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Introduction

Research in the domain of biologically inspired walking machines has been
ongoing for over 20 years [59, 166, 190, 199, 207]. Most of it has focused
on the construction of such machines [34, 47, 216, 223], on a dynamic gait
control [43, 117, 201] and on the generation of an advanced locomotion control
[30, 56, 104, 120], for instance on rough terrain [5, 66, 102, 180, 192]. In
general, these walking machines were solely designed for the purpose of motion
without responding to environmental stimuli. However, from this research
area, only a few works have presented physical walking machines reacting to
an environmental stimulus using different approaches [6, 36, 72, 95]. On the
one hand, this shows that less attention has been paid to walking machines
performing reactive behaviors. On the other hand, such complex systems can
serve as a methodology for the study of embodied systems consisting of sensors
and actuators for explicit agent–environment interactions.

Thus, the work described in this book is focused on generating different
reactive behaviors of physical walking machines. One is obstacle avoidance
and escape behavior, comparable to scorpion and cockroach behavior (neg-
ative tropism), and the other mimics the prey capture behavior of spiders
(positive tropism). In addition, the biological sensing systems used to trigger
the described behaviors are also investigated so that they can be abstractly
emulated in these reactive walking machines.

In the next section, the background of research in the area of agent–
environment interactions is described, which is part of the motivation for
this work, followed by the details of the approaches used in this work. The
chapter concludes with an overview of the remainder of the book.

1.1 Survey of Agent–Environment Interactions

Attempts to create autonomous mobile robots that can interact with their en-
vironments or that can even adapt themselves into specific survival conditions
have been ongoing for over 50 years [8, 41, 53, 75, 86, 136, 141, 143, 144, 157].



2 1 Introduction

There are several reasons for this, which can be summarized as follows:
first, such robotic systems can be used as models to test hypotheses regarding
the information processing and control of the systems [69, 115, 146, 175].
Second, they can serve as a methodology for the study of embodied systems
consisting of sensors and actuators for explicit agent–environment interactions
[98, 99, 112, 135, 161]. Finally, they can simulate the interaction between
biology and robotics through the fact that biologists can use robots as physical
models of animals to address specific biological questions while roboticists can
formulate intelligent behavior in robots by utilizing biological studies [63, 64,
173, 213, 214].

In 1953, W.G. Walter [208] presented an analog vehicle called “tortoise”
(Fig. 1.1) consisting of two sensors, two actuators and two “nerve cells” re-
alized as vacuum tubes. It was intended as a working model for the study of
brain and behavior. As a result of his study, the tortoise vehicle could react
to light stimulus (positive tropism), avoid obstacles (negative tropism) and
even recharge its battery. The behavior was prioritized from lowest to high-
est order: seeking light, move to/from the light source, and avoid obstacles,
respectively.

Fig. 1.1. (a) Walter’s tortoise (photograph courtesy of A. Winfield, UWE Bristol).
(b) The tortoise Elsie successfully avoids a stool and approaches the light (copyright
of the Burden Neurological Institute, with permission)

Three decades later, psychologist V. Braitenberg [32] extended the princi-
ple of the analog circuit behavior of Walter’s tortoise to a series of “Gedanken”
experiments involving the design of a collection of vehicles. These systems re-
sponded to environmental stimuli through inhibitory and excitatory influences
directly coupling the sensors to the motors. Braitenberg created varieties of
vehicles including those imagined to exhibit fear, aggression and even love
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(Fig. 1.2) which are still used as the basic principles to create complex behav-
ior in robots even now.

Fig. 1.2. Braitenberg vehicles. (a) Vehicle 1 consists of one sensor and one motor.
Motion is always forward in the direction of the arrow and the speed is controlled
by a sensor, except in the case of disturbances, e.g., slippage, rough terrain, friction.
(b) Vehicle 2 consists of two sensors and two motors. Vehicle 2a responds to light
by turning away from a light source (exhibiting “fear”). Because the right sensor of
the vehicle is closer to the source than the left one, it receives more stimulation, and
thus the right motor turns faster than the left. On the other hand, vehicle 2b turns
toward the source (exhibits “aggression”). (c) Vehicle 3 is similar to vehicle 2 but
now with inhibitory connections. Vehicle 3a turns toward the light source and stops
when it is close enough to the light source. It “loves” the light source, while vehicle
3b turns away from the source, being an “explorer”. (Reproduced with permission
of V. Braitenberg [32])
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One primitive and excellent example of a complex mobile robot (many
degrees of freedom) that interacts with its environment appeared in Brooks’
work [36, 38] in 1989. He designed a mechanism which controls a physical six-
legged walking machine, Ghengis (Fig. 1.3), capable of walking over rough
terrain and following a person passively sensed in the infrared spectrum. This
mechanism was built from a completely distributed network with a total of 57
augmented finite state machines known as “subsumption architecture”[37, 39].
It is a method of decomposing one complex behavior into a set of simple be-
haviors, called layers, where more abstract behaviors are incrementally added
on top of each other. This way, the lowest layers work as reflex mechanisms,
e.g., avoid objects, while the higher layers control the main direction to be
taken in order to achieve the overall tasks. Feedback is given mainly through
the environment. This architecture is based on perception–action couplings
with little internal processing. Having such relatively direct couplings from
sensors to actuators in parallel leads to better real-time behavior because it
makes time-consuming modeling operations and higher-level processes, e.g.,
task planning, unnecessary. This approach was the first concept toward so-
called behavior-based robotics [10]. There are also other robots in the area of
agent–environment interactions which have been built based on this architec-
ture, e.g., Herbert [40], Myrmix [52], Hannibal and Attila [70, 71].

Fig. 1.3. The six-legged walking machine Genghis. It consists of pitch and roll incli-
nometers, two collision-sensitive antennas, six forward-looking passive pyroelectric
infrared sensors and crude force measurement from the servo loop of each motor.
(Photograph courtesy of R.A. Brooks)

In 1990, R.D. Beer et al. [22, 24] simulated the artificial insect (Fig. 1.4)
inspired by a cockroach, and developed a neural model for behavior and lo-
comotion controls observed in the natural insect. The simulation model was
integrated with the antennas and mouth containing tactile and chemical sen-
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sors to perceive information from the environment; that is, it performs by
wandering, edge following, seeking food and feeding food.

Fig. 1.4. (a) Periplaneta computatrix, the computer cockroach where the black
squares indicate feet which are currently supporting the body. (b) The path of a
simulated insect. It shows periods of wandering, edge following and feeding (arrow).
(Reproduced with permission of R.D. Beer [22])

In 1994, Australian researchers A. Russell et al. [179] emulated ant behav-
ior by creating robotic systems (Fig. 1.5) that are capable of both laying down
and detecting chemical trails. These systems represent chemotaxis: detecting
and orienting themselves along a chemical trail.

Fig. 1.5. Miniature robot equipped to follow chemical trails on the ground. (Pho-
tograph courtesy of A. Russell)
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Around 2000, B. Webb et al. [212, 215] showed a wheeled robot that local-
izes sound based on close modeling of the auditory and neural system in the
cricket (cricket phonotaxis). As a result, the robot can track a simulated male
cricket song consisting of 20-ms bursts of 4.7-kHz sound. Continuously, such
robot behavior was developed and transferred into an autonomous outdoor
robot – WhegsIM ASP – three years afterwards [95]. The Whegs (Fig. 1.6)
was able to localize and track the simulated cricket song in an outdoor envi-
ronment. In fact, Webb and her colleagues intended to create these robotic
systems in order to better understand biological systems and to test biologi-
cally relevant hypotheses.

Fig. 1.6. (a) The Whegs. (b) Thirty sequential outdoor trials, recorded using the
tracker, showing the robot approaching the sound source from different directions.
(Reproduced with permission of A.D. Horchler [95])

The extension of the work of Webb was done by T. Chapman in 2001
[46]. He focused on the construction of a situated model of the orthopteran
escape response (the escape response of crickets and cockroaches triggered
by wind or touch stimulus). He demonstrated that a two-wheeled Khepera
robot (Fig. 1.7) can respond to various environmental stimuli, e.g., air puff,
touch, auditory and light, where the stimuli referred to a predatory strike.
It performed antennal and wind-mediated escape behavior, where a sudden
increase in the ambient sound or light was also taken into account.

In 2003, F. Pasemann et al. [155] presented the small recurrent neural
network which was developed to control autonomous wheeled robots show-
ing obstacle avoidance behavior and phototropism in different environments
(Fig. 1.8). The robots were employed to test the controller and to learn about
the recurrent neural structure of the controller.
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Fig. 1.7. (a) The robot model-mounted artificial hairs, antennas, ocelli and ear. (b)
The combined set of wind-mediated escape run tracks, where the arrow indicates the
stimulus. The robot was oriented in different directions relative to the stimulus. The
tracks show the complete set of 48 escape run trials. (Reproduced with permission
of T. Chapman [46])

Fig. 1.8. (a) An evolved neural controller generating exploratory behavior with pho-
totropism. (b) The simulated robot performing obstacle avoidance and phototropic
behavior. (Reproduced with permission of F. Pasemann [155])
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At the same time, H. Roth et al. [176, 177] introduced a new camera
based on Photonic Mixer Device (PMD) technology with fuzzy logic control
for obstacle avoidance detection of a robot called Mobile Experimental Robots
for Locomotion and Intelligent Navigation (MERLIN, Fig. 1.9). The system
was implemented and tested on a mobile robot, which resulted in the robot
perceiving environmental information, e.g., obstacles, through its vision sys-
tem. It can even recognize the detected object as a 3D image for precisely
performing an obstacle avoidance behavior.

Fig. 1.9. MERLIN robots equipped with PMD cameras driving on a terrain with
obstacles. (Reproduced with permission of H. Roth [177])

The above examples are robots in the domain of agent–environment inter-
actions, a field which is growing rapidly. The most comprehensive discussion
can be found in the following references: R.C. Arkin (1998) [10], J. Ayers et
al. (2002) [11] and G.A. Bekey (2005) [26].

1.2 Aims and Objectives

The brief history of the research presented above shows that the principle
of creating agent–environment interactions combines various fields of study,
e.g., the investigation of the robotic behavior control and the understanding
of how a biological system works. It is also the basis for the creation of a
so-called Autonomous Intelligent System, which is an active area of research
and a highly challenging field. Thus, the work described here continues in
this tradition with the extension of the use of biologically inspired walking
machines as agents. They are reasonably complex mechanical systems (many
degrees of freedom) compared to wheeled robots, which have been used in
most previous research. In addition, the creation of desired reactive behaviors
has to be done using more advanced techniques.
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However, there are many different techniques and approaches for robotic
behavior control which can be classified into two main categories: one is de-
liberate control and the other is reactive control. According to R.C. Arkin
(1998) [10], a robot employing deliberative reasoning requires relatively com-
plete knowledge about the world and uses this knowledge to predict its actions,
an ability that enables it to optimize its performance relative to its model of
the world. This results in the possibility that the action may seriously err
if the information that the reasoner uses is inaccurate or has changed since
being first obtained. On the other hand, reactive control is a technique used
for tightly coupling perception and action, and it requires no world model to
perform the action of robots. In other words, this reactive system typically
consists of a simple sensorimotor pair, where the sensory activity provides
the information to satisfy the applicability of the motor response. Further-
more, it is suitable for generating robot behavior in the dynamic world. This
means that robots can react to environmental stimuli as they perceive without
concern for task planning algorithms or memory capacities.

In this book, we shall concentrate on the concept of reactive control to
generate the behavior of four- and six-legged walking machines. In particular,
we shall present a behavior controller based on a modular neural structure
with an artificial neural network using discrete-time dynamics. It consists of
two main modules: neural preprocessing and neural control1 (Fig. 1.10).

The function of this kind of a neural controller is easier to analyze than
many others which were developed for walking machines, for instance, by
using evolutionary techniques [30, 72, 103, 119, 149, 168]. In general, they
were too large to be mathematically analyzed in detail, in particular, if they
used a massive recurrent connectivity structure. Furthermore, for most of
these controllers, it is hardly possible to transfer them successfully onto walk-
ing machines of different types, or to generate different walking modes (e.g.,
forwards, backwards, turning left and right motions) without modifying the
network’s internal parameters or structure [22, 27, 56, 221].

In contrast, the controller developed here can be successfully applied to a
physical four-legged as well as to a six-legged walking machine, and it is also
able to generate different walking modes without altering internal parameters
or the structure of the controller. Utilizing the modular neural structure, dif-
ferent reactive behavior controls can be created by coupling the neural control
module with different neural preprocessing modules. Because the functional-
ity of the modules is well understood, the reactive behavior controller of a
less complex agent2 (four-legged walking machine) can be applied also to a
more complex agent (six-legged walking machine), and vice versa. A part of
1 Here, neural preprocessing refers to the neural networks for sensory signal pro-

cessing (or so-called neural signal processing). Neural control is defined as the
neural networks that directly command motors of a robot (or so-called neural
motor control). These definitions are used throughout this book.

2 In this context, the complexity of an agent is determined by the number of degrees
of freedom.
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Fig. 1.10. The diagram of the modular reactive neural control (called behavior
control). The controller acts as an artificial perception–action system, i.e., the sensor
signals go through the neural preprocessing module into the neural control module
which commands the actuators. As a result, the robot’s behavior is generated by
the interaction with its (dynamic) environment in the sensorimotor loop

the controller is developed by realizing dynamic properties of recurrent neural
networks, and the other is generated and optimized through an evolution-
ary algorithm. On the one hand, the small recurrent neural networks (e.g.,
one or two neurons with recurrent connections [150, 151, 153]) exhibit several
interesting dynamic properties which are capable of being applied to create
the neural preprocessing and control for the approach used in this book. On
the other hand, the applied evolutionary algorithm Evolution of Neural Sys-
tems by Stochastic Synthesis (ENS3) [97] tries to keep the network structure
as small as possible with respect to the given fitness function. Additionally,
every kind of connection in hidden and output layers, e.g., self-connections,
excitatory and inhibitory connections, is also allowed during the evolutionary
process. Consequently, the neural preprocessing and control can be formed
using a small neural structure.

In order to physically build four- and six-legged walking machines for test-
ing and demonstrating the capability of the behavior controllers, the mor-
phologies of walking animals are used as inspiration for the design. The basic
locomotion control of the walking machines is also created by determining the
principle of animal locomotion. In addition, an animal’s behavior as well as
its sensing systems are also studied to obtain robot behavior together with
its associated sensing systems. Inspired by the obstacle avoidance and escape
behavior of scorpions and cockroaches, including their associated sensing sys-
tems, the behavior controller, called an “obstacle avoidance controller”, and
the sensing systems are built in a way that enables the walking machines to
avoid obstacles or even escape from corners and deadlock situations. This be-
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havior is represented as a negative tropism while a positive tropism is triggered
by a sinusoidal sound at a low frequency—200 Hz. The sound induced behav-
ior, in analogy to prey capture behavior of spiders, is called sound tropism. It
is driven by a so-called sound tropism controller together with a correspond-
ing sensory system. As a result, the walking machine reacts to a switched-on
sound source (prey signal) by turning toward and finally making an approach
(capturing a prey).

Eventually, all these different reactive behaviors are fused by using a sensor
fusion technique3 to obtain an effective behavior fusion controller, where dif-
ferent neural preprocessing modules have to cooperate. These reactive systems
also aim to work as artificial perception–action systems in the sense that they
perceive environmental stimuli (positive and negative tropism) and directly
perform the corresponding actions. However, the created systems have no ap-
propriate benchmarks for judging their success or failure. Thus, the ways to
evaluate the systems are by empirical investigation and by actually observing
their performance.

1.3 Organization of the Book

This chapter provided an overview of the research in the domain of agent–
environment interactions, followed by the details of approaches to versatile
artificial perception–action systems. The rest of this book is organized as fol-
lows:

Chapter 2 provides the biological background that served as an inspiration
for the design of the reactive behaviors of walking machines, the physical sens-
ing systems, the structures of walking machines and their locomotion control.
It also shows how these biologically inspired systems are applied to the work
done in this book.

Chapter 3 contains a short introduction to a biological neuron together with
an artificial neuron model. Furthermore, it also describes, in detail, the dis-
crete dynamical properties of a single neuron with a recurrent connection and
an evolutionary algorithm. These are employed as the methods and tools used
throughout this book.

Chapter 4 describes the biologically inspired sensory systems and walking
machines which were originally built with physical components in this book.
They serve as hardware platforms for experiments with the modular neural
controllers or even as artificial perception–action systems.

3 This fusion technique consists of two methods: a look-up table, which manages
sensory input by referring to their predefined priorities, and a time scheduling
method, which switches behavioral modes.
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Chapter 5, which is the main contribution of this book, introduces the neu-
ral preprocessing of sensory signals and neural control for the locomotion of
walking machines. It also presents different behavior controls which are the
product of the combination between the different neural preprocessing units
and the neural control unit. It ends up with the detail of behavior fusion
control that combines all created reactive behaviors and leads to versatile ar-
tificial perception–action systems.

Chapter 6 shows the detailed results of the neural preprocessing tested with
the simulated and real sensory signals. It also shows the capabilities of the
controllers implemented on the physical walking machine(s) which generate
different reactive behaviors.

Chapter 7 examines what has been achieved so far and suggests new avenues
for further research.




