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Background
The asymmetric epoxidation of allylic alcohols – or Sharpless asymmetric epoxi-
dation (“SAE”) or Sharpless-Katsuki epoxidation – was a breakthrough in asym-
metric synthesis [1]. Arguably it is one of the top ten transformations of organic
chemistry [2R]. Indeed, it became a Nobel Prize winning reaction [3]. SAEs of
achiral primary allylic alcohols 1 lead to glycidols of controllable configuration
2 or ent-2 (Scheme 1a). These compounds can be carried on to an abundance
of follow-up species by elaborating any or all of the three functionalities at C1,
C2 or C3 [4]. In contrast, SAEs of racemic secondary allylic alcohols rac-3 affect
one enantiomer of the substrate and enrich the other, i.e. R-3 or S-3, accomplish-
ing a kinetic resolution (Scheme 1b).
Conceptually most intriguing are the desymmetrizing SAEs depicted in

Scheme 2. Divinylcarbinol (4), a prochiral alcohol, and bis(allylic alcohol) 5,
a meso alcohol, provided epoxyalcohols 7 with i 99.7% ee [5] and 8 with
“i 99.99999% ee expected” [6], respectively. These enantioselectivities distinctly
surpass those found for achiral primary allylic alcohols. Interestingly, this out-
come could be predicted by Schreiber’s insightful analysis [5a]. The tertiary
meso-dialkenylcarbinol 6 was desymmetrized similarly, albeit only when Zr(OiPr)4
was used and not Ti(OiPr)4 [7].
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Scheme 1a SAEs of achiral
primary allylic alcohols 1.

Asymmetric Synthesis – The Essentials. 2nd, completely revised edition.
Edited by Mathias Christmann and Stefan Br�se
Copyright c 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32093-6



Objective: Making Building Blocks for the Synthesis of 1,3,5,7,...-Polyols from
Epoxyalcohols
Polyol/polyene macrolide antibiotics contain extended stretches of unbranched
1,3,5,7,...polyols 12 (Scheme 3). The latter are neither “isotactically” nor
“syndiotactically” configured but comprise, rather, random sequences of syn-
and anti-configured 1,3-diol subunits. This feature suggests that a set of 1,3-
diol building blocks 13 of all four conceivable configurations would be useful
for constructing such polyols. We accessed two sets of such molecules 13 via
SAEs: one from the conjugated dienol trans-11 and one starting from the noncon-
jugated dienol cis-15. In both substrates, one C=C bond was oxidized and one pre-
served – initially, namely until its presence allowed follow-up transformations.
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Scheme 1b SAEs of racemic
secondary allylic alcohols rac-3.

Scheme 2 Desymmetrization of achiral secondary alcohols 4 and 5 and tertiary allylic alcohol
6 by SAEs [Ti(OiPr)4 -mediated] and by a related epoxidation [Zr(OiPr)4-mediated], respectively.



Results

Asymmetric Epoxidation of a Conjugated Pentadienol [8]
SAE of pentadienol trans-11 functioned best (89% yield/97.7% ee) with near-stoi-
chiometric [1a] rather than catalytic [1b] amounts both of l-(+)-diisopropyl tartrate
and Ti(OiPr)4 (Scheme 4). Epoxyalcohol 17 was silylated, the C=C bond ozono-
lyzed, and the resulting epoxyketone 18 reduced, either by chelation-controlled hy-
dride addition (p19) or by electron transfer (p21). Renewed reduction followed
by transacetalization yielded acetonides anti-20 and syn-20, respectively. Their
protecting groups were selectively removable. Accordingly, these species are
realizations of the 1,3-diol building blocks syn-, anti-, ent,syn-, and ent,anti-13.
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Scheme 3 Tracing back 1,3,5,7,...-polyols (12) via 1,3-diol building blocks (13) to epoxidized
allylic alcohols.



Asymmetric Epoxidation of a Nonconjugated Pentadienol [9, 10]
The substrate of this approach to 1,3-diol motifs of variable stereostructure was
the bis(cis-alkenyl)carbinol cis-15 (readily obtained from propargyl ether 22 and
ethyl formiate; Scheme 5). SAE in the presence of molecular sieves [1b] and stoi-
chiometric Ti(OiPr)4/diisopropyl tartrate [1a] proceeded with 95–96% ee. Since
SAE of the analogous mono-PMB ether of cis-2-butene-1,4-diol gives only 85–
88% ee, the “Schreiber effect” is likely to have intervened. Whereas epoxyalcohols
anti- and ent,anti-23 formed with only Z75:25 ds, the epimers syn- and ent,syn-23
resulted diastereopure from the Zr(OiPr)4 -mediated AE of the same pentadienol
cis-15 [7]. In these conditions, we raised the ee of epoxyalcohol syn-23 up to 99%
by allowing for some over-oxidation, and proved that this over-oxidation consumes
most of the initially present minor enantiomer, furnishing bisepoxyalcohol syn,
syn-24 (Figure 1).
Scheme 6 depicts the extraction of stereodefined 1,3-diol building blocks from

the pentadienol oxides 23 for a representative enantiomer from both the anti- and
the syn-series: through reduction by Red-Al� at 60 hC. The reagent effects two
transformations in a single operation, namely regioselective opening of the epox-
ide and chemoselective cleavage of the allylic ether (by what we believe to be an
OH-directed SN2’ reaction).
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Scheme 4 a) H2C=CH–CO2Me, Pd(OAc)2 (cat.), LiCl, Bu4NCl, K2CO3, DMF; 57%. b) DIBAL,
CH2Cl2; 85%. c) tertBuOOH, Ti(OiPr)4 (56 mol%), l-(+)-diisopropyl tartrate (64 mol%),
CH2Cl2, molecular sieves 4 �. d) tertBuPh2SiCl, imidazole, THF; 90%. e) O3, CH2Cl2; PPh3; 81%.
f) Zn(BH4)2, toluene; 73%. g) Zn, Cp2TiCl2, 1,4-cylohexadiene; 60%. h) Same as (g); 67%.
i) Me2C(OMe)2, camphor sulfonic acid (cat.), acetone; 79%. j) Et2BOMe, MeOH, THF; NaBH4;
73%. k) Same as (i); 85%. (Ref. [8].)
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Scheme 5 a) nBuLi, THF; HCO2Et; 85%. b) ZnCl2 pre-treated with K, THF/MeOH; 75%.
c) tertBuOOH, Ti(OiPr)4 (1.0 equiv.), l-(+)-diisopropyl tartrate (1.1 equiv.), CH2Cl2, molecular
sieves 4 �. d) Same as (c) with d-(–)-diisopropyl tartrate (1.1 equiv.). (Ref. [9]) e) Same as (c)
with Zr(OiPr)4 (1.0 equiv.). f) Same as (e) with d-(–)-diisopropyl tartrate (1.1 equiv.). (Ref. [10].)
aTaking into account 5–8% re-isolated cis-15. bImprovement of Ref. [10] vs. Ref. [9]. cYield and ee
were time-dependent (cf. Figure 1). dThis conversion aimed for high yield rather than high ee.

Figure 1 Time-resolved product analysis of the epoxidation of pentadienol cis-15a with tert-
BuOOH (2.0 equiv.), Zr(OiPr)4 (1.0 equiv.), l-(+)-diisopropyl tartrate (1.1 equiv.), and molecular
sieves (4 �) in CH2Cl2 at –20 hC.
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Scheme 6 a)Red-Al�, toluene; 83% (analogous reduction of ent,anti-23: 95%) (Ref. [9].
b) Same as (a); 51% (Ref. [10].
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