
VIRTUAL DOMAIN SHARING IN E-SCIENCE
BASED ON
USAGE SERVICE LEVEL AGREEMENTS

Cǎtǎlin L. Dumitrescu
CoreGRID Institute on Programming Models
Mathematics and Computer Science Department, The University of Münster, DE
dumitres@uni-muenster.de

Alexandru Iosup, Ozan Sonmez, Hashim Mohamed, and Dick Epema
CoreGRID Institute on Scheduling and Resource Management
Electrical Engineering, Mathematics and Computer Science, Tech. University of Delft, NL
{A.Iosup,O.O.Sonmez,H.H.Mohamed,D.H.J.Epema}@tudelft.nl

Abstract Today’s Grids, Peer-to-Peer infrastructures or any large computing collaborations
are managed as individual virtual domains (VDs) that focus on their specific
problems. However, the research world is starting to shift towards world-wide
collaborations and much bigger problems. For this trend to realize, the already
existing collection of many resources and services needs to be shared across
owning VDs in secure and efficient ways, and at the least administrative costs. In
this paper we identify the requirements for and propose a specific solution based
on usage service level agreements (uSLAs) for this problem of VD sharing.
Further, we propose an integrated architecture that provides uSLA-based access
to resources, supports the recurrent delegation of usage rights, and provides fault-
tolerant resource co-allocation.

Keywords: Resource Management, Virtual Domains, Usage Service Level Agreements

16

1. Introduction
E-Science, defined as large-scale, grand-challenge science carried out through

distributed global collaborations enabled by the Internet and requiring access
to very large scale computing resources [17], is starting to become a common
research paradigm [11, 14]. For this vision to materialize, the already existing
infrastructures and services need to be shared across existing virtual domains
(VDs) in secure and efficient ways, and to be operated at the smallest costs.

Resource owners from multiple VDs, i.e., multi-clusters [6] or computational
Grids [7, 10, 15], pool together more and more resources. VD providers may
be virtual organizations (VOs [9]- if they also own resources), simple collabo-
rations of companies providing outsourcing services, national Grid infrastruc-
tures, groups of scientific laboratories, or universities that provide access to
their resources.

In this paper we address the problem of VD sharing. We first describe the
characteristics of this problem, and the principles of our usage service level
agreement (or uSLA) based approach. Secondly, we analyze the requirements
of any Grid scheduling service to provide uSLAs-based support for intra- and
inter-VD sharing. Further, we propose an integrated architecture that addresses
the identified requirements, starting from an already existing Grid scheduling
architecture, KOALA [13]. To make the architecture viable in real envi-
ronments, we finally propose specific algorithms for resource brokering and
scheduling, which we compare by means of simulations in several possible
scenarios. We end the paper with our conclusions.

2. Virtual Domain Sharing
In this section we describe our envisaged VD sharing problem, the generic

requirements and a uSLA-based solution for it. We start with a real scenario
stemming from the european Grid community, which will serve as a guide to
the reader’s intuition throughout the rest of the paper.

2.1 Motivating Scenario
Consider the following scenario, in which two large-scale computing in-

frastructures, namely Grid’5000 [2] and the Distributed ASCI Supercomputer
(DAS) [6], are combined into a 3, 000 CPU-strong Grid system:
→ Infrastructure: DAS is a wide-area computer system in the Netherlands
that is used for research on parallel, distributed, and Grid computing. DAS
has been built in three successive waves in the past 10 years, resulting in three
independent sets of resources: the new DAS-3, the production-level DAS-2,
and the somewhat outdated DAS-1. Grid’5000 is the counterpart of DAS in
France, and is currently at its first building wave.

Virtual Domain Sharing in e-Science based on Usage Service Level Agreements 17

→Operation: The resources composing DAS have been provided over time by
more than seven different organizations, and are currently clustered into twelve
sites. However, as one building wave occurs, the previous infrastructure is
declared obsolete, and only the few users with very high computational demands
continue accessing it. Within DAS, resources are shared equally among all the
participating organizations, except for a few agreements: Any application can-
not run for more than 15 minutes from 08:00 to 20:00, and larger projects can
reserve at most 50% of the resources in advance, and use them for periods not
exceeding two weeks. Similarly to DAS, Grid’5000 comprises over ten clusters,
shared equally amongst more than ten organizations.
→ VD Sharing: DAS wants to share its newest component, DAS-3, with
Grid’5000. The sharing mechanism will ensure that the Grid’5000 users do
not get too many resources. In case of usage imbalances, automated actions
specified as penalties, will be enforced until the penalty period expires, or the
administrators cancel it. The Grid’5000 is made available to the DAS users,
under similar restrictions.

Similar situations occur for other large-scale Grid communities that target
collaboration, e.g., the LHC Computing Grid [7] (over 200 sites, over 40,000
CPUs, over 25,000 storage elements with 3 PB storage), NorduGrid [15] (over
20 sites, over 4,000 resources), and OSG/Grid3 [10] (over 3,000 resources).
Also, due to the administrative constraints by allowing a resource allocation
mechanism (i.e., including co-allocation) to operate unrestricted, the system is
exposed to overload from the exterior. A particular problem is that of a large
VD’s load fraction overloading a small VD. Therefore, this work complements
our previous work by introducing a needed mechanism to prevent such events.
Without this extension, co-allocation would not be implementable in practice.

2.2 Problem Overview
The VD sharing problem is expressed as follows: resource providers (univer-

sities, national laboratories or VOs) give resource consumers (specific groups
of interests, e.g., scientists from different domains) access to resources of het-
erogeneous nature (e.g., processors, disk space, but also software licenses, ser-
vices, etc.) under specific agreements. We categorize the resource providers as
domains, VDs and VOs. We further categorize the resource consumers as VOs,
groups, and users. A VD (e.g., a Grid system or a Peer-to-Peer infrastructure)
consists of several domains (e.g., institutions or universities). Each domain
clusters resources of a heterogeneous nature; to avoid confusion with the VD,
and to punctuate the single physical location of resources, from hereon we will
use the term site to denote a domain. Within a VD, a multi-level hierarchy of
groups and VOs exists. Users are members of a group within a certain VO, and
may submit jobs to their own site or others.

18

VD

D

User

Scheduler

Broker

Runner

(Service Manager)

uSLAs DB

VD

D

VD

D

VD

D

Virtual Domain Layer

Koala Placement Policies

Koala Claiming Policies

Request

Ext. Virtual Environment

Ext. Virtual Environment

User Request

Request

Execution Environment

Figure 1. The uSLA-based Scheduling Architecture based on the KOALA Scheduler.

2.3 Requirements for Virtual Domain Sharing
In order to foster collaborations among VDs, specific mechanisms must

be designed to allow the provisioning of resources based on pre-negotiated
agreements and local preferences. Important challenges for inter-VD resource
management can arise in practice from the lack of automated mechanisms for
uSLA discovery, publication, from the complexity of the uSLA operations to
be performed (to satisfy the transitive resource delegations), or from the sheer
number of resource providers and consumers involved. To support controlled
VD sharing by means of uSLAs, we identify as mandatory the following key
requirements: (a) uSLA support for situations with and without contention and a
semantic to ensure that both consumers and providers can establish well defined
agreements upon which resources are used; (b) support for uSLA management:
storage, location, enforcement, and translation of transitive uSLAs as needed by
resource management; (c) support for enhanced scheduling algorithms to take
advantage of the uSLAs made available through various means; and (d) tools to
help the consumer make an informed resource selection through uSLA-aware
brokering algorithms.

3. uSLA-based Scheduling and VD Sharing
In this section we present our uSLA-based architecture for inter-VD sharing.

Koala is implemented as a two layer co-allocation scheduler, and consumer
requests are handled by means of a specialized component, the service manager
or Runner, a controller that ensures the completion of the user’s request.

3.1 Scheduling Architecture and Algorithms
The enhanced architecture is depicted in Figure 1. A runner sends a request

to the Koala’s engine to instantiate on the consumer behalf an execution
environment, in which the user’s request can be run unto completion. The
Koala engine calls the scheduling service, which creates an extended virtual

Virtual Domain Sharing in e-Science based on Usage Service Level Agreements 19

environment, where the user is allowed to run, according to the associated uSLAs
and previous accounting records. The scheduling service can sometimes rely
on a specialized uSLA brokering services for building this extended virtual
environment, like GRUBER [5]. Then, the scheduling service calls the broker-
ing service, and the brokering service verifies the uSLAs, and recommends an
extended virtual environment. After creating this environment, the scheduling
service applies the scheduling policies, filtering the extended virtual environ-
ment until the final execution environment is identified (see Algorithm 1).

Algorithm 1 uSLA-BRKG-A: Brokering algorithm using decayed usage.
Input:

Request← user request;
Threshold← acceptable penalty threshold;
Virtual Domains← list of virtual domains, their parameters, and uSLAs;

Output:
Result← the list of the top-n resources (initially �)

1: for each V Di in Virtual Domains do
2: sort uSLAs by applicability range, into uSLAs-Srt
3: isVDEligible← TRUE
4: for window w in 1..n do
5: compute consumer utilization on V Di

6: while first rule from uSLAs-Srt ∩ window do
7: pop first rule from uSLAs-Srt, as Rule
8: if Request breaks Rule and Rule.Penalty > Threshold then
9: isVDEligible← FALSE

10: if isVDEligible is TRUE then
11: Score← BrokerPolicy (V Di , Request)
12: Result← Result ∪ (V Di , Score)

3.2 The uDecay uSLA
The way udecay is defined is crucial for the behavior of KOALA [12]. In

practice, the most encountered decay function is Fj = k, where k is a constant
factor, e.g., 50%. For a busy system with interactive and batch jobs, a constant
factor close to 1 will enforce lower usage shares for heavy users, effectively
permitting the interactive job users to work. For a lightly loaded system, setting
the decay factor close to 0 will help decrease the decayed utilization rapidly,
which allows the users a new complete allocation of resources. Clearly, a
constant decay factor cannot accommodate systems with high variations in
demand, and various types of users [8].

DU = U0 + U1 · F1(S1) + ... + Un ·
n∏

j=1

Fj(Sj) (1)

20

Our operator set is a set of per-window decay functions which map from the
system state to a decay factor for the given window, O = {Fi}, with Fi the
decay function for the ith window. We assume that system utilizations (Si for
the ith window), and consumer utilizations (Ui for the ith window) are available,
as well as the maximum number n of historic usages (windows). With these
notations, the decayed usage is given by Equation 1.

4. Validation Approach, Results and Recommendations
Because the integration work for DAS – Grid’5000 environment is still in

progress, we perform our analysis by means of simulations using GangSim [4].

4.1 Scenarios and uSLAs
The experimental setup follows a common workload in e-Science settings:

the execution of many instances of BLAST, a bio-informatics application. We
consider a slighlty larger environment than the one exemplified in Section 2.
Three consumers each submit a workload to five VDs. The four uSLAs con-
sidered for comparison are [3, 8]:
→ no-limit uSLA (no-limit) is a statement that specifies no limit. Resources
are acquired on a first come first executed basis [3];
→commitment-limit uSLA (commitment): specifies two upper limits, an
epoch limit Repoch and a burst limit Rburst, and requires intervals, Tepoch and
Tburst. A job is admitted if (a) the average resource utilization for its VO is less
than the corresponding Repoch over Tepoch, and (b) there are idle nodes and the
average resource utilization for the VO is less than Rburst over Tburst [3];
→ time-decay uSLA (decay) is a statement that specifies a single limit instead
and a decay function for each time interval in the past [12].
→ usage-decay uSLA (udecay) is the uSLA introduced in Section 3.1.

4.2 Workloads
The employed workloads arrive at the external schedulers under a Poisson

distribution; the job lengths are sampled from a Gaussian distribution with an
average of 300s; the input files have size between 1kb and 5kb. In each scenario,
we use two types of aggregated workloads. The first type is synchronous:
all consumers submit their jobs in the same time. For the second type, un-
synchronous, consumers submit their jobs at different time moments. The
simulation interval is 1h in all cases, while the scheduling strategies at both the
VO and site levels are FCFS. The VO workloads and allocations are:
→ Balanced Workloads and Equal Allocations Scenario: workloads are
composed of 400, 600 and 500 jobs. The rules under which domains share
their resources are 30%, 30%, and 30%, with burst limits of 60%, 60%, and
50% in the commitment uSLA case. The udecay parameters are 1, 0.5, 0.2, 0.1,

Virtual Domain Sharing in e-Science based on Usage Service Level Agreements 21

and 0.0 for 100%, 50%, 20%, 10%, and 0% utilizations, while the time decay
parameters are set to 1, 0.5, 0.2, and 0.1;
→Un-Balanced Workloads and Equal Allocations Scenario: For the second
scenario, we use three workloads composed of 160, 800, and 400 jobs; the
uSLAs and decay parameters are similar to the previous scenario;
→ Balanced Workloads and Un-Equal Allocations Scenario: For the last
scenario, workloads and decay parameters are as for the first scenario, with
400, 600, and 500 jobs per workload, but resources are shared under different
allocations, namely, 20%, 40%, and 30% and burst allocations of 30%, 60%,
and 50% for the commitment uSLA.

4.3 Performance Metrics
The performance metrics considered for analysis are [3–4]:

→ Aggregated resource utilization (Util): represents the ratio of the CPU
time actually consumed by the N jobs executed during the period considered
to the total CPU time available.
→ Total job completion per site, VO or overall (Comp): measures the total
number of jobs from a given set that are completed.
→ Average Grid response time (Response): is computed as the average time
per job that elapses from job submission to an external queue until startup;
→ Average starvation factor (Starv): represents the ratio of the resources
requested and available, but not provided to a user, to the resources consumed
by the user (ETi), where i represents a site index. Its equation is:

Starv =
N∑

i=1

min(STi, RTi)/
N∑

i=1

ETi (2)

→ uSLA violation ratio (Violation): represents the ratio of CPU consumed by
users (BETi) to the total CPU power. The formula for this quantity is:

Violation =
N∑

i=1

BETi/(# of cpus ∗ ∆t) (3)

4.4 Simulation Results
In this section we present our simulation results for four uSLA, two workload

types, and three parameter variations.
Balanced Workloads and Equal Allocations Scenario: Tables 1 and 2

capture the five performance metric values for the four uSLAs. The udecay
uSLA offers the best overall performance. It is the second best in terms of total
system utilization, but the difference between no-limit and udecay is minimal.
This difference is explained by the balancing introduced by udecay compared

22

uSLA / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
no-limit 90.16 93.57 252.49 13.14 –
commitment 88.22 91.71 233.89 11.83 24.00
decay 79.62 84.28 263.81 15.15 26.63
udecay 89.55 92.07 218.16 10.65 22.60

Table 1. Results for Equal Allocations and Balanced Synchronized Workloads

uSLA / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
no-limit 87.62 90.71 226.91 13.08 –
commitment 83.75 87.78 248.33 12.17 24.27
decay 79.56 82.14 256.94 14.18 25.79
udecay 85.61 88.21 238.94 11.09 22.70

Table 2. Results for Equal Allocations and Balanced Un-Synchronized Workloads

uSLA / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
no-limit 86.26 93.14 225.10 11.03 –
commitment 70.65 76.5 244.54 17.66 27.33
decay 73.06 80.34 246.17 14.34 25.09
udecay 79.64 89.35 226.03 9.66 20.97

Table 3. Results for Equal Allocations and Un-Balanced Synchronized Workloads

to the no-limit one. We must also note in the udecay case the low value for
the Starv factor, which indicates that jobs entitled to run acquire fast enough
allocated resources.

Un-Balanced Workloads and Equal Allocations Scenario: For this sce-
nario, Tables 3 and 4 capture the five metric values for the four uSLAs. The
udecay outperforms the commitment and decay uSLAs in terms of all metrics.
It is the second best in terms of the total system utilization, while the difference
with the no-limit uSLA is again minimal.

Balanced Workloads and Un-Equal Allocations Scenario: Tables 5 and 6
capture the five metric values. The udecay does not perform as well as before,

uSLA / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
no-limit 81.90 92.5 196.35 10.83 –
commitment 66.47 82.07 314.08 19.28 28.57
decay 79.90 89.92 215.60 9.44 20.28
udecay 78.95 91.42 226.37 8.74 19.74

Table 4. Results for Equal Allocations and Un-Balanced Un-Synchronized Workloads

Virtual Domain Sharing in e-Science based on Usage Service Level Agreements 23

uSLA / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
no-limit 90.16 93.57 252.49 13.14 –
commitment 79.58 79.04 298.56 18.50 29.00
decay 72.98 74.16 241.14 16.87 27.96
udecay 84.82 86.21 239.06 10.97 22.39

Table 5. Results for Un-Equal Allocations and Balanced Synchronized Workloads

uSLA / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
no-limit 87.62 90.71 226.91 13.08 –
commitment 74.84 78.28 300.56 19.61 29.91
decay 73.62 74.25 239.18 15.39 11.17
udecay 84.32 89.12 235.49 11.17 22.73

Table 6. Results for Un-Equal Allocations and Balanced Un-Synchronized Workloads

Param. / Metric Util (%) Comp (%) Response Starv (%) Violation (%)
Slow (.8, .5, .2, .1) 82.51 85.78 285.12 5.09 15.79
Medium (.5, .2, .1) 85.61 88.21 238.94 11.09 22.70
Fast (.2,.1) 87.67 89.5 193.99 12.05 23.51

Table 7. Results for Different Decay Parameters

but still offers the best performance in terms of Starv and Violation metrics.
The udecay performs better in terms of Response metric and the motivation is
the un-balance of workloads which makes the historical share to be forgotten
before a new wave of jobs start.

The Influence of Decay Parameters: The last set of simulations compares
the performance of different decay functions for the udecay uSLA. Our results
are captured in Table 7. As can be observed, for the set of high decay values
fewer resources are obtained by all consumers, thus the lowest values (first
columns). However, the Starv and Violation metrics are lower due to the free
resources always available for the slow starters.

4.5 Lessons and Recommendations
Controlled resource sharing within very large environments is difficult in

practice, due to the number and the complexity of participants, their local pref-
erences and software. We believe that uSLA-based resource sharing provides
a strong starting point for building environments in which resources are shared
under owner preferences. While the uSLAs proposed in this paper are compre-
hensive, we expect that in the near future new semantics will be required for

24

other integration efforst. Economy-based sharing models represent an alterna-
tive to be considered for augmenting or replacing uSLA-based sharing.

5. Related Work
Current solutions for controlling resource access in large scale distributed

systems focus extensively on enabling resource sharing among a virtual envi-
ronment participants [3, 16].

Scheduling in Parallel for Heterogeneous Independent NetworXs (SPHINX)
[16] is our first example of a framework for policy-based scheduling of Grid-
enabled only resources. The framework has three main features. First, the
scheduling strategy can control the request assignment to Grid resources by
adjusting resource usage accounts or request priorities. Second, resource usage
management is achieved by assigning usage quotas to intended users. Third,
the scheduling method supports reservation based resource allocation and QoS.

Grid Service Broker [1], a part of GridBus project, mediates instead access
to distributed resources by (a) discovering suitable data sources for a given
analysis scenario, (b) suitable computational resources, (c) optimally mapping
analysis jobs to resources, (d) deploying and monitoring job execution on se-
lected resources, and (e) accessing data from remote source during execution.

The last work we mention here is GRUBER [5], a uSLA-based broker, aimed
at addressing the challenging issues that can arise within VDs that integrate par-
ticipants and resources spanning multiple administrative domains. GRUBER
represents the closest work to our proposed architecture.

6. Summary and Conclusions
Our intra- and inter-domain sharing mechanisms are based on uSLAs that

permit consumers to use resources up to specified levels, for specified peri-
ods of time. Based on resource usage patterns encountered in real large-scale
environments, we employ a generic, load-dependent mechanism for accounting
resource consumption, i.e., the decay-based mechanism. Our proposed uSLA-
based architecture manages the definition, storage, location, and enforcement
of uSLAs, and offers support for the recurrent delegation of resource usage
rights amongst parties. Being based on a proved Grid scheduling infrastruc-
ture, the Koala Grid scheduler, our architecture provides fault-tolerant re-
source co-allocation. The architecture includes two uSLA-based components
for resource management and for user decision support, which also employ the
udecay-based mechanism: a scheduler and a broker.

References

[1] R. Buyya and S. Venugopal. The GridBus Toolkit for Service Oriented Grid and Utility
Computing: An Overview and Status Report. In Proceedings of the 1st IEEE International

Virtual Domain Sharing in e-Science based on Usage Service Level Agreements 25

Workshop on Grid Economics and Business Models (GECON’04), 2004.

[2] F. Cappello et al. Grid’5000: A Large Scale, Reconfigurable, Controlable and Monitorable
Grid Platform. In Proceedings of the 6th IEEE/ACM International Workshop on Grid
Computing (GRID’05), 2005.

[3] C. Dumitrescu and I. Foster. Usage Policy based Scheduling in Virtual Organizations. In
GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing
(GRID’04), pages 289–296, Pittsburgh, PA, USA, 2004. IEEE Computer Society.

[4] C. Dumitrescu and I. Foster. GangSim: A Simulator for Grid Scheduling Studies. In
Cluster Computing and Grid (CCGrid’05), Cardiff, UK, 2005.

[5] C. Dumitrescu and I. Foster. GRUBER: A Grid Resource Usage SLA BrokER. In Proc.
of 11th International Euro-Par Conference (Euro-Par’05), Portugal, 2005.

[6] Dutch University Backbone. The distributed ASCI supercomputer (DAS-2),
http://www.cs.vu.nl/das2, 2006.

[7] EGEE Team. LCG (URL: http://lcg.web.cern.ch/LCG/), 2004.

[8] D. H. J. Epema. Decay-usage scheduling in multiprocessors. ACM Transactions on
Computing Systems, 16(4):367–415, 1998.

[9] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. Lecture Notes in Computer Science, 2150:200–222, 2001.

[10] I. Foster et al. The Grid2003 Production Grid: Principles and Practice. In Proceedings
of the 13th IEEE International Symposium on High Performance Distributed Computing
(HPDC-13 ’04), Hawai, 2004.

[11] A. J. G. Hey and G. Fox. Special Issue: Grids and Web Services for e-Science. Concurrency
- Practice and Experience, 17(2-4):317–322, 2005.

[12] MAUI Scheduler, http://www.clusterresources.com/pages/products, Last accessed: 2006.

[13] H. Mohamed and D. Epema. The Design and Implementation of the KOALA Co-
Allocating Grid Scheduler. In Proceedings of the European Grid Conference, Amsterdam,
volume 3470 of LNCS, pages 640–650, 2005.

[14] H. Newman, M. H. Ellisman, and J. A. Orcutt. Data-intensive e-Science Frontier Research.
Commun. ACM, 46(11):68–77, 2003.

[15] NorduGrid Collaboration. Solution for Wide Area Computing and Data Handling, 2006.

[16] J. uk In, P. Avery, R. Cavanaugh, L. Chitnis, M. Kulkarni, and S. Ranka. SPHINX: A Fault-
Tolerant System for Scheduling in Dynamic Grid Environments. International Parallel
and Distributed Processing Symposium (IPDPS), 01:12b, 2005.

[17] United Kingdom Research Councils. (URL: http://www.rcuk.ac.uk/escience/), 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

