keep in mind

that the presence of a privileged motif in a

molecule does not guarantee a desired

binding behavior.
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ical activity, and its presence does not unambiguously define the target receptor.

It is the complete molecular structure, which defines the pharmacological behav-

ior of a compound. A privileged motif is a substructure of a molecule, which itself

represents the superstructure.
Substructure searching in chemical databases is often a first step in virtual

screening with the aim being to find molecules that are structurally related to a

query compound exhibiting a potentially similar activity to the query structure

(cf . Chapter 4).

Figure 1.15 shows several substructure elements that are usually avoided in

drug design, mostly reactive or unstable groups, or substructure elements that

tend to lead to poor aqueous solubility of a compound (e.g., thiourea derivatives).

Such lists of unwanted motifs are sometimes referred to as ‘‘flagging lists’’ or

‘‘black lists’’ by drug designers.

Fig. 1.15 Examples of unwanted motifs. Typically, such substructure

elements are avoided in drug design. Note: Thiols and betalactams are

found in known drugs.
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Substructure elements can be identified by automated similarity searching.

Similarity searching can be achieved by comparing representations of molecules

with respect to the substructure elements they contain. For this purpose mole-

cules are represented as bitstrings (‘‘2D fingerprints’’, ‘‘molecular fingerprints’’),

where a bit indicates the presence (‘1’) or absence (‘0’) of a particular substruc-

ture (Fig. 1.16). Comparison of bitstrings can easily be performed by applying

logic operators or similarity indices. A popular similarity index is the Tanimoto

(Jaccard) coefficient (Eq. 1.6).

TAB ¼ c

aþ b� c
ð1:6Þ

where a is the number of bits set to 1 in molecule A, b is the number of bits set

to 1 in molecule B, and c is the number of set bits common to both A and B. The
value of T is between zero and one, where a value of one indicates identical bit-

strings, and a value of zero indicates maximal dissimilarity. Keep in mind that

TAB¼ 1 does not necessarily mean that the two molecules A and B are identical!

The way the bitstrings are constructed can lead to different pair-wise similarity

values, and the value of the Tanimoto coefficient (as well as of any other similar-

ity measure) is only meaningful with regard to the type of molecular fingerprint

representation used. The same is true for rules of thumb stating that a Tanimoto

coefficient greater than a certain value (e.g., 0.85) indicates an identical chemo-

type in the two molecules compared. The meaning of a similarity value is

strongly context-dependent.

There exist two principal ways to construct a 2D fingerprint: either by using a

look-up table containing a set of predefined substructures (e.g., the so-called

‘‘MACCS keys’’, or Ghose and Crippen fragments) or by exhaustive enumeration

Fig. 1.16 Hypothetical simplifying example of 2D molecular fingerprints

and their Tanimoto similarity. Two molecules are encoded as bitstrings

using a look-up table of predefined substructures. The Tanimoto

similarity of the bitstrings is TAB¼ 0.6 according to Eq. (1.6).
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of all possible substructures of a molecule. The first approach has the advantage

of comparably short fingerprints, where each position (each bit) corresponds to

one substructure. The presence or absence of a substructure in a molecule can

be immediately seen from the look-up table. The second concept (which often

lacks the one-to-one matching of a bit position and a particular substructure if

hashing is involved) leads to very long fingerprints with often more than 10 000

bits. Its advantage is its completeness: Since all substructures of a molecule are

automatically encoded, the resulting similarity value obtained from the compari-

son of two such exhaustive fingerprints expresses the intuitive meaning of

‘‘structural similarity’’.

1.10

Molecules as Strings

Many formats have been devised for representing molecular graphs as linear no-

tations, for example, the InCHI representation developed by IUPAC, the Wiswes-

ser Line Notation WLN – one of the earliest line notations –, or the Chemical

Markup Language (CML) by Murray-Rust, which was designed for chemical in-

formation exchange over the Internet. String representations are ideally suited

for storing, transmitting, and manipulating large numbers of molecules, which

is a typical task in molecular design studies. The most frequently used linear

molecule representation is probably the SMILES notation due to its comparative

simplicity and readability. Weininger introduced the Simplified Molecular Input

Line Entry System (SMILES) in 1988 as an intuitive method to annotate chemi-

cal structures in the form of compact text strings. Although SMILES are applica-

ble to arbitrary chemical compounds, they primarily aim at small organic

molecules. SMILES is a notation of the two-dimensional molecular graph.

By means of simple rules the graph representation can be expressed as a

SMILES string: Atoms of the so-called ‘‘organic subset’’ (B, C, N, O, P, S, F, Cl,

Br, I) are described by their element symbol. For all other atoms, square brackets

(‘‘[. . .]’’) have to be used, e.g. [Na] for elemental sodium. Atoms, which are part

of aromatic systems, are specified by lower case letters, e.g. ‘c’ for a carbon atom

of the benzene ring. Hydrogen atoms are implicitly added to elements of the

organic subset, therefore ‘C’ is a legal SMILES notation for methane (CH4), ‘O’

for water (H2O), ‘N’ for ammonia (NH3), and ‘‘CCO’’ for ethanol, just to give

a few examples. Atom mass, chirality information, explicit hydrogens, and ionic

charges can be optionally notated within the square brackets:
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Single bonds are represented by ‘a’, or may be omitted. Double, triple and aro-

matic bonds are denoted by ‘¼’, ‘#’, and ‘:’, respectively. Table 1.4 shows some

examples of bond symbol employment. For non-linear structures, it is necessary

to have a possibility to indicate branches and rings. Round brackets (‘‘(. . .)’’) are

used to indicate branching, recursive repetitions are allowed.

Cyclic structures are constructed in the following manner: An arbitrary bond

in a ring has to be virtually broken, and a SMILES expression for the structure

without rings has to be created. To indicate this virtual connection point, a num-

ber is used as a label for the two atoms which are connected by the broken bond:

Disconnected structures, e.g. salts, are separated by a period:

The SMILES language provides the possibility to annotate the configuration of

double bonds and stereocenters. For double bonds, so-called ‘‘directional bonds’’

(symbols ‘/’ and ‘\’) are used. The absolute stereochemistry at chiral centers is

defined by using the signs ‘@’ and ‘‘@@’’ to indicate anticlockwise or clockwise

orientation of the substituents:

Table 1.4 Molecular structures and their SMILES notation.

Structure SMILES

CCO

CbC

C#C

CC(C)C(C)CC(C)CC
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It is easy to see that SMILES are inconsistent, as there are different valid

SMILES for the same molecular structure, for example:

To facilitate fast chemical database searching, Weininger (1988) proposed an

algorithm which generates unique (or ‘‘canonical’’) SMILES. For example, the

canonical SMILES of Aspirin (Fig. 1.1c) is CC(bO)Oc1ccccc1C(bO)O. Further

details about SMILES and unique SMILES can be found on the Daylight website

(www.daylight.com).

SMILES also include a possibility to describe chemical reactions, the so-called

Reaction SMILES. The reaction arrow is indicated by ‘‘X’’. If necessary, agents

can be placed between the two ‘4’ symbols to indicate reaction conditions or

leaving groups, for example:

1.11

Constructing Molecules from Strings

SMILES can be used for virtual molecule assembly from scaffolds, linkers, and

side-chains by string concatenation. Side-chains are attached to the scaffold via

linker groups (Fig. 1.17). This allows different chemical reactions to be consid-

ered implicitly by using different linker types and generic building block collec-

tions. It also simplifies virtual compound library enumeration since connecting

functional groups may be completely left out in the set of building blocks. An
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advantage of this conceptual idea of a combinatorial library is its simplicity and

ease of implementation, yielding very short computing times. However, realistic

chemical reactions cannot be modeled deliberately. For example, ring or scaffold

formation during side-chain attachment cannot be modeled.

For such a virtual reaction all educts have to be formulated in an enhanced

notation of SMILES: Special labels ‘‘[R1]’’, ‘‘[R2]’’, ‘‘[R3]’’, etc., and ‘‘[A]’’ can be

used to specify sites of variability (R) and attachment (A), respectively. The latter

is necessary to enable directional concatenation of side-chains to linkers and

linkers to scaffolds (Fig. 1.17). Examples typically look like this:

Scaffolds:

Linkers:

Building blocks (side-chains):

Fig. 1.17 Schematic composition of a virtual reaction product.

SCi denotes a side-chain, Lj denotes a linker unit.
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Reaction products are generated by concatenation of SMILES strings using

‘‘unsatisfied’’ ring closures. For example, according to the SMILES convention,

either of the following notations for ethane is valid: ‘‘CC’’ or ‘‘C1.C1’’. Following

this scheme, one can use unsatisfied ring closures to form chemical bonds be-

tween the constituents of a reaction product, as shown in Fig. 1.18. The ‘%’ sym-

bol denotes a specific building block. The resulting SMILES look unconventional

– yet they are perfectly valid. This example shows how string representations of

molecular building blocks provide a basis for the assembly of new chemical enti-

ties on the computer.

1.12

From Elements to Atom Types

The usefulness of element symbols in molecular representations is limited. A

major shortcoming in the context of molecular design is their lack of information

about potential interactions that can be formed by the atoms of a molecule. The

concept of ‘‘atom typing’’ provides a broader definition of an atom than just by

Fig. 1.18 A virtual reaction with corresponding SMILES: The side-chain

is connected to a linker having the side-chain’s A-group react with the

linkers R1-group forming intermediate product and a virtual A-R1

by-product (which is neglected for subsequent processing). The

intermediate product’s A-group then undergoes reaction with the

scaffolds R1-group yielding the final reaction product and a second

A-R1 by-product (also neglected).
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element. For many tasks in computer-assisted molecular design it is necessary to

specify generic molecular substructures. For this purpose, SMARTS (SMILES

Arbitrary Target Specification) was developed as an extension to the SMILES no-

tation. SMARTS allows the intuitive specification of atom and bond properties

that are required from a query (though there exist several such substructure

query languages that could be used instead of SMARTS). Note that all SMILES

are valid SMARTS expressions. Table 1.5 gives examples of SMARTS expres-

sions. In SMARTS, atom and bond properties can be associated by logical opera-

tors: ‘!’ for boolean NOT, ‘,’ for OR, ‘&’ for high precedence AND, ‘;’ for low

precedence AND. The so-called recursive SMARTS allow one to define the chemi-

cal environment of an atom.

There are many possibilities to define atom types according to different con-

cepts. Most of them are grounded on the definition of local atom environments. A
popular scheme is the SYBYL notation, which assigns a class type to each individ-

ual atom (Table 1.6). The identifiers can be used to represent atoms in SYBYL

Table 1.5 Examples of SMARTS expressions.

SMARTS Meaning

* any atom (so-called wildcard atom)

[þ1] all atoms with charge þ1

[a] all aromatic atoms

[r5] all atoms in a five-membered ring

[#6]b,:[#7] carbon connected by a (double or aromatic) bond with a nitrogen

[$(*O);$(*CC)] any atom that is connected to an aliphatic oxygen and to two sequential

aliphatic carbons

[!c]P[#8,n] an atom, that is not an aromatic carbon, which is connected by any

bond to any oxygen or aromatic nitrogen

Table 1.6 Examples of atom types. ‘‘AND’’ denotes the logic (boolean) union.

Atom type Description

C.3 sp3-hybridized carbon atom

C.2 (C.1) sp2- AND sp-hybridized carbon atoms

C.ar Aromatic carbon atom

C.cat Carbon atom in positively charged groups (amidinium, guanidinium)

N.ar (N.2) Aromatic nitrogen atom AND sp2-hybridized nitrogen atom

N.am Nitrogen atom in amide bond

O.co2 Oxygen atom in carboxy groups

F Fluorine atom

Met Metal atom
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Line Notation (SLN), a formal language for representation of molecules and reac-

tions as strings, similar to SMILES and SMARTS. The idea of such class labels is

to distinguish between an atom of the same element (C, N, O, P, S etc.) in differ-

ent local environments, and to group atoms together. For example, carbon atoms

in different hybridization states have different reactivity. Atom types represent

an abstraction from pure molecular architecture and facilitate the calculation of

molecular properties and SAR modeling.

1.13

Entering the Third Dimension: Automatic Conformer Generation

Until now we have focused mainly on two-dimensional molecular representa-

tions. However, the molecular world is three-dimensional. Conformations are

arrangements of the atoms of a molecule in space that can be converted by

rotation(s) around a single bond, whereas configurations refer to those other

arrangements whose interconversion requires bonds to be broken and then

re-formed differently (e.g. cis and trans double bonds). There are two widely used

principles of automated conformer generation from the molecular graph repre-

sentation: Force-field methods relying on molecular mechanics, and knowledge-
based heuristic approaches.

The basic idea of a molecular force-field is to treat a molecule as a mechanical

object: Atoms are regular spheres that are connected by springs, and their pair-

wise interactions are expressed by terms of a potential energy function (Eq. 1.7).

One further differentiates between bonded interactions and non-bonded intra-

molecular interactions, which leads to the general formulation of a molecular

force-field equation:

Energy ¼ Stretching Energyþ Bending Energyþ Torsion Energy

þNon-bonded Interaction Energy: ð1:7Þ

Note that the non-bonded energy term represents the sum of the energies of all

possible interacting non-bonded atoms. It often contains separate terms for esti-

mating charge and vdW (van der Waals) interactions. Typically, the following

terms or variations thereof are used for estimating the potential energy of a par-

ticular three-dimensional conformation:

Stretching Energy

Estretching ¼
X
bonds

kbðr � r0Þ2 ð1:8Þ

The bond stretching energy equation (Eq. 1.8) estimates the bond vibration

energy, where kb controls the stiffness of the bond ‘‘spring’’, r is the actual and
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r0 the equilibrium bond length. For different atom-pairs connected by a bond,

unique parameter values are assigned.

Bending Energy

Ebending ¼
X
angles

kyðy� y0Þ2 ð1:9Þ

where ky controls the stiffness of the angle ‘‘spring’’, y is the actual and y0 the

equilibrium angle. The bending energy equation (Eq. 1.9) is an estimate of the

energy associated with vibration about the equilibrium bond angle. Again, differ-

ent unique parameter values are used to describe different atom triplets and the

associated bending energy.

Torsion Energy

Etorsions ¼
X

torsions

A½1þ cosðnt� FÞ� ð1:10Þ

where t is the dihedral angle spanned by the bonded atom quartet. Torsion

energy (Eq. 1.10) is expressed as a periodic function. In this model, A, n, and F

are empirically determined parameters that define the amplitude, periodicity, and

shift of the cosine function.

Non-bonded Energy

Enon-bonded ¼ ECoulomb þ EvdW ¼
X
i

X
j

qiq j
4pe0rij

þ
X
i

X
j

Bij

r12ij
� Aij

r 6ij

 !
ð1:11Þ

where ECoulomb and EvdW estimate energies of point charge interactions (‘‘Cou-

lomb potential’’) and van-der-Waals dispersive interactions, respectively. Here qi
and qj are localized charges of atoms i and j at distance rij and e is the dielectricity

constant. Parameters A and B of the vdW term define the depth and position of

the potential energy wall for a given pair of non-bonded interacting atoms. In this

model (Eq. 1.11), attractive interactions are expressed by the 1/r6 term, and re-

pulsion by the stronger 1/r12 dependency (‘‘Lennard-Jones’’ potential). Repulsion

occurs when the interatomic distance falls below the sum of the contact radii

30 1 Molecular Objects and Design Objectives



of the atoms, that is, in the case of collision (cf . Fig. 1.3). Partial charges can be

calculated using ab initio methods like MOPAC or GAUSSIAN or estimated

using empirical calculations like the Gasteiger–Marsili (1978) approach that is

grounded on atom electronegativity.

Once a suitable force-field has been chosen, optimization techniques are em-

ployed to find minimum energy conformations of a molecule. Typically, confor-

mations yielding energy values up to 25 kJ mol�1 above the lowest energy

conformation are considered ‘‘realistic’’.

The second approach is complementary to molecular mechanics force-fields:

knowledge-based potentials. In contrast to the general force-field equation (Eq.

1.7) the idea is to implicitly capture interaction energies. This is achieved by

investigating known low-energy conformations of molecules. The Cambridge

Structure Database provides such a constantly growing knowledge base with

experimentally determined structures. Statistical analysis of conformations leads

to histograms of molecular parameter values like interatomic distances, torsion

angles, or ring conformations. Once sufficient data have been analyzed, these

histograms are converted to obtain potential functions making a simple assump-

tion: the maxima in the histograms correspond to preferred, low-energy con-

formations (Fig. 1.19). This is expressed as a log-odds score (Eq. 1.12): Preferred

Fig. 1.19 Construction of a knowledge-based potential for a torsion

angle. The histogram of observed torsion angle values was derived from

experimentally determined conformations of ethylbenzene (rotation

around the bond linking the ethyl group to the benzene ring). A potential

energy function (curve) was derived using the Inverse Boltzman Method.

The energy function has its minimum for the molecular conformation

shown (t¼ 908).
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conformations have parameter values above the ‘‘background’’. A crucial step is

to define a suitable reference state pref which is used to define the expected ‘‘back-

ground’’ parameter distribution. Typically, an equal distribution is assumed,

meaning that all values are expected to occur with the same frequency.

DEijðrÞz�ln
pijðrÞ
pref

ð1:12Þ

where pij is the observed probability of finding atoms i and j at distance r. Such a

relationship can be calculated for all parameter types (torsion angles, interatomic

distances, etc.). Converting an experimentally observed distribution of parameter

values to an empirical potential function is also referred to as the Inverse Boltz-
man Method. For determination of a preferred conformation of a molecule, ide-

alized values for its bond distances, torsional angles etc. are taken from look-up

tables, and the resulting total energy is computed using the empirical potential

functions.

1.14

The ‘‘Bioactive’’ Conformation

Computational virtual screening – for example by similarity searching – is an

often applied approach in pharmaceutical research that builds on knowledge to

efficiently propose novel ligand candidates for a given receptor. Virtual screening

for novel ligands corresponds to searching for molecules that comprise the nec-

essary 3D arrangement of interacting groups which are essential for binding. A

variety of computational methods is available for the estimation of ligand binding

properties, among which automated docking methods and pharmacophore

models are the most widely used applications (cf . Chapter 2). Such concepts are

based on fitting a three-dimensional conformation to a receptor structure and

thus fundamentally rely on the presence of the potential ‘‘bioactive’’ conforma-

tion (that is, a receptor-bound conformation) of the molecule under consider-

ation. This conformation is not easy to find since it usually does not correspond

to the global energy minimum conformation in an unbound state (Fig. 1.20).

Even worse: For many ligands their bound conformation does not correspond to

a minimum at all. Although it is clear that, in principle, each bioactive conforma-

tion could be reproduced computationally, there are still practical limits in the

number of conformations that can be handled efficiently due to the exponential

increase in the number of potential conformations with a growing number of

rotatable bonds. In general, receptor-bound conformations are almost impossible

to predict from the calculated ensemble of potential conformers. For example,

semiempirical and ab initio calculations disfavor the planar conformer of acetyl-

salicylic acid, whereas force-field calculations imply that the planar conformer is

more stable. This points to fundamental problems inherent to automatic confor-

mer generators:
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• The influence of solvent molecules (water, ions) on the structure of a small mole-

cule is usually neglected.

• Flexible-fit effects are usually not taken into consideration for energy calculation,

that is, the influence of the receptor on the ligand upon binding.

• Empirical and knowledge-based terms of an energy function, which were derived

from sets of experimentally determined structures, are only applicable within

the structural diversity of these reference data – in other words, new molecular

structures that were not covered by the reference compounds will be assigned

wrong conformations.

One must keep these pitfalls in mind when handling computer-generated

structures. Empirical studies actually revealed that it can be advantageous to use

a single ‘‘preferred’’ conformer instead of a whole ensemble of multiple low-

energy conformers for virtual screening (cf . Chapter 4).
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H. D. Höltje, W. Sippl, D. Rognan,

G. Folkers, Molecular Modeling – Basic
Principles and Applications, Wiley-VCH,

Weinheim 2003.

M. A. Johnson, G. M. Maggiora, Concepts and
Applications of Molecular Similarity, Wiley,

New York 1990.

F. E. Koehn, G. T. Carter, The evolving role

of natural products in drug discovery,

Nat. Rev. Drug Discov. 2005, 4, 206–220.
A. R. Leach, Molecular Modeling – Principles

and Applications, Prentice Hall, Harlow

1996.

A. R. Leach, V. J. Gillet, An Introduction to
Chemoinformatics, Kluwer Academic

Publishers, Dordrecht 2003.

B. Lee, F. M. Richards, The interpretation

of protein structures: Estimation of static

accessibility, J. Mol. Biol. 1971, 55, 379–400.
C. A. Lipinski, F. Lombardo, B. W. Dominy,

P. J. Feeney, Experimental and computa-

tional approaches to estimate solubility

and permeability in drug discovery and

development settings, Adv. Drug Deliv. Rev.
2001, 46, 3–26.

Y. C. Martin, A bioavailability score, J. Med.
Chem. 2005, 48, 3164–3170.

Y. C. Martin, J. L. Kofron, L. M. Traphagen,

Do structurally similar molecules have

similar biological activity? J. Med. Chem.
2002, 45, 4350–4358.

G. Moreau, P. Broto, The autocorrelation of a

topological structure: A new molecular de-

scriptor, Nouv. J. Chim. 1980, 6, 359–360.
D. J. Newman, G. M. Cragg, K. M. Snader,

Natural products as sources of new drugs

over the period 1981–2002, J. Nat. Prod.
2003, 66, 1022–1037.

J. Y. Ortholand, A. Ganesan, Natural

products and combinatorial chemistry:

back to the future, Curr. Opin. Chem. Biol.
2004, 8, 271–280.

M. Pastor, G. Cruciani, GRid-INdependent

Descriptors (GRIND): A novel class of

alignment independent three-dimensional

molecular descriptors, J. Med. Chem. 2000,
43, 3233–3243.

T. J. Richmond, Solvent accessible surface

area and excluded volume in proteins,

J. Mol. Biol. 1984, 178, 63–89.
P. Schneider, G. Schneider, Collection of

bioactive reference compounds for focused

library design, QSAR Comb. Sci. 2003, 22,
713–718.

D. M. Schnur, M. A. Hermsmeider,

A. J. Tebben, Are target-family-privileged

substructures truly privileged? J. Med.
Chem. 2006, 49, 2000–2009.

D. Weininger, SMILES, A chemical language

and information system. 1. Introduction to

methodology and encoding rules, J. Chem.
Inf . Comput. Sci. 1988, 28, 31–36.

D. Weininger, A. Weininger, J. L. Weininger,

SMILES. 2. Algorithm for generation of

unique SMILES notation., J. Chem. Inf .
Comput. Sci. 1988, 29, 97–101.

Protein Database (PDB) www.pdb.org

Cambridge Structural Database (CSD)

www.ccdc.cam.ac.uk/products/csd/

DrugBank http://redpoll.pharmacy.ualberta

.ca/drugbank/

Daylight Theory Manual www.daylight.com/

dayhtml/doc/theory/theory.toc.html

Relibase: A program for searching protein-

ligand databases http://relibase.ebi.ac.uk

34 1 Molecular Objects and Design Objectives


