
Preface

Of what use is mathematics? Hasn’t everything in mathematics already been discov-
ered? These are natural questions often asked by undergraduates. The answers provided
by their professors are often quite brief. Most university courses, pressed for time and
rigidly structured, offer little opportunity to present and study actual applications and
real-world examples.

Even more high-school students ask the same questions with more insistence. Teach-
ers in these schools generally work under even tighter constraints than university profes-
sors. If they are able to competently respond to these questions it is probably because
they received good answers from their teachers and professors. And if they do not have
the answers, then whose fault is it?

The genesis of this text

It is impossible to introduce this text without first discussing the course in which it
originated. The course “Mathematics and Technology” was created at the Université
de Montréal and taught for the first time in the winter semester of 2001. It was created
after observing that most courses in the department neglect to present real applications.
Since its creation the course has been open to both undergraduate mathematics students
and future high-school teachers.

Since no appropriate text or manual for the course we envisioned existed, we were
led to write our own course notes, from which we taught. We got so caught up in
writing these notes that they quickly grew to the size of a textbook, containing much
more material than could possibly be taught in one semester. Despite the two of us
being career mathematicians, we must admit that we both knew little or nothing about
most of the applications presented in the following chapters.

The goal of the “Mathematics and Technology” course

The primary goals of the course are to demonstrate the active and evolving character of
mathematics, its omnipresence in the development of technologies, and to initiate stu-
dents into the process of modeling as a path to the development of various mathematical
applications.



VI Preface

Although a few of the included subjects fall outside the strict domain of technology,
we hope to make it clear that, yes, mathematics is useful, and it plays a major role
in everyday technologies. Several of the subjects treated in this text are still being
actively developed, and this allows students to see, often for the first time, that the field
of mathematics remains open and dynamic.

Since the students taking our course include future high school-teachers, it is impor-
tant to stress that the point is not simply to provide them with examples and applica-
tions that they can repeat to their future students, but rather to give them the tools to
formulate and develop real-world examples appropriate to their students. They should
be instilled with the feeling that they are teaching a subject that is intrinsically elegant,
of course, but whose applications have helped shape our physical environment and our
understanding of it.

The choice of subjects

In choosing subjects we have paid particular attention to the following points:

• The applications should be recent or affect the students’ day-to-day life. Moreover,
contrary to the mature mathematics typically taught in other undergraduate courses,
some of the mathematics used should be modern or even still in development.

• The mathematics should be relatively elementary and if it exceeds the typical first-
year undergraduate curriculum (calculus, linear algebra, probability theory), the
missing pieces must be covered within the chapter. A special effort is made to make
extensive use of high-school-level mathematics, particularly Euclidean geometry. Ba-
sic high-school and undergraduate mathematics form a remarkable toolkit, provided
they are well understood and mastered, allowing students to readily explore their
wide applications and, often for the first time, to discover their power when used
together.

• The level of mathematical sophistication required should remain at a minimum:
ideas are a scientist’s most precious commodity, and behind most technological suc-
cesses there lies a brilliant yet sometimes elementary observation.

As a result, the mathematics used in the book covers a very wide spectrum:

• Lines and planes appear in all of their forms (regular equations, parametric equa-
tions, subspaces), often in unexpected ways (using the intersection of several planes
to decode a Reed–Solomon encoded message).

• A large number of subjects make use of basic geometric objects: circles, spheres,
and conics. The concept of locus of points in Euclidean geometry is often repeated,
for example in problems where we calculate the position of an object through trian-
gulation (Chapter 1 on GPS, and Chapter 15 on Science Flashes).

• The different types of affine transformations in the plane or in space (in particular
rotation and symmetries) appear several times: in Chapter 11 on image compression
using fractals, in Chapter 2 on mosaics and friezes, and in Chapter 3 on robot motion.

• Finite groups appear as symmetry groups (Chapter 2 on mosaics and friezes) and
also in the development of primality tests in cryptography (Chapter 7).
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• Finite fields make an appearance in Chapter 6 on error-correcting codes, in Chapter
1 on GPS and in Chapter 8 on random-number generation.

• Chapter 7 on cryptography and Chapter 8 on random-number generation both make
use of arithmetic modulo n, while Chapter 6 on error-correcting codes makes use of
arithmetic modulo 2.

• Probability theory appears in several unexpected places: in Chapter 9 on Google’s
PageRank algorithm, and in the construction of large prime numbers in Chapter 7.
It is also used more classically in Chapter 8 on random-number generation.

• Linear algebra is omnipresent: in Chapter 6 on Hamming and Reed–Solomon codes,
in Chapter 9 on the PageRank algorithm, in Chapter 3 on robot motion, in Chapter
2 on mosaics and friezes, in Chapter 1 on GPS, in Chapter 12 on the JPEG standard,
etc.

Using this book as a course text

The text is written for students who have a familiarity with Euclidean geometry and have
mastered multivariable calculus, linear algebra, and elementary probability theory. We
hope that we have not implicitly assumed any other background knowledge. Working
through the text nonetheless requires a certain scientific maturity: it involves integrating
a variety of mathematical tools in a setting different from the one in which they were
originally taught. For that reason, undergraduates in their junior or senior years are
the ideal audience for the course.

The text presents applications in two forms: the main chapters (all except Chapter
15) are long and detailed, while the Science Flashes (sections of Chapter 15) are short
and narrow in scope. Readers will notice a certain unity in the form of the longer
chapters: the first sections describe the application and the underlying mathematical
problem; this is followed by an exploration of simple cases of the problem and, if neces-
sary, a development of the required mathematics. We call these parts the basic portion
of the chapter. Afterward, one or more sections may explore more-complicated exam-
ples, provide more details to the mathematical tools discussed earlier, or simply discuss
the fact that mathematics alone is not always sufficient! We refer to this latter part of
a chapter as the advanced portion. Each application is typically covered in 5–6 hours
of class: two hours for the basic theory, two hours for examples and exercises and, if
time permits, one or two hours for advanced topics. Often we are able only to touch
briefly on the advanced material, unless a second week is spent on the chapter. Each
Science Flash can be treated in an hour of class or even assigned as an exercise without
being preceded by any theory development. During a single semester we aim to cover
a significant part of 8 to 12 chapters and a handful of Science Flashes. Another option
is to significantly reduce the number of chapters being covered and to dig further into
their advanced sections.

We are thus forced to select subjects as a function of their intrinsic interest or the
students’ mathematical knowledge. The chapters not selected or the advanced portions
of those that were covered are natural points of departure for course projects. Self-
guided students who are reading this text on their own may simply jump from chapter
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to chapter as the mood strikes them. Each chapter is (mathematically) independent (or
very nearly so), and any links among them are explicitly stated.

One last note for professors using this book as a course text. Teaching this course
has forced us to revise our usual pedagogical methods: here no subject is prerequisite for
further courses, the definitions and theorems are not the ultimate goals of the course, and
the problems are not drill. These factors can cause some anxiety on the students’ side.
Moreover, we are not specialists in any of the technologies we discuss here. So we had
to revise our teaching. We try to make as many links as possible to the technology. We
encourage students to participate in the course. This allows us to check their background
relative to the mathematical tools being used. As for exams, we choose to reassure them
from the beginning by stating that the exams are open book, noncumulative, and limited
to the basic material. Emphasis is put on simple mathematical modeling and problem
solving. Our sets of exercises focus on these skills.

Using this book as a self-directed reader

During the writing of this text we have always been passionate about presenting the
mathematics underlying technology and demonstrating both its intrinsic beauty and
power. We believe that this text will be of interest to any reader, from young scientist
to experienced mathematician, curious to understand the mathematics that drives tech-
nological innovation. Since the chapters are largely independent, the reader can hop
from subject to subject at will. Hopefully, the reader will be equally interested in the
many historical notes scattered throughout the text and, who knows, even find time to
work through a few of the exercises.

The contributions of Hélène Antaya and Isabelle Ascah-Coallier

The first draft of Chapter 14 on the calculus of variations was written by Hélène Antaya
during a summer internship at the end of her junior college. Chapter 13 on computing
with DNA was written the following summer by Hélène Antaya and Isabelle Ascah-
Coallier while they were supported by an Undergraduate Student Research Award from
the National Sciences and Engineering Research Council (NSERC) of Canada.

How to use the chapters

For the most part, chapters are independent. The beginning of each chapter contains a
brief “how-to,” describing the required basic knowledge, the relationships between the
sections, and, if necessary, their relative difficulty.

Christiane Rousseau
Yvan Saint-Aubin

Département de mathématiques et de statistique
Université de Montréal
June 2008
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Friezes and Mosaics

This chapter discusses the classification of friezes and several concepts related to mo-
saics. The first section introduces the concept of operations that leave a frieze un-
changed, using basic geometry and intuition. It also describes what will be the main
steps of the classification theorem. Section 2.2 defines affine transformations and their
matrix representation, and isometries. The highlight of this chapter is the classification
theorem shown in Section 2.3. In less detail, the last section discusses mosaics. There
is no advanced section to this chapter, the proof of the classification theorem being the
most difficult element. Sections 2.1 and 2.4 can be covered in three hours of class.
The tools are then purely geometric and the possibility of classification is made clear.
If the classification theorem is the goal, four hours should be devoted to the first three
sections. In all cases, the lecturer should bring copies of Figure 2.2 on transparencies
to the classroom. Their use on a projector helps students to understand quickly the
concept of symmetry. Only a basic knowledge of linear algebra and Euclidean geometry
is required to understand this chapter. The proof of the classification theorem requires
a familiarity with abstract reasoning.

This subject offers several interesting directions for further study: aperiodic tilings (end

of Section 2.4) is one such direction, while Exercises 13, 14, 15, and 16 present several

others.

Friezes and mosaics have been used in decoration for several millennia. The ancient
world’s Sumerian, Egyptian, and Mayan civilizations all used them to great effect. It
would be a lie, however, to pretend that ancient mathematics developed the “tech-
nology” behind the art. The formal mathematical study of tilings is relatively recent,
having started no more than two centuries ago. The memoir of Bravais [1], a French
physicist, is among the first scientific studies of the subject.

Mathematics is able to provide a way to systematically classify the friezes and mo-
saics commonly seen in architecture and art. These classifications have allowed mathe-
maticians to better understand the rules behind them and to create truly new patterns
by breaking some of these rules.

C. Rousseau and Y. Saint-Aubin, Mathematics and Technology,
DOI: 10.1007/978-0-387-69216-6 2, c© Springer Science+Business Media, LLC 2008
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Fig. 2.1. Seven friezes. (Each of the above friezes has its pattern displayed in simplified form
in Figure 2.2.)
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Fig. 2.2. Seven simplified friezes. (Each of the above friezes is a simplified form of the corre-
sponding frieze in Figure 2.1.)
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Classification of objects is a fairly common mathematical activity. The reader who
has followed a course on multivariable calculus will remember the classification of ex-
trema of a function of two variables using the second partial derivative test. If the
matrix of second derivatives (the Hessian matrix) is nonsingular, the extremum can be
classified as either a local minimum or a local maximum or a saddle point. The reader
might also have encountered the classification of conics, either in an advanced linear
algebra class or in Euclidean geometry. And for those having read Chapter 6 on error-
correcting codes, Theorems 6.17 and 6.18 classify finite fields. These are examples of
classifications of abstract objects. It may be surprizing to learn that mathematics can
classify objects as concrete as architectural patterns. Here is how it is done.

2.1 Friezes and Symmetries

The Oxford English Dictionary defines frieze as a band of painted or sculptured deco-
ration. It is also defined as that member in the entablature of an order which comes
between the architrave and cornice, referring to the architectural location where such
patterns are commonly used. Figure 2.1 shows seven friezes taken from architecture. To
discuss these objects from a mathematical point of view, we will modify the definition to
include the following elements: (i) a frieze has a constant and finite width (the height
of the friezes in Figure 2.1) and is infinitely long in the perpendicular direction (the
horizontal one in our examples); and, (ii) it is periodic, meaning that there exists some
minimal distance L > 0 such that a translation of the frieze by a distance L along the
direction in which it is infinite will leave the frieze unchanged. The length L is called
the period of the frieze. This definition does not fit perfectly with real-world friezes
(specifically those in Figure 2.1) because they are not infinitely long. However, we can
easily imagine extending them infinitely in both directions by simply continuing the
pattern.

Figure 2.2 presents seven more friezes. They are much less detailed but much simpler
to study. Each of these seven friezes has the same period L, equal to the distance
between two neighboring vertical bars. In the remaining discussion we will imagine
that these vertical bars do not appear in the frieze pattern, since they have been drawn
simply to make the period explicit. Some of these friezes are invariant under various
geometric transformations other than translations. For example, the third and seventh
friezes remain the same even if we flip them so as to exchange their top and bottom.
In this case we say that they are invariant under reflection by a horizontal mirror. The
second, sixth, and seventh friezes remain unchanged if flipped from left to right; we
say that they are invariant under reflection by a vertical mirror. These distinctions
between various friezes raise a natural question: is it possible to classify all friezes
by considering the set of operations under which they are invariant? For example,
the set of operations leaving the first frieze unchanged includes neither the horizontal
nor the vertical reflection just discussed. This set of operations is distinct from that
characterizing the third frieze, which may be reflected horizontally. Note that the
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friezes in Figures 2.1 and 2.2 have been ordered such that they each display the same
respective symmetries. Thus, corresponding pairs will be left unchanged by the same
operations. For example, the third frieze in both figures is invariant under translations
and horizontal reflection.

When a geometric transformation preserving lengths (such as a translation or a
reflection) leaves a frieze unchanged, it is said to be a symmetry operation of the frieze
or, simply, a symmetry. The complete list of symmetries of a frieze is infinite. Indeed,
we would like to distinguish in this list the translation by a distance of one period L
from the translations by 2L, 3L, etc., and these already account for an infinite number
of symmetry operations. Moreover, the list should also contain the inverse of each
symmetry operation. The inverse of a symmetry operation is the usual inverse of a
function: the composition of a function and its inverse is the identity in the plane (or
on the subset defined by the frieze as in the present case). The inverse of a translation
to the right by a distance L is a translation to the left by the same distance. (Exercise:
what is the inverse of a reflection with respect to a given mirror? and that of a rotation
by an angle θ?) If translations to the right (respectively to the left) are associated
to positive distances (respectively negative distances), then the list of symmetries of a
frieze of period L should contain all translations by a distance nL with n ∈ Z. Instead
of listing all symmetries of a frieze, it is common to give only a subset of elements whose
compositions and inverses give the whole list. Such a subset is called a set of generators.
This is what we are going to use from now on. (Mathematicians usually take this subset
as small as possible. They call it minimal whenever the subset, after removal of one of
its elements, fails to generate the whole set of symmetries.)

The goal for the remainder of this section is to build geometric intuition of key ideas
leading to the classification theorem, Theorem 2.12. This theorem gives all possible
lists of symmetry generators for friezes of a given period. The reader is urged to make
a copy of Figure 2.2 on a transparency and cut it into seven strips, one for each frieze,
before reading on. Experimentation is an ideal way to develop intuition!
The three generators tL, rh, and rv. We have already introduced some possible
symmetry operations: translations (by any integer multiple of the period), reflections
by horizontal and vertical mirrors. We will use the symbol rh and rv for the latter. The
set of translations of a frieze is generated by the unique translation tL by a period L.
(The inverse of tL is t−L. Composition of n operations tL gives tL ◦ tL ◦ · · · ◦ tL = tnL.)

A subtlety should be cleared up right away. For the reflection rh to leave a frieze
unchanged, the horizontal mirror should be located along the middle line of the frieze
(the dashed lines in Figure 2.2). Its position is therefore completely determined by the
requirement of being a symmetry. This is not the case for reflections through a vertical
mirror. Positions of vertical mirrors must be chosen according to the pattern. The frieze
2 (the second from the top in Figure 2.2) has an infinite set of vertical mirrors. All small
vertical bars define a position for a vertical mirror. But these are not the only ones.
A mirror located halfway between two adjacent vertical bars also defines a symmetry
of this frieze. Exercise 7 shows that if a frieze of period L is unchanged under a given
vertical mirror, it is also invariant under an infinite number of mirrors, any of those
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being at a distance nL
2 , for n ∈ Z, from the first. The notation rv underlies therefore a

choice for the position of one mirror and all other vertical mirrors at a distance equal to
an integer multiple of L

2 from the first one. (Exercise: which other friezes of the figure
have a symmetry rv?)
Notation. Composition of symmetry operations will be used often in the following,
and we shall drop the symbol “◦”. For example, rh ◦ rv will be simply noted rhrv. Soon
will also appear the necessity of distinguishing the order of operations. It is important
to note that operations are listed from right to left. The composition rhrv stands for
the operation rv followed by rh.
The rotation rhrv. The frieze 5 introduces a new generator. This frieze has neither
rh nor rv as a symmetry, but if rv and then rh are both performed on it, the frieze
remains unchanged. (The vertical mirror is along one of the vertical bars.) (Exercise:
check this claim!) It can then happen that neither rh nor rv is a symmetry but their
composition rhrv is. The final result rhrv of these two reflections is a rotation by an
angle 180◦. To see this, note that rhrv exchanges the top and bottom, the left and the
right, without altering the distances. This is exactly the action of rotation by 180◦. (In
terms of a coordinate system whose origin is on a vertical bar, a point (x, y) within the
frieze is mapped into (−x,−y) under this transformation. This is why this operation is
also called the symmetry through the origin.) Exercise 8 proposes a geometrical proof
of this property.

The following properties of the three generators rh, rv, and rhrv are easily verified,
geometrically or with the use of the copy on transparency that you have made of the
figure. They could also be proved using the matrix representation that will be introduced
in Section 2.2. (See Exercise 6.)

Proposition 2.1 1. The operations rh and rv commute, that is, the two compositions
rhrv and rvrh are equal.
2. The inverse of rh is rh, that of rv is rv, and that of rhrv is rhrv.
3. The composition of rh and rhrv gives rv. That of rv and rhrv gives rh. (This allows
us to conclude that a frieze that would have any two of the three operations rh, rv, rhrv

as symmetries would automatically have the third also.)

With these properties, it should be easy to determine which of rh, rv, and rhrv are
symmetries of a given frieze of Figure 2.2. (Exercise: do it for all of them!)
The glide reflection symmetry sg = tL/2rh. After the last proposition, the list of
possible generators reads tL, rh, rv, and rhrv. Any of rh, rv, and rhrv is a symmetry of
at least one frieze in Figure 2.2 and not a symmetry of at least one other frieze. But
the frieze 4 shows that this list is not yet complete. None of rh, rv, rhrv is a symmetry
of this frieze. But a reflection rh followed by a translation by a half-period L

2 leaves
it unchanged. (See Figure 2.3. Recall that vertical bars are not part of the pattern.)
We shall refer to this operation as the glide reflection and denote it by sg. Using the
composition we can write it as sg = tL/2rh. (Exercise: only one other frieze among the
seven of Figure 2.2 has sg among its symmetries. Which one?)
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Fig. 2.3. A glide reflection. The frieze 4 as it appears in Figure 2.2 (top line), the same after
the operation rh (middle line), and after a translation by a half-period (bottom line).

Toward the classification theorem. The list of possible generators now contains
five operations (tL, rh, rv, rhrv, sg). It was obtained by studying Figure 2.2. To obtain
the complete list of symmetry sets of friezes, we need all possible symmetry operations
of friezes. What tells us that the list of five operations above is complete? Could there
be another frieze that has a symmetry that cannot be obtained from these five? These
will be the first questions to answer in order to prove the classification theorem.

Suppose for the time being that this list is complete. We can then enumerate po-
tential sets of symmetries for friezes of period L. As stated above, we shall do this by
identifying a set of generators. By definition, all sets will include the translation tL by
a distance L and no shorter ones. Any set may contain either zero or one or two of
the three generators rh, rv, rhrv. (If the list contains two, it automatically contains the
third one.) These observations lead to the following list.

1. 〈tL〉
2. 〈tL, rv〉
3. 〈tL, rh〉
4. 〈tL, sg〉
5. 〈tL, rhrv〉
6. 〈tL, sg, rhrv〉
7. 〈tL, rh, rv〉
8. 〈tL, sg, rh〉
9. 〈tL, sg, rv〉
10. 〈tL, sg, rh, rv〉

All of the sets contain tL. Sets 1 and 4 contain none of rh, rv, rhrv. Set 4 contains sg,
set 1 does not. Sets 2, 3, 5, 6, 8 and 9 contain one and only one of rh, rv, rhrv; 6, 8, 9
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add the glide reflection sg, but 2, 3, 5 do not. Sets 7 and 10 contain two of rh, rv, rhrv

(and therefore all three). Set 10 has moreover sg.
The classification theorem will have to resolve two more questions. The first is

whether this list contains repetitions. Since we are listing only generators, two in the
list above could generate the same list of symmetries. The second question is whether
some of the sets do not generate symmetries of friezes of period L. This question might
be somewhat surprising. But one can easily see that set 8 needs to be crossed out of
the list, since it does not generate symmetries of a frieze of period L.

To see this, it is crucial to remember that the glide reflection sg is the composition of
rh and tL/2. But it can be seen that the set of generators of a frieze of period L cannot
contain both sg and rh. Why? We have noted that the inverse of rh is rh itself. Then the
composition of rh and sg is sgrh = tL/2rhrh = tL/2(Id) = tL/2. Because compositions
of symmetries are symmetries, the translation tL/2 should also be a symmetry of the
frieze. But the period of the frieze was assumed to be L, and by definition, this period
should be the smallest translation leaving the frieze invariant. The translation tL/2

cannot appear, and hence sg and rh cannot simultaneously be generators of the same
frieze. Set 8 must be rejected. (Note that this set does generate a set of symmetries for
a frieze. But that frieze is of period L

2 and it is then set 3, that is, 〈tL/2, rh〉.) (Exercise:
the classification theorem will end up keeping only seven of the ten lists above. The
argument for rejecting 8 was given. Can you guess which other two must be discarded?)

We shall complete the proof of the Classification theorem after having discussed a
powerful algebraic tool to study these geometric operations: the matrix representation
of affine transformations.1

2.2 Symmetry Group and Affine Transformations

We will use affine transformations as the mathematical foundation for describing in-
variant operations on friezes. (If you have read Chapter 3 or 11, you will have already
encountered them.)

Definition 2.2 An affine transformation in the plane is a transformation R
2 → R

2 of
the form (x, y) �→ (x′, y′), where

x′ = ax + by + p,

y′ = cx + dy + q.

An affine transformation is called proper if it is bijective.

Such a transformation can be described in matrix form as

1It is possible to give a purely geometric proof of this theorem. See, for example, [2] and
[5].
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(
x′

y′

)

=
(

a b
c d

)(
x
y

)

+
(

p
q

)

. (2.1)

The matrix
(

a b
c d

)

is a linear transformation, while p and q represent a translation in
the plane. For the rest of this chapter we will be considering only proper (or regular)
affine transformations, that is, affine transformations that are one-to-one. As we shall
see soon, this additional condition is equivalent to the invertibility of the linear trans-
formation matrix

(
a b
c d

)

. Observe that the following equation describes the same affine
transformation: ⎛

⎝

x′

y′

1

⎞

⎠ =

⎛

⎝

a b p
c d q
0 0 1

⎞

⎠

⎛

⎝

x
y
1

⎞

⎠ . (2.2)

In this modified form, a one-to-one correspondence is made between elements (x, y) of
the plane R

2 and elements (x, y, 1)t in the plane at z = 1 of R
3. The mapping between

affine transformations of the form (2.1) and the 3×3 matrices whose last line is (0 0 1),
⎛

⎝

a b p
c d q
0 0 1

⎞

⎠ ,

is also one-to-one.
If we compose two affine transformations (x, y) → (x′, y′) and (x′, y′) → (x′′, y′′)

given by

x′ = a1x + b1y + p1,

y′ = c1x + d1y + q1,

and

x′′ = a2x
′ + b2y

′ + p2,

y′′ = c2x
′ + d2y

′ + q2,

the resulting (x′′, y′′) can be obtained as

x′′ = a2x
′ + b2y

′ + p2

= a2(a1x + b1y + p1) + b2(c1x + d1y + q1) + p2

= (a2a1 + b2c1)x + (a2b1 + b2d1)y + (a2p1 + b2q1 + p2)

and

y′′ = c2x
′ + d2y

′ + q2

= c2(a1x + b1y + p1) + d2(c1x + d1y + q1) + q2

= (c2a1 + d2c1)x + (c2b1 + d2d1)y + (c2p1 + d2q1 + q2).
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Note that this compound transformation can itself be described in a 3× 3 matrix form:
⎛

⎝

x′′

y′′

1

⎞

⎠ =

⎛

⎝

a2a1 + b2c1 a2b1 + b2d1 a2p1 + b2q1 + p2

c2a1 + d2c1 c2b1 + d2d1 c2p1 + d2q1 + q2

0 0 1

⎞

⎠

⎛

⎝

x
y
1

⎞

⎠ .

This last example demonstrates the utility of the 3×3 matrix notation, since composed
transformations can themselves be expressed as the product of the matrices underlying
the individual transformations:
⎛

⎝

a2 b2 p2

c2 d2 q2

0 0 1

⎞

⎠

⎛

⎝

a1 b1 p1

c1 d1 q1

0 0 1

⎞

⎠ =

⎛

⎝

a2a1 + b2c1 a2b1 + b2d1 a2p1 + b2q1 + p2

c2a1 + d2c1 c2b1 + d2d1 c2p1 + d2q1 + q2

0 0 1

⎞

⎠ .

This property allows us to study affine transformations and their compositions using
this 3 × 3 representation and simple matrix multiplication. The geometric problem is
thus reduced to a linear algebra problem. Because of this correspondence, we shall often
use the matrix representation to describe an affine transformation. It should be stressed
that an affine transformation can be defined without using a coordinate system, but its
matrix representation exists only if one has been chosen.

To show the power of this notation we will now compute the inverse of a proper affine
transformation. The inverse is the transform that associates (x′, y′) → (x, y), where
x′ = ax+ by +p and y′ = cx+dy + q. Since the composition of affine transformations is
represented by matrix multiplication, it must be that the matrix describing the inverse
is the inverse of the matrix describing the original transform. This is easily calculated
as ⎛

⎝

d/D −b/D (−dp + bq)/D
−c/D a/D (cp − aq)/D

0 0 1

⎞

⎠ ,

where D = det
(

a b
c d

)

= ad − bc. This is also a matrix describing a proper affine
transformation. (Exercise: what must you do to ensure that it actually describes a
proper transform? Do it. This exercise confirms the claim that an affine transformation
is proper if and only if the matrix

(
a b
c d

)

is invertible.) If we write the matrix describing
the original transform in the form

B =
(

A t
0 1

)

,

where

A =
(

a b
c d

)

, 0 =
(
0 0

)

, and t =
(

p
q

)

,

then its inverse may be written as

B−1 =
(

A t
0 1

)−1

=
(

A−1 −A−1t
0 1

)

.
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Note that B−1 is of the same form as B: its third row is (0 0 1). Furthermore, note
that the linear transformation A−1 is also invertible.

The set of all proper affine transformations forms a group.

Definition 2.3 A set E equipped with a multiplication operation E×E → E is a group
if it satisfies the following properties:

1. associativity: (ab)c = a(bc),∀a, b, c ∈ E;
2. existence of an identity element: there exists an element e ∈ E such that ea = ae =

a,∀a ∈ E;
3. existence of inverses: ∀a ∈ E, ∃b ∈ E such that ab = ba = e.

The inverse of an element a is usually denoted by a−1.

Groups play an important role in several other chapters. See, for example, Section 1.4
and Section 7.4.

It is easy to verify that the set of matrices representing proper affine transformations
forms a group. Thus, the set of affine transformations itself forms a group. This is what
we check now.

Proposition 2.4 The set of matrices representing proper affine transformations forms
a group under matrix multiplication. The set of proper affine transformations also forms
a group under composition. The latter is called the affine group.

Proof : Consider the matrix

B =
(

A t
0 1

)

representing a proper affine transformation. Since the affine transformation is proper,
A is an invertible 2 × 2 matrix and therefore the matrix B is itself invertible. Being
of the same form as B, the matrix B−1 also represents a proper affine transformation,
and condition 3 holds. Property 1 holds because matrix multiplication is itself associa-
tive, and property 2 holds using the 3 × 3 identity matrix, which represents the affine
transformation ⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ ←→
{

x′ = x,

y′ = y.

Therefore the set of matrices representing proper affine transformations forms a group.
We have seen that there is a one-to-one correspondence between matrices (with last line
(0 0 1)) and affine transformations. Moreover, the composition of affine transformations
is represented by matrix multiplication through this correspondence. The verification
above automatically holds for the proper affine transformations themselves. �

Earlier, we introduced reflections with respect to horizontal and vertical mirrors. As
examples, we now give their matrix representation. To obtain these, we need to fix the
origin. We shall place it at equal distance between the top and bottom of the frieze.
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Fig. 2.4. The coordinate system.

(See Figure 2.4.) This still leaves some freedom, since any point on the horizontal axis
in the middle of the frieze is a possible choice. (We have already underlined this freedom
when discussing the position of vertical mirrors. We shall also use this freedom in the
proof of Lemma 2.10.) For a given choice along the horizontal axis, the reflection rh

that exchanges top and bottom (that is, that exchanges the positive vertical axis with
the negative one) is represented by the matrix

⎛

⎝
rh

0
0

0 0 1

⎞

⎠ , where rh =
(

1 0
0 −1

)

,

and the reflection rv that exchanges left and right is
⎛

⎝
rv

0
0

0 0 1

⎞

⎠ , where rv =
(
−1 0
0 1

)

if the origin is on the mirror. (Exercise: check these claims.) Note that

rhrv =
(

1 0
0 −1

)(
−1 0
0 1

)

=
(
−1 0
0 −1

)

.

We observe again that the rotation by an angle of 180◦ (or π) can be obtained by a
reflection in a vertical mirror followed by a reflection in a horizontal one. (Exercise:
determine the 3 × 3 matrices that represent the translation tL and the glide reflection
sg.)

The definition of an affine transformation makes it a function from R
2 to R

2. The
requirement that these functions leave a frieze invariant restricts the set of affine trans-
formations that we need to consider. But a second restriction is made that limits the
affine transformations even more.

Definition 2.5 An isometry of the plane (or of a region of the plane) is a function
T : R

2 → R
2 (or T : F ⊂ R

2 → R
2) that preserves lengths. Hence, if (x1, y1) and

(x2, y2) are two points, then the distance between them is equal to the distance between
their images T (x1, y1) and T (x2, y2).
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Definition 2.6 A symmetry of a frieze is an isometry that maps the frieze onto the
frieze.

Exercise 9 will show that an isometry is an affine transformation. Lemma 2.7 shows
that this restriction to isometric affine transformations limits significantly the possible
linear transformations A that can play a role.

Lemma 2.7 Let the isometry represented by the matrix
(

A 0
0 1

)

be a symmetry of a frieze. Then the 2 × 2 block is one of the four matrices
(

1 0
0 1

)

, rh =
(

1 0
0 −1

)

, rv =
(
−1 0
0 1

)

, and rhrv =
(
−1 0
0 −1

)

. (2.3)

Proof: A linear transformation is completely determined by its action on a basis. We
shall use the basis {u,v}, where u and v are horizontal and vertical vectors of length
equal to half the width of the frieze. With this choice any point of the frieze is of the
form (x, y) = αu + βv with α ∈ R and β ∈ [−1, 1]. (The constraint β ∈ [−1, 1] ensures
that the point (x, y) is within the frieze.) The two basis vectors are perpendicular
(u ⊥ v) or, equivalently, their inner product vanishes: (u,v) = 0.

To check whether ( A 0
0 1 ) represents an isometry, it is sufficient to check that

|Au| = |u|, |Av| = |v|, and Au ⊥ Av. (2.4)

Indeed, if P and Q are two points in the frieze and Q − P = αu + βv is the vector
between them, then the image of Q − P is A(αu + βv) and the square of its length is
given by

|A(αu + βv)|2 = (αAu + βAv, αAu + βAv)

= α2|Au|2 + 2αβ(Au, Av) + β2|Av|2

= α2|u|2 + β2|v|2

= (αu + βv, αu + βv)

= |αu + βv|2,

where we have used, to obtain the third equality, the three relations of (2.4) and, for the
fourth, the fact that the basis vectors are perpendicular. Then the distance between any
pair of points P and Q is preserved by A if the relations (2.4) are satisfied. (Exercise:
show that these relations are also necessary.)

Let Au = γu + δv be the image of u by A. Since the transformation is linear,
A(βu) = β(γu + δv). If δ is nonzero, then it is possible to choose β ∈ R sufficiently
large that |βδ| > 1. This means that the point A(βu) is outside the frieze. Since this
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must be ruled out, δ has to be set to zero. (In other words, a transformation A such
that δ is nonzero is a linear transformation that tilts the frieze out of the horizontal.)
Thus Au = γu, and if |Au| = |u|, we must have γ = ±1.

Now let Av = ρu+σv be the image of v under A. Since Au must be perpendicular
to Av, we must have

0 = (Au, Av) = (γu, ρu + σv) = γρ|u|2.

Since neither γ nor |u| is zero, ρ must be set to 0. And again the last condition |Av| = |v|
fixes σ to be ±1. The matrix A representing the transformation in the basis {u,v} is
then

(
γ 0
0 σ

)

. There are two choices for each γ and σ and thus four for the matrix A,
precisely those appearing in the statement. �

The composition of two isometries and the inverse of an isometry are themselves
isometries. Thus the subset of isometric transformations of the affine group itself forms
a group, called the group of isometries. Finally, the composition of two isometries
leaving a frieze unchanged itself leaves the frieze unchanged. The subset of the group
of isometries that leaves the frieze invariant is therefore a group. We are led to the
following definition.

Definition 2.8 The group of symmetry of a frieze is the group of all isometries that
leave the frieze invariant.

2.3 The Classification Theorem

Having a formal theory of isometries and affine transformations allows us to create
a list of such transformations that could leave a frieze unchanged. This section will
first establish a complete list of possible symmetry generators. The second part of this
section uses this list of transformations to enumerate and classify all possible types of
groups of frieze symmetries.

There are many affine transformations that simply cannot appear in the symmetry
group of a frieze. Lemma 2.7 has already rejected the linear transformations that tilt
the frieze out of its domain (the constraint δ = 0 excludes these transformations). The
following lemmas characterize the transformations that can appear in frieze symmetry
groups. The first describes translations along the infinite axis of the frieze.

Lemma 2.9 The symmetry group of any frieze of period L contains the translations
⎛

⎝

1 0 nL
0 1 0
0 0 1

⎞

⎠ , n ∈ Z.

These are the only translations that appear in the symmetry group.
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Proof: The translation

tL =

⎛

⎝

1 0 L
0 1 0
0 0 1

⎞

⎠

leaves any frieze with period L unchanged. Observe that the inverse of this translation
is

t−L =

⎛

⎝

1 0 −L
0 1 0
0 0 1

⎞

⎠

and that its composition n times yields

tnL =

⎛

⎝

1 0 nL
0 1 0
0 0 1

⎞

⎠ .

(Exercise!) The translation tnL must therefore be in the symmetry group for all n ∈ Z.
No translation of the form

⎛

⎝

1 0 a
0 1 b
0 0 1

⎞

⎠

with b 
= 0 can leave a frieze unchanged, since the vertical portion of the translation
will map certain points of the frieze outside of its original vertical extent. We are left
with possible translations of the form

⎛

⎝

1 0 a
0 1 0
0 0 1

⎞

⎠ ,

where a is not an integer multiple of L. After performing such a translation by ( a
0 ), one

can repeatedly perform a translation by ( L
0 ) or

(−L
0

)

until the resulting translation is
by

(
a′
0

)

, where a′ satisfies 0 ≤ a′ < L. If 0 < a′ < L, it is a translation by a constant
a′ smaller than the period L, contradicting the definition of the period. And if a′ = 0,
then the original a was an integer multiple of the period L. The only translations left
are therefore tnL, n ∈ Z. �

Are there any other transformations of the form
(

A t
0 1

)

where A is not the identity matrix and t is nonzero? The next lemma answers this
question.
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Lemma 2.10 Consider isometries of the form ( A t
0 1 ), where t is nonzero. By redefining

the origin it is possible to reduce any such transformation to one of the form

(i)

⎛

⎝
A

nL
0

0 0 1

⎞

⎠ , (ii)

⎛

⎝

1 0 L/2 + nL
0 −1 0
0 0 1

⎞

⎠ , and (iii)

⎛

⎝

−1 0 L/2 + nL
0 1 0
0 0 1

⎞

⎠ ,

where n ∈ Z and A is one of the four allowed by Lemma 2.7. Form (iii) may occur only
if the rotation rhrv is also a symmetry.

Proof: By definition of an isometry, lengths must be preserved. Since the distance
between two points is the same as the distance between any translation of the same two
points, the matrix A must be one of the four given in (2.3). Moreover, if ty 
= 0 in

⎛

⎝

a b tx
c d ty
0 0 1

⎞

⎠ ,

then y′ = cx + dy + ty will be outside of the frieze for certain values of x and y. In fact,
for the four possible matrices A, the image of the square [−1, 1] × [−1, 1] is the square
itself. Every translation that has ty 
= 0 moves the square vertically and takes some
points of this square out of the frieze. Thus, ty must be zero.

Since the symmetry group of a frieze contains all horizontal translations by integer
multiples of L, the presence of

⎛

⎝

a 0 tx
0 d 0
0 0 1

⎞

⎠

in the group implies the presence of
⎛

⎝

1 0 nL
0 1 0
0 0 1

⎞

⎠

⎛

⎝

a 0 tx
0 d 0
0 0 1

⎞

⎠ =

⎛

⎝

a 0 tx + nL
0 d 0
0 0 1

⎞

⎠

for all n ∈ Z. Out of the set of all such transformations there will be one such that
0 ≤ t′x = tx + nL < L.

We now consider the four possibilities for A. If A is the identity matrix, then Lemma
2.9 forces t′x to be zero, and the resulting matrix is of the form (i).

Let A = rh. Then the square of
⎛

⎝
rh

t′x
0

0 0 1

⎞

⎠

must also be in the symmetry group of the frieze. However,
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⎛

⎝

1 0 t′x
0 −1 0
0 0 1

⎞

⎠

2

=

⎛

⎝

1 0 2t′x
0 1 0
0 0 1

⎞

⎠

is a translation. Thus there exists m ∈ Z such that 2t′x = mL. Since 0 ≤ t′x < L, we
have that 0 ≤ 2t′x < 2L. If t′x = 0, the translation is trivial. Otherwise, we must have
that t′x = L/2, and the affine transformation becomes

⎛

⎝

1 0 L/2
0 −1 0
0 0 1

⎞

⎠ . (2.5)

It remains to consider the two cases A =
(−1 0

0 −1

)

and
(−1 0

0 1

)

. Here we will use our
freedom in choosing the origin. (See the remarks after the proof of Proposition 2.9.)
Consider translating the origin along the x axis by a distance a. The matrix describing
the coordinate change is given by

S =

⎛

⎝

1 0 −a
0 1 0
0 0 1

⎞

⎠ .

If T is the matrix representing an affine transformation and S the matrix changing the
coordinate system (x, y) to a new one (x′, y′), the same affine transformation will be
represented by the matrix STS−1 in the new system. To see this, we read as usual
from right to left. This expression first transforms the coordinates (x′, y′) of a point
into its coordinates (x, y) in the old system using S−1, applies the affine transformation
represented in these old coordinates by the matrix T , and transforms the result back
with S into the new coordinate system. The affine transformation represented by

⎛

⎝

−1 0 t′x
0 ±1 0
0 0 1

⎞

⎠ (2.6)

will therefore be represented by the matrix
⎛

⎝

1 0 −a
0 1 0
0 0 1

⎞

⎠

⎛

⎝

−1 0 t′x
0 ±1 0
0 0 1

⎞

⎠

⎛

⎝

1 0 a
0 1 0
0 0 1

⎞

⎠

=

⎛

⎝

−1 0 t′x − a
0 ±1 0
0 0 1

⎞

⎠

⎛

⎝

1 0 a
0 1 0
0 0 1

⎞

⎠ =

⎛

⎝

−1 0 t′x − 2a
0 ±1 0
0 0 1

⎞

⎠

in the new system. (Exercise: It is crucial to check that this coordinate change does not
spoil the form of other symmetry operations. Show that transformations represented by
( A t

0 1 ) with A equal to ( 1 0
0 1 ) or rh keep the same matrix representation after a horizontal
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translation of the origin.) Thus the affine transformation represented by (2.6) is now
represented by

⎛

⎝

−1 0 0
0 ±1 0
0 0 1

⎞

⎠ (2.7)

if we displace the origin by precisely a = t′x/2.
Note that if the symmetry group contains two transformations of the form (2.6)

with distinct t′x1, t
′
x2 ∈ [0, L), then moving the origin assures us that the transformation

with t′x1 can be written in the form (2.7). The second remains of the form (2.6) with
t′x2 replaced by tx2 = t′x2 − t′x1. If both transformations have the same A, then their
composition will be a translation by tx2 , forcing tx2 to be nL for some integer n. In this
case both transformations are cast into form (i) by the change of origin. If, however, the
two transformations have different A’s, we may suppose that the first has A =

(−1 0
0 −1

)

and then it is a rotation rhrv by 180◦. The composition of the two is then
⎛

⎝

1 0 tx2

0 −1 0
0 0 1

⎞

⎠ ,

and by previous arguments, tx2 must be either nL or nL + L
2 for some integer n. The

second transformation is then of the form (i) if tx2 is an integer multiple of L or of the
form (iii) if not. �

The first two forms of isometries allowed by Lemma 2.10 are then (i) the compo-
sition of one of the linear transformations of Lemma 2.7 and a translation tnL by an
integer multiple of the period L and (ii) the composition of the glide reflection sg and
a translation tnL. The third form (iii) may appear only if rhrv is also present, and in
this case, one can use rhrv and the isometry of the form (ii) (with n = 0) as genera-
tors. Hence the three lemmas together show that the symmetry group of a frieze can
be generated by a subset of {tL, rh, rv, rhrv, sg}. This answers the question of the list
of possible generators, a question left open at the end of Section 2.1.

The lemmas will now allow us to finish our classification of the symmetry groups of
various friezes, which will provide us with an affirmative answer to our earlier question:
is it possible to classify friezes based on the set of geometric operations under which they
are invariant? When describing the various possible symmetry groups we will simply
reference the generators of each group. We recall formally the definition of such a list
of generators.

Definition 2.11 Let {a, b, . . . , c} be a subset of a group G. This set is a set of genera-
tors for G, and then we write G = 〈a, b, . . . , c〉 if the set of all compositions of a finite
number of elements of {a, b, . . . , c} and of their inverses is G.

Theorem 2.12 (Classification of frieze groups) The symmetry group of any frieze
is one of the following seven groups:
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1. 〈tL〉
2. 〈tL, rv〉
3. 〈tL, rh〉
4. 〈tL, tL/2rh〉
5. 〈tL, rhrv〉
6. 〈tL, tL/2rh, rhrv〉
7. 〈tL, rh, rv〉
Each of these groups is described by a set of generators, and they are presented in the
same order as those in Figures 2.1 and 2.2.

Proof: Let tL represent translation by a distance L along the horizontal axis. All of
the groups contain translations by integer multiples of L, the period of the frieze, and
the list of generators must contain tL. Through an appropriate choice for the origin, the
only other generators of the symmetry groups will be the linear transformations denoted
by A = rh, rv or rhrv and the glide reflection sg allowed by Lemma 2.10. Note that
if a symmetry group contains any two of rh, rv, and rhrv then it must automatically
contain all three. The list of all possible combinations of generators therefore consists
of the seven given in the statement of the theorem as well as

8. 〈tL, tL/2rh, rh〉
9. 〈tL, tL/2rh, rv〉
10. 〈tL, tL/2rh, rh, rv〉
(See the discussion at the end of Section 2.1, where this list was first constructed.) We
repeat here the argument that forces us to reject the case 8. The presence of sg = tL/2rh

and rh implies that the group must also contain their product (tL/2rh)rh = tL/2(r2
h) =

tL/2, which is a translation by L/2 (since r2
h = Id). This contradicts the fact that the

frieze is periodic with a minimum period of L, and therefore this set must be rejected.
For case 9, note that the product of sg and rv is of the form tL/2rhrv discussed

in Lemma 2.10. Through a translation of the origin (by a = L
4 ), this product can

be written in the form of (2.7) with A = rhrv. A simple calculation shows that the
generators tL and sg are unchanged by this translation but that rv becomes sg = tL/2rv.
Thus subgroup 9 is equally described by the generators 〈tL, tL/2rh, tL/2rv, rhrv〉. Three
of these generators belong to 6, while the fourth (tL/2rv) is simply the product of tL/2rh

and rhrv. Case 9 is in fact identical to case 6 and it may be omitted.
Finally, case 10 contains the generators of case 8 and can be eliminated for the same

reason.
Thus the symmetry group of any frieze must be one of the seven listed groups. Is

there any redundancy in this list? No, and with the help of Figure 2.2 we can easily
convince ourselves of this fact. The full argument is rather tedious, and thus we will
restrict ourselves to frieze 4, whose symmetry group was determined to be 〈tL, sg〉. We
first observe that the two generators tL and sg are both symmetries of this frieze. The
group they generate must therefore be a subgroup of the actual symmetry group of the
frieze. Can we add any other generators to these two? A quick inspection shows that
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no such addition (from among the remaining possibilities rh, rv, rhrv) is possible. Thus
〈tL, sg〉 is indeed the entire symmetry group of the frieze 4. Finally, since group 1 is
distinct from 4 and the remaining five groups each contain at least one of rh, rv, and
rhrv which group 4 does not have, then group 4 is in fact distinct from the other six.
Repeating an argument of this type for each of the remaining friezes and symmetry
groups shows that the list is exhaustive and does not contain any redundancy. �

2.4 Mosaics

In architecture, mosaics are as popular, if not more popular, than friezes. For us, a
mosaic will be a pattern that can be repeated to fill the plane and that is periodic
along two linearly independent directions. Thus, a mosaic has two linearly independent
vectors t1 and t2 along which it may be translated without change.

As with friezes, mosaics may be studied in terms of the symmetry operations that
leave them unchanged. And as with friezes, they may also be classified by their sym-
metry groups. Due to their importance in the physics and chemistry of crystals, they
are referred to as the crystallographic groups. There are 17 crystallographic groups.
We will not derive this classification. We will limit ourselves to enumerating the rota-
tions that may appear in the symmetry groups of mosaics, and to understanding the
description of the classification.

Lemma 2.13 Any rotation that leaves a mosaic unchanged must have one of the fol-
lowing angles: π, 2π

3 , π
2 , π

3 .

Fig. 2.5. The point O and two of its images A,B under translation.
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Proof: Let O be the center of a rotation leaving the mosaic unchanged. Let θ = 2π
n be

the smallest angle describing the rotation about this point. Since the mosaic is periodic
in two linearly independent directions, there exists an infinity of such points. Let f be
a vector joining O to a nearby image A chosen among the closest images of O obtained
by translations. Then translation along the vector f belongs to the symmetry group of
the mosaic.

By rotating the mosaic about O by an angle θ, the point A is mapped to B. The
vector f ′ joining O to B also describes a translation under which the mosaic is invariant
(see Figure 2.5). The distance between A and B is the length of the vector f ′ − f , and
since f ′ − f is also a translation leaving the mosaic unchanged, this distance must be
greater than or equal to the length of f by hypothesis. (A was one of the nearest images
of O.) Since f and f ′ are of the same length, it must be that the angle θ = 2π

n is greater
than or equal to 2π

6 = π
3 (which is 60◦). In fact, π

3 is the precise angle such that f ,
f ′, and f ′ − f are all the same length. This first argument restricts the possibilities to
2π
2 = π, 2π

3 , 2π
4 = π

2 , 2π
5 , and 2π

6 = π
3 .

Fig. 2.6. The case of rotation by an angle 2π
5

.

However, no mosaic can be left unchanged after rotation by an angle of 2π
5 . Figure

2.6 shows f and its image f ′′ after a rotation of 4π
5 . Translation along f +f ′′ must also be

an invariant operation, but its length is shorter than that of f , a contradiction. Thus,
we can safely reject this angle. �

The elements of the crystallographic groups are similar to those found in the frieze
symmetry groups: translations, reflections, reflections followed by translations (that
is, glide reflections as for friezes), and rotations. Rather than exhaustively listing the
generators for each of the 17 crystallographic groups, we will instead show an example of
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Fig. 2.7. Penrose tiles.

each type and highlight its symmetries (see Figures 2.17 through 2.22, starting on page
77). For each class we illustrate the basic shape of the mosaic at the left, overlaid with
a shaded parallelogram whose sides indicate the two linearly independent directions
in which the mosaic may be translated. These vectors have been chosen such that
the parallelogram encloses the smallest possible area necessary to cover the plane by
translations along them. There is usually more than one choice for this parallelogram.
On the right, the same mosaic has been drawn again with axes of reflection or glide
reflection and points of rotation overlaid. Finally, the legend of each graph identifies
the international symbols commonly used to designate each crystallographic group [5].
Solid lines indicate that a simple reflection across the axis is a symmetry. Dashed lines
indicate glide reflections; the required translations are not explicitly shown but are
easily seen nonetheless. Various symbols are used to indicate points about which the
mosaic may be rotated. If the center of rotation does not fall on an axis of reflection,
the following are used:

� for rotations of angle π,
� for rotations of angle 2π

3 ,
� for rotations of angle π

2 ,
and hexagons for rotations of angle π

3 .

When the point of rotation lies along an axis of reflection, solid versions of the same
symbols (�, �, etc.) are employed.

The ancient city of Alhambra, seat of the Moorish government of Granada in the
south of modern-day Spain, houses many mosaics that are as stunning in number as they
are in complexity. For a long time it was debated whether all 17 crystallographic groups
were represented by the Alhambra mosaics. Grünbaum, Grünbaum, and Shephard [4]
claim that this is not the case, with only 13 groups being employed. Even with this
negative response, it is still natural to ask whether the Moorish artists of the time were
aware of such a system of classification.

The precise mathematical formalization of friezes and mosaics allowed mathemati-
cians to study new generalized structures by relaxing certain rules in the definition.
Aperiodic tilings are one such structure. All mosaics must fill the plane, meaning that
repeating the pattern in all directions covers all points of R

2 without leaving any gaps.
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Fig. 2.8. An aperiodic Penrose tiling.

This condition is also satisfied by aperiodic tilings. For example, it is possible to tile the
plane R

2 with the two Penrose tiles (referred to as the Penrose rhombs) shown in Figure
2.7 [5]. Even if it is possible to tile the plane in a periodic manner with these tiles, it is
also possible to arrange them in such a way that no translational symmetry is present;
in other words, they may be used to tile the plane in an aperiodic manner. Figure 2.8
shows a fragment of an aperiodic tiling. Maybe these new generalized structures will
find their way into architecture... (There are other sets of tiles, constructed by Penrose
and others, that may be tiled only aperiodically!)

2.5 Exercises

1. We say that two operations a, b ∈ E commute if ab = ba.
(a) Do translation operations commute?
(b) Do rh, rv, and rhrv all commute with each other?
(c) Do the reflections rh, rv, and rhrv commute with translations?

2. Find the conditions under which a linear transformation
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⎛

⎝

a b 0
c d 0
0 0 1

⎞

⎠

and a translation
⎛

⎝

1 0 p
0 1 q
0 0 1

⎞

⎠

will commute with each other.

Fig. 2.9. The frieze of Exercise 3.

3. (a) Determine the period L of the frieze in Figure 2.9. Indicate it directly on the figure
or a copy of it.
(b) Under which of the transformations tL, rh, sg, rv, rhrv is the frieze invariant?
(c) Which of the seven symmetry groups does the frieze belong to?
(d) By drawing a single point per period on the frieze, reduce its symmetry group to
〈tL〉 without changing the length of its period.

4. (a) Friezes are often used in architecture, with [3] giving several remarkable examples.
Select a few such examples, and determine to which of the symmetry groups they belong.
(b) The artist M. C. Escher created several remarkable mosaics, with a large number
of them being presented in [6]. Select a few of Escher’s mosaics and determine to which
of the 17 crystallographic groups they belong.

5. (a) Identify the symmetry group of the frieze shown in Figure 2.10.

Fig. 2.10. Frieze for Exercise 5.

(b) By removing two triangles from each period of this frieze, construct a frieze
belonging to the symmetry group 5.
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6. Prove the three statements of Proposition 2.1. Suggestion: these properties can be
proved using only Euclidean geometry or using the matrix representation of affine trans-
formations. Explore both approaches.

7. (a) Let m1 and m2 be parallel lines at a distance d and let rm1 and rm2 be the
reflections through these lines. Show that the composition rm2rm1 is a translation by
a distance 2d along a direction perpendicular to the lines (mirrors) m1 and m2. Hint:
show this using only Euclidean geometry, that is, without use of a coordinate system.
You may use the concept of distance or length of a segment.
(b) Let a frieze of period L be invariant under the reflection rv. Show that it is
invariant under reflection through a vertical mirror at distance L

2 from the first. Hint:
study the composition of rv and the translation tL.

8. Let m1 and m2 be two lines intersecting at P and let rm1 and rm2 be the reflections
through these lines. Show that the composition rm2rm1 is a rotation of center P by
twice the angle between the two lines (mirrors) m1 and m2. Hint: show first that the
images rm1Q and Q′ = rm2rm1Q lie on a circle of center P and of radius |PQ|. Then
study the angles made by the segments PQ and PQ′ with a given line, say m1.

9. The goal of this exercise is to show that an isometry is the composition of a linear
transformation and a translation and therefore is an affine transformation. (Either the
linear transformation or the translation could be the identity.) Recall that a linear
transformation of the plane is a function T : R

2 → R
2 that satisfies the following two

conditions: (i) T (u+v) = T (u) + T (v) and (ii) T (cu) = cT (u) for all points u,v ∈ R
2

and constant c ∈ R.
(a) Show that an isometry T : R

2 → R
2 preserves angles. Hint: choose three (non-

collinear) points P,Q,R. If P ′, Q′, R′ are their images under T , show that the triangles
PQR are P ′Q′R′ are congruent.
(b) Show that a translation is an isometry.
(c) Suppose that an isometry S has no fixed-point and that S(P ) = Q. Show that
the composition TS, where T is the translation that maps Q to P , has at least one
fixed-point.
(d) Let S be an isometry that has (at least) one fixed-point O. Let P,Q,R be chosen
such that OPQR is a parallelogram. Let P ′, Q′, R′ be their image under S. Show
that the sum of the vectors OP ′ and OR′ is OQ′. (This amounts to S(OP + OR) =
S(OP ) + S(OR).)
(e) Let S be an isometry that has (at least) one fixed-point O and let P and Q be two
points, distinct and distinct from O, such that O,P,Q are collinear. Show that

S(OP ) =
|OP |
|OQ|S(OQ).
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(f) Conclude that an isometry is a linear transformation followed by a translation
and is therefore an affine transformation. (Either of the two operations could be the
identity.)

10. (a) The pattern of Figure 2.11 consists of a series of ellipses centered along the x axis
at the points (2i, 0) with principal axes rx = 2i−2, ry = 1. Thus, this pattern exists
over the infinite half-strip (0,∞)× [− 1

2 , 1
2 ]. This pattern is not a frieze because it is not

periodic. Replace the periodicity condition with another invariance condition such that
this pattern is a “frieze.”
(b) Describe the transformation that maps one ellipse to the first one on its left. Is it
linear? Does the set of such transformations form a group?

Fig. 2.11. A pattern that is not periodic. (For Exercise 10.)

11. Let r > 1 be a real number and let

Ar =
{

(x, y) ∈ R
2
∣
∣
∣

1
r
≤

√

x2 + y2 ≤ r

}

be the ring with center at the origin of the plane and delimited by the circles with radii
r and 1

r .
(a) Show that the set Ar is invariant under rotations of the form

Fig. 2.12. A circular frieze. (See Exercise 11.)
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(
cos θ − sin θ
sin θ cos θ

)

for all θ ∈ [0, 2π). (The invariance of Ar means that the transformation is invertible
and that the image of Ar is Ar itself.)
(b) Consider the transformation R

2 \ {(0, 0)} → R
2 \ {(0, 0)} defined by

x′ =
x

x2 + y2
,

y′ =
y

x2 + y2
.

This transformation is called an inversion. Show that Ar is invariant under this trans-
formation. Show that A2

r is the identity transformation. Is this transformation linear?
(c) Figure 2.12 represents a circular frieze drawn on a ring Ar. The dashed line
represents the circle of radius 1. Unlike the band friezes discussed earlier, circular
friezes are bounded. It is easy to construct a correspondence between the symmetries of
a band frieze presented in Section 2.2 and those of a circular frieze. Translations become
rotations, and reflection rh across the horizontal axis becomes inversion as introduced
in (b). Define the transformation that corresponds to reflection rv across a vertical axis.
We will call this last transformation reflection. Is reflection a linear transformation? (As
before, this transformation can be defined only after a suitable origin has been chosen.
You will have to carefully choose a particular point of Ar through which the “mirror”
will pass.)
(d) Starting from the three operations of rotation, inversion, and reflection, construct
a set of generators for the symmetry group of the circular frieze shown in Figure 2.12.

12. (a) This exercise continues the previous one. Let n be the largest integer for which a
circular frieze is invariant under a rotation of 2π

n . We will suppose that n ≥ 2. Classify
the symmetry groups of a circular frieze for a given n. Does the classification depend
on n in any way?
(b) The order of a group is the number of elements in the group. The orders of the
symmetry groups of regular friezes are infinite, but those of circular friezes are finite.
Calculate the orders of the groups you constructed in (a).

13. For each Archimedean tiling shown in Figure 2.13, determine to which of the 17 crys-
tallographic groups it belongs (certain tilings must belong to the same group). An
Archimedean tiling is a tiling of the plane consisting of regular polygons such that each
vertex is of the same type. For two vertices to be of the same type, they must be coinci-
dent with similar polygons, and the polygons must appear in the same order as we turn
about the point in a given direction (clockwise, for example). It is possible that the
mirror image of such a tiling is impossible to achieve through rotation and translation
alone. If we assume that such tilings are unique up to their mirror image (when such an
image is different from the original tiling), there are exactly 11 families of Archimedean
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Fig. 2.13. Archimedean tilings. (See Exercise 13.)
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tilings. The mirror image is distinct from the original tiling for exactly one of these
tilings. Identify it.

14. A small challenge: classify the Archimedean tilings (see Exercise 13).
(a) Denote by n the regular polygon with n sides. Its internal angles are all equal to
(n−2)π

n . (Prove this!) Consider an Archimidean tiling and let (n1, n2, . . . , nm) be the
list of the m polygons that meet at the vertices of this tiling. The sum of the angles at
a given vertex must be 2π, and therefore

2π =
(n1 − 2)π

n1
+

(n2 − 2)π
n2

+ · · · + (nm − 2)π
nm

.

For example, for the Archimedean tiling of Figure 2.14, the polygons that meet at a
vertex are enumerated by the list (4, 3, 3, 4, 3), and as required, they satisfy

(4 − 2)π
4

+
(3 − 2)π

3
+

(3 − 2)π
3

+
(4 − 2)π

4
+

(3 − 2)π
3

= 2π.

Enumerate all possible lists (n1, n2, . . . , nm) of polygons that may meet at a vertex.
Hint: there are 17 such lists if we distinguish between them using only their size, not
the order of the ni’s.
(b) Why does the list (5, 5, 10) not correspond to an Archimedean tiling of the plane?
(c) For each of the lists determined in (a), verify whether the set of polygons
(n1, n2, . . . , nm) meeting at a vertex actually describes a tiling of the plane. Caution:
the order of the elements in the list (n1, n2, . . . , nm) is important!

Fig. 2.14. A closer look at an Archimedean tiling (see Exercise 14). The list of polygons
meeting at a vertex is denoted by (4, 3, 3, 4, 3).
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Fig. 2.15. An icosahedron and the corresponding tiling of the sphere (see Exercise 15).

15. A challenge: classify the Archimedean tilings of the sphere. In Section 15.8, we see that
each regular polyhedron (the tetrahedron, the cube, the octahedron, the icosahedron,
and the dodecahedron) corresponds to a regular tiling of the sphere. This correspon-
dence is constructed as follows:

• the polyhedron is centered at the origin. The distance between the origin and each
of the vertices is therefore the same, and we circumscribe a sphere with this radius
that passes through all of the vertices;

• for every edge of the polyhedron, we join the vertices by an arc from the great circle
between them.

The end result is the desired tiling of the sphere. Figure 2.15 shows such a construction
for an icosahedron. The construction can be repeated for any polyhedron whose vertices
all lie along the surface of a sphere. This is the case with Archimedean polyhedra: all
of their faces are regular polygons with the same side length and all of their corners
are incident to the same polygons. Even though regular polyhedra (also called Pla-
tonic polyhedra) meet these requirements, we reserve the adjective “Archimedean” for
polyhedra whose faces consist of at least two different types of polygons. An example
of an Archimedean polyhedron is the familiar shape of a soccer ball, formally called a
truncated icosahedron (see Figure 2.16). Each vertex is shared by two hexagons and
a pentagon. We denote it by the list (5, 6, 6). Archimedean tilings of the sphere are
classified as follows: prisms, antiprisms, and the 13 exceptional tilings. (Certain math-
ematicians prefer to exclude the prisms and antiprisms from the Archimedean tilings,
and use the term to refer only to the 13 remaining tilings.)
(a) The list (n1, n2, . . . , nm) of polygons meeting at a vertex must satisfy two simple
conditions. In order for each vertex to be convex (and not planar), the sum of the
internal angles meeting at the vertex must be less than 2π:

π

m∑

i=0

ni − 2
ni

< 2π.
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Fig. 2.16. A truncated icosahedron and the corresponding tiling of the sphere (see Exercise
15).

This is the first test. The second condition is based on Descartes’s theorem. Each
vertex of the polyhedron has associated with it an angle deficiency defined as Δ =
2π−π

∑

i(ni −2)/ni. Descartes’s theorem states that the sum of the deficiencies across
all vertices of a polyhedron must be equal to 4π. Since all vertices of an Archimedean
solid are identical, we must therefore have that 4π/Δ is an integer, equal to the number
of vertices. This is the second test. Verify that the soccer ball satisfies both of these
conditions. (We will see in (d) that these two tests alone are not sufficient to characterize
the Archimedean solids.)

(b) A prism is a polyhedron consisting of two identical polygonal faces that are parallel.
Each edge of these two faces is then connected by a square. They form an infinite family
of solids denoted by (4, 4, n), for n ≥ 3. Convince yourself that all of the vertices of
such a solid are identical and accurately described by the list (4, 4, n). Draw an example
of such a prism, for example (4, 4, 5). Verify that the list (4, 4, n) passes both of the
tests described in (a) regardless of n. (When n is sufficiently large, these solids begin
to resemble stout cylinders.)

(c) An antiprism also consists of two parallel identical polygons with n faces (n ≥ 4).
However, one of the faces is rotated with respect to the other by an angle of π

n and
the corners joined by equilateral triangles. The antiprisms form an infinite family of
solids and are denoted by the list (3, 3, 3, n) for n ≥ 4. Answer the same questions as
for prisms.

(d) Show that the list (3, 4, 12) passes both of the tests described in (a). However, it
is impossible to construct a regular polyhedron based on this list. Why? Hint: start by
assembling a triangle, a square, and a polygon with twelve sides (a dodecagon) around
a single vertex. Consider the other vertices of these three faces. Is it possible for these
vertices to have the same configuration described by the list (3, 4, 12)? (This is the
hardest part of this question!)
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(e) Show that there exist 13 Archimedean tilings of the sphere (or, equivalently, 13
Archimedean polyhedra) that are neither prisms nor antiprisms. (The soccer ball is one
of these 13 solids.)

16. A difficult challenge: derive the crystallographic groups (shown in Figures 2.17–2.22).
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Fig. 2.17. The 17 crystallographic groups. From top to bottom: the groups p1, pg, pm.
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Fig. 2.18. The 17 crystallographic groups (continued). From top to bottom: the groups cm,
p2, pgg.
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Fig. 2.19. The 17 crystallographic groups (continued). From top to bottom: the groups pmg,
pmm, cmm.
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Fig. 2.20. The 17 crystallographic groups (continued). From top to bottom: the groups p3,
p31m, p3m1.
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Fig. 2.21. The 17 crystallographic groups (continued). From top to bottom: the groups p4,
p4g, p4m.
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Fig. 2.22. The 17 crystallographic groups (continued). From top to bottom: the groups p6,
p6m.
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