INTRODUCTION

This is the second volume of Collected Papers of Stig Kanger with Essays on
his Life and Work. The first volume contains Kanger’s own published papers,
most of which have become virtually inaccessible even in his own country,
together with one previously unpublished manuscript: ‘Choice based on
preference’. In this second volume we have collected critical essays on the
various aspects of Kanger’s work as well as some biographical sketches.

Stig Kanger made groundbreaking contributions to a broad range of areas
within both mathematical and philosophical logic:

(i) General proof theory: In 1955-57, several logicians — Beth, Hintikka,
Kanger and Schiitte, independently of each other — brought about a kind of
synthesis between the proof-theoretic methods of Gentzen and the model-
theoretic ones of Tarski. Exploiting the close correspondence between the
rules of inference of Gentzen’s calculus of sequents and the semantic clauses
of Tarski’s definition of truth, they obtained very natural and simple proofs of
Godel’s completeness theorem for classical first-order predicate logic. The
fundamental idea was to view a proof of a logically valid formula as an
unsuccessful attempt to find a counter-model to it. Kanger’s completeness
proof in his 1957 dissertation Provability in Logic — perhaps the most elegant
— established in a direct way the connection between Gentzen’s sequent
calculus and Tarski’s model theory. As an immediate corollary, Kanger’s
completeness proof yielded a simple (but non-constructive) proof of Gentzen’s
Hauptsatz.

Kanger’s work in general proof theory is described in Goran Sundholm’s
contribution to this volume: ‘The proof theory of Stig Kanger: a personal
recollection’. Sundholm also describes how the Beth-Hintikka-Kanger-
Schiitte proof method has been extended beyond elementary logic after
Kanger. In addition, Sundholm’s article contains information about Kanger’s
early work in mathematical logic.

Additional light is thrown on Kanger’s proof theory and semantics by Kaj
Bgrge Hansen in his ‘Kanger’s ideas on non-well-founded sets’. Hansen
describes how, at one point in his dissertation, Kanger outlines a theory of
non-wellfounded sets, and makes use of it in a proof of a version of his
completeness theorem for predicate logic. Hansen gives a careful and thorough
analysis of Kanger’s proof and points out that the particular version of the
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viii INTRODUCTION

completeness theorem does not hold without the assumption of non-well-
founded sets. Nowadays, non-wellfounded sets have of course become a
topical research subject due especially to the work of Peter Aczel. This was far
from the case when Kanger wrote his book.

(ii) Efficient proof procedures and automated deduction: As a by-product,
Kanger’s completeness proof yields a proof procedure that is effective in the
sense of providing an algorithm for finding a proof of any given logically valid
sequent. To construct a proof of a valid sequent I' = A, we start from below
with the given sequent and construct a tree of sequents above it by means of
repeated backwards applications of the rules of the cut-free sequent calculus.
We continue until the process terminates and we have reached an axiom at the
top of each branch in the tree. The resulting tree is then a proof of the valid
sequent that we started with. Kanger’s completeness proof guarantees that the
process terminates after finitely many applications of the rules, provided, of
course, that the sequent we started with was indeed valid. In the paper ‘A
simple proof procedure for elementary logic’, Kanger describes how the proof
procedure can be extended to predicate logic with identity and how it can be
made more efficient for actual implementation on a computer.

Kanger’s work on efficient proof procedures was carried further by Dag
Prawitz. In ‘A note on Kanger’s work on efficient proof procedures’ Prawitz
gives a personal account of Kanger’s and his own work to make proof
procedures more efficient. He describes how in the late 1950s Kanger’s first
proof procedure was implemented on a computer and the difficulties that then
arose. Prawitz gives a fascinating account of the genesis of the so-called
“dummy method” at one of Kanger’s seminars. The subsequent fate of the
Kanger-Prawitz method of “dummies” for making proofs more efficient is
also described in Prawitz’s article.

In ‘Kanger’s choices in automated reasoning’ Anatoli Degtyarev and
Andrei Voronkov discuss how Kanger’s classical 1963 paper ‘A simple proof
procedure for elementary logic’ fares compared to modern work on automated
deduction. They write: “Now, when we are equipped with the impressive
amount of techniques developed in this are, we are amazed by the incredible
intuition of Kanger that allowed him to choose elegant, interesting (and
correct) solutions among many possible choices. This article explains these
choices and their place in modern automated deduction”.

(iii) Algebraic logic. In the 1960s, Kanger came into contact with the group
of logicians around Tarski at Berkeley and the work that they pursued on the
algebraic study of first-order predicate logic by means of so-called cylindric
algebras. Intuitively, cylindric algebras play a role in the study of predicate
logic that is analogous to that played by Boolean algebras in the study of



INTRODUCTION ix

sentential logic. Kanger was very impressed by this work and it inspired him
to develop an algebraic logic calculus, where the ordinary sentences of
predicate logic are treated as terms, the statements are equations between
terms, and the only rule of inference is substitution of equals by equals.

In his contribution to this volume, ‘The proper treatment of quantifiers in
ordinary logic’, Jaakko Hintikka reviews Kanger’s algebraic approach to
standard first-order logic and discusses whether it can be applied more
generally, in particular to Hintikka’s own generalization of standard first-order
logic, so-called independence-friendly first-order logic (IF-logic).

There are several reasons why Kanger’s equational approach does not seem
well suited for the study of IF-logic. First of all, the set of valid formulas of TF-
logic is not recursively enumerable. Hence, IF-logic does not admit of a
complete proof procedure. On the other hand, there exists a complete disproof
procedure: If A is an unsatisfiable formula of IF-logic, then there is a
taubleaux-type (i.e., Gentzen-type) demonstration of this fact. In ordinary two-
valued logic, the existence of a complete disproof procedure is tantamount to
the existence of a complete proof procedure. Ordinarily, if a formula is
irrefutable, i.e., lacks a counter-model, then it is valid. Due to the failure of the
law of excluded middle, this implication does not hold in IF-logic.

But couldn’t Kanger’s equational approach still be applied to IF-logic —
simply by formulating the rules of logical disproof as an equational calculus?
This is not a simple matter either, due to the apparent failure in IF-logic of the
principle of compositionality. Intuitively speaking, the semantic interpretation
of a formula of IF-logic depends, not only on the semantic interpretations of its
subformulas, but also on the context in which the formula occurs. Conse-
quently, substitution of equals by equals (applied to formulas) does not, in
general, preserve satisfiability.

Hintikka points to a way around this problem. Kanger’s algebraic methods
can still be used, once predicate symbols and quantifiers have been eliminated
in favor of so-called Skolem functions. By means of this technique, the
problem of testing a finite set of formulas of IF-logic for satisfiability can be
reduced to the problem of testing whether a certain Boolean combination of
equations is derivable in an equational calculus a la Kanger. Hintikka remarks:
“Kanger’s calculus of functional equations can handle more than he himself
pointed out”.

(iv) Semantics for modal logic. In Kanger’s dissertation from 1957, appears,
for the first time in print, a detailed exposition of a Tarski-style model-
theoretic semantics for quantified modal logic. A crucial innovation was the
use of accessibility relations in the semantic evaluation clauses for modal
operators. Kanger points out that by imposing various formal requirements on



X INTRODUCTION

the accessibility relation one can make the operator satisfy corresponding well-
known axioms of modal logic. In this way, the introduction of accessibility
relations made it possible to apply semantic and model-theoretic methods to
the study of a variety of modal notions.

Kanger’s early semantics for modal logic differs in interesting ways from
the semantic frameworks developed, at about the same time, by Hintikka,
Kripke and Montague. Kanger’s work on modal logic is discussed in Sten-
Lindstrém’s paper ‘An exposition and development of Kanger’s early
semantics for modal logic’.

(v) Deontic logic. In ‘New Foundations for Ethical Theory’ from 1957,
Kanger developed a model-theoretic semantics also for normative concepts,
the so-called deontic modalities “‘It ought to be that ...”, “It is right that ...”, and
to imperatives: “Let it be the case that ...!”. Kanger’s formal language contains
quantifiers as well and he discusses the interplay between these and deontic
operators. It is noteworthy that Kanger already in this early paper discusses the
notion of agency. In terms of the deontic operators and the notion of agency,
Kanger, already in 1957, takes the first steps in developing a theory of rights.

Kanger’s contributions to deontic logic are discussed in Hilpinen’s paper
‘Stig Kanger on deontic logic’.

(vi) Theory of rights and actions. Kanger’s work in deontic logic led him to
develop a rypology of rights, inspired by the work of the American jurist W. N.
Hohfeld, within the framework of a formal language containing among its
primitive concepts, in addition to deontic operators, the action operator “X
sees to it that ...”. Kanger’s theory of rights is arguably his most substantial
and influential contribution outside of the field of pure logic.

In this volume, Kanger’s theory of rights is dealt with in Lars Lindahl’s
‘Stig Kanger’s theory of rights’ and in Lennart Aqvist’s ‘Stig Kanger’s theory
of rights: bearers and counterparties, sources-of-law, and the Hansson
Petaluma example’. Kanger’s contributions to the theory of action are de-
scribed in Ghita Holmstrom-Hintikka’s ‘Stig Kanger’s actions and influence’.
Holmstrom-Hintikka also discusses Kanger’s attempts at developing a
typology of different kinds of influence that is analogous to his typology of
rights.

(vii) Theory of preference and choice. The theory of preference and rational
choice occupied Kanger intermittently during the last 20 years of his life. A
comprehensive overview of Kanger’s contributions to this area is given by
Sven Ove Hansson in ‘Kanger’s theory of preference and choice’. Hansson
discusses Kanger’s attempts to develop a preference logic in the tradition of
Halldén, his so-called paradox of exclusive disjunction (more extensively
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treated by Rabinowicz, see below), as well as Kanger’s contribution to the
theory of rational choice (more extensively treated by Sen, see below).

In his contribution ‘Preference logic and radical interpretation: Kanger
meets Davidson’, Wlodek Rabinowicz discusses a paradox in preference logic
(referred to by Hansson as ‘the paradox of exclusive disjunction’) that was
formulated by Kanger and that led Donald Davidson to modify his theory of
radical interpretation. Rabinowicz argues that although Kanger’s paradox can
be dissolved, Davidson’s theory of radical interpretation still confronts serious
difficulties.

Finally, Amartya Sen in ‘Non-binary choice and preference: a tribute to Stig
Kanger’ discusses Kanger’s contribution to the theory of rational choice in
‘Choice based on preference’. In this paper Kanger generalizes the standard
theory of preference and choice to choice functions that select a set of
alternatives from a “menu” of available alternatives against a “background set”
of alternatives. As the background set varies, the selected set may vary as well,
even if the menu of available alternatives is kept fixed. Sen compares Kanger’s
approach to the standard theory of rational choice and discusses the reasons
that Kanger might have had for adopting his alternative approach.

The process of publishing these two volumes dedicated to the work of Stig
Kanger has been a genuinely joint venture in which many people have con-
tributed in essential ways. We are grateful to them all, including the contribu-
tors of essays on Kanger’s life and work. We owe special thanks to Jaakko
Hintikka and Krister Segerberg for their enthusiastic and steadfast support of
the project as well as for their inspiration and good advice. We also wish to
thank Jaakko Hintikka for including the two volumes in the Synthese Library
Series and Krister Segerberg for editing the section of biographical sketches.
We are grateful to Ms. Annie Kuipers and Mr. Rudolf Rijgersberg at Kluwer
for their patience and cooperation, Ms. Kaipainen at the Department of
Philosophy of the University of Helsinki for doing an excellent work in
transforming Kanger’s typographically difficult texts into camera-ready copy,
Sharon Rider and Kaj Bgrge Hansen for translating some of Kanger’s Swedish
texts into English, and Sven Ove Hansson and Lars Lindahl for valuable
editorial assistance. Kaj Bgrge Hansen helped us prepare the indexes for the
two volumes and Anders Berglund assisted us with proof reading.

Thanks are due to the Department of Philosophy at Uppsala University for
arranging the colloquium In memory of Stig Kanger: A Symposium on Stig
Kanger’s Contributions to Logic and Philosophy, March 13-15, 1998, thereby
giving the contributors to Volume II an opportunity of trying out their ideas.
We thank Elsevier and Kluwer and the Swedish philosophy journal Theoria
for permission to reprint some of Kanger’s papers and some of the papers in
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STIG KANGER (1924-1988)

The Mission Covenant Church of Sweden — Svenska Missionsforbundet, a
free church not part of the Swedish State Church — performed missionary
work in China 1890-1951. Its effort was concentrated in Hupei, a province in
central China through which flows the great Yangtse. In 1919 two young
missionaries joined the mission, Gustav Karlsson, a farm labourer from the
south of Sweden, and Sally Svensson, a nurse from Stockholm. Gustav’s only
education beyond elementary school (folkskolan) was four years of mission
school; nevertheless he later gained, by correspondence, two academic degrees
in theology from Webster University, Atlanta, Georgia: a bachelor’s degree in
1936 and a doctorate in 1948. Sally had obtained a midwife’s certificate before
her two years of mission school.

Gustav and Sally were engaged to be married already before their departure
from Sweden, but only three years later were they actually married. Their
marriage was blessed with two sons of whom the elder, Stig Gustav, was born
on 10 July 1924 in Kuling (short for Ku Niu-ling, the Mountain of the Wild
Ox) in the province of Kiangsi, a popular summer resort in the mountains. Stig
began school when he was six, and he had six years of schooling before the
family returned to Sweden. The first year he was taught by his mother, then by
two missionaries: for four years by Ida Pettersson and then one year by Lisa
Bjorkdahl. During Ida Pettersson’s time the class consisted first of two (Stig
and another boy) and later of four (when their brothers had joined). But during
the final year, Stig and his brother, Rune, were the only students.

In 1930 Gustav and Sally Karlsson decided to adopt Kanger as their family
name. The most common traditional Swedish surnames are of the Karlsson
type — literally, “Karl’s son”. So common have these names been that,
especially at the end of the nineteenth century and the beginning of the
twentieth, many have preferred to change to a more distinctive, often made-up,
name. Kanger is such a name, a combination of Karlsson and Hanger. (The
latter was the name of Gustav Karlsson’s birth place, a village in Smaland in
the south of Sweden, where his forebears had been peasants for generations
and his father still operated a small farm. Later Stig inherited and used as a
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holiday home his grandfather’s cottage at Erikslund in a forest a few miles
from Hénger, usually referred to by Stig as “the Middle of Nowhere”.)

Except for a visit to Sweden in 1927-29, the family remained in China until
1936. In 1939 the parents left for a final sojourn in China, which was to last
through World War II until 1946; the sons were left at a home for mission-
aries’ children in Stockholm. (The parents, both born in 1893, both died in
1954.) Stig attended Palmgrenska Samskolan and then Tekniska Laroverket,
passing teknisk studentexamen in May 1942 and studentexamen pd reallinjen
in December 1944. The latter examination was the formal prerequisite for
university entrance, but by the time he sat it, he had already begun informal
studies at the University of Stockholm. In 1945 there was a brief interlude of
military service: Stig was called up but was discharged after only a short time.

At the university, Kanger followed a normal path, gaining the degree of
filosofie kandidat in 1949. In those days the requirement was at least seven
units of courses in at least three subjects. Kanger’s degree consisted of three
units of theoretical philosophy, three units of practical philosophy and one unit
of statistics. Two years later, in 1951, he received the degree of filosofie
licentiat, a higher degree for which a thesis was required. In his thesis, entitled
“En studie i modal logik, med sirskild hinsyn till ‘bora’-satser” [“A Study in
Modal Logic, with Special Attention to ‘Ought’-sentences”], Kanger showed
how, in a certain sense, deontic logic is reducible to modal logic plus a new
primitive constant. After the thesis was accepted — it received the highest
grade — Kanger asked his professor, Anders Wedberg, whether he thought
that publication was warranted. Wedberg thought not, and the thesis was never
published. But when a few years later an idea equivalent to Kanger’s was
published by Alan Ross Anderson, it attracted a good deal of attention from
philosophical logicians. Unfortunately, no copy of Kanger’s thesis seems to
have survived. In 1957 he defended his doctoral dissertation, Provability in
Logic. At that time dissertations were graded: Kanger’s was given the second
highest grade.

The dissertation earned Kanger a position as docent in theoretical philoso-
phy 1957-1963 at the University of Stockholm. The docentur was a much
coveted research position of a kind unfortunately no longer existing; just about
the only obligation was to lecture seventy-five hours a year — thus between
two or three hours a week — on subjects freely chosen. The idea was of course
to leave the docent ample time to develop as a researcher. Kanger made good
use of this freedom (even though he spent several terms acting in place of
professors on leave, something that was better paid). As a formal logician he
may have been limited in his methods, but the applications of his work
spanned an impressive array of subjects: meaning theory, measurement theory,
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ethics, theory of action, theory of rights, theory of preference, phonematics and
even (unpublished) @®sthetics. The academic year 1965-66 he spent as a
visiting associate professor at the University of Michigan, Ann Arbor, and in
the summer of 1966 he taught at Stanford. In 1968-69 he was a visiting
professor at the University of California, Berkeley.

The drawback of the position of docent was that it was for a limited period
only. The future was uncertain, a fact that became even more pressing when
the years as docent were up. By luck, this coincided with the appointment in
1963 of Erik Stenius to the Swedish language chair of philosophy at the
University of Helsinki. Stenius left vacant the chair of philosophy at the
Swedish language university in Finland, Abo Academy in Turku (Abo), a chair
originally created for Edward Westermarck. Here Kanger became acting
professor for several years before finally being appointed professor ordinarius
on 9 February 1968. But by that time his appointment to the chair of theoreti-
cal philosophy at the University of Uppsala from 1 July 1968 was well under
way.

When after his Berkeley year Kanger took up his duties as the new
professor at Uppsala in the fall of 1969, he inaugurated a new era. This was at
a time when there was money around, and Kanger was good at getting hold of
it. For some years, the Uppsala philosophy department became a thriving hive
of activity with visitors coming and going in numbers unprecedented in
Sweden. Student numbers, too, rose at all levels. The list of PhDs who wrote
their dissertations under Kanger is long by Uppsala standards. Séren Stenlund,
Lennart Nordenfelt, Paul Needham, Lars Lindahl, Ingmar P6rn, Lars Gustafs-
son, Craig Dilworth and Bengt Molander received their degrees during
Kanger’s lifetime, while Jan Odelstad, Patrick Sibelius, Ghita Holmstrom-
Hintikka, Sven Ove Hansson and Kaj Bgrge Hansen finished later. Yet another
dissertation influenced by Kanger was one written in political science by Helle
Kanger. Furthermore, Kanger dispatched several students to Stanford, notably
Ingrid Lindstrém, Sten Lindstrom and Patrick Sibelius, who received their
PhDs there. (Thus Sibelius holds two doctorates, as does Porn who earned his
first doctoral degree from Birmingham.)

Of the many initiatives that Kanger took during his two decades as
professor and head of the department, some are worth mentioning here. One
was the Higerstrém Lectures to be given annually by a philosopher of
international repute; the lecturer would spend a week in Uppsala, giving one
lecture on each of five days but also being available to meet faculty and
graduate students. The first Higerstrom lecturer, in 1970, was Konrad Marc-
Wogau, Kanger’s immediate predecessor as professor in Uppsala, followed by
von Wright in 1972 and by Quine in 1973; the number of distinguished
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philosophers following in their footsteps is still growing. A second initiative
was the Adolf Phalén Annual Memorial Picnic, an informal, three-day affair
involving at times considerable numbers of staff and students in the philoso-
phy departments of Uppsala and the two universities of Turku: Abo Academy
and University of Turku (in the early years) as well as Helsinki (later). (Phalén
and Higerstrom were nationally famous philosophy professors in Uppsala in
the first part of the twentieth century.) A third initiative was the Scandinavian
Logic Symposium; today it is languishing, but the first few meetings ~— Turku
(Abo) 1968, Oslo 1970, Uppsala 1973 — were remarkably successful. A
fourth initiative, still flourishing, was the revival of the Uppsala Philosophical
Studies, an in-house monograph series that was considerably enlarged.

As the years passed, money became less plentiful. Operations at Villavigen
7, later Villaviigen 5, lost some of their momentum. Personal problems began
to develop. Kanger’s output, never massive, dwindled. Even though his
personal situation improved during the last few years, he produced little.
However, his enthusiasm for philosophy and logic never ceased. He had a
repertoire of pet problems that he would bring up in conversation, as a
challenge to himself as much as to his listeners. When he died on 13 March
1988, he still had not solved them all.

Kanger was married three times: to Neita Petrini 1949-1960, to Helle
Kornerup 1961-1978 and to Dagmar Soderberg from 1980. He had two
children with Neita (Elisabeth (Li) and Thomas, born 1950 and 1951,
respectively) and one son with Helle (Kim, born 1963). He is buried in the
cemetery at Hanger.

*

Stig Kanger was a hard man to figure out, a mixture of many contrary
qualities: gregarious but a loner; sensitive under a crust of ‘insensitivity;
unconventional in some ways, conventional in others. He could be caring, yet
was not seldom brusque. He could joke about anything, yet be offended when
others did so. He gave an impression of being boisterous, yet he said little; he
was one of those people it is awkward to talk to on the telephone. In some
ways he changed over the years. In his youth he had a lean and hungry look;
later he became substantial. His older friends remember him as devoted to
discussion. But in later years he was not very open to the ideas of others, and
discussion became one-sided: he was willing to give, not to take.

Among human qualities he admired intelligence the most. Becoming a
friend of his, one had a feeling of having been admitted to an ordered set, each
member ranked according to intelligence; to be lacking in intelligence was a
flaw of character. He was certainly himself intelligent, if the word is used in
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the traditional sense with its emphasis on formal or mathematical ability. Yet
it is not clear how much Stig had of the other “intelligences” we hear about
today, for example, emotional intelligence, knowledge of self and knowledge
of others. Apart from occasional remarks, sometimes very perceptive, he did
not like to talk about personal matters.

Like all academics, Stig wanted recognition for his work and, like most, felt
that he had not got enough of it. In his case the feeling of frustration may have
been justified, for Kanger’s work has not had the impact it could have had, had
it been better known. Yet the fault was to a certain extent his own. First, he
published little; this he saw as a virtue and used to boast that no other Swedish
philosophy professor had ever been appointed on so slim a corpus as he had.
Second, his publications all appeared in local or at least peripheral venues.
Third, his style of writing is off-putting to many readers. Stig loved games, and
perhaps he saw writing logic as a game: to give readers as little explanation as
possible — but always, in a strict sense, enough — and then challenge them to
understand.

It is clear that the years of childhood and adolescence were extremely
important in forming the adult Kanger. We know little about this part of his
life, but T am certain that it holds the key to understanding this complex man.
(One Swedish psychologist — himself a child of missionaries who spent an
important part of his childhood in the same missionaries’ children’s home as
Stig and his brother — has written about missionaries that “they should not
have children™.)

The early years at the University of Stockholm must also have been
important. Anders Wedberg (1913-1978), professor of theoretical philosophy
at the University of Stockholm from 1949 till his death, was an eminent
philosopher; he will be remembered, among other things, for doing history of
philosophy in a new way and for being instrumental in bringing formal logic
into Swedish philosophy. Wedberg was very gifted but also very critical.
There used to be a saying that Wedberg had been able to prove a new theorem:
“Almost everything is trivial”. Then (the saying went on) Kanger came along
and succeeded in strengthening this result, establishing the definitive
Wedberg/Kanger Theorem: “Everything is trivial”. Wedberg was a perfect
example of an analytical philosopher — one good at analysis. For his part,
Kanger used to deny that he was one, maintaining that it is not clear what
analytic philosophy is, if anything, and that at any rate he, Kanger, was a
synthetic philosopher. One wonders what it was like for the young Kanger —
intense and vulnerable, probably then as later given to occasional coarseness
— to try to find his way under the refined, patrician, ever critical Wedberg.
Kanger admired Wedberg’s intellect, perhaps greatly, but his overall attitude
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THE PROOF THEORY OF STIG KANGER:
A PERSONAL RECOLLECTION.*

L
HOW TO TURN GERHARD GENTZEN ON HIS HEAD:
THE SEMANTIC COMPLETENESS OF CUT-FREE SYSTEMS

1. Semantics versus Proof Theory

The term Proof Theory shows a certain ambiguity. In the fifties when Stig
Kanger carried out his logical work it stood for a cluster of topics pertaining
to the syntactic turnstile -, that is, the syntactic counterpart to the semantical
notion of (logical) consequence ~. On the other hand, and more narrowly, it
also stood for investigations of the properties of the syntactic turnstile by
means of systematic transformations of derivation trees. Stig Kanger was a
proof theorist only in the former sense. For him, model-theoretic semantics,
couched in a rich set-theoretic framework, held pride of place, and in this he
was very close to the then main European school of logic, namely the Miinster
School, under the leadership of Heinrich Scholz. There are indeed many
questions to be asked with respect to the mere 26 (!!) non-modal pages of
Provability in Logic.! Not the least of these is the question: where did Stig
Kanger find his semantics? He admired Alfred Tarski above all other logi-
cians. By the side of Finnegan's Wake, Tarski-Mostowski-Robinson, Unde-
cidable Theories,” and, of course, Der Wahrheitsbegriff in den formalisierten
Sprachen,® would have been with him on the Desert Island. The rare off-print
copy of the German (1935) version of Tarski’s masterpiece from 1933,
formerly in Stockholms Hogskolas Humanistiska Bibliotek, now in the
University library at Stockholm, bears the mark of careful study, but it does
contain the model-theoretic semantics in question only derivatively at pp. 361-
62: Tarski’s official definition of truth in §3, for the general calculus of
classes, is not relativized to a domain of individuals, but quantifies over a
universe of everything. The key-concept of model-theoretic semantics, as we
now know it, is the three-place relation

R(U, @, s) =, s satisfies ¢ in W.*
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As far as I know Tarski only gave the explicit definition of R, by a meta-
mathematical recursion over the complexity of the wff ¢, for the first time in
the classical paper by Tarski and Vaught in 1957. Provability in Logic was
conceived in 1955, so Kanger did not take the semantics from Tarski and
Vaught. If he did not make it himself (which, on the basis of Tarski’s remarks
in Der Wahrheitsbegriff, would certainly have been within his reach), a
probable source is the Mathematische Logik by Hans Hermes and Heinrich
Scholz.’ Kanger cites the work at the appropriate place in Provability in Logic
(at p. 16) and it is written in a style that would appeal to him. It is semantically
inclined, while syntactically (almost too) precise.® Kanger’s Handbok i Logik
shows many similarities with that of Hermes and Scholz.’

Anders Wedberg, who held the Chair of Theoretical Philosophy at Stock-
holm during Kanger’s period of study there, was also strongly influenced by
Scholz, as is borne out even by a cursory inspection of Filosofins Historia, 1-
II1.? Indeed, it is no exaggeration to say that, but for Wedberg, only Heinrich
Scholz has shown the same appreciation of symbolic logic as a central tool in
historical studies, as witnessed by the articles collected in Mathesis Univer-
salis.’ Scholz, however, had no empiricist leanings whatsoever. Wedberg
certainly did: in my opinion, he was equally influenced by Moritz Schlick’s
Allgemeine Erkenntnislehre."® Scholz, on the other hand, was a classical
metaphysician, who began his academic career in the Philosophy of Religion
as a favourite pupil of Adolf Harnack. His Platonizing tendencies would not
greatly have disturbed Stig Kanger, his fellow Platonist semanticist."!

2. Confluence of Ideas in 1955: Backwards Application of Gentzen Rules

My Oxford supervisor, the late Robin Gandy, wrote a splendid paper called
The Confluence of Ideas in 1936, in which he dealt with the origins of
recursive function theory and the many different ways of defining the same
class of functions by Church, Kleene, Herbrand, Godel, Hilbert-Bernays,
Turing and Post.'? The early history of contemporary mathematical logic is
replete with such confluence of ideas. Post, Lukasiewicz and Wittgenstein
provide decision-methods for the propositional calculus. Skolem and Fraenkel
emend Zermelo’s set theory in similar fashion. Tarski and Herbrand prove the
Deduction Theorem. Godel, Gentzen and Bernays give the intuitionistic
Double-negation interpretation in 1932.

Stig Kanger played a central role in two major instances of such confluence.
One of these is becoming well-known and concerns the semantics of modal
logic.'® The other concerns the new method for proving completeness of the
classical predicate calculus that was independently developed around 1955 by
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Ewert Willem Beth,' Jaakko Hintikka,'® Stig Kanger and Kurt Schiitte.'® Beth
and Hintikka took the search for a counter-model, where frustration of the
search is held to be a proof, as their starting point and worked with, respec-
tively, semantic tableaux and model sets. [The latter are now also known as
‘semi-valuations’ (Schiitte),'” ‘(analytic) consistency properties’, and, perhaps
even more appropriately, ‘Hintikka sets’ (Smullyan).] Schiitte invented a new
book-keeping device in terms of positive and negative parts, but it has never
caught on outside his immediate circle. The Beth-Hintikka approach was
streamlined by Raymond Smullyan, magician friend of Kanger’s, in the 1960's,
and codified in his text First-Order Logic in terms of ‘Consistency
properties’.'® This approach has now become part of standard teaching, above
all through the successful Penguin-paperback textbook Logic by Wilfrid
Hodges."

Of our four inventors only Kanger stayed close to the original Gentzen
format.” The key observation is the following. Consider the sequent

S=4: A, ... A, =B, ..., B,
or I' = A, for short. It holds (logically) when
A1 & ... &A“DB1 V... \/Bn

is (logically) true. However, and this is the main discovery, the sequent S can
also be read as a task to be resolved, namely: make every antecedent formula
in I true and every succedent formula in A false. This is what Kanger does.
For instance, in order to resolve the task

A>B,T=A

(that is, the task: make A>B and all of I true and make all of A false), it is
necessary either to make all of I true and to make A and all of A false or to
make B and all of I true and all of A false. Set out in schematic form this
becomes:

I'=AA B, I'=A

Ao, T=A

This, however, is nothing but an instance of o=, Gentzen’s antecedent
introduction-rule for o. Similar backwards applications of the Gentzen rules
yield a systematic search-tree, along whose open branches generate certain
semi-valuations — Hintikka sets. The search is frustrated when the systematic
decomposition of the sequent-tasks issues in an impossible task. These take the
form
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* 0,CE=06,CY,

where one would have to make the wff C both true and false, which is clearly
impossible. From the other perspective, though, the sequent (*) is nothing but
an axiom of the Gentzen sequent calculus, so if each branch of the search-tree
is thus truncated it is converted into a sequent-calculus proof, when read from
top to bottom. An open branch in the search-tree, on the other hand, allows one
to read off a semi-valuation which — in the case of first-order logic — can be
extended immediately to a total valuation: an atomic wff without a value in the
semi-valuation is assigned the value true. We have found the desired counter-
model to the original sequent. This procedure is perfectly deterministic: at
each stage it can be explicitly laid down which wff to attack and, in the case of
a backwards application of the quantifier-rules V= and J=, what new free
variable to choose as a witness. In this fashion we get a primitive recursive
two-place function T(x, u) such that when S is a sequent and u = <k, ..., k>
(with n>0), that is, a finite sequence of natural numbers considered as a node
in the universal spread, T([S,u) gives the (Godel-number [S" | of the) sequent
S’ (if any) that has to be placed at the node u in our derivation. (For nodes v
such that no sequent is placed there, T([S]v) is trivially put = 0.) This
information can be squeezed out, in some version or other, from all four
approaches to the backwards proof-methods. The treatment becomes particu-
larly smooth when one stays close to the Gentzen format, though, and a
beautiful exposition of (essentially) the Kanger treatment can be found in
Kleene’s second text-book Mathematical Logic (as Kleene himself came to
realise upon completion of his work).”! Dag Prawitz’s contribution to the
Schiitte-Festschrift from 1974 is another useful exposition.*

- 3. Kanger’s Background when Working Backwards

How did Kanger reach this point? Who, if any, were his precursors? First, and
foremost, Godel and Gentzen. Godel’s original completeness proof can, in
retrospect, be seen as working with semi-valuations, that is, minimal counter-
models,? rather than with the total valuations that are obtained through the
Lindenbaum maximalization technique, now very well-known from the Henkin
completeness-proof.* Gentzen himself, in his dissertation from 1932 (pub-
lished 1934-35), used the cut-free formalism to prove that intuitionistic
propositional logic is decidable, by means of applying the rules backwards in
a hypothetical derivation (which, in virtue of the Hauptsatz, may be assumed
cut-free).”> Kanger knew Oiva Ketonen’s dissertation from 1944,> which gives
a Gentzen-like refinement of the Kriterien der Widerlegbarkeit des reinen
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Priidikatkalkiils from Hilbert-Bernays®’. He also knew Erik Stenius’ book Das
Interpretationsproblem der formalisierten Zahlenreihe und ihre formale
Widerspruchsfreiheit,® which gives a Hilbert-Bernays inspired Herbrand-
treatment of the proof-theory of classical predicate logic, and of arithmetic
with the omega-rule.

4. How Did the Backwards Method Fare After Kanger?

i) Beth shortly afterwards designed also a version of his semantic tableaux that
was complete for an intuitionistic system,” but, as was shown by work of
Godel, Kreisel and Dyson, the completeness proof in question was not
constructive. After two decades, in the mid-seventies, W. Veldman®' and H. de
Swart*>* at Nijmegen were able to circumvent the Godel-Kreisel obstacle by
considering constructive Beth-models in which 1 was allowed to be true at
certain “exploding” nodes. Later refinements were given by Friedman and
Dummett.*

ii) A decade after the Beth-Hintikka- Kanger- Schiitte proof, the method was
extended to the then emerging infinitary logics. E. G. K. Lopez-Escobar, in
particular, gave a Kanger-like completeness-proof for cut-free Ly In his
dissertation from 1963, with applications to Craig’s Interpolation Theorem and
Beth’s Theorem.** Also Jon Barwise originally developed his version of the
theory of admissible sets on a proof-theoretic basis,*® but Makkai later
eliminated the proof theory in favour of an approach in terms of infinitary
consistency properties,”® now conveniently accessible in Keisler's Model
Theory for Infinitary Logic®” and Barwise’s Admissible Sets and Structures.”®

iii) On a more modest level, it was realised, e. g. by Kent” and Lopez-
Escobar,* that the Shoenfield completeness-theorem for the recursive omega-
rule in arithmetic*' was readily provable using the backwards method of proof,
and then it yields even Kalmar-elementary proof-trees.

I have no information as to whether Kanger knew of the work under 1)-1iii).
Lopez-Escobar’s thesis was written under the supervision of Dana Scott, a
good friend of Kanger’s, and it is not improbable that it was known to him.
iv) In the mid-sixties Takeuti’s conjecture concerning cut-elimination in
second-order predicate calculus* was established by Tait,* Prawitz(2 x),* and
Takahashi.*’ Kanger knew and appreciated Prawitz’s extremely elegant
Theoria-proof: a two-sorted semi-valuation is obtained by running the
backwards method. The predicate universes of this semi-valuation need not be
closed under definability. The required foral second-order counter-valuation is
obtained by closing the ramified analytical hierarchy based on the predicate
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A NOTE ON KANGER’S WORK ON
EFFICIENT PROOF PROCEDURES

Three of Stig Kanger’s works belong to proof theory taken in a wide sense: the
monograph Provability in Logic of 1957, the paper “A simplified proof
method for elementary logic” of 1963, and, in between these two, the mimeo-
graphed Handbok i logik written in 1959. I concur in Goran Sundholm’s
remark in his paper of the present volume that Kanger’s main interest in this
connection was not proofs themselves but provability and derivability and in
particular the relation of these notions to semantical ones. A case in point is
Kanger’s variant of Gentzen’s calculus of sequents for classical logic, LK,
which Kanger develops in Provability in Logic. The purpose is there to give a
new demonstration of Godel’s completeness result that every valid formula is
provable, i.e. has some proof, no matter which.

This picture of Kanger’s proof theoretical interests is in need of some
supplementations and qualifications, however. Kanger also gave a proof of
Gentzen’s Hauptsatz, a corner-stone in proof theory, which takes up most of
Gentzen’s classical paper. The theorem is now obtained as an easy corollary of
Kanger’s completeness result for a cut-free version of LK: If the sequents
I' = A, Aand A, T = A are both provable, then in view of the soundness of the
calculus they are valid and so is the sequent I' =A (by the semantical validity
of the cut rule), and hence by the completeness theorem, the sequent I' = A is
provable without use of the cut rule.

Kanger was very fond of his semantical proof of the Hauptsatz and in
particular of the ease with which he obtained it. He devotes a section of eight
lines to it in his otherwise very condensed monograph. Modestly he remarks
that Gentzen'’s proof is superior to his own since it is finitary. But Kanger did
not really care about a result being established in a finitary way. Therefore, his
real attitude, as I remember it, was that the Hauptsatz, having been obtained
for free, could hardly be a deep theorem.

This indifference to the significance of the Hauptsatz seems to confirm the
initial impression that proofs themselves on the object level and their proper-
ties were not the kind of things that interested Kanger. But this is not the
whole truth. Kanger had an interest in the art of engineering, in how things are
made, and he saw that his way of establishing the completeness result for a
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cut-free formalism gave rise to a specific proof procedure. Although proof
theory did not please his philosophical interest, model theory being his
favourite, more practical questions concerning how to find proofs in an
efficient way appealed to him.

Kanger’s monograph Provability in Logic was his doctoral dissertation,
presented in theoretical philosophy in Stockholm in the academic year 1956~
57, at which time I was a beginner in philosophy. When my teacher Anders
Wedberg, who had also been the teacher of Kanger, was to describe the
content of Kanger’s thesis to us beginners, he described it as essentially
amounting to a new proof procedure for predicate logic, which in principle
could be implemented on a computer.’

This stimulated me to try to automatize Kanger’s procedure, and this in turn
led Stig and me to some new insights in that field. I shall here give some
glimpses of this early phase of automatic deduction.

1. KANGER'’S FIRST PROOF PROCEDURE

The proof procedure that Kanger developed in Provability in Logic, also
described in Sundholm’s paper in this volume, consists essentially in applying
the rules of a cut-free version of Gentzen’s calculus of sequents backwards
until one reaches an axiom at the top of each branch of the resulting tree. What
did such a proof procedure amount to? v

We may separate the sentential and the quantification part of the procedure.
As for the first part, it is instructive to make a comparison. Every beginning
student of logic learns after a while that to verify that a formula in sentential
logic is a tautology one does not need to go through all the possible truth value
assignments to the atomic formulas. Given for instance the formula

[A-B-Ol-[(A&B)- (]

it is sufficient to reason as follows: A falsifying assignment must make the
antecedent true and the succedent (A & B) - C false; to achieve the latter A
and B must be assigned truth and C falsity; but to achieve the first, i.e. to make
the antecedent A - (B - C) true, either A must be assigned falsity, which
possibility has already been excluded, or B - C must get the value truth,
requiring in turn that either B is assigned falsity or that C is assigned truth,
which two possibilities have also been excluded. Hence there is no falsifying
assignment.

This way of reasoning has exactly the same structure as applying the
sequent rules as formulated by Kanger backwards: to make a formula true
corresponds to putting it in the antecedent of the sequent, i.e. before the arrow,
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and to make it false to putting it in the succedent of the sequent, i.e. after the
arrow; that a formula cannot be both true and false corresponds to the fact that
a sequent in which a formula occurs both before and after the arrow is an
axiom. To use sequent rules in this way thus seemed to be a very appropriate
way of finding proofs in sentential logic corresponding to known short cuts in
the handling of truth tables.

As for the quantificational part, backward applications of the quantification
rules amounted to the generation of instances of quantified formulas. In the
case of an existential formula in the antecedent or a universal formula in the
succedent a new constant was introduced to replace the quantified variable
(which corresponds semantically to introducing in the counter model sought
for the name of an individual that satisfies an instance of the existential
formula or falsifies an instance of the universal formula, respectively). In the
case of a universal formula in the antecedent or an existential formula in the
succedent, instances were instead formed by systematically substituting for the
quantified variable all constants that had been introduced in operations of the
first kind.

The method was quite straightforward and not very sophisticated. But it was
a complete proof search that took advantage of the sub-formula property of
cut-free proofs, and the achievement was to formulate it precisely. After
Kanger’s public defence of his dissertation in the spring of 1957, I sat down in
the summer to automatize the procedure. I was then also inspired by Beth’s
semantical tableaux used in his proof of the completeness result, which
parallels Kanger’s method in many respects.

At that time there was a computer in Stockholm known as BESK. It was a
huge machine occupying several rooms of what had been the premises of the
Royal Technical University. Just then it had the record as the fastest computer
of the world. But this was a time when there were no programming languages.
One had to use the machine code, which I did not know and did not want to
learn. Instead I invented a programming language of my own suitable for the
particular task in question, and it was translated to the machine code by my
father, who had sometimes been using BESK for certain mathematical calcu-
lations. The program was run on the machine by Neri Voghera in 1958, and
the whole project was presented at the First International Conference on Infor-
mation Processing, which was arranged in Paris in 1959 by UNESCO. It was
published in 1960* and was one of the very first automated proof procedures.
Some roughly equivalent procedures were implemented on other computers
and presented in journals at more or less the same time.

Our program proved simple theorems of logical textbooks, e.g. the one
saying that a transitive and irreflexive relation is asymmetric was proved in 12
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seconds. But as soon as it came to more advanced theorems, it was hopelessly
inadequate, in spite of the record speed of the computer.

2. THE DUMMY METHOD

The reason for the inefficiency of the method was very obvious. After having
introduced a few constants because of existential formulas occurring in the
antecedent or universal formulas occurring in the succedent, the number of
possible substitutions becomes very large when one is to apply the other two
quantification rules backwards to universal formulas in the antecedent or
existential formulas in the succedent .

As an illustration suppose that we have a sequent of the form

VX, VX VX VXGA(X ], X, X3,X,) = VX VX VXX AKX X3,X )

where the antecedent and succedent are the same except for a permutation of
the quantifiers. A human recognizes the validity of the sequent as soon as she
sees that the only difference between the two formulas is the permutation of
V¥x,Vx;. However, to prove the sequent by our procedure, one has to try out
different ways of breaking down the antecedent formula by substituting the
four constants c; generated by the succedent formula , i.e., after having first
obtained the sequent

VX, VX3VX, VX GA(X X, X3,X,) = A(C1,€5,C3,C4)s

one has to test at random substitutions of c,, c;, c;, and c, for the four uni-
versally quantified variables in the formula in the antecedent. There are thus
4* = 256 possible formulas of the form A(t,,t,t5,t,) to generate, and we may
assume that only one of them, A(c,,c,,c5,c,), yields a proof of the original
sequent. There was no method for seeking out the relevant substitution
instance, and hence one could expect that, on an average, one had to generate
a sequent containing 128 substitution instances in the antecedent — quite a
long sequent in view of the simplicity of the original sequent. Imagine a
similar example but with 10 quantifiers instead of 4 — then there are 10*°
possible formulas of the form A(t,,t,,....t;o) to generate, and the right one will
be found after 5 000 000 000 steps on an average! Clearly the speed of the
computer did not matter much.

At a seminar where my automatization of Kanger’s and Beth’s proof pro-
cedures was presented, [ draw attention to this inefficiency of the method and
suggested that one should try to find the right substitutions by some kind of
calculation. I compared our method to solving equations, say 8x + 37 =445, by
systematically trying different values for x until the right one was found. Just
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as we find the roots of equations by performing certain calculations and not by
running through possible values 1, 2, 3, ..., we should find the right substitu-
tion instance directly by some kind of calculation. At this seminar Kanger
suggested as a solution simply to replace the variable by a dummy, which
could also be called a meta-variable, and to let it stand while continuing as
before until one sees what substitutions are appropriate to make for the
dummy. He provokingly pronounced that this dummy-method solved the
problem.

I remember that I was slightly irritated by this proposal. Just to replace the
variables by something called dummies did not solve the problem; in the essay
discussed at the seminar I had also suggested that one should drop quantifiers,
replace the variables by meta-variables ranging over the constants to be
substituted later, and go on with applying the sentential operations to the
formulas — the problem was to “see”, as Kanger expressed it, what values
should be assigned to the dummies, or how to “put together different proof
branches to a proof tree”” as I had expressed it. Nevertheless, it did turn out that
to replace the variables by dummies or to treat them as meta-variables was a
very good strategy, or even the right strategy. The crucial idea was to postpone
substitutions for the variables in question until there was a better opportunity
for making a suitable choice. When attention was focused on this idea, it was
not difficult to point out situations in which it was fairly easy to see what the
appropriate substitutions should be. Somewhat later it turned out that one
could make different selections of such situations.

Kanger described his idea in his Handbok i logik and again in the paper “A
simplified proof method for elementary logic”. This paper is note-worthy also
for other features to be mentioned below. The dummy method is described as
follows. New constants are introduced by backward applications of quantifi-
cation rules as before. At applications of the other quantification rules (that do
not generate new constants), we substitute not a constant but instead a new
dummy d and list at the same time what values the dummies can assume, i.e.
we make a note d/t,, t,, .., t,,called a substitution list, containing all constants
and dummies that occur in the sequent to which the rule is applied. At some
stages we stop and “check whether we can choose values for the dummies
from the substitution lists in such a way that all top sequents will be directly
demonstrable when we replace the dummies by their values”. “Directly
demonstrable” means here to be either an axiom or derivable from an axiom by
inference rules for identity. :

Applied to the sequent occurring in the example above, the method works
as follows: The formula in the succedent is replaced by A(c,,c,,c5,c,), where ¢;,
C,, €y, and c, are four new constants, while the variables of the formula in the
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KANGER'’S CHOICES IN AUTOMATED REASONING

Automated deduction, or automated theorem proving is a branch of science
that deals with automatic search for a proof. The contribution of Kanger to
automated deduction is well-recognized. His monograph [1957] introduced a
calculus LC, which was one of the first calculi intended for automated proof-
search. His article [1963] was later republished as {Kanger 1983] in the
collection of “classical papers on computational logic”. Kanger’s [1963] (and
also [1959]) calculi used some interesting features that have not been noted for
a number of years, and the importance of which in the area of automated
deduction has been recognized only much later.

Kanger [1963] gives no proofs and uses very succinct presentation.
Automated deduction is an area in which very subtle changes in definitions
and assertions may lead to inconsistent conclusions. Kanger’s [1963] area was
theorem proving in sequent calculi with equality and function symbols. Most
papers published in this area before 1995 contained serious mistakes, except
for Kanger’s.

Now, when we are equipped with the impressive amount of techniques
developed in this area, we are amazed by the incredible intuition of Kanger
that allowed him to choose elegant, interesting (and correct) solutions among
many possible choices. This article explains these choices and their place in
modern automated deduction.

l. = = F

The title of this section = = i is the logo of the Association for Logic Program-
ming: truth is equivalent to provability. The equivalence of validity and
provability for classical logic was proved by Godel [1930] and is known as
Godel’s completeness theorem. The notions of truth and validity in logic are
formulated as semantical properties, while the notion of provability is defined
in a purely syntactical way, so there seems to be a gap between the two
notions.

In 1955-1957 several new proofs of Gdodel’s completeness theorem
appeared [Beth 1955, Hintikka 1955, Schiitte 1956, Kanger 1957] in which
model theory and proof theory were connected in a very natural manner. They
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are based on the idea of searching for countermodels of a given formula F by
applying a proof-search procedure to F (i.e. trying to establish +F).

Kanger proposed to search for a proof in a sequent calculus named LC
[Kanger 1957]. Cut-free sequent calculi for first-order logic have been
introduced by Gentzen [1934]. They turned out to be an important tool for
investigating basic proof-theoretic problems [e.g. Gentzen 1936, Girard 1987].
It has also been realized that sequent systems give a convenient tool for
designing proof-search algorithms by using the rules of a calculus backwards
(i.e. from the conclusion to the premise). To prove a sequent S “we start from
below with S and proceed upwards from level to level in the tree form. At each
level the sequent of the next level above are uniquely and effectively deter-
mined — if there is such a level. If there is no such level, this fact is effectively
determined, so that the process may brought to an end.” [Kanger 1957, page
31]. Consider some choices that arise when one formalizes sequent calculi.

Choice 1 (structure rules) In the original Gentzen’s LK a sequent was an
expression I" = A, where T, A are sequences of formulas. Since I and A play
the role of a conjunction and a disjunction, respectively, the logical semantics
of a sequent is independent of the order of formulas in I', A. Neither does it
depend on duplicate occurrences of formulas in I" or A. Therefore, Gentzen
had to introduce several structure rules that allow one to interchange and
duplicate formulas in I', A, and also add new formulas:

- Ap,B, A A, T, B AT,~A
I'-ALA4A, B, A, T, A B T,-A
T-ALA A T,A,A-A
T-AA T,A-A
r-A r-A
T-AA T, A-A

These rules are called exchange, contraction and weakening. The use of these
rules introduced unnecessary technical details in proofs of [Gentzen 1934]. In
order to avoid complications, other structures than sequences should be
adopted. One obvious choice is the use sets instead of sequents. This again
makes the formalization of sequent calculi quite complex. Suppose that I', A
are sets and consider the following rule of sequent calculi:
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I'-Au{A}
I'-Au{AVB}

V)

Let I' be empty and consider four different instantiations for A: {}, {A},
{AV B}, and {A, AV B}. We obtain the following four instances of this rule:

- {A} y - {A} y
~ave OV Taave OV
- {A,AV B} - {A,AV B)

- {AV B} GV Tiaave OV

The last one is absurd, among all four instances only the first one is enough to
preserve completeness. Therefore, if we choose sets, we have to impose
several restrictions on the inference rules. If we prohibit A and A V B occur in
A, we may eventually loose completeness. Even if we impose no restrictions
we might still be in need of the weakening rule. So what is the right choice for
sequent and structure rules in sequent calculi?

Kanger’s Choice 1 One distinctive feature of the calculi used in [Kanger
1957, Kanger 1963] is the full absence of structure rules. In order to achieve
this, sequent are made of multisets of formulas and some rules are modified.
The use of multisets eliminates the exchange rule. The use of contraction rule
is replaced by the explicit duplication of formulas in some (but not all!) rules
and changes in some other rules. For example, the (~3) rule in Kanger’s
system is

'~ A, 3x@(x), o)
I'- A, Zxex)

(the formula Jx@(x) is explicitly duplicated), and the rule (- V) is changed into
I'-AA B
roaave Y

Finally, to get rid of weakening axioms I', A -~ A, A are used instead of more
traditional A - A.

Completeness can be proved for virtually any variant of sequent calculi, but
even completeness proofs meet small technical problems when it comes to
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structure rules. The choice made by Kanger to design a system without
structure rules at all has now become de facto standard.

Kleene [1952] also described the sequent system G3 with invertible rules,
but this property was realized straightforwardly by retaining the principal
formula in the premise(s). Later Kleene’s G3 was transformed to the system
G4 [Kleene 1967]', which was essentially the system LC.

Choice 2 (variants of rules) For some logical connectives, we have a choice
among various sequent calculus rules. For example, for the proof disjunction
one can use either the following two rules:

F-AA T~ A B
Ly —_ Ly
r-aavg OV ad Ve OV

or just one rule

I'-AAB

—_— \/

I'-AAVB =)

The first choice seems to reflect the semantics of disjunction in a more
intuitive way. Nevertheless, in Kanger’s system the choice of the second rule
is made. Why?

Kanger’s Choice 2 The main answer is: all inference rules of Kanger’s system
are invertible. A rule is called invertible if the derivability of the conclusion
implies the derivability of the premises. For automatic proof-search invertibil-
ity of rules is really a remarkable property. If a sequent S is unprovable, then
any derivation tree for § has a branch containing a countermodel for S. It
allowed Kanger to prove completeness “by means of arguments which are new
in some respect and which involve a new turn to the notion of validity”
[Kanger 1957, page 7]. It also allows one to search for a proof in a “don’t
care” matter: after we have selected a rule to apply, there is no need to undo
the selection.

Kleene [1967] notes that the use of his system G4 for proving the complete-
ness theorem “is quite close to Beth [1955] which gave the present writer the
idea for it. In some respect it more resembles Kanger [1957], as the author
learned after working it out.”
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2. USE OF A SEQUENT CALCULUS AS A DECISION PROCEDURE
FOR PREDICATE LOGIC

Kanger was one of the first who used a particular logical calculus as a decision
procedure in the backward direction’. The point was to guarantee termination
of the procedure on target classes of formulas. As examples Kanger considered
the class of quantifier-free formulas and the class of V*3* formulas (without
functional symbols). Later, Wang [1960] described and implemented a
procedure solving this class of formulas, also using backward proof-search in
sequent calculi.

The possibility to obtain decision procedures for propositional logics,
classical and intuitionistic, using backward proof-search in cut-free Gentzen
type calculi was also noted by Kleene [1952]. Later, the use of derivations in
machine-oriented calculi to decide some classes of predicate logic has become
a generally accepted area of research [Maslov 1964, Kallick 1968, Maslov
1968, Joyner jr 1976, Fermiiller, Leitsch, Tammet & Zamov 1993, Leitsch,
Fermiiller & Tammet 1999].

3. PROOF-SEARCH VIA LOGICAL CALCULI

As soon as the first programs for proving theorems in predicate logic appeared
[Prawitz, Prawitz & Voghera 1960, Wang 1960, Gilmore 1960, Davis &
Putnam 1960] it has become clear that the main problem consists in instantiat-
ing variables in the application of (- 3) and (¥ -)) rules (also called y-rules
due to [Smullyan 1968, Fitting 1996]).

U~ A, olt/x], Ixg U, @lt/x], Vxp - A
(-3) and -V
'~ A, 3x¢ I, Vxp - A

Here sequent are represented by expressions of the formI' - A, where I" and
A are multisets of formulas.

Choice 3 (variable instantiation in y-rules) How to instantiate variables by
terms in y-rules? The early methods of automated reasoning used the so-called
level saturation. The set of all variable-free terms was enumerated (usually
respecting depending on the term depth) and terms have been substituted one
by one in that order. However, it was clear that such a solution is far from the
best.

Kanger’s Choice 3 The system of Kanger used a new strategy for instantiating
variables in the applications of y-rules. His strategy of instantiating variables
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KANGER'’S IDEAS ON NON-WELL-FOUNDED SETS:
SOME REMARKS

1. INTRODUCTION

1.1 Provability in Logic. Stig Kanger’s small book from 1957, Provability in
Logic, contains eight chapters. The last two chapters are concerned with modal
logic. This part has received considerable attention and recognition. Chapters
2-6 treat elementary extensional logic. This part has drawn scantier attention.
The present essay contains an exposition and comments on chapters 2-5, with
an emphasis on the contributions to set theory and model theory. I take for
granted that the reader has access to Provability in Logic, either the original
edition from 1957 or the reprint in Collected Papers of Stig Kanger, Vol. .

1.2 Content. Kanger develops a calculus LC for one fixed predicate logical
language L. His intention seems to be to show that LC is all that is needed for
general predicate logic. This forces him to develop new ideas on non-well-
founded sets which are of great interest in their own right. These ideas are the
main subject of the present essay.

I expose the language L, the calculus LC, the ideas on non-well-founded
sets, and the use Kanger makes of them in the model theory for LC.

2. THE CALCULUS LC
2.1 Language. We first indicate the language L.

2.2 Primitive Symbols. The language L is built from the following symbols.

(1) Parentheses.
(2) Propositional constants: p, q, Py, di» P2 Qs - - -
(3) Setsymbols: Fort=1,2,...,
variables of type t: X;, X3, . . .
constants of type t: ¢}, ¢3, . . .
(4) Notation for ordered sets: < >
(5) A two-place predicate: €
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(6) Connectives: o (material implication), & (conjunction), V (disjunction),
~ (negation)

(7) Quantifier symbols: V (universal quantification), 3 (existential quantifi-
cation)

(8) A symbol for Gentzen entailment: —

2.3 Formulas. The atomic formulas of L are all expressions of the form
(aeb) or (<a..a>cb)

where a, b, a,,...,a, are set symbols. The set of formulas are obtained in the
usual way by closing the set of atomic formulas under the connectives and
quantifiers.

2.4 Sequents. Let I' and ® be sequences of closed formulas of LC. A quasi-
sequent is an expression of the form

' — ©

A quasi-sequent S is a sequent if there are infinitely many set constants of each
type which do not occur in S. This distinction is relevant for the formulation
of the deduction rules *10 and *13 of LC, and we shall not need it in the
sequel.

2.5 Intended Interpretation. Kanger considers two interpretations of the atomic
formula (<a,...a,> € b). ‘€’ may be interpreted as denoting an arbitrary 2-place
relation, or it may be interpreted as representing the membership relation for
sets.

2.6 Remark. The language L with the calculus LC is predicate logic without
identity. This is important. One of Kanger’s completeness theorems for LC
cannot be extended to predicate calculus with identity as will be shown in
Section 7.

2.7 Remark. All variables and constants in L are typed. This complicates
somewhat the semantics of L, the deduction rules of LC, and the constructions
in the proofs of the completeness theorems. It is not easy to see any justifica-
tion for having several types rather than just untyped variables and untyped
constants. A typing of symbols may be justified when the domain is a type
structure of sets. The set universe Kanger eventually chooses for his model
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theory contains non-well-founded sets and allows loops likea € aandacbe
a. This makes a typing inappropriate.

In the comments later in the essay, I will sometimes make reformulations
where types are neglected.

2.8 Remark. The usual way to do general predicate logic is to consider the
family {L,} of all predicate logical languages and define a predicate calculus
for each L,. Kanger’s intention is clearly to do general predicate logic; but he
considers only one fixed language, the language L with one predicate € and
individual constants c;, ¢,,... . To motivate this approach, consider, e.g., a
language L* which contains a one-place predicate P and a 2-place predicate R
and also constants ¢ and d. Let 4 be a model for L*. Then

(2-1) 4=P(c) S
(22) 4=R(c,d) < (c%dYHeRA

We see that atomic formulas in the semantics always are interpreted in terms
of the e-relation. This suggests the possibility of doing general predicate logic
by having only one predicate, namely €. Individual terms like ¢, d and
predicates like P, R should then be represented by constants intended to denote
atoms or sets. This is exactly how Kanger’s language L is built up.

The difficulties with such an approach are considerable. The e-relation on
the right-hand side of equivalences (2-1) and (2-2) is governed by the axioms
of ZF. A logical calculus for L should presumably be incomplete if the ‘€’ of
L were interpreted in this way since for completeness, the calculus should have
to include at least one of the non-logical ZF axioms. Kanger therefore needs to
invent another set universe which contains sets not occurring in Zermelo’s
cumulative type structure.

It should be pointed out that the considerations stated in the present remark
are my own and do not occur in Kanger’s work. I nevertheless feel that they
must have motivated Kanger in his work. They also make it intelligible that he
attaches so great importance to normal models and completeness with respect
to normal models (see paragraphs 2.11-2.14 and Section 3 below).

2.9 Semantics. Kanger defines a semantics for L. It consists of a frame together
with a valuation. A frame for L is an infinite sequence r = <r', r,...> of classes
wherer' #@ andr' c ™' fort =1, 2,... .

2.10 Remark. The frame r is the domain of the model. r' is the class of entities
of type at most t. Since r* ¢ r**, the type structure is cumulative.
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2.11 Valuations. A primary valuation is a 2-place function V. The first argu-
ment is a frame; the second argument is either a propositional constant, the
predicate ‘€’, or a set symbol. V satisfies:

(1) V(r, P) = 1 or V(r, P) = 0 if P is a propositional constant. 1 and O

are the truth-values true and false, respectively;

2) V(r, ‘€’) is a class of finite non-unitary ordered sets of elements of

r

3) V(r, s) is an element of r* if s is a set symbol of type t.

A primary valuation is normal if it holds for each frame r that any ordered
set <vy,...,v,, w> of elements of r belongs to V(r,’€’) if and only if <v,,...,v,>
is a member of w, forn € Z,.

The primary valuation gives rise to a secondary valuation T(r, V, S) which,
given a frame r and a primary valuation V, assigns a truth-value, 0 or 1, to each
formula or sequent S. The extension of V to T is done in the natural way.

2.12 Remark. If we use modern notation and disregard types, the semantics can
be reformulated as follows.
A structure (sometimes called an arbitrary structure) is a sequence

(2-3) a=(A €., ch)

where A # 0 is a set, €< A* x A with A* =U,_, A", and c” € A for each
constant ¢ in L. Thus in an arbitrary structure, ‘€’ is interpreted as any relation
over A* X A.

A normal structure is a structure 4 such that €” is a set theoretical member-
ship relation. Thus if A is a class of atoms and sets, then

(2-4) A= <Cppnc,> € d e <cf,...,c> is an element of d*

Note that the definition of a normal structure is vague and ambiguous as is
Kanger’s concept of a normal primary valuation. This is due to the fact that the
exact meaning of “element of” is left open so far. The meaning given to
“element of”” by the ZF axioms is not adequate for Kanger’s purposes. A main
task for him is to find a more suitable concept.

2.13 Validity and Logical Truth. Let S be a sequent or sentence of L. S is valid
if S is true in every structure. S is logically true if S is true in every normal
structure.
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2.14 Remark. Thus validity is defined with reference to structures 4 where €*
is any relation. Logical truth is defined with reference to such structures 4
where €7 is a set theoretical membership relation.

2.15 The Calculus LC. Kanger defines a sequent calculus LC for the language
L. The rules of the calculus are essentially the usual ones for a sequent
calculus, though with some minor changes. The purpose of one of these is to
ensure that the proof procedure will be effective. Another one allows the
exclusion of the Structural Rule from LC. The purpose of a third change is to
cope with the types in the language L.

2.16 Proofs. Let I1 = <S, T,, T,,...> be a sequence of sequents. Il is a quasi-
deduction in LC of S from the class ® of assumption sequents if the following
conditions are satisfied:

(D) IT begins with an occurrence of S;
2) each component U of 11 is either
— an instance of Postulate *1 (the identity axiom), or
— an element of ®, or
— inferable in one step by a rule of inference from one or two suc-
ceeding components of I1.

A proofin LC of a sequent S is a finite quasi-deduction of S from the empty
class of assumptions. A theorem of LC is a sequent which has a proof in LC.

2.17 Remark. (I) A curiosity about the definition is that Kanger defines a
deduction as a linear sequence though what he needs and actually uses is the
picture of a deduction as a labeled tree.

(II) If S is a provable sequent, then a proof for S is a finite tree with S at the
root and with instances of the Identity Postulate

2-5) TI',B,I' — @,B,0®

labeling the leaves. If S is not provable, then the proof tree for S contains a
branch 2 which does not begin with an Identity Postulate and is extended as
far backward as the rules of LC allow.

(IIT) Note that Kanger writes a deduction in the opposite order of the usual
one, i.e., he writes the conclusion first and not last. When one works in
ordinary formulations of the sequent calculus, one soon discovers that the only
reasonable way to construct a deduction is to construct it backward starting



