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6.1 Introduction
Many content-based multimedia retrieval tasks can be seen as decision theory
problems. Clearly, this is the case for classification tasks, like face detection,
face recognition, or indoor/outdoor classification. In all these cases a system
has to decide whether an image (or video) belongs to one class or another
(respectively face or no face; face A, B, or C; and indoor or outdoor). Even
the ad hoc retrieval tasks, where the goal is to find relevant documents given a
description of an information need, can be seen as a decision theory problem:
documents can be classified into relevant and non-relevant classes, or we can
treat each of the documents in the collection as a separate class, and classify
a query as belonging to one of these. In all these settings, a probabilistic
approach seems natural: an image is assigned to the class with the highest
probability.3

The generative probabilistic approach to image retrieval described in this
chapter is one such approach. To get a feeling for the approach, the following
analogy to solving jigsaws is useful. Suppose we have been solving a number of
jigsaw puzzles all weekend and put all puzzles in their respective boxes again
on Sunday evening. Now it is Monday morning and while cleaning the room,
we find a forgotten piece of one of the jigsaws. Of course, in practice, we would
keep the piece separate until we solve one of the puzzles again and discover
that a piece is missing. But suppose that we have to make an immediate
decision and put the piece in one of the boxes. To put it in the proper box,
we have to guess to which puzzle this piece belongs. The only clues we have
are the appearance of the piece at hand and our memory of the puzzles we
solved. A good solution would be to put the piece in the box to which it most
likely belongs given these clues. If for example, the piece at hand is mainly

3 If some misclassifications are more severe than others, a decision theoretic ap-
proach should be taken, and images should be assigned to the class with lowest
risk.
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blue with a watery texture, it is most likely to come from a jigsaw with a lot
of water.

In the retrieval framework presented here, instead of boxes with jigsaws
we have a collection of documents, instead of a forgotten jigsaw piece, we have
a query, and instead of our memories of the puzzles we have models of the
documents. The goal now, is to find the document that is most likely given
the query, similar to choosing the most likely box to put the jigsaw piece in.
This generative approach to information retrieval – find the generating source
of a piece of information – has proved successful in media specific tasks, like
language modeling for text retrieval [2, 8, 16] and Gaussian mixture modeling
for image retrieval [7, 14, 21, 23].

6.1.1 Relation to Other Chapters
Many chapters in this book discuss techniques for extracting features or knowl-
edge about multimedia content or for generating metadata. This chapter intro-
duces a method for building abstract models from such features. The models
described here are independent of the type of features that are used. While
the examples in this chapter use different features, the models can easily be
adapted to use many of the features discussed in Chapter 5. In addition, the
language modeling technique discussed in Chapter 4 is a special case of using
generative probabilistic models for information retrieval. Finally, generative
models play an important role in speech recognition (cf. Chapter 7).

6.1.2 Outline
As generative models can be nicely described without going into the details
of parameter estimation, those two aspects are treated separately here. This
chapter starts with a basic example of a generative model, followed by de-
tailed descriptions of generative models for visual and textual information in
Section 6.2. Such models are concise descriptions of the characteristics of the
document, which is useful in a retrieval setting. Section 6.3 explains how the
models can be used in a retrieval setting. Section 6.4 continues with a de-
tailed description of the parameter estimation process. Here we explain how
the models can be learnt from training data. Finally, Section 6.5 discusses
how the two modalities can easily be combined for a truly multimodal search.

6.2 Generative Probabilistic Models
Since the goal in information retrieval is to find the best document given a
query, one could decide to model the probability of a document given a query
directly. In the jigsaw example, this would mean that a direct mapping from
the appearance of a piece to a jigsaw box is needed, i.e., we need to calcu-
late the likelihood of the box given the piece, i.e., P(box|piece). This way of
modeling the problem is known in the classification literature as discrimina-
tive classification. In some cases, for example when there are many different
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boxes, it is hard to learn this direct mapping. In such cases, it is useful to
apply Bayesian inversion and estimate for each box the probability that this
box produced the piece at hand, i.e., P(piece|box). This approach is known as
generative classification. In this approach, each box has a model of the type of
pieces it generates. The probability of generating the jigsaw piece at hand is
computed for each model and that probability is used to find the most likely
box.

First, the basic explanation of the generative models is continued. In in-
formation retrieval, many possible sources for a query exist; each document
in a collection can be a source. Therefore, learning a discriminative classifier
is hard and a generative approach is a natural way of modeling the problem.
It is important to realism that in such an approach, a separate distribution is
estimated for each of the documents in the collection. One of the nice things
about generative probabilistic models is that they can easily be understood
without digging into the details of estimating the models’ parameters. There-
fore, in the remainder of this section parameter estimation is put aside and
only the basics of the models are explained. This section starts with simple ex-
amples of generative models (Section 6.2.1). Sections 6.2.2 and 6.2.3 specialize
to generative image models and generative text models respectively.

6.2.1 Examples
Generative probabilistic models are random sources that can generate (infi-
nite) sequences of samples according to some probability distribution. In the
simplest case, the model generates samples independently, thus the probability
of a particular sample does not depend on the samples generated previously.
These simple models, often called memoryless models, will be the primary fo-
cus in this chapter. A good example of a generative source with a memoryless
model is an ordinary die. The model describes the process of throwing the
die and and observing the outcome. If the die is fair, throwing it generates
positive integers between 1 and 6 according to a uniform distribution:4

P(i) =
1
6
, for i ∈ {1, 2, 3, 4, 5, 6}. (6.1)

In a memoryless model, the observations or samples are assumed to be inde-
pendent, so the probability of observing a particular sequence is calculated as
the product of the probabilities of the individual observations:

P({i1, i2, . . . , in}) =
n∏

j=1

P(ij). (6.2)

4 Throughout this chapter, random variables are omitted from the notation of prob-
ability functions, unless this causes confusion. Thus, P(i) means the probability
that the random variable describing the observed outcome from throwing the die
takes value i.
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Section 6.3 returns to calculating the probabilities of observations. Here, the
focus is on the probabilistic models themselves. A probabilistic model is an ab-
straction from the physical process that generates the data. Instead of specify-
ing that the sequence of positive integers is produced by throwing an ordinary
fair die, it suffices to state that there is some source that generates integers
between 1 and 6 according to a uniform distribution, (6.1). The underlying
physical process can remain unknown. Still, to understand the models it is
often useful to think of simple processes like throwing a die, drawing colored
balls from an urn, or drawing jigsaw pieces from a box.

Generative models can be more complex and have a hierarchical structure
like in the following example. Suppose we have two dice (where we represent
a die as a list of faces): Die A, with the usual faces 1 through 6, i.e., A =
(1, 2, 3, 4, 5, 6), and die B, which has ones on all faces, B = (1, 1, 1, 1, 1, 1).
Now we can imagine the following random process:

1. pick a die according to a uniform distribution;
2. sample a number by throwing the chosen die.

For this generative process, the probability of observing a single sample i is:

P(i) = P(A) · P(i|A) + P(B) · P(i|B) =

{
1
2 · 1

6 + 1
2 · 0, for i ∈ {2, 3, 4, 5, 6}

1
2 · 1

6 + 1
2 · 1, for i = 1.

(6.3)
A generative process with a model like this is called a mixture model . It is
a weighted sum of a number of different probability distributions. As will
become clear in Section 6.2.2, mixture models are useful for describing the
mixture of aspects that can be present in images.

It is often insightful to represent generative models in a graphical man-
ner. For graphical representations, we follow the standards described in [11],
where random variables are represented as nodes and dependencies between
them as edges. Observed variables are represented as solid nodes and hidden,
or unobserved, variables as open nodes. A box or plate around a part of the
graph indicates repetition, i.e., the repeated sampling of variables. As an ex-
ample, Figure 6.1 represents two variants of drawing a sequence of N numbers
from the hierarchical dice. The variant on the left represents the process as
described above: for each of the N numbers, we pick a new die. The variant on
the right represents the case where we select a die once for the whole process
and then repeatedly sample numbers by throwing that die.

The remainder of this section introduces generative models for images and
text.

6.2.2 Generative Image Models
As stated in the introduction to this chapter, generative image models are like
the boxes of jigsaw puzzles, from which one can randomly draw pieces. An
important difference though, is the following. Jigsaw boxes contain a finite
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Sampling with repeated choice of dice Sampling from a single die

Fig. 6.1. Graphical representations for dice example variants.

number (say 1000) of discrete pieces; a piece is either in there or not. By
sampling from the box with replacement, we can draw infinitely many pieces,
but each piece has to be one of the fixed set of 1000 pieces. The generative
image models described below, however, are probability distributions over a
(high dimensional) continuous feature space. The number of different samples
that can be drawn is infinite. The models describe the location in the feature
space where we are most likely to observe samples and what kind of variance
can be expected. The nature of the feature space, i.e., the set of features
used for describing a sample is not discussed in this chapter. The models are
independent of the features. Here we simply assume an image is represented
as a set of samples (V = {v1,v2, . . . ,vS}), each described by a n-dimensional
feature vector: v = (v1, v2, . . . , vn), as illustrated in Figure 6.2. The nature of
the samples is independent of the models. The examples used in this chapter
are based on DCT coefficients5 and position information, but in principle
other features like for example the ones introduced in Chapters 5 and 9 can
be used.

blocks feature vectors

→

.

.

.

: 562.37 -10.24 4.06 -1.28 6.74. . .

: 574.62 -4.11 -1.75 -1.37 -1.12 . . .

: 616.37 8.87 6.45 -2.26 -14.70 . . .

: 609.62 -39.01 -10.14 -1.88 -8.47 . . .

: 647.00 -8.37 8.00 -2.65 6.37 . . .

: 668.50 23.07 -11.45 -3.04 1.29 . . .

.

.

.

Fig. 6.2. Illustration of visual document representation.

Gaussian Mixture Models
The generative image models discussed in this chapter are based on Normal
distributions, or Gaussian distributions as they are often called. These distri-
butions are appropriate models for the situation in which an ideal point in a
5 The Discrete Cosine Transform (DCT) captures both intensity and texture infor-

mation and is also used in JPEG compression.
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feature space exists and where all observations are assumed to be versions of
this ideal feature vector that are randomly corrupted by many independent
small influences [4]. For simple images this is the case, one can easily imagine
a single ideal point in feature space describing for example the perfect water
texture. All observations from the water class can be seen as versions of the
ideal water texture that have been corrupted by many independent causes
(lightning condition, camera angle, etc.). However, most real-life images show
more than a single texture or object. Therefore, instead of using a single Gaus-
sian distribution, it makes sense to use a mixture of Gaussian distributions
for modeling images with multiple colors and textures [21].

In general, a finite mixture density is a weighted sum of a finite number (C)
of density functions [20, 4]:

p(x) =
C∑

i=1

P(ci)p(x|ci). (6.4)

(Notation: in this chapter we consistently use capital P for a probability mass
function and lowercase p for a density.)

The mixing weights P(ci) are the prior probabilities of the components ci

in the mixture. The density functions p(x|ci) each describe a bit of the total
density. These densities are Gaussian distributions in the case of a Gaussian
mixture model, but of course other densities can be used in other situations.

Titterington et al. [20] divide the usage of mixture models in two broad
classes: direct application and indirect application. Direct application is used
to refer to situations in which it is believed that there exists a number (C)
of underlying categories or sources such that the observed samples all be-
long to one of these. Indirect application refers to a situation in which the
link between probability distributions and categories is less clear and where a
mixture model is merely used as a mathematical way of obtaining a tractable
form of analyzing data. Modeling images using finite mixture models is some-
where halfway on the continuum from direct to indirect application. On the
one hand, the idea is that an image can contain only a finite number of things;
each sample is assumed to be generated by one of the mixture components.
For example, one component might describe the grass, another the water and
a third the sky in an image. This is the direct application view. On the other
hand, we do not explicitly model grass, water and sky. We merely believe that
to model the many different facets of an image, a mixture of distributions is
needed. This mixture model describes image samples without explicitly sepa-
rating the components. In that sense, mixture modeling is just a mathematical
tool to describe images (indirect application view). Still, the direct applica-
tion view with separate components for modeling grass, water and sky, is a
useful way of thinking about finite mixture models for images, especially for
understanding the parameter estimation discussed in Section 6.4.
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Gaussian Mixture Models for Representing Images
A Gaussian mixture model can describe an image. The idea is that the model
captures the main characteristics of the image. The samples in an image are
assumed to be generated by a mixture of Gaussian sources, where the number
of Gaussian components C is fixed for all images in the collection. A Gaus-
sian mixture model is described by a set of parameters θ = (θ1, . . . ,θC) each
defining a single component. Each component ci is described by its prior prob-
ability P(ci|θ), the mean μi and the variance Σi, thus θi = (P(ci|θ),μi,Σi).
Details about estimating these parameters are deferred to Section 6.4.1. The
process of generating an image is assumed to be the following (see Figure 6.3):

1. Take the Gaussian mixture model θ for the image.
2. For each sample v in the document:

(a) Pick a random component ci from Gaussian mixture model θ accord-
ing to the prior distribution over components P(ci|θ).

(b) Draw a random sample from ci according to the Gaussian distribution
N (μi,Σi).

Fig. 6.3. Graphical representation of Gaussian mixture model.

Here, θ is an observed variable, i.e., the mixture model from which the sam-
ples for a given image are drawn, is known. For a given sample however, it
is unknown which component generated it, thus components are unobserved
variables. The probability of drawing a single sample v from a Gaussian mix-
ture model with parameters θ is thus defined as the marginalization over all
possible components:

p(v|θ) =
C∑

i=1

P(ci|θ)p(v|ci,θ) (6.5)

=
C∑

i=1

P(ci|θ)
1√

(2π)n|Σi|
e−

1
2 (v−μi)

T Σi
−1(v−μi). (6.6)

A visualization of the model built from the image in Figure 6.2 is shown in
Figure 6.4. For this example, a Gaussian mixture with three components is
estimated from the set of feature vectors extracted from the image (cf. Fig-
ure 6.2).6 The resulting model is described by the mean vectors and covariance
6 The process of building a model is described in Section 6.4.1
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matrices of the three components in the high-dimensional feature space and
by the prior probabilities of the components. The figure shows a projection
of the components onto the two-dimensional subspace defined by the position
in the image plane (i.e., the space spanned by the x and y coordinates of the
feature vectors). The ellipsoids in the image plane show the mean position of
the three components along with their variance. The filled areas, are the areas
in the image plane, where the standard deviation from the mean position for
a given component is below 2. The coloring of the area is a representation of
the component’s other dimensions: it shows the mean color and mean texture.
Variance in color and texture information are not visualized. The bars to the
right of each component indicate the component’s prior probability.

Fig. 6.4. Visualization of a model of the image in Figure 6.2.

In the example, three Gaussian components are used, but that is not neces-
sarily enough to capture all information in an image. Any distribution can be
approximated arbitrarily closely by a mixture of Gaussians. The higher the
number of components in the mixture, the better the approximation can be.
However, keeping in mind that the models will be used for retrieval, a perfect
description of an image is not the ultimate goal. The goal is to find images
that are similar to a query image. A perfect model would only be able to
find exact matches and those are not the most interesting ones. Therefore, it
is important to avoid over-fitting. Experiments have shown that eight com-
ponents are typically enough to capture the most important aspects of an
image [22, 24].

6.2.3 Generative Language Models
Language models are discussed in Chapter 7, where they are used for speech
recognition, and Chapter 4 demonstrates their use for information retrieval.
To highlight the generative nature of these models as well as the similarity to
the image models discussed above, we look at them again in this chapter.

To repeat what was said before, a language model is a probability distri-
bution over strings of text in a given language. It simply states how likely
it is to observe a given string in a given language. For example, a language
model for English should capture the fact that the term the is more likely
to occur than the term restaurant. When context is taken into account this
might change. For example, after seeing the phrase:
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“They went to an Italian”,

restaurant is a more likely completion than the. As discussed in Chapter 7,
for speech recognition (but also for example for spelling error correction), this
contextual information is important; a limited amount of context is typically
taken into account and so called n-gram models are used [12]. In n-gram
models, the probability of observing a given term only depends on the previous
n−1 terms. If bigram models (n = 2) are used, the probability of the next
term in the example given above would only depend on Italian.

For information retrieval context is of minor importance (cf. Chapter 4).
Although language models are generative models, in retrieval they are not
used to generate new pieces of text. As long as the models capture most of
the topicality of a text, they are useful. Therefore, context is typically ignored
in information retrieval and terms are assumed to be generated independently.
The models are thus memoryless. In language modeling memoryless language
models are known as unigram language models. Song and Croft experimented
with higher order (n-gram) language models for information retrieval and
found no significant improvement over unigram models [18].

Unigram Language Model
In the unigram language modeling approach to information retrieval, docu-
ments are assumed to be multinomial sources generating terms. This multi-
nomial basis is not always mentioned explicitly (Chapter 4 ignored it), but, in
this chapter, it is useful to take this view because it clearly shows the genera-
tive probabilistic nature and it nicely separates the model from the estimation
of the model parameters, which is discussed in Section 6.4.1.

Multinomial sources are often introduced using urns with colored balls, but
the boxes with jigsaw pieces we used before are equally suitable. Suppose we
have a jigsaw puzzle box that contains pieces with grass, pieces with water and
pieces with sky. Now, if we draw ten pieces from this box with replacement,
what is the probability of observing exactly five grass pieces, two water pieces
and three sky pieces? This can be modeled using a multinomial distribution.
For unigram language modeling, instead of jigsaw pieces of a particular type
(grass, water, sky), we have terms in a given language. A question could now
be: If we draw six terms from the English language, what is the probability of
observing each of the terms an, Italian, restaurant, they, to and went exactly
once? In the language modeling approach to information retrieval, instead of
having a single model for a whole language, each document in a collection is
modeled as a separate multinomial source. Each of these models is described
by a vector of term probabilities φ = (φ1, φ2, . . . , φT ), where T is the size of
the vocabulary and φi is the probability of seeing termi under model φ.

The generative process for textual documents, as visualized in Figure 6.5
is very simple:

1. Pick the language model φ for the document.
2. For each term:
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draw a random term from φ according to the multinomial distribution
mult(φ).

Fig. 6.5. Graphical representation of language model.

Like with the Gaussian mixture models for images, the model that generates
the samples (terms) is an observed variable; each document has its own, known
generative model φ. The probability of observing a particular document t =
(t1, t2, . . . , tT ), from this model is defined as:

P(t|φ) =

(∑T
i=1 ti

)
!

∏T
i=1 ti!

T∏

i=1

φti
i . (6.7)

The second factor in this equation,
∏T

i=1 φti
i , is the joint probability of observ-

ing the term counts for individual terms, P(termi|φ) = φi. The unigram as-
sumption states that all observations are independent, thus the joint probabil-
ity is simply the product of the probabilities of the individual terms. The nor-
malization factor

(∑T
i=1 ti

)
!/(
∏T

i=1 ti!) implements the bag-of-words model,
it states that an observation (a query or a document) is a bag, the ordering
of the terms is unimportant. A simple example will clarify this. Suppose we
have a vocabulary with only four terms: A,B,C and D and observation ABAC,
then t = (2, 1, 1, 0). Note that in the representation of the observation, the
order of the terms is already ignored, it simply says there are two A’s, one B,
one C, and no D’s. Thus, the probability of observing this t from a given
model φ, is in fact the probability of drawing any permutation of the original
string ABAC: P(t) = P(ABAC)+P(AABC)+P(ABCA)+P(ACAB)+ . . ..
In total (2+1+1+0)! / (2!·1!·1!·0!) = 24

2 = 12 different possible permutations exist.
Thus P(t) = 12φ2

1 φ1
2 φ1

3 φ0
4.

6.3 Retrieval Using Generative Models
By drawing enough observations from a single model (or pieces from a box,
to take the jigsaw analogy), a random document or a random image can
be generated. An example of a random image from the model visualized in
Figure 6.4 is shown in Figure 6.6. Different models will produce different
random images, just like different boxes can contain different jigsaws. This
idea can be used to rank documents.
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Fig. 6.6. Random sample from image model presented in Figure 6.4.

6.3.1 Sample Likelihood
The idea of ranking models based on observations is illustrated by a simple
dice example. Suppose we have two dice:

D1 = (1, 2, 3, 4, 5, 6)
D2 = (1, 1, 3, 4, 5, 6). (6.8)

Say someone tells us that a sequence of five throws with one of them resulted in
the observation: O = (4, 3, 4, 3, 1). We can then easily calculate the likelihood
of observing this sequence given each of the models:

P(O|D1) = (1
6 )5

P(O|D2) = (1
6 )4 · 2

6 .
(6.9)

Since P(O|D2) > P(O|D1), the observation is more likely under D2. We call
this probability of an observation O given a model D the Sample Likelihood :
it is the likelihood of observing this sample.

The same principle can be used to rank documents given a query. The
assumption is that the query is an observation from one of the generative
document models in the collection and the goal is to find the document model
under which this query is most likely. For a visual query V = {v1,v2, . . . ,vS},
assuming memoryless models, we can compute the joint likelihood of observing
all samples by taking the product of the likelihoods for the individual samples
vj :

p(V) =
∏

v∈V
p(v|θ). (6.10)

For textual queries q = (q1, q2, . . . , qT ), we can simply use (6.7).

6.4 Estimating Model Parameters
6.4.1 Maximum Likelihood Estimates
In the previous sections, the assumption has been that the model parame-
ters (θ) are known. Given the parameters, it is straightforward to use the
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models for ranking documents (as we have seen in Section 6.3). In general
however, the parameters of a specific document model are unknown. Usually,
the only available information is the representation of the documents, i.e., the
feature vectors. A common way to use this data is to assume that they are ob-
servations from the models and use them as training samples to estimate the
unknown model parameters. As a first step to estimating these parameters,
we will use the maximum likelihood estimate. This estimate is defined as the
parameter setting which maximizes the likelihood of the observed samples.
Thus, for a set of training samples S = {s1, s2, . . . , sK} and model parameter
ψ, the maximum likelihood estimate ψML is defined as:

ψML = arg max
ψ

∏

s∈S
P(s|ψ). (6.11)

Below this approach is applied to Gaussian mixture models and language mod-
els. Techniques for handling unobserved data and for improving generalization
capabilities are discussed in Section 6.4.2.

Estimating Gaussian Mixture Model Parameters
The maximum likelihood estimate for a Gaussian mixture model from a set
of samples V (an image) is defined as follows:

θML = arg max
θ

∏

v∈V
P(v|θ) (6.12)

=
∏

v∈V

C∑

i=1

P(ci|θ)
1√

(2π)n|Σi|
e−

1
2 (v−μi)

T Σi
−1(v−μi).

This equation is hard to solve analytically, but we can use the Expectation
Maximization (EM) algorithm [3] to find parameters for the model. To un-
derstand this iterative procedure, it is useful to assume that an image shows
a limited number of different things (such as grass, sky, water), each of which
is modeled by a separate Gaussian distribution. Each sample in a document
can then be assumed to be generated from one of these Gaussian components.

To accurately describe the different components of a Gaussian mixture
model for a given document, it is necessary to decide which of the document’s
samples are generated by which component. The assignments of samples vj to
components Ci are unknown, but they can be viewed as hidden variables and
the EM algorithm can be applied. This algorithm iterates between estimating
the a posteriori class probabilities for each sample given the current model
settings (the E-step) and re-estimating the components’ parameters based on
the sample distribution and the current sample assignments (M-step).

The EM algorithm first assigns each sample to a random component. Next,
the first M-step computes the parameters (θi) for each component, based on
the samples assigned to that component. Using maximum likelihood estimates,
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this comes down to computing the mean and variance of the feature values
over all samples assigned to the component.

This assignment of samples to components is a soft clustering, a sample
does not belong entirely to one component. In fact, we compute means, co-
variances and priors on the weighted feature vectors, where the feature vectors
are weighted by their proportion of belonging to the class under consideration.
In the next E-step, the class assignments are re-estimated, i.e., the posterior
probabilities, P(ci|vj) are computed. We iterate between estimating class as-
signments (expectation step) and estimating class parameters (maximization
step) until the algorithm converges. Figure 6.7 is a visualization of training
a model from the image in Figure 6.2. From top to bottom, it alternates
between showing sample assignments (E-step) and visualizations of the inter-
mediate models (M-step). After 10 iterations already, the model accurately
distinguishes water, grass and elks.
More formally, to estimate a Gaussian mixture model from a document V =
{v1,v2, . . . ,vS}, the following steps are alternated:

E-step
Estimate the hidden assignments hij of samples to components for each
sample xj and component ci:

hij = P(ci|vj) =
p(vj |ci)P(ci)∑C

c=1 p(vj |cc)P(cc)
. (6.13)

M-step
Update the component’s parameters to maximize the joint distribution of
component assignments and samples: θnew = arg maxθ p(V,H |θ), where
H is the matrix with all sample assignments hij . More specifically, this
means:

μnew
i =

∑
j hijvj∑

j hij
, (6.14)

Σnew
i =

∑
j hij(vj − μnew

i )(vj − μnew
i )T

∑
j hij

, (6.15)

P(ci)new =
1
N

∑

j

hij . (6.16)

The algorithm is guaranteed to converge [3]. The error after each iteration is
the negative log likelihood of the training data:

E = − log p(V) = −
∑

v∈V
log p(v|θ). (6.17)

This error will decrease with each iteration of the algorithm, until a minimum
is reached.7
7 The found minima are local ones. The effects of this on retrieval quality need

thorough investigation.
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Fig. 6.7. Visualization of the estimation of parameters for a Gaussian mixture
model built from the image shown in Figure 6.2. E and M steps are shown after
initialization and after 1, 3 and 10 iterations. The E-steps show to what degree each
sample is assigned to each component (higher transparency indicates a lower degree
of assignment). The M-steps show visualizations of the models (cf. Figure 6.4).



6 Generative Probabilistic Models 191

Estimating Language Model Parameters
The maximum likelihood estimates for the parameters of the multinomial
distribution for a given document are straightforward. They are simply the
relative frequency of the terms in the document. If a document is represented
as a vector of term counts, t = (t1, t2, . . . , tT ), then φi, the probability of term
i in this document, is estimated by:

φiML =
ti∑T

j=1 tj
. (6.18)

6.4.2 Smoothing
If maximum likelihood estimates, (6.18), are used to find the language model
parameters, we run into the so-called zero-frequency problem, a sparse data
problem. Terms that did not occur in the training data for a document are
assigned zero probability (φi = 0 for these terms). This means that a query
containing such a term will get zero probability for this document model, no
matter how likely the other query terms are.

Consider for example the dice example of Section 6.3, where we introduced
the following two dice:

D1 = (1, 2, 3, 4, 5, 6)
D2 = (1, 1, 3, 4, 5, 6). (6.19)

Now, if we observe the sequence O = (1, 2, 1, 4, 3), we would conclude the
observation comes from D1, since P(2|D2) = 0 and thus P(O|D2) = 0. If D2

indeed does not have a 2 on one of its faces, this is correct, but if the distri-
bution is estimated from data (as it is in the generative document models)
it may not be. Suppose we buy a die in a shop, we roll it six times and we
observe the sequence (1, 1, 3, 4, 5, 6), concluding that these six observations
correspond to the six faces and that there is no 2 on this die does not seem
wise.

Interpolation
Smoothing solves the zero-frequency problem by transferring some of the prob-
ability mass from the observed samples to the unseen samples. The specific
smoothing technique used commonly in the language modeling approach to
information retrieval is interpolation, also known as Jelinek–Mercer smooth-
ing [10]. For multimedia material, and especially for video data, interpolation
is useful, since it allows for easy extension of the language models for describ-
ing different levels of a document, like shots, scenes and videos (discussed
later in this section). For other smoothing techniques, the interested reader is
referred to [12] and [25].

In Jelinek–Mercer smoothing, the maximum likelihood estimates are in-
terpolated with a more general distribution, often called background model ,
or collection model ; the maximum likelihood estimates are often referred to
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as foreground models or document models. The smoothed estimates are calcu-
lated as follows:

φi = λφiML + (1 − λ)φiBG , (6.20)

where φiBG = P(termi) is the background probability of observing termi and
λ is a mixing parameter indicating the relative importance of maximum like-
lihood estimates.8 The background probability is usually estimated using ei-
ther collection frequency, the relative frequency of the term in the collection
(φiBG =

∑
d td,i/

∑
d

∑
j td,j), or document frequency the relative fraction of

documents that the term occurs in (φiBG = df(ti)/
∑

j df(tj)). The mixing
parameter λ can be estimated on a training set with known relevant query-
document pairs.

The idf Role of Smoothing
Besides avoiding the zero-frequency problem, smoothing also serves another
purpose, namely that of explaining common query terms and reducing their
influence [25]. Because common terms have high background probability, the
influence of their foreground probability on the ranking will be relatively
small. This becomes apparent when we substitute the φs in the retrieval func-
tion, (6.7), for the smoothed estimates, (6.20), and do some formula manipu-
lation:

P(q|φ) =

(∑T
j=1 qj

)
!

∏T
j=1 qj !

T∏

i=1

[λφiML + (1 − λ)φiBG ]qi (6.21)

=

(∑T
j=1 qj

)
!

∏T
j=1 qj !

T∏

i=1

[
λφiML

(1 − λ)φiBG

+ 1
]qi T∏

i=1

[(1 − λ)φiBG ]qi . (6.22)

For terms that are not present in the document λφiML = 0 and the correspond-
ing factor reduces to 1. Thus the first product needs only to be considered
for query terms that are matched in the document; The latter is document
independent and can be ignored for ranking. Also the normalization factor
does not affect the ranking. The reduced formula is:

P(q|φ) ∝
∏

i∈{1,...,T}:ti>0∧qi>0

[
λφiML

(1 − λ)φiBG

+ 1
]qi

. (6.23)

In this last equation, it is clear that the background probability (φiBG) plays a
normalization role, similar to idf in traditional tf.idf weighting [17]. Common
terms, i.e., terms with high φiBG , contribute less to the final ranking; for these
terms, the influence of φiML is reduced.

8 Note that the smoothed distribution is a mixture model (cf. Section 6.2.2), with
φiML and φiBG describing the class densities and where λ and 1− λ are the class
priors.
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Interpolated Language Models for Video
Besides smoothing, interpolation can serve other purposes. For example when
a document collection contains video material, we would like to exploit the
hierarchical data model of video, in which a video is subdivided into scenes,
which are subdivided into shots, which are in turn subdivided into frames.
Interpolation based smoothing is particularly well-suited for modeling such
representations of the data. To include the different levels of the hierarchy, we
can simply extend estimation of the mixture of foreground and background
model, (6.20), with models for shots and scenes:

φi = λShotP(termi|Shot) + λSceneP(termi|Scene) + λCollP(termi),
where λColl = 1 − λShot − λScene. (6.24)

The main idea behind this approach is that a good shot contains the query
terms and is part of a scene having more occurrences of the query terms. Also,
by including scenes in the model, misalignment between audio and video can
be handled. Depending on the information need of the user, a similar strategy
might be used to rank scenes or complete videos instead of shots, that is,
the best scene might be a scene that contains a shot in which the query
terms (co-)occur. Finally, interpolated language models are not only suitable
for video retrieval, they can be used in any situation where language has
a hierarchical structure. For example, it can be used for passage retrieval
from (xml) documents, where a document can be a hierarchical structure of
chapters, sections and paragraphs [15].

Interpolated Gaussian Mixture Models
The zero-frequency problem does not exist for images, since they are modeled
using Gaussian mixture models and Gaussians have infinite support. However,
the idf role of smoothing is also useful in image retrieval, since it distinguishes
between common and typical features of a document. Suppose we have a
query image depicting a clear blue sky over a snowy mountain. Now, if all
images in our collection have clear blue skies, than the retrieval results should
mainly depend on the snowy and mountainy bits. This means we may want
to down-weight the influence of the sky bits. This can, like in the text case, be
achieved by interpolating with a more general, background distribution. The
new version of the likelihood for a single image sample v, cf. (6.5), becomes:

p(V) =
∏

v∈V
κp(v|θ) + (1 − κ)p(v), (6.25)

where κ is used as the mixing parameter. The background density p(v) can
be estimated by marginalization over all document models in a reference col-
lection Θ:

p(v) =
∑

θ∈Θ

p(v|θ)P(θ). (6.26)
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The reference collection Θ can be either the current collection, a representative
sample, or a separate, comparable collection.

This interpolation of foreground and background probabilities has the
same effect as in the text case; it will decrease the influence of samples v
with a high background probability p(v) on the final ranking. Experiments
have shown that, this interpolation with a background collection is crucial for
retrieval performance [22, 24].

6.5 Combining Visual and Textual Information
Above, we have described models for visual and textural information in iso-
lation, but it makes sense to combine the two. One could imagine textual
information setting the context (this shot is about Yasser Arafat), whereas
visual information could filter the shots in the video where the person (or his
patterned scarf) is actually visible. Vice versa, visual information could set
a context (there is an object against a clear blue sky visible), and textual
information could help in deciding whether it is a helicopter, an aircraft or a
balloon. If both textual and visual information are modeled in a generative
framework like discussed in this chapter, combining the modalities is a viable
option.

6.5.1 Joint Probability
When both visual and textual information are described using generative
probabilistic models, we can simply compute the joint probability of observing
textual and visual part of a multimedia query, QMM = {V, q}:

p(QMM |D) = p(V|θD)P(q|φD). (6.27)

This requires two independence assumptions:

1. Textual terms and visual samples are generated independently:
p(V, q|·) = p(V|·)P(q|·).

2. The generation of documents in one modality is independent of the model
in the other modality. The generation of textual terms only depends on
the language model and the generation of visual terms only on the visual
model.

Treating textual and visual information independently, contradicts the as-
sumption that textual information is useful for visual multimedia retrieval. If
textual information can actually help in retrieving relevant visual images or
shots, then documents that have a high likelihood based on textual informa-
tion should be more likely to be visually relevant than documents with a low
textual score. Clearly, textual and visual information are dependent. As soon
as a document is likely to be relevant based on the textual information, then
the likelihood of observing something visually similar to the query examples
should increase. For example, if the name Yasser Arafat is mentioned, the
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likelihood of observing him increases. Theoretically, this might lead to overly
high scores for documents that match on both textual and visual information.
In practice this simple multimodal model gives reasonable results, although
in many settings textual information is most useful for finding the relevant
information [24, 22].

6.6 Summary
In this chapter the main principles of generative probabilistic models are in-
troduced. These models provide concise descriptions of the characteristics of
a document. The particular instance of generative models described in this
chapter, Gaussian mixture models, is well-suited for describing documents
with a variety of different characteristics, and therefore useful for modeling
heterogeneous images.

In a retrieval setting, the generative properties are used to decide which
documents to show to the user. Documents are ranked by decreasing proba-
bility of generating the various parts of the query. These query parts can be
small descriptions of visual information in a visual setting, query terms in a
textual setting, or a combination of both in a multimodal setting.

To train the generative models from data, we start from a maximum like-
lihood approach. The parameter setting of a model describing a document
are those that maximize the likelihood of observing that document. The max-
imum likelihood estimate however does not distinguish between characteristics
that are common for many documents in a collection and characteristics that
are typical of a particular document. For retrieval, this distinction is very
important. Therefore, we interpolate with a background model, a model de-
scribing the main characteristics shared by many documents in the collection.
This interpolation decreases the influence of common characteristics and thus
improves retrieval results.

Finally, we show how the modeling of textual information in the same gen-
erative probabilistic framework can be adapted to describe video documents.
The two modalities can then be combined using a simple joint probability.
Even though the independence assumption needed for this joint probability
is somewhat counter intuitive, in practice this combination of modalities is
useful.

6.7 Further Reading
A very thorough introduction to generative models can be found in the book
by Duda et al. [4]. The book covers many aspects related to this chapter
such as maximum likelihood estimation, mixture models and the expectation
maximization (EM) algorithm as well as many other pattern classification
techniques.

Few examples exist of the application of generative models for multimedia
retrieval. The work most closely related to the models presented in this chapter
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is that of Vasconcelos et al. [21] and that of Greenspan et al. [7]. Both model
each of the images in the collection using a mixture of Gaussians like discussed
above. Instead of then using the maximum likelihood for ranking, they also
estimate a Gaussian mixture model for the query image and directly compare
the models. Gaussian mixture models that model not only color and texture,
but also the dynamic aspects of those are discussed in [6, 9]. Generative models
are also in computer vision sometimes to classify objects [5] or medical video
clips [14].

A collection of high-quality papers on the application of language mod-
eling techniques is available in the book Language Modeling for Information
Retrieval, edited by Croft and Lafferty [2]. A number of papers in this col-
lection are of particular interest. First of all, the paper by Sparck-Jones and
others [19] started some controversy around the idea of using language models
for information retrieval, since the notion of relevance is absent from the frame-
work and the goal is to find the document that generated the query terms,
implying there can only be one relevant document. Lavrenko and Croft [13]
solve the problem by estimating relevance models rather than document mod-
els. Finally, Lafferty and Zhai argue that the language modeling framework
and the traditional probabilistic framework are probabilistically equivalent [2].

We briefly discussed the combination of visual and textual information.
Of course they can be more tightly coupled than by their joined probability.
Blei et al. [1] give a fine discussion of a generative approach for representing
images and captions simultaneously.

Finally, the work that lead to this chapter has been published previously
in many places. Elsewhere [22, 23] we give more extensive discussions on the
techniques presented here.
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