
Foreword

This volume is a selection of best papers presented at the CoreGRID In-
tegration Workshop 2006 (CGIW’2006), which took place on 19–20 October
2006 in Krakow, Poland.

The workshop was organised by the Network of Excellence CoreGRID
funded by the European Commission under the sixth Framework Programme
IST-2003-2.3.2.8 starting September 1st, 2004 for a duration of four years.
CoreGRID aims at strengthening and advancing scientific and technological
excellence of Europe in the area of Grid and Peer-to-Peer technologies. To
achieve this objective, the network brings together a critical mass of well-
established researchers from forty institutions who have constructed an am-
bitious joint programme of activities.

The goal of the workshop is to promote the integration of the CoreGRID
network and of the European research community in the area of Grid and P2P
technologies, in order to overcome the current fragmentation and duplication
of efforts in this area.

The list of topics of Grid research covered at the workshop included but was
not limited to:

knowledge and data management;

programming models;

system architecture;

Grid information, resource and workflow monitoring services;

resource management and scheduling;

systems, tools and environments;

trust and security issues on the Grid.

Priority at the workshop was given to work conducted in collaboration between
partners from different research institutions and to promising research propos-
als that can foster such collaboration in the future.

The workshop was open to the members of the CoreGRID network and
also to the parties interested in cooperating with the network and/or, possibly
joining the network in the future.

viii Foreword

The Programme Committee who made the selection of papers included:

Sergei Gorlatch, University of Muenster, Chair
Marian Bubak, ICS and ACC CYFRONET AGH
Artur Andrzejak, ZIB
Marco Danelutto, University of Pisa
Vladimir Getov, University of Westminster
Pierre Guisset, CETIC
Domenico Laforenza, ISTI-CNR
Norbert Meyer, Poznan Supercomputing and Networking Center
Ron Perrot, Queen’s University Belfast
Thierry Priol, INRIA/IRISA
Uwe Schwiegelshohn, University of Dortmund
Domenico Talia, University of Calabria
Ramin Yahyapour, University of Dortmund
Wolfgang Ziegler, Fraunhofer-Institute SCAI

All papers in this volume were reviewed by the following reviewers whose
help we gratefully acknowledge:

Martin Alt
Artur Andrzejak
Mark Baker
Briquet
Maciej Brzezniak
Marian Bubak
Mario Cannataro
Andrei Chernykh
Marco Danelutto
Patrizio Dazzi
Jan Dünnweber
Vladimir Getov
Pierre Guisset
Mikael Högqvist
Felix Hupfeld
Stavros Isaiadis
Gracjan Jankowski
Radek Januszewski
Ian Kelley
Raj Kettimuthu
Tobias Langhammer
Norbert Meyer
Jakub T. Moscicki

Foreword ix

Nikos Parlavantzas
Kathrin Peter
Domenico Talia
Jeyarajan Thiyagalingam
Pawel Wolniewicz
Ramin Yahyapour
Wolfgang Ziegler

We gratefully acknowledge the support from the members of the Scientific Ad-
visory Board and Industrial Advisory Board of CoreGRID, and especially the
invited speakers Anssi Karhinen (Nokia) and Michal Turala (IFJ PAN). Special
thanks are due to the authors of all submitted papers, the members of the Pro-
gramme Committee and the Organising Committee, and to all reviewers, for
their contribution to the success of this event. We are grateful to ACC Cyfronet
AGH for hosting the Workshop and publishing its preliminary proceedings.

Muenster and Krakow, May 2007

Sergei Gorlatch and Marian Bubak (workshop organizers)
Thierry Priol (Scientific Coordinator of CoreGRID)

VALIDATING DESKTOP GRID RESULTS BY
COMPARING INTERMEDIATE CHECKPOINTS∗

Filipe Araujo
CISUC, Department of Informatics Engineering, University of Coimbra, Portugal

filipius@dei.uc.pt

Patricio Domingues
School of Technology and Management, Polytechnic Institute of Leiria, Portugal

patricio@estg.ipleiria.pt

Derrick Kondo
Laboratoire de Recherche en Informatique/INRIA Futurs, France

dkondo@lri.fr

Luis Moura Silva
CISUC, Department of Informatics Engineering, University of Coimbra, Portugal

luis@dei.uc.pt

Abstract We present a scheme based on the comparison of intermediate checkpoints that
accelerates the detection of computing errors of bag-of-tasks executed on vol-
unteer desktop grids. Currently, in the state-of-the-art, replicated task execution
is used for result validation. Our method also uses replication, but instead of
only comparing results at the end of the replicated computations, we validate
ongoing executions by comparing checkpoints of their intermediate execution
points. This scheme significantly reduces the time to detect a computational
error, which we show with both theoretical analysis and simulation results. In
particular, we develop a model that gives the benefit of intermediate checkpoint-
ing as a function of checkpoint frequency and error rate, and we confirm this
model with simulation experiments. We find that with an error rate of 5% and
checkpoint frequency of 20 times per task, the gain is as high as 35% compared
to the case where error detection is done only at the end of task execution; for
higher checkpoint frequencies or high error rates, the benefits are even greater.
In addition, when an erroneous computation is detected at an intermediate ex-
ecution point, we propose the immediate replacement of that computation with
a correct replica from another worker. In this way, useful execution and further
validation can continue from that point onward instead of being delayed.

Keywords: Desktop grid, error detection, checkpointing, redundancy

∗This work was supported by the CoreGRID Network of Excellence, funded by the European Commission
under the Sixth Framework Programme. Project no. FP6-004265.

14 Achievements in European Research on Grid Systems

1. Introduction

Desktop grids, which harvest volunteer computing resources, have gained
tremendous momentum in recent years attracting hundreds of thousand of vol-
unteers. Currently, more than a dozen large-scale projects exist, and new ones
are being created regularly [6]. The advent of open source and easy-to-setup
middleware frameworks like BOINC [4] and XtremWeb [10] have lowered the
requirements and skills needed to exploit volunteered resources. To encourage
volunteers, projects publish online rankings of contributed work. Interestingly,
these rankings cause fierce competition, and attract even more dedicated vol-
unteers [11].

Although desktop grids have a high return-on-investment, they also have
major limitations, namely resource volatility and result correctness. The
volatility of desktop grids is caused not only by hardware and software faults of
computing systems, but also by resource owners who retain full priority in ac-
cessing and managing their desktop. Thus, owners reclaiming their resources
might force hosted applications to be interrupted. Checkpointing is a common
solution to cope with volatility, and some support exists for application-level
checkpointing in desktop grid middleware, such as BOINC and XtremWeb [15].

Result correctness of computations performed on volunteer resources is an
important issue, since interpreting incorrect results as correct can be worse
than no results at all. A major source of result incorrectness is faulty hardware.
In [4], Anderson cites overclocking as a significant cause of faulty computa-
tions in projects that resort to the BOINC framework. The fierce competition
and rivalry among volunteers sometimes may also cause unhealthy behavior.
Some users try to increase, not always by honest means, their credits. In some
extreme cases, users resort to dishonest tricks to collect undue credits, like
fabricating results that require much less computation than the real ones [12].
These users are known as lazy cheaters. Finally, another type of malicious user
– saboteur – might simply act for the sole purpose of ruining the computation,
without concern for credits [14]. In contrast to lazy cheaters, saboteurs may
be difficult to counter since they may be resourceful and committed to perform
everything they can to disrupt the computation.

Commonly, desktop grid projects resort to redundancy as a sabotage-
tolerance technique [8]. Under this approach, the same task is distributed to
r different worker machines (hopefully unrelated) to avoid collusion. When
completed, results are compared and there is a majority vote. If a result has
majority, that is, more than r/2 tasks return this result or an equivalent one 1,
it is interpreted as the correct one and the task is flagged as completed. On the

1Some projects dependent on floating-point operations might have slightly different results when executed
in different platforms, but yet equivalent from the project point-of-view [17].

Validating Desktop Grid Results by Comparing Intermediate Checkpoints 15

contrary, if no consensus can be found, all results are discarded and the task is
marked for rescheduling.

In this paper, we present a checkpoint and replication-based error detection
technique that exploits checkpointing and redundancy. The technique com-
pares intermediate checkpoint digests of redundant instances of a same task. If
differences are found, the conclusion is that at least one execution is wrong. In
contrast to the simple redundancy mechanism, where diverging computations
can only be detected after a majority of tasks have completed, intermediate
checkpoint comparison allows for earlier and more precise detection of errors,
since execution divergence can be spotted at the next checkpoint following
any error. This allows one to take proactive and corrective measures without
having to wait for the completion of the tasks, therefore permitting faster task
completion, since faulty tasks can immediately be rescheduled.

To complement the checkpoint-based comparison methodology for error de-
tection, we propose a checkpoint-based replication technique whose goal is to
promote fast completion of redundant instances of a same task, in order to
speed up validation of results. Specifically, under the proposed technique, the
replication of a redundant instance is scheduled as soon as the instance is de-
termined to be erroneous or lagging behind. To minimize the computation to
be redone, the technique tries to initialize the replica from a validated inter-
mediate checkpoint. The technique extends the checkpoint-based verification,
promoting a balanced execution of redundant instances, since validation can
only occur when a majority of results have been completed. Moreover, since
credits are given to workers only after results have been validated, this also ac-
celerates validation and proper credit assignment, which is an important issue
for a considerable percentage of volunteers [11].

Specifically, the contributions of the paper are as follows. First, we construct
a model that estimates the benefit of comparing intermediate checkpoints as a
function of the probability of task error and checkpoint frequency. Second, we
propose the use of immediate replacement of erroneous or slowly executing
tasks to prevent delays of task execution and validation. Third, we conduct
simulations and analysis of results using our novel approach, which confirms
the benefits estimated by our theoretical model.

The remainder of this paper is organized as follows. In Section 2, we define
the assumptions used by the comparison techniques that are based on check-
pointing and replication. In Section 3, we present our technique for error de-
tection through checkpoint comparison and our theoretical model, while in
Section 4, we introduce checkpoint-based task replication. In Section 5, we de-
scribe our simulation setup and results. In Section 6, we discuss related work.
Finally, in Section 7, we summarize the conclusions and describe future work.

16 Achievements in European Research on Grid Systems

2. Assumptions and Definitions

We assume a large-scale computing project, where a central supervisor co-
ordinates the whole computation, by distributing tasks to requesting volunteer
worker machines (henceforth workers). The tasks that comprise an application
are sequential and independent from each others. Furthermore, we assume that
all communications occur exclusively between workers and the supervisor. To
circumvent Internet asymmetries [16] caused by NAT and firewall schemes,
communications are worker-initiated. Thus, the supervisor is passive in the
sense that it can only answer to worker requests. Note that this communication
model is the one adopted by several desktop grid frameworks [10, 4].

At the worker level, fault-tolerance is achieved through application-level
checkpointing [15]. We only consider tasks which can individually be broken
into m temporal segments St = {St1 , . . . , Stm}. The intermediate computa-
tional states can be checkpointed at the end of each temporal segment, yielding
the checkpoint set C = {C1, . . . , Cm}, with Cm taken at the end of the com-
putation. Projects with long duration tasks (weeks or months long), such as
for example the climateprediction.net, whose tasks last for months on state-
of-the-art machines, can benefit most from checkpointing. Whenever a task
is interrupted (because the user switches the machine off, or for some other
reason), its execution can be resumed from the last stable checkpoint Cj .

Depending on the application, checkpoints can get quite large, in the range
of tens to hundreds of megabytes in size, and thus it might be inefficient to
transfer and compare them. (For the purpose of comparison, all checkpoints
need to be on the machine that effectively performs the comparison; thus at
least one of them has to be transferred.) For comparison purposes, we assume
that message digests of checkpoints (provided by the MD5 [13] and the SHA-
family [9] algorithms, for example) can be used. Due to their reduced and
predictable dimensions, message digests can be easily exchanged and com-
pared. Furthermore, an application-specific pre-processing function might be
deployed to normalize checkpoints (for instance, for removing task-dependent
identifiers) prior to the use of a generic digest algorithm. For the purpose of
comparison, checkpoint Cj is represented by the message digest MD(Cj). Ad-
ditionally, the comparison of checkpoints needs to be executed between what
we term as equivalent checkpoints, that is, checkpoints from different replicas
of a task that represent a same execution point of the task.

Regarding redundancy, we assume that the system executes each task r
times, by r independent workers, with the supervisor applying majority vot-
ing to validate results, electing the so-called canonical result [4]. Afterwards,
when the result verification is completed, the system assigns the proper credits
to the workers which have returned correct results.

Validating Desktop Grid Results by Comparing Intermediate Checkpoints 17

3. Comparison of Equivalent Checkpoint Digests

For the comparison of equivalent checkpoint digests, a worker is requested
to return, along with the results of the task that it computed, a selected set of
message digests of the checkpoints saved during the task computation. The
list of checkpoints whose message digests are requested is defined at task cre-
ation time so that redundant instances of a task share the same set of requested
checkpoint digests.

When a majority of redundant executions are completed, and the supervisor
holds enough results for meaningful comparisons, the checkpoint digests from
equivalent execution points are compared to each others. If the digests are
different, the execution point where the differences were detected is marked as
suspicious. Comparatively to the sole result comparisons, the selective digests
technique permits a finer grain detection level, since an erroneous computation
can be located right after the first divergent checkpoint.

3.1 Reducing the Time to Detect an Error

Although the selective digests strategy allows for a more precise location of
error occurrence, it does not speed up the detection of incorrect computations,
since error detection can only occur after, at least, two redundant instances
have terminated.

A more proactive variant is to have workers returning available checkpoint
digests during the computation. Ideally, from a detection point-of-view, the
worker should send to the supervisor a checkpoint digest immediately after its
computation. This way, an error can be spotted by the supervisor as soon as a
majority of checkpoint digests is available for the considered execution point.
Thus, upon detection of a divergent computation, corrective measures can im-
mediately be triggered by the supervisor. For instance, an additional instance
of the task can be scheduled. Additionally, the thought-to-be faulty worker can
be marked as a suspect and further probed to assess its computational honesty,
or, if repeating a faulty behavior it can be blacklisted altogether [14].

3.2 Theoretical Analysis

In this section, we conduct an initial analysis of the advantage of detecting
erroneous computations at intermediate checkpoints. The goal of this analysis
is to estimate the potential advantages of our approach.

We assume that a task is segmented into m fragments. Additionally, we
make the following simplifying assumptions: (1) machines and segments are
homogeneous: a segment always takes t time to complete and the entire task
requires T = m × t. Hence, the number of segments, m, determines the com-
putational effort of the task. The probability of obtaining a wrong checkpoint

18 Achievements in European Research on Grid Systems

is the same for all the workers and for all checkpoints of the same task; (2) all
the replicas of a task start at the same time across all workers; (3) the errors
are independent of each others, and thus, no contamination of replicas occur,
meaning that comparison of replicas is enough to catch all the errors.

Although these assumptions may seem too restrictive, we show experimen-
tally in Section 5 that our analysis also holds for other more heterogeneous
scenarios. We will focus on two variables that affect the system: the probabil-
ity, pe, of having a computational error in any of the checkpoints (either due
to a computational mishap or malicious behavior) and the number of check-
points of the task. We consider that results are validated through r-replication.
(All the replicas must compute the same equivalent checkpoint digest.) How-
ever, comparison of intermediate checkpoint digests permits partial validation
at point j as soon as the r replicas of a task have sent back their respective
message digests of checkpoint j, that is, MD(Cj). We compare this new and
improved approach against the state-of-the-art method, which can only detect
an error at the end of the execution.

When the computational error occurs before the first validation checkpoint
(C1), the checkpoint comparison method will permit a detection T · m−1

m time
units sooner than the regular methodology. This case occurs when there is
one or more errors in the computation of all the r replicas. It is easy to see
that the probability of this event is 1 − (1 − pe)r, which we denote as p to
simplify. For the next checkpoint, the comparison of equivalent checkpoints
saves T · m−2

m time units, relative to the normal validation method. This occurs
with probability p · (1 − p). Extending this reasoning to checkpoint i yields a
saving of T · m−i

m with probability p · (1 − p)i−1. (In the last segment, when
i = m, or if there is no error for the whole computation, our approach brings no
benefit.) We let W be a random variable to represent the error detection time,
that is, the time elapsed from the occurrence of an error up to its detection. In
other words, if we reschedule the task as soon as the error in the checkpoint
is detected, W represents the maximum time that we can save, relatively to
the compare-at-end approach, with a single error detection. However, in the
regular strategy, the computation time can be even worse than T +W , because
other errors can delay the task even further. Hence, if we are able to calculate
W , we can have a measure of the advantage of detecting errors by comparing
intermediate checkpoints. To calculate the expected value of W , we proceed
as follows (we omit the probability of not having any error, as there is no gain
in that case):

E[W] =
m∑

i=1

(
pqi−1 · m − i

m
T

)
= Tp

(
m∑

i=1

qi−1 − 1
m

m∑

i=1

i · qi−1

)
(1)

Validating Desktop Grid Results by Comparing Intermediate Checkpoints 19

Where q = 1 − p. Since
∑m

i=1 qi−1 is a sum of terms of a geometric se-
quence, its sum is Sm−1 = 1−qm

1−q . We can use standard techniques to com-

pute the second term of the difference. Consider that S′
m−1 =

∑m
i=1 i · qi−1.

By multiplying S′
m−1 by q and taking the difference (1 − q)S′

m−1, we get

S′
m−1 = Sm−1−mqm

1−q . Since p = 1 − q, this yields:

E[W] = TpSm−1 −
Tp

m
S′

m−1 = T

(
1 − 1 − qm

mp

)
(2)

In Figures 1(a) and 1(b) we depict the time that we can save relative to T
(E[W]/T), considering Equation 2. In Figure 1(a), we set m = 20, while in
the other figure we set p = 0.05. From Eq. 2 we conclude that the maximum
time that a checkpoint comparison can save converges to T , when m → �.
When p → 1, the time that we can save approaches T · m−1

m as we would
expect. For example, we find that with only an error rate of 5% and checkpoint
frequency of 20 times per task, the gain is as high as 35% compared to the
case where error detection is done only at the end of task execution. Note
that this is a conservative estimate of the benefit as many projects (such as
Einstein@home and SIMAP [2–3]) checkpoint more often in a given work
unit. In particular, in the BOINC project climateprediction.net [7], a work
unit requires around 3 months of CPU time in a fast PCs, being checkpointed
72 times during the whole execution. In conclusion, for even conservative
estimates of error rates and checkpoint frequencies, the benefit of comparing
digests of intermediate checkpoints is significant, and is even greater for higher
probabilities of error or for longer computations with checkpoints.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

U
pp

er
 b

ou
nd

 o
f b

en
ef

it
re

la
tiv

e
to

 m
ax

im
um

 ti
m

e

Probability of error in checkpoint computation

(a) As a function of probability of error (p)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100 120 140 160 180 200

U
pp

er
 b

ou
nd

 o
f b

en
ef

it
re

la
tiv

e
to

 m
ax

im
um

 ti
m

e

of checkpoints

(b) As a function of checkpoint frequency (m)

Figure 1. Benefit (W) relative to maximum time (T).

20 Achievements in European Research on Grid Systems

4. Checkpoint-based Task Replication

Some (BOINC-based) desktop projects increase, at least for specific pe-
riod of times, the redundancy level to foster the chance of fast completion of
tasks. Surprisingly, one of the main motivation for this important decision is
not directly related to the gain of an higher confidence level for the results, but
the need to quickly rewards worker with the proper amount of credits. In fact,
credits are only committed to workers after validation of the sent results. These
credits are determined by the supervisor, based on the credit claims made by
the intervening workers (jointly with the completed results, the worker sends a
claim with the amount of credits it believes it deserves). To circumvent the high
volatility of volunteers, a number of instances higher than what is required for
majority voting is scheduled for execution. This provides timely assignment of
credits even in the presence of sluggish and drop-out workers. However, this
approach wastes resources, and slows down the whole computation.

To speed up completion and validation of individual tasks, promoting fast
credit assignment, we propose to combine the comparison of intermediate
checkpoint digests with task replication. To prevent lengthy re-computations
due to the replication of task, we resort to validated checkpoints to load execu-
tion state in tasks to replicate, avoiding to restart from scratch.

The task replication works by loosely coupling the execution of the redun-
dant instances of a same task, which are configured for reporting selective
checkpoint digests. Note that workers processing instances are not aware of
each other (otherwise the risk of collusion would increase). The supervisor
follows the progress of the coupled instances of a task through the messages
holding the checkpoint digests sent back by these instances, validating the re-
ceived checkpoint digests of the selected execution point through comparison
as soon as a majority of results has been received.

Whenever a worker lags behind its instance partners by more than a speci-
fied threshold – the threshold takes into account the relative speed of the work-
ers – the supervisor initiates a replace operation, with the goal of substituting
the behind-schedule worker. To further speed up substitution, the substitute
task should start from the last validated checkpoint, if available. To prepare
for the instance substitution, the supervisor requests, upon the next communi-
cation of a paired-worker, the last validated checkpoint from this worker (not
the digest, the entire checkpoint file). Upon receiving it, it checks its validity
through message digest comparison, and creates a task which integrates the
validated checkpoint file. This replace task is then scheduled to a request-
ing worker, which starts the computation from the checkpoint execution point,
thus skipping the computation up to this point. From the point of view of the
supervisor, the newly scheduled task replaces the lost/delayed one, and thus
the monitoring of execution proceeds as previously explained. Note that, in

Validating Desktop Grid Results by Comparing Intermediate Checkpoints 21

order to prevent excessive replicas, replication should only be performed if the
number of instances is below a predefined threshold.

5. Experimental Results

In this section, we confirm and extend the theoretical results obtained in Sec-
tion 3.2 through simulation. Specifically, we assign a number of tasks to a set of
workers, setting the duration of these simulated tasks beforehand. Whenever
a worker computes a checkpoint, it randomly determines whether that com-
putation is wrong or correct (once a checkpoint is wrong, all the remaining
checkpoints from that worker are also considered as wrong.) The total time of
the computation, T , is the time at which the last replica finishes its last check-
point, regardless of whether it is correct or wrong. Assume that checkpoint Cj

was the first one to be wrong and that the last replica finished Cj at time TW .
We are interested in the random variable W = T − TW , which represents the
benefit of using intermediate checkpoints relative to the state-of-the-art. In par-
ticular, the metric we use to quantify the gain compared to the state-of-the-art
is the relative value W/T .

We started by considering the same parameter settings that were used to
generate Figure 1(b). So, we set an uniform pe ≈ 0.0253 for all execution seg-
ments, considering homogeneous segments, and a two-replica scheme, which
corresponds to p = 0.05. As expected, we got a curve that closely follows the
theoretical prediction. Then, we studied the impact of considering different
durations for the checkpoints and different error probabilities for each of the
computed checkpoints. We used two different random distributions for this:
uniform and truncated Gaussian. To maintain consistency, the average values
for the error probability and for the segment duration were the same as for the
fixed case, pe and T , respectively. In the uniform distribution, the actual er-
ror probability was chosen uniformly from the interval [0.5pe, 1.5pe) (which
is always inside the interval [0, 1]), while the duration was chosen using the
same distribution in the interval [0.5T, 1.5T). For the Gaussian distribution,
we considered averages of pe and T , and standard deviations of 30% of the
average. Additionally, we truncated the values of pe and T to be inside the
ranges [0.5pe, 1.5pe] and [0.5T, 1.5T], respectively. In Figure 2, we show the
average result of varying the number of checkpoints for 300 different trials. As
we can see, the curves overlap.

The most interesting conclusion from these results is that the particular ran-
dom distribution that controls the duration and the errors of the checkpoints
does not seem to make any significant difference, at least for the same averages.
This would not be true if, for instance, the average duration of checkpoints

22 Achievements in European Research on Grid Systems

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

U
pp

de
r

bo
un

d
of

 b
en

ef
it

re
la

tiv
e

to
 m

ax
im

um
 ti

m
e

of checkpoints

fixed
uniform

gaussian

Figure 2. Benefit (W) relative to expected maximum time (T) (obtained experimentally).

i and j was different for checkpoints i and j2. We believe that there is a sim-
ple and intuitive reason for this; on average the slowest replica should finish
checkpoint i around time i · T

m , where T is the time at which the slowest replica
finishes the task. Although some particular cases may not follow this trend, our
experimental results confirm this intuition for the average case.

6. Related Work

Antonelli et al. [5] propose a distributed checkpoint-based technique for
sabotage tolerance addressing sequential computation split in multiple con-
secutive temporal segments. To certify a given checkpoint Cj , the supervisor
creates a verification task that references the checkpoint to verify and holds the
network contact details of the worker which performed the computation. The
task is then assigned to a worker node (verifier), which requests the checkpoint
from the worker being scrutinized, and loads it upon reception, executing the
task up to the next checkpoint, that is, Cj+1. It then sends the message di-
gest of the this checkpoint to the supervisor. Finally, the supervisor compares
the digest to the other equivalent digests. The scheme is appealing since it
distributes the computation needed for verification of checkpoints through the
workers. However, some major issues like asymmetrical communications and
node availability are not addressed by the authors. Furthermore, workers need
to keep some of the checkpoints of the computed tasks and transfer them when
requested, a demand that might require meaningful space storage and network
bandwidth, especially with large individual checkpoints. On top of that, pro-
moting direct contact between workers may ease collusion.

2However, note that it would not make much sense to consider different average durations for different
checkpoints, unless we were targeting a particular application with a well-known behavior.

Validating Desktop Grid Results by Comparing Intermediate Checkpoints 23

Agbaria and Friedman [1] propose a replication and checkpoint-based
scheme to detect intrusions through anomaly spotting. They resort to check-
point comparison for the purpose of identifying intrusions in a Byzantine en-
vironment. Similarly to our approach, the execution is split in n sequential
phases, with a checkpoint being taken by each worker node at the end of each
phase. For supporting a maximum of t intruded nodes (each node executes a
replica), the proposed scheme requires t + 1 replicas when no intruded node
exists. However, when intrusion exists, the protocol needs additional stages,
involving more than the 3t + 1 replicas which would be required by a straight
Byzantine agreement protocol. The unbalance is supported by the fact that in-
trusions are rare and thus it compensates to have a lightweight scheme which
is only penalized when intrusions do occur. The protocol distinguishes be-
tween workers (nodes that perform the computation and which can get in-
truded) and auditors, which are responsible for assessing the integrity of the
workers. Specifically, the auditors are used to agree that all the t + 1 replicas
match. A major requirement of the protocol lies in the required synchroniza-
tion, with workers having to send their checkpoints to the auditors within a
given time frame. This requires that the replica execution occurs simultane-
ously, a premise that might hard to fulfill in a volatile environment such as
desktop grids. Furthermore, the checkpoints (or equivalently, a message di-
gest) need to be sent to the auditors at the end of every stage, an operation
that requires communication resources and might be difficult if auditors are
not directly addressable [16]. Relatively to the solution that we propose, our
emphasis is more on the practicality of the error detections schemes and its
integration with current desktop grid frameworks.

7. Conclusion

We proposed a strategy for early detection of errors by comparing check-
points of redundant tasks executed over desktop grid resources. We developed
a theoretical model that estimates the benefit of using intermediate checkpoints
given a task length and task segment error rate. We confirmed this theoretical
analysis with simulation results. We find that with only an error rate of 5% and
checkpoint frequency of 20 times per task, the gain is as high as 35% compared
to the case where error detection is done only at the end of task execution. For
higher checkpoint frequencies or high error rates, the benefits are even greater.

For future work, we plan to extend the study the case where segments are
completed with non-uniform execution times. In addition, we will study and
characterize work unit error rates in a real BOINC project, namely Xtrem-
Lab [18], and then instantiate our model with such error rates. Finally, we
intend to study the use of trickle messages [7] to regularly send the checkpoint
digests to the central supervisor, without incurring any additional communica-
tion costs.

24 Achievements in European Research on Grid Systems

References

[1] A. Agbaria and R. Friedman. A replication-and checkpoint-based approach for anomaly-
based intrusion detection and recovery. Distributed Computing Systems Workshops, 2005.
25th IEEE International Conference on, pages 137–143, 2005.

[2] D. Allen. Personal communication, June 2006.

[3] C. An. Personal communication, March 2006.

[4] D. Anderson. BOINC: A system for public-resource computing and storage. In 5th
IEEE/ACM International Workshop on Grid Computing, Pittsburgh, USA, 2004.

[5] D. Antonelli, A. Cordero, and A. Mettler. Securing Distributed Computation with Un-
trusted Participants. 2004.

[6] J. Bohannon. Grassroots supercomputing. Science, 308(6 May):810–813, 2005.

[7] C. Christensen, T. Aina, and D. Stainforth. The challenge of volunteer computing with
lengthy climate model simulations. In 1st IEEE International Conference on e-Science
and Grid Computing, pages 8–15, Melbourne, Australia, 2005. IEEE Computer Society.

[8] W. Du, J. Jia, M. Mangal, and M. Murugesan. Uncheatable grid computing. Distributed
Computing Systems, 2004. Proceedings. 24th International Conference on, pages 4–11,
2004.

[9] D. Eastlake and P. Jones. RFC 3174: US Secure Hash Algorithm 1 (SHA1). Request for
Comments, September, 2001.

[10] G. Fedak, C. Germain, V. Neri, and F. Cappello. Xtremweb: A generic global computing
system. In 1st Int’l Symposium on Cluster Computing and the Grid (CCGRID’01), pages
582–587, Brisbane, 2001.

[11] A. Holohan and A. Garg. Collaboration Online: The Example of Distributed Computing.
Journal of Computer-Mediated Communication, 10(4), 2005.

[12] D. Molnar. The SETI@home Problem. ACM Crossroads Student Magazine, september
2000.

[13] R. Rivest. RFC-1321 The MD5 Message-Digest Algorithm. Network Working Group,
IETF, April 1992.

[14] L. Sarmenta. Sabotage-tolerance mechanisms for volunteer computing systems. In 1st
International Symposium on Cluster Computing and the Grid, page 337, 2001.

[15] L. M. Silva and J. G. Silva. System-level versus user-defined checkpointing. In Sympo-
sium on Reliable Distributed Systems, pages 68–74, 1998.

[16] S. Son and M. Livny. Recovering Internet Symmetry in Distributed Computing. Cluster
Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International
Symposium on, pages 542–549, 2003.

[17] M. Taufer, P. J. Teller, D. P. Anderson, and I. Charles L. Brooks. Metrics for effective
resource management in global computing environments. e-science, 0:204–211, 2005.

[18] XtremLab. http://xtremlab.lri.fr.

