
Preface

Computational systems biology is the term that we use to describe computational
methods to identify, infer, model, and store relationships between the molecules,
pathways, and cells (‘‘systems’’) involved in a living organism. Based on this definition,
the field of computational systems biology has been in existence for some time.
However, the recent confluence of high-throughput methodology for biological data
gathering, genome-scale sequencing, and computational processing power has driven a
reinvention and expansion of this field. The expansions include not only modeling of
small metabolic (1–3) and signaling systems (2, 4) but also modeling of the relation-
ships between biological components in very large systems, including whole cells and
organisms (5–15). Generally, these models provide a general overview of one or more
aspects of these systems and leave the determination of details to experimentalists
focused on smaller subsystems. The promise of such approaches is that they will
elucidate patterns, relationships, and general features, which are not evident from
examining specific components or subsystems. These predictions are either interesting
in and of themselves (e.g., the identification of an evolutionary pattern) or interesting
and valuable to researchers working on a particular problem (e.g., highlight a previously
unknown functional pathway).

Two events have occurred to bring the field of computational systems biology to
the forefront. One is the advent of high-throughput methods that have generated large
amounts of information about particular systems in the form of genetic studies, gene
and protein expression analyses and metabolomics. With such tools, research to con-
sider systems as a whole are being conceived, planned, and implemented experimentally
on an ever more frequent and wider scale. The other event is the growth of computa-
tional processing power and tools. Methods to analyze large data sets of this kind are
often computationally demanding and, as is the case in other areas, the field has
benefited from continuing improvements in computational hardware and methods.

The field of computational biology is very much like a telescope with two sequential
lenses: one lens represents the biological data and the other represents a computational
and/or mathematical model of the data. Both lenses must be properly coordinated to
yield an image that reflects biological reality. This means that the design parameters for
both lenses must be designed in concert to create a system that yields a model of the
organism, which provides both predictive and mechanistic information. The chapters in
this book describe the construction of subcomponents of such a system. Computa-
tional systems biology is a rapidly evolving field and no single group of investigators has
yet developed a complete system that integrates both data generation and data analysis
in such a way so as to allow full and accurate modeling of any single biological organism.
However, the field is rapidly moving in that direction. The chapters in this book
represent a snapshot of the current methods being developed and used in the area of
computational systems biology. Each method or database described within represents
one or more steps on the path to a complete description of a biological system. How
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these tools will evolve and ultimately be integrated is an area of intense research and
interest. We hope that readers of this book will be motivated by the chapters within and
become involved in this exciting area of research.

Organization of the Book

This volume is organized into five major parts: Network Components, Network
Inference, Network Dynamics, Function and Evolutionary Systems Biology, and Com-
putational Infrastructure for Systems Biology. Each section is described briefly below.

Part I – Network Components

This section focuses on methods to identify subcomponents of the complete networks.
Ultimately, such subcomponents will need to be integrated with each other or used to
inform other methods to arrive at a complete description of a biological system. This
section begins with two methods for the prediction of transcription factor binding sites.
In the first, Chapter 1, Mariño-Ramirez et al. describe a method for the prediction of
transcription factor binding sites using a Gibbs sampling approach. In Chapter 2, Liu
and Bader show how DNA-binding sites and specificity can be predicted using sophis-
ticated structural analysis. Chapters 3–5 discuss methods to predict protein–protein
interaction (PPI) networks, and Chapter 6 builds on predicted PPIs to identify poten-
tial regulatory interactions. Finally, Chapter 7 discusses the inherent modularity that is
observed in biological networks with a focus on networks of PPIs.

Part II – Network Inference

This section focuses on methodologies to infer transcriptional networks on a genome-
wide scale. In general, the methods described within focus on using either mRNA
expression data or mRNA expression data coupled with expression quantitative trait
locus (eQTL) data. To a large extent, method development in this area is driven
primarily by the ubiquitous mRNA expression data that are available in the public
domain or that are relatively easily generated within a single laboratory. These methods
have been tremendously enabled by the development of array technology and hence
predominately model mRNA levels (as that is the most ubiquitous data type).
Chapters 8 and 9 present two methods for identifying and modeling transcriptional
regulatory networks, while Chapter 10 focuses on inferring mRNA expression net-
works from eQTL data. Chapter 11 is a review of different methods for inferring and
modeling large scale networks from expression and eQTL data.

Part III – Network Dynamics

Systems are not static entities. They change over time and in response to a variety of
perturbations. Ultimately, computational systems biology will have to develop meth-
ods and corresponding data sets that allow one to infer and model the kinetics and
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dynamics of reactions between all the chemical moieties in a cell. The chapters in this
section focus on such methods. Chapter 12 discusses methods to infer both static co-
expression networks and a finite-state Markov chain model for mimicking the dynamic
behavior of a transcriptional network. Chapter 13 focuses on quantitative models of
system behavior based on differential equations using biochemical control theory,
whereas Chapter 14 focuses on the use of stochastic kinetic simulations. Both
approaches have applications where one is superior to the other. At this point in time,
it is not clear which methods will turn out to be most useful in dynamically modeling
the largest number of biological systems. In general, this is likely the case for most of the
technologies described in this book, so it is useful for readers to familiarize themselves
with several concepts. Specifically, both Chapters 13 and 14 provide an excellent
discussion of a variety of historical approaches to the dynamical modeling of biological
systems and the relative merits and downsides to each. Chapter 15 provides an excellent
introduction to considerations for the interplay between experimental design and
dynamic modeling using lambda phage as an example system. The methods and
considerations described within are generally applicable to other biological systems
and highlight the importance of integrating the direction of wet bench work and
computational modeling to more rapidly refine the models.

Part IV – Function and Evolutionary Systems Biology

The ultimate representation of the function of a given biological moiety is a complete
description of all the reactions in which it participates and the relative rates of said
reactions. At present, we are quite distant from this goal for most biological molecules
or systems. However, we are able to use computational methods to predict the most
likely functions of a given protein and even predict which portions and specific
sequences of the protein contribute most to that function. This section is focused on
methods used to infer protein function and on the relationships between function and
evolution.

Ultimately, the reason to study and research ‘‘systems’’ biology is to understand
biological function at a given hierarchical level (be it a single catalytic site or entire
pathways). The interplay between the detailed atomic study of function and the large-
scale study of systems will enable us to achieve this goal. This section contains chapters
that address the interdependence of these two aspects: individual algorithms or tech-
niques to understand the functional role of atoms or residues in single molecules (e.g.,
proteins), which in turn are extrapolated to understand their greater role in terms of
biological or organismal function. Conversely and complementarily, the role of larger
systems and their influence on single molecules is also explored. Together, all these
chapters illustrate the strong dependence between single molecules and entire pathways
or systems.

Part V – Computational Infrastructure for Systems Biology

To represent and organize the large amounts of experimental data and software tools,
database frameworks must be created and made available to the larger biological
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community. This chapter focuses on computational methods and databases as well as
data representations necessary to both integrate and export systems biology informa-
tion to an end user. The user may be the biologist searching for their gene of interest or
they may be the bioinformatician looking for trends in protein function among higher
eukaryotes. Several groups are working on this extremely difficult task of providing
semantic meaning to the large amounts of underlying biological data collected from
single and high-throughput experiments, as well as computational predictions. (As a
parenthetical comment, this is a significantly much harder problem than one faced by
Internet search engines such as a Google, which at this point do not provide any
semantic meaning to a query.) We present only a few such examples in this section
(and in this book). One primary focus is on the Bioverse framework, database, and web
application, which was developed by the editors of this book. However, we also
describe the Biozon as well as the SEBIN and CABIN frameworks. The abstract
representations required to model biological systems are still in fruition, and a comple-
ment of many tools, technologies, databases, and algorithms will have to be integrated
in the future as our knowledge expands.
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Chapter 2

Structure-Based Ab Initio Prediction of Transcription
Factor–Binding Sites

L. Angela Liu and Joel S. Bader

Abstract

We present an all-atom molecular modeling method that can predict the binding specificity of a
transcription factor based on its 3D structure, with no further information required. We use molecular
dynamics and free energy calculations to compute the relative binding free energies for a transcription
factor with multiple possible DNA sequences. These sequences are then used to construct a position
weight matrix to represent the transcription factor–binding sites. Free energy differences are calculated
by morphing one base pair into another using a multi-copy representation in which multiple base pairs
are superimposed at a single DNA position. Water-mediated hydrogen bonds between transcription
factor side chains and DNA bases are known to contribute to binding specificity for certain transcrip-
tion factors. To account for this important effect, the simulation protocol includes an explicit
molecular water solvent and counter-ions. For computational efficiency, we use a standard additive
approximation for the contribution of each DNA base pair to the total binding free energy. The
additive approximation is not strictly necessary, and more detailed computations could be used to
investigate non-additive effects.

Key words: Transcription factor–binding sites, molecular dynamics, free energy, position weight
matrix (PWM), multi-copy, thermodynamic integration, protein–DNA binding.

1. Introduction

Transcription factors are DNA-binding proteins that control gene
expression (1). They often recognize short DNA sequences (about
six to eight base pairs long, roughly the number of base pairs
exposed on the single face of a DNA major groove) that can be
degenerate. Traditionally, binding sites have been obtained using
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experimental methods, including SELEX (2), ChIP-chip (3), pro-
tein-binding microarrays (4), etc. These methods are often labor-
intensive and expensive.

The binding sites of a transcription factor are intrinsically
determined by the 3D structures of the protein and DNA and
their structural complementarities. Binding sites of a transcription
factor may also depend on its participation in a multi-protein
complex. It is therefore desirable to predict these binding sites
based on the 3D structures of transcription factors. This ab initio
approach uses all-atom molecular simulation and remains a chal-
lenging problem. Several previous attempts (5–7) are limited to
implicit solvent, enthalpic calculations of the free energy and fro-
zen macromolecular backbones, all of which could lead to a bias in
the binding site prediction.

In this chapter, we present an improved and, in principle, exact
method (at least to the level of accuracy of molecular force fields)
that can predict the transcription factor–binding sites using their
structural information. There is no other required information,
except for a well-chosen atomic force field for the representation of
the protein–DNA complex.

The theoretical basis for structure-based binding site pre-
dictions for transcription factors is the binding free energy of
the protein–DNA complex, calculated as the difference in free
energy between the solvated complex and the solvated indivi-
dual protein and DNA components. A transcription factor
could possibly bind to multiple different DNA sequences
with comparable binding affinity. This is because both DNA
and protein are highly flexible molecules. Once a DNA base
pair is changed to a different base pair and its prior favorable
contacts with the protein are disrupted, protein and DNA can
relax and change their geometries to achieve alternative favor-
able binding conformation. Typically, a specific DNA sequence
and a non-specific DNA sequence to the same transcription
factor differ only in binding energy on the magnitude of
10 kcal/mol. This is roughly equivalent to the energy of
breaking two to five hydrogen bonds, as hydrogen bonds
formed between oxygen and nitrogen atoms are typically
2–5 kcal/mol.

The relative binding free energy of a transcription factor with
two different DNA sequences can be obtained using the following
thermodynamic cycle:

DNAðaqÞþproteinðaqÞ ! protein�DNA complex ðaqÞ�G

#�GDNA #�Gcomp

DNA0ðaqÞþproteinðaqÞ ! protein�DNA0 complex ðaqÞ�G 0

��G ¼�G 0 ��G ¼�Gcomp��GDNA; ½1�
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where ��G is the relative binding free energy of the protein with
DNA and DNA’. The two horizontal reactions represent the
association of the protein with two different DNA sequences.
These binding free energies can be obtained from experimental
measurement. The two vertical reactions represent mutations of
changing the DNA sequence in the DNA duplex (�GDNA) and the
protein–DNA complex (�Gcomp). In computation, it is the two
vertical or ‘‘mutational’’ reactions that are calculated. There are
two common methods for the calculation of such ‘‘mutational’’
free energies: free energy perturbation and thermodynamic inte-
gration. From our experience, we found that the latter method,
thermodynamic integration, is easy to implement and provides
more opportunities for extension such as free energy decomposi-
tion analyses. In this chapter, we use this method exclusively.

A prevalent representation of the transcription factor–binding
site is a position weight matrix (PWM), which can be converted
into a sequence logo for graphical representation. In order for the
PWM representation to be valid, each base pair must contribute
independently or additively to the total binding free energy, com-
monly called the ‘‘additive approximation’’. In transcription
factor – DNA complexes that have relatively small deformations
in the DNA structure, this assumption has been observed to be a
fairly good simplification (6). In this chapter, we will also use this
additive approximation and point out ways to assess the non-
additivity in Note 1.

At each base pair position along the DNA, there are four
possible Watson-Crick base pairs. Equation [1] can be used to
calculate the relative binding free energies among these four
possible base pairs, which will result in a four-level energy
diagram. The base pair with the lowest energy leads to the
strongest binding, and is normally the base that appears in the
experimental consensus binding sequence. These relative ener-
gies can be converted into probabilities using the Boltzmann
factor, as in

Prðbp ¼ a; a 2 fA;C;G;TgÞ ¼ exp½�bðEa � E0Þ�P
g2fA;C;G;Tg

exp½�bðEg � E0Þ�
; ½2�

where the four possible base pairs are labeled as A, C, G, or T; a and
g represent possible base pair identities; b is the inverse tempera-
ture (i.e., 1/kBT, kB is the Boltzmann constant and T is the
temperature); Ea and E0 represent the free energy of the base
pair a and the free energy of a reference base pair. Then (Ea – E0)
corresponds to the ��G of Eq. [1] for changing the reference
base pair into base pair a. For convenience, we choose the base pair
leading to the lowest free energy (thus the strongest binder) as the
reference point.

Binding Site Prediction 25



These probabilities can then be converted into a sequence logo
(8) using the following formula,

ICðlÞ ¼ 2þ
X

a2fA;C;G;Tg
Prða; lÞ log2 Prða; lÞ; ½3�

where IC(l) represents the information content (in bits) at base
pair position l; Pr(a,l) represents the probability (from Eq. [2]) of
base pair a at position l. In the sequence logo, the letters A, C, G,
and T (representing the corresponding base pair) are stacked on
top of each other in the order of descending probability at each
base pair position. The relative height of each base pair at a position
is proportional to their corresponding probabilities. The maxi-
mum height of information content at each position is 2 bits,
representing 100% conservation at the position; the minimum
height is 0, representing equal probabilities for all four possible
base pairs.

Taking the vertical reaction �Gcomp as an example, the free
energy simulation and analysis can be done as follows. We will use a
single base pair change as an example, using the above-mentioned
additive approximation. First, a protein–DNA complex structure is
made. Then a base pair at a specific position is changed to another
possible base pair. These two structures represent the reactant and
the product of the reaction. Our job is to calculate the free energy
change associated with the reaction. Because free energy is a state
function, we can connect the reactant and the product using an
arbitrary reaction path, and integrate the energy gradient along the
path to obtain the total free energy change. This approach is called
thermodynamic integration. The formal derivation of this method
can be found in Leach’s introductory modeling book (9), as well as
most of the theoretical background for this chapter. More
advanced treatments are also available (10). Here we list the equa-
tions that are pertinent to the discussion. The energy function of
the system is

H ¼ H0 þ ð1� lÞHreac þ lHprod; ½4�

where H is the total Hamiltonian of the system that contains all the
energetic terms; H0 is the energy terms for the environmental
atoms, comprising all those other than the reactant and product;
Hreac and Hprod represent the energy terms associated with atoms
in the reactant and the product, respectively; and l represents the
reaction coordinate (aka coupling parameter). Here the reactant
refers to the original base pair; the product refers to the final base
pair; and the environment refers to the atoms of the DNA back-
bone, other DNA base pairs, protein, and the solvent. From this
equation we can see that the Hamiltonian becomes that of the
reactant system when l is 0, and becomes that of the product
system when l is 1. At intermediate l values, the Hamiltonian
corresponds to an artificial system that contains both the reactant
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atoms and the product atoms. The reactant and the product,
however, do not have any interaction terms, allowing them to
occupy the same space.

Based on the linear coupling scheme of Eq. [4], the free
energy change for changing the base pair is

�G ¼
Z1

0

dl
@H

@l

� �

l
¼
Z1

0

dl Hprod �Hreac

� �
l; ½5�

where the angular brackets ‘‘h il’’ represent an ensemble average at
a particular value of l. In practice, the free energy simulation is
done using traditional molecular dynamics methods, except that
the energy function is now evaluated using Eq. [4]. After every
1 ps or so, the simulation trajectory will be saved. When the
simulation is done, the saved trajectory will be analyzed using
Eq. [5] to obtain the ensemble average of the Hamiltonian gra-
dient. Typically, a numerical integration scheme is used to com-
pute the free energy change for the reaction, such as the
trapezoidal rule.

2. Materials

We list here the required computational resources for carrying out
the computations discussed in the next section. The computa-
tional cost is listed in Note 2.

The majority of the calculations are done using a molecular
modeling package called CHARMM (http://www.charmm.org)
that requires a license. The version for wide distribution as of
Jan. 2009 is c35b1. We have carried out all calculations using
version c32b1. CHARMM requires FORTRAN90 compiler. On a
Linux computer with Intel processors, the GNU FORTRAN compi-
ler suffices. On Apple PowerPC computers with IBM processors,
the IBM FORTRAN compiler is required. The benchmarks for these
two architectures lead to similar running time for identical mole-
cular test systems in serial mode, where the Intel processor is
3.0 GHz and the IBM processor is 2.2 GHz. CHARMM requires a
moderate amount of memory at about 250 MB on the above two
architectures for a system with about 25,000 atoms. The CHARMM

executable is also available at public supercomputer sites, such as
BigBen at the Pittsburgh Supercomputing Center (PSC), which
has a parallel version of CHARMM installed (proof of license is
required for usage). Benchmarks for additional systems are avail-
able from CHARMM’s website, which lists a wide range of supported
architectures and compilers.
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We chose CHARMM because we found it the easiest for imple-
menting the calculations we desired (see Note 3). The CHARMM27
atomic force field has been well tested to be accurate for the
description of proteins and nucleic acids. In tests on BigBen at
PSC, we have found a drop-off in performance for running
CHARMM on more than 16 compute nodes (32 CPUs) in parallel.
This drop-off may be system-specific or even due to inexperience
on our part. We did not investigate this issue because paralleliza-
tion of the code is not particularly important for our calculations.
Calculations may be trivially parallelized by simulating each
nucleotide on a separate node (see Note 4).

3. Methods

3.1. Simulation

Protocols for Native

DNA Duplex or Native

Protein–DNA Complex

The starting point of the simulation is the 3D structure of the
protein–DNA complex of interest. The structure can be obtained
from X-ray crystallography, NMR determination, or homology
modeling. We outline the protocol in Fig. 2.1 and explain the
steps below. The same protocols are carried out for the protein–
DNA complex as well as the DNA duplex in the complex. This is
necessary according to the thermodynamic cycle in Eq. [1].

3.1.1. Preparation of the

Complete Structure File

CHARMM incorporates PDB (11) structural files to initiate the
molecular modeling and simulation. The starting structure’s
PDB file must be edited to follow CHARMM’s naming conven-
tion. This may be done manually. One can also write a computer
program to do these modifications once they become familiar
with the required changes for amino acids and nucleotides. If the
starting structure is from crystallography, missing side chains will
be added by CHARMM. If the structure file is obtained from NMR
determination, the hydrogen atoms need to be removed first,
and CHARMM’s HBUILD module is used to add hydrogen atoms
according to its own naming convention. Any water molecules
that are resolved in the original structures are also removed.

A common practice for the assignment of charge state of
titratable amino acid residues is to assign a þ1 charge for all
basic residues including lysine and arginine, assign a – 1 charge to
all acidic residues including glutamate and aspartate, and finally
assign a +1 charge to histidine residues that are exposed at the
protein surface. These assignments are appropriate for near-
neutral pH values. If histidine is buried in the protein core, then
more advanced studies are required to assign its proper protona-
tion state. For the transcription factors we have simulated to date,
all histidine residues are exposed at the surface.
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The ends of the protein contain a positively charged N-termi-
nus and a negatively charged C-terminus. For the DNA section of
the structure file, the 50 end phosphate groups of both strands are
removed. Other possible end-cappings are also supported in
CHARMM.

Once the initial PDB file is edited to conform to CHARMM’s
convention and missing atoms are added, we will have a dry
protein–DNA complex or DNA duplex with no solvent atoms.

3.1.2. Introduction of

Explicit Water Molecules

and Preparation of

Minimized Structure in

Water Box

Since we consider explicitly the role of water in the binding of
protein and DNA, we now add water molecules to the dry complex
structure (see Note 5) to form a solvated system in a periodic
boundary condition. Because the water model TIP3P was used
during the development of the current CHARMM force field
CHARMM27, we recommend its usage over other water models.

Once the water molecules are added, a series of minimizations
are required to allow the water molecules to relax around the
macromolecules. The recommended minimization algorithms

Fig. 2.1. Simulation protocol for generating a fully equilibrated native protein–DNA
complex or DNA duplex structure in explicit solvent.
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are Steepest Descent at the initial stage of the minimizations, and
then Adopted Basis Newton-Raphson method for more refined
minimizations. We use 1,000 steps of the former and 3,000 steps
of the latter. The energy of the system should be decreasing
steadily and reach stability. However, we do not advise running
long minimizations to achieve convergence (to reach absolute zero
K in temperature), as all our molecular dynamic simulation and
free energy calculations need to be carried out at room
temperature.

3.1.3. Introduction of

Counter-Ions

After the system in the water box is minimized, we use the CHARMM

script file written by Rick Venable (available from CHARMM Dis-
cussion Forum Script Archive at http://www.charmm.org/
ubbthreads/ubbthreads.php?Cat=0) to replace an appropriate
number of water molecules with counter-ions. For the protein–
DNA complexes we have studied, typically about ten sodium ions
are required to neutralize the system. For a 10-base pair DNA
duplex, 18 sodium ions are required. In Venable’s script, the same
number of water molecules as the desired counter-ions are selected
at random and replaced by sodium ions. Then the system is mini-
mized for 50 steps by Steepest Descent and by Adopted Basis
Newton-Raphson. One hundred different sets of water selections
are done. The lowest energy configuration among them is chosen
to proceed to the next step.

3.1.4. Heating and

Equilibration of the

Structure

Since minimization freezes many degrees of freedom of the sys-
tem, the solvent box is roughly about 50 K in temperature. Now
we heat the system to room temperature and equilibrate it for
1.5 ns. We ramp up the temperature linearly from 50 to 300 K
over 50 ps at a heating speed of 5 K per ps. During equilibration,
constant temperature (300 K) and constant pressure (1 atm) are
maintained using CHARMM’s CPT keyword. This corresponds to
the NPT ensemble. A time step of 1 fs is used. SHAKE is used to
constrain all the bonds with hydrogen atoms to be at the equili-
brium values. All other degrees of freedom are allowed.

The BLOCK module for free energy analysis has a limitation in
that it requires the electrostatic interactions to be evaluated using
non-Ewald methods, i.e., spherical cutoffs. Long, computationally
expensive cutoffs are required to obtain an adequate representa-
tion of long-range electrostatic interactions. To reach a compro-
mise between accuracy and computational saving, we carry out
initial equilibration of the system for 1 ns using Ewald summation
method Particle Mesh Ewald. Then we switch to spherical cutoff
scheme using a cutoff value of 14 Å. Further equilibration of 0.5 ns
is run at this condition.

After the 1.5 ns equilibration, the native protein–DNA com-
plex structure is now considered well equilibrated. We need to
note here that this equilibration time is still far too short for the
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equilibration of the counter-ions, which typically requires much
longer equilibrations on the scale of tens to hundreds of ns. Please
see Note 6 for strategies that avoid long equilibrations for ions.

3.2. Simulation

Protocols for Free

Energy Calculations

3.2.1. Multi-Copy Base

Pairs

CHARMM supports dual-topology, which means that in the ‘‘muta-
tional’’ reactions, the reactant and the product chemical groups
co-exist in the structure. This is also known as ‘‘multi-copy’’
representation, where multiple functional groups occupy possibly
the same space; their interactions with the rest of the system are
scaled by a coupling parameter, but there are no interactions
among the multiple copies. As we have discussed in the Introduc-
tion, thermodynamic integration is an established method for
calculating the free energy change associated with changing one
functional group in the multi-copy into another. In the simula-
tions that are discussed in this chapter, we consider only the co-
existence of two possible base pairs at any base pair position.
Figure 2.2 illustrates the construction of such structures. We call
these 2-base multi-copy base pairs, or in short multi-copy base
pairs. Details on how to create structures with multi-copy bases
and how to enable CHARMM to evaluate their force and energy
functions are in Notes 7 and 8.

3.2.2. Using BLOCK for

Simulation and Free Energy

Analysis

The BLOCK module in CHARMM allows straightforward force and
energy evaluation of multi-copies. Here we use a simple example to
illustrate its usage. Imagine a protein–DNA complex in which one
base pair is a multi-copy base. Using Eq. [4], the total Hamilto-
nian that contains the contributions from the environment, the
reactant, and the product will be further separated into six con-
tributions, as in Eq. [6] in BLOCK.

Fig. 2.2. Schematic diagram of multi-copy base pair. Single base pair change from A
(gray, bottom base pair) to C (black, top base pair) is used as an example. The multi-copy
base pair is referred to as A/C. The left strand is treated as the leading strand. The bases
within each physical base pair interact normally, as evidenced by the hydrogen bonds
(dotted lines) between complementary bases. The gray (reactant) atoms do not interact
with the black (product) atoms.
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Env Reac Prod

Env 1 1� l l

Reac 1� l 0

Prod l

½6�

This matrix is used for force and energy evaluation. The labels
‘‘Env’’, ‘‘Reac’’, and ‘‘Prod’’ represent the environmental atoms,
the atoms in the reactant, and the atoms in the product, respec-
tively. The matrix is symmetric so the lower half is not shown. Each
element in the matrix represents the interaction term between the
atoms in the corresponding row and the atoms in the correspond-
ing column. For example, the term H0 in Eq. [4] is 1 in the matrix
and represents the interactions between atoms in the environment.
Note that the interactions that involve reactant atoms are scaled by
the (1–l) coupling parameter, whereas those involving product
atoms are scaled by l, just like in Eq. [4]. Finally, there are no
interactions between the atoms of the reactant and the atoms of
the product, hence the zero in the matrix.

BLOCK uses a different matrix to calculate the Hamiltonian
gradient in Eq. [5] for the free energy analysis. The matrix is listed
in Eq. [7].

Env Reac Prod

Env 0 �1 1

Reac �1 0

Prod 1

½7�

Note that at all values of l, the analysis matrix is of the same
form.

Because of the flexibility of BLOCK, multiple multi-copy bases
can be studied at the same time, and the dynamics and analysis
matrices need to be adjusted correspondingly. The environmental
atoms can also be further partitioned so that their contributions to
the free energy can be calculated separately.

3.2.3. Simulation of Multi-

copy Structures

For each multi-copy structure we create in Section 3.2.1, the
following simulation protocol is used.

A short minimization is needed in order to resolve the poten-
tial bad contacts caused by the introduction of the multi-copy base
pair. We use 100 steps of Steepest Descent and 100 steps of
Adopted Basis Newton-Raphson for this purpose. Then the sys-
tem is heated from 50 to 350 K over a linear ramp for 15 ps at a
speed of 20 K per ps. Then the system is equilibrated at 350 K for
15 ps. After that, a linear ramp is used to cool the system down to
300 K at a speed of –10 K per ps for 5 ps. The system is then
equilibrated at 300 K for 65 ps. This heat-cool-cycle is similar to
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the annealing process, except that we only heat the system up to
50 K above room temperature. The current force field is still
expected to be reasonable in describing the system. The purpose
of this heat-cool-cycle is to help the new multi-copy structure
overcome the energy barriers that could trap the structure in the
conformation favorable only to the native structure (see Note 9).
Finally, a 100 ps production run is done (see Note 10), during
which the system configuration is saved at every 0.5 ps. A time step
of 1 fs is used. SHAKE is again applied to constrain bonds invol-
ving hydrogen atoms.

During the simulation, we use IMAGE to describe the cubic-
shaped periodic boundary condition. The BLOCK matrix of Eq. [6]
is used for force and energy evaluation. We assume that the density
of the system is well-equilibrated over 1.5 ns simulation (Section
3.1.4). So the box size is fixed here using the final box size from
the 1.5 ns equilibration, and the NVT ensemble is run. After the
production run is finished, we examine all the saved configurations
to calculate the free energy change using the BLOCK analysis matrix
of Eq. [7].

The saved configurations in the trajectory might be correlated
among adjacent frames. To correct for this effect, we use Eq. [8]
in estimating the sampling error.

E ¼ s
1

N

� �
1þ c

1� c

� 	1=2

¼
XN

f ¼1

ðx2 � �x2Þ
N ðN � 1Þ

1þ c

1� c

" #1=2

; ½8�

where E is the estimated error of the free energy change �G, x
represents �G value at each frame, c is the correlation between
adjacent frames, f is the frame number from 1 to N (total number
of frames), and s is the standard deviation of �G for all frames.
Systematic and statistical errors that could exist in the simulation
and free energy calculations are summarized in Notes 9 and 10.

3.2.4. Tournament

Approach

According to Eq. [1], two free energy calculations (one for the
complex and one for the DNA duplex) are required to obtain the
relative binding free energy for a single base pair change as in
��G¼�Gcomp – �GDNA. At each base pair position, we evaluate
the free energy changes for three multi-copy structures for both
the DNA duplex and the protein–DNA complex. We carry out
three ��G calculations as a tournament, which contains three
�GDNA and three �Gcomp calculations. Two competitions for
multi-copy A/T and C/G are carried out first to obtain ��GA/

T and ��GC/G. The two winners then compete in the second
round, e.g., ��GA/C when A and C are the two winners. These
three relative free energies are sufficient to describe the energy
diagram of all four possible base pairs. These energies are then
converted into probability and sequence logo representation using
Eqs. [2] and [3].
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4. Notes

1. Correlation between adjacent base pairs. The ‘‘additive
approximation’’ in Section 1 might not always be valid
depending on the transcription factor. We can estimate the
correlation between adjacent base pairs by the following test.
It is analogous to comparing the energy change caused by two
separate single mutations of the DNA and the energy change
caused by a double mutation of the DNA. For example, one
might be interested in the correlation between positions five
and six. The user will first do two separate free energy evalua-
tions for position five and position six. Only one base pair is
changed at any time. Then, the user calculates the free energy
change caused by changing positions five and six simulta-
neously. Taking multi-copy base pair A/C as an example,
we use A5C and A6C to describe the base pair change at
these two positions. The non-additivity can be estimated by
��GA5C,A6C – (��GA5C + ��GA6C). These calculations can
help quantify the non-additivity as well as the correlation
between adjacent base pairs.

2. Total computational cost and monetary equivalent. The com-
putational cost for obtaining the binding sites as a PWM for a
transcription factor is about 400 CPU-days on a single Intel
3.0 GHz processor. The calculations in Sections 3.1 and 3.2
are both included. We also list in Table 2.1 the computa-
tional cost on the supercomputer BigBen at PSC. The total
computational cost for the prediction of one transcription
factor is about 1.2 CPU-years, or $1,200 if we assume one
CPU-year is about $1,000.

3. Force field and multi-copy implementations. We compare four
popular molecular modeling packages here, CHARMM, AMBER,
NAMD, and GROMACS, and explain the reasons based on which
we choose CHARMM in our simulations (Section 2).

CHARMM was the first package to be developed and has the
most capabilities and functions. CHARMM and AMBER are writ-
ten in FORTRAN, and the GROMACS is written in C. NAMD is
developed using similar philosophy of CHARMM, but is written
in C++/C. All four packages can carry out traditional mole-
cular dynamics simulations, and lead to similar results when
the same force field is used.

Many packages allow the user to choose a specific force
field. The CHARMM27 force field is currently recommended
for use in CHARMM. It can accurately characterize proteins and
nucleic acids, and has overcome problems associated with the
older versions. AMBER parm99 and parm03 are force fields
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recommended for use in AMBER. However, the A-DNA form
tends to be over-stabilized in these force fields (13, 14).
GROMACS uses OPLS force field for all-atom simulations that
leads to good results for proteins but is less characterized for
nucleic acids. NAMD allows the user to choose whether they
want to use CHARMM, AMBER, or GROMACS force fields.

All these force fields use pairwise additive energy functions,
typically including the bond length, bond angle, dihedral
angle, van der Waals, and electrostatic interaction terms.
Two library files are used for the implementation of the
force field. The topology library file contains the list of these
terms, whereas the parameter library file contains the force
constants and other relevant constants.

The most important factor that leads us to choose CHARMM

is its ‘‘dual-topology’’ implementation. AMBER and GROMACS

support only ‘‘single-topology’’, which means that if a ‘‘muta-
tional’’ free energy perturbation is to be carried out, the two
end points (reactant and product) must be similar in structure
and number of atoms. In practice, they typically differ in only
a small functional group (15). This poses serious challenges
for the perturbations of two groups of varying number of
atoms. For instance, one might be interested in finding the
free energy change associated with morphing an A¼T base
pair into a T¼A base pair along a linear coupling path. For
this mutation, the total numbers of atoms in the two end

Table 2.1
Computational cost for the prediction of transcription factor–binding sites
on supercomputer BigBen at Pittsburgh Supercomputing Center

Counter CPU hour CPU days

Native structures

Protein–DNA complex, 1.5 ns equilibration 1,200 50

DNA duplex, 1.5 ns equilibration 1,200 50

Multi-copy structures

Number of free energy evaluations per �G 1 160

Number of �G0s per ��G 2

Number of ��G0s per base pair in tournament 3

Number of base pair positions 8

Number of free energy evaluations per protein 48 7,680 320

Total cost per protein 10,080 420
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states are the same. However, because the atom types and
parameters are very different for bases adenine and thymine,
this morphing and free energy calculation was difficult for us
to implement in AMBER and, presumably, GROMACS. One
possible solution is to introduce a common intermediate
topology, calculate two free energy changes of the two end
states morphing into the intermediate, and then calculate the
sum of the two to obtain the total free energy change. As we
have already mentioned in Note 9, free energy calculations
have a large innate systematic error, and we decided against
using two ‘‘single-topology’’ simulations to mimic a single
‘‘dual-topology’’ calculation.

In contrast, both CHARMM and NAMD support ‘‘dual-
topology’’. However, NAMD only supports free energy per-
turbation for ‘‘mutational’’ reactions, which is generally less
accurate than thermodynamic integration. This is because in
the free energy perturbation formula (9, 10), the free energy
change is obtained as the ensemble average of the exponen-
tial of the energy function of the system. If we assume these
energy function evaluations are Gaussian-distributed, which
is often true, then only one of the tails of the Gaussian curve
will contribute to the final free energy change, since all the
other energy values nearly contribute nothing to the ensem-
ble average of the exponentials. However, given the same
trajectory, if we use thermodynamic integration, then all
these configurations will contribute to the final free energy
change. A second factor is that, to our knowledge, NAMD

only permits single mutations. In CHARMM, the BLOCK mod-
ule allows us to carry out simulations of multiple mutations
at the same time, which could lead to significant computa-
tional saving.

4. Parallelization. CHARMM, as pointed out in Section 2, does
not scale very well in parallel. However, inefficient paralleliza-
tion is at best a minor concern for our study, because the
calculations we have described in Section 3.2 are trivially
parallelizable by running a free energy calculation at each
base pair on a different node. For a binding site of length
eight, 48 free energy evaluations are required to obtain the
relative binding free energies at all eight base pair positions
(see Table 2.1 second column). The only exception to the
trivial parallelization is the initial long equilibration (for
1.5 ns, Section 3.1.4) for generating configurations of the
native protein–DNA complex and DNA duplex. If parallel
runs are to be planned, we advise a short benchmark to be
done first to establish the optimal number of processors for
each system of different size. For the protein–DNA com-
plexes we have studied (about 25,000 atoms in total), we
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found that the optimal number of processors was eight on the
supercomputer BigBen at PSC, and the 1.5 ns equilibrations
typically take about 6 days.

5. Addition of water box as solvent. In Section 3.1.2, water box is
added to the dry protein–DNA complex or DNA duplex. A
CHARMM script file written by Lennart Nilsson can be used to
add a small box of water with a maximal number of water
molecules of 9,999. A modified script file written
by Davit Hakobyan can be used to add larger boxes of
water exceeding 10,000 water molecules. Both script files
assume periodic boundary condition. These script files can
be downloaded from the ‘‘Script Archive’’ on the ‘‘CHARMM

Discussion Forum’’ (http://www.charmm.org/ubbthreads/
ubbthreads.php?Cat=0). The TIP3P water model is used in
these scripts.

For periodic boundary conditions, there are a variety of
available box shapes to choose when adding water molecules
using the above-mentioned scripts. Since we rely on the
BLOCK module, which in turn requires the IMAGE module of
CHARMM, to carry out free energy simulation and analysis, we
use the cubic box shape, which is supported by IMAGE. It is
also possible to use other more spherical-like box shapes, such
as truncated octahedron, but it requires the creation of the
corresponding IMAGE file by the user.

6. Other treatments of counter-ions. Two simple strategies are
listed here, which avoid running long equilibrations for the
ions in the system (Section 3.1.4). First, the system can be
studied without counter-ions as a non-neutral system. This
means that Section 3.1.3 can be bypassed. The Ewald summa-
tion and spherical cutoff methods for electrostatic interactions
are still valid in non-neutral systems. However, for certain
molecular systems, salt concentration is an important factor
for structural stability. In this case, both positive and negative
ions should be added in order to obtain the desired salt con-
centration. Second, one can use a simple uniform neutralizing
background to achieve neutral system. This is typically achieved
by setting the k¼0 term in the Ewald sum to zero (this term is
automatically zero for a charge-neutral system). Simulations
with a uniform neutralizing background may require modifica-
tions to be made to the standard CHARMM source code.

7. Generation of structures with multi-copy bases. There are two
types of files that must be created for the study of multi-copy
structures in Section 3.2: PDB and an extended topology
library file. We explain the method for creating PDB files with
multi-copy bases in this section. The extended topology file is
explained in Note 8.
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First of all, a library of all 2-base multi-copy PDB files is
made. There are several ways of doing this. We use the standard
base geometry in Ref. (12) to create PDB files for each base.
These base geometries do not contain the backbone geometry
or hydrogen atoms. One can then use CHARMM to read this
PDB file and use ‘‘IC BUILD’’ and HBUILD routines to create a
complete PDB file for each DNA nucleotide. Note that
CHARMM’s default nucleotides are for RNA, so patches need
to be applied to convert them into DNA nucleotides. After the
set of PDB files are prepared for the four DNA nucleotides, the
atomic entries for the base atoms are concatenated to form the
2-base multi-copy PDB files. We use the following shorthand
for multi-copy bases, e.g., A/C represents the multi-copy base
of changing adenine to cytosine in the leading (1st) strand of
the DNA (C/A is not needed as it is simply the reverse reaction
of A/C). There are six files needed for describing all possible 2-
base multi-copies that constitute the library: A/C, A/G, A/T,
C/G, C/T, and G/T.

Second, a fully equilibrated native DNA duplex or protein–
DNA complex structure is modified to create all possible
multi-copy structures for each base pair position. For a
10-base pair DNA, there are 60 multi-copy structures. We
developed a C++ program to replace the original base pair by
one multi-copy base pair from the above-mentioned library.
Three rotations are required to align the N-glycosidic bond,
then align the base atoms to preserve Watson-Crick base-
pairing arrangement, and finally align the original plane of
the base with the new multi-copy plane. For the complemen-
tary strand, the complementary multi-copy base is used so
that proper base pairing is achieved.

8. Topology files for multi-copy bases. The multi-copy bases of the
previous section are not yet integrated in the CHARMM27
topology files (‘‘top_all27_prot_na.rtf’’). The user needs to
create topology entries for the six multi-copy bases (Note 7)
and append them to the original library file. The interested
users can consult CHARMM27’s topology library file,
‘‘top_all27_prot_na.rtf’’, which is distributed with the pack-
age, to learn the proper naming conventions CHARMM uses for
protein and nucleic acids.

The lines starting with ‘‘ATOM’’ in the PDB file are
used by CHARMM to define the 3D coordinate of each
atom. However, PDB files do not specify which atom is
bonded with which one. The topology library file contains
the information of the bonding arrangement and connec-
tivity of each monomer unit (amino acids for proteins and
nucleotides for DNAs), so that all the bonds, angles, and
dihedral angles can be included in the evaluations of the
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force and energy. Therefore, it is of paramount importance
that the topology of the molecular system is properly
built.

For each nucleotide in the topology library file,
‘‘top_all27_prot_na.rtf’’, there are the following sections of
information: the atom types, the atomic charges, the bonds
that connect the atoms, the hydrogen bond donor and
acceptor atoms, and the internal coordinates required for
adding missing hydrogen atoms and side chains for ‘‘IC
BUILD’’ and HBUILD. Since all the entries of the nucleic
acid nucleotides share identical backbone section (phos-
phate and sugar group), only the entries corresponding to
the base atoms need to be combined to form the multi-copy
base section. All the sections that correspond to base atoms
need to be combined. The hydrogen bond sections are
necessary if the HBOND module of CHARMM is to be used
for hydrogen bond analysis.

An important addition to the multi-copy topology library
file is the non-bonded exclusion section between atoms of the
two bases in the multi-copy. For example, if A/C multi-copy
is made, the atom section of the topology file must specify
that the base atoms of the cytosine do not have any non-
bonded (including electrostatic and van der Waals) interac-
tions with the adenine base atoms.

As bond angles and dihedral angles are not explicitly listed
in the topology files, the keyword ‘‘SETUP’’ is needed for
generating them in CHARMM. This step will add one unwanted
bond angle and four unwanted dihedral angles between the
two bases in the multi-copy. So the keyword ‘‘DISCON-
NECT’’ should be used for these two bases, which will
remove the unwanted angles from future force and energy
evaluation. Using this method, the user will also need to
append a few fictitious force field parameters to the standard
parameter file (‘‘par_all27_prot_na.prm’’) for the unwanted
angles. The force constant values do not matter, as they are
removed from the force and energy evaluation by the ‘‘DIS-
CONNECT’’ step.

9. Systematic error. As we can see from the Introduction, the
relative binding free energy of a protein with two differ-
ent DNA sequences is usually small. This creates a pro-
blem if the systematic and statistical errors of the
calculation are larger than the relative energy difference
we want to calculate. Statistical errors can be overcome
by running longer simulations to collect independent
data values for analysis. Systematic error is still a hard
problem and there is no sound solution for its complete
removal. Systematic error in molecular dynamics
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simulation and free energy calculation is typically a result
of poor sampling of the entire conformational space. It
may also be due to biases in the molecular force field.
Sufficient sampling of alternative favorable conforma-
tions of the protein and DNA is necessary. However,
because these macromolecular systems contain tens of
thousands of atoms and huge number of degrees of
freedom, the entire conformational space is combinato-
rially large. This rugged energy surface often presents
energy barriers between adjacent local minima, possibly
limiting the sampling space. The heat-cool-cycle step we
use in Section 3.2.3 is an attempt to overcome local
energy barriers.

For protein–DNA complexes, a problem that could
cause insufficient sampling is the long-lived hydrogen
bonds between protein and DNA bases. The hydrogen
bonds formed with the DNA backbone generally do not
contribute to the binding specificity, unless the backbone
geometry is highly dependent on the base identity. If
there is a particular hydrogen bond that exists between a
protein residue and a DNA base pair throughout the
simulation of the native complex, one must closely exam-
ine what is the fate of this hydrogen bond in the multi-
copy complex structures. Since the multi-copy base pair is
larger and needs more space, a prior stable hydrogen
bond might become unstable due to strong van der
Waals repulsion, and that part of the configurational
space will no longer be sampled, leading to a bias in the
calculations. This can also be true is there is a persistent
and stable water-mediated hydrogen bond between the
protein and the DNA. For such cases, other force field
choices might need to be explored, such as the ‘‘soft core
potential’’ that tones down van der Waals repulsion to
allow bulky groups in a crowded space.

10. Statistical error. The duration of the production run dur-
ing which trajectory frames are saved for future free
energy analysis is important. Good statistics can in gen-
erally be achieved by running a sufficiently long produc-
tion. However, the ensemble average we want to calculate
Eq. [5] converges at about 100 ps (Section 3.2.3),
indicating that longer productions than that will lead to
the same free energy results. This production duration
might be different for different systems. Therefore, it is
important that the users examine the convergence of the
ensemble average to reach a good compromise of conver-
gence and statistical significance.
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