A Sparse Distributed Memory Capable of
Handling Small Cues, SDMSCue

Ashraf Anwar and Stan Franklin

College of Computing and Information Technology, Arab Academy for
Science, Technology and Maritime Transport, Alexandria, Egypt,
dr.a.anwar@ccit.aast.edu; Computer Science Department, University of

Memphis, Memphis, TN 38152, franklin @memphis.edu

Abstract:

Keywords:

In this work, we present Sparse Distributed Memory for Small Cues
(SDMSCue), a new variant of Sparse Distributed Memory (SDM) that is
capable of handling small cues. SDM is a content-addressable memory
technique that relies on similar memory items tending to be clustered
together in the same region or subspace of the semantic space. SDM has
been used before as associative memory or control structure for software
agents. In this context, small cues refer to input cues that are presented to
SDM for reading associations; but have many missing parts or fields from
them. The original SDM failed to handle such a problem. Hence, our work
with SDMSCue comes to overcome this pitfall. The main idea in our
work; is the projection of the semantic space on a smaller subspace; that is
selected based on the input cue pattern, to allow for read/write using an
input cue thatis missing a large portion. The test results show that
SDMSCue is capable of recovering and recalling information from
memory using an arbitrary small part of that information; when the
original SDM would fail. SDMSCue is augmented with the use of genetic
algorithms for memory allocation and initialization. We think that the
introduction of SDMSCue opens the door to more research areas and
practical uses for SDM in general.

Artificial Intelligence; Cognition; Memory; SDM; SDMSCue; Software
Agents.

24 High Performance Computational Science and Engineering

1. INTRODUCTION

Sparse Distributed Memory (SDM) is a content addressable memory
developed by Kanerva. SDM was proposed to be a tool and model of human
associative memory (Kanerva, 1988a; Kanerva & Raugh, 1987).

SDM has proven successful in modeling associative memories (Anwar,
1997; Anwar & Franklin, 2003; Rao & Fuentes, 1996; 1998; Scott, Fuller, &
O’Brien, 1993). Associative memory is typically needed for intelligent and
cognitive autonomous agents (Glenberg, 1997; Kosslyn, 1992). In particular,
both cognitive software agents (Franklin, 1997; 2001) and “conscious”
software agents (Franklin & Graesser, 1999) need such a memory. One of the
“conscious” software agents, which we did work with, IDA: Intelligent
Distribution Agent, uses SDMSCue (Franklin, Kelemen, & McCauley, 1998).
The use of SDMSCue in IDA is to learn and keep associations between
various pieces of information pertaining to the task of personnel distribution.

2. THE MOTIVE FOR SDMSCue

In many cases the need for associative memory to be able to handle and
retrieve associations based on arbitrary small cues is crucial. For example; in
IDA, we are often faced with a situation in which we need to retrieve
associations based on very small pieces of information like part of email
address, part of name, or social security number. Humans have no problem
retrieving associations based on arbitrary small cues. While the original SDM
modeled many aspects of human memory very successfully, it failed
miserably in dealing with the issue of retrieving associations for short-length
or small cues. Without such a capability, we are missing a key human-like
feature in associative memory models that are based on SDM. Hence, the
role of SDMSCue comes to the scene.

SDMSCue uses an elegant space projection mechanism to enlarge the
short-length input cue successively until it is large enough for a read/write
from/to the entire full-length SDM semantic space. The enlargement process
uses successively increasing subspaces for reads/writes. To be noted is that
both read and write operations in SDM involve the selection of an access
circle to read from, or to write to. The selection is typically based on
similarity between the input read/write cue, and the hard locations addresses
within the access circle.

3. SPARSE DISTRIBUTED MEMORY

High Performance Computational Science and Engineering 25

Sparse Distributed Memory, SDM, is the work of Pentti Kanerva (1988a,
1988Db). It gets its name from the sparse allocation of storage locations in a
vast binary address space and from the distributed nature of information
storage and retrieval. A typical SDM has a vast binary space of possible
memory locations in a 2" semantic space where » is both the full word length
and the dimension of the address space. For any practical application, only a
very small portion of this 2" semantic space can actually exist. For more
details and discussions, see (Anwar, 1997). Also see (Franklin, 1995) for a
brief overview, and (Willshaw, 1990) for a useful commentary. Many
evaluations, extensions, and enhancements have been suggested for SDM
(Evans & Surkan, 1991; Karlsson, 1995; Kristoferson, 1995a; 1995b; Rogers,
1988a; 1988b; Ryan & Andreae, 1995). A more efficient initialization
technique for SDM using Genetic Algorithms was also suggested (Anwar,
Dasgupta, & Franklin, 1999).

There are two main types of associative memory, auto-associative and
hetero-associative. In auto-associative memory, a memory item, typically
with noise and/or missing parts, is used to retrieve itself. In hetero-
associative memory, memory items are stored in sequences where one item
leads to the next item in the sequence. The auto-associative version of SDM
is truly an associative memory technique where the contents and the
addresses belong to the same space and are used alternatively.

A Boolean space is the set of all Boolean vectors (points) of some fixed
length, n, called the dimension of the space. The Boolean space of dimension

n contains 21 Boolean vectors, each of length n. The number of points
increases exponentially as the dimension increases. Boolean geometry uses a
metric called Hamming Distance, where the distance between two points is
the number of coordinates at which they differ. Thus d((1,0,0,1,0), (1,0,1,1,1))
= 2. The distance between two points will measure the similarity between
two memory items, closer points being more similar. We may think of these
Boolean vectors as feature vectors, where each feature can be only on, 1, or
off, 0. Two such feature vectors are closer together if more of their features
are the same.

The word length, which is also the dimension of the space, determines
how rich in features each word and the overall semantic space are. Features
are represented by one or more bits in a Boolean vector or binary string of
length n. Groups of features are concatenated to form a word, which becomes
a candidate for writing/reading into/from SDM. Another important factor in
SDM design; is how many real memory locations are implemented. These
are called hard locations. When writing, a copy of the object binary string is
placed in all -close enough- hard locations. When reading, a subject cue
would reach all close enough hard locations and get some sort of aggregate
or average word from them. Reading is not always successful (Anwar, 1997,
Kanerva, 1988a). Depending on the cue and the previously written

26 High Performance Computational Science and Engineering

information, among other factors, convergence or divergence during an
iterative reading operation may occur. If convergence occurs, the pooled
word will be the closest match of the input reading cue, possibly with some
sort of abstraction. On the other hand, when divergence occurs, there is no
relation, in general, between the input cue and what is retrieved from SDM.

SDM is a content addressable memory that, in many ways, is ideal for use
as a long-term associative memory. “Content addressable” means that items
in memory can be retrieved by using all or part of their contents as an address
or a cue; rather than having to know their actual addresses in memory as in
traditional computer memory.

Envisioning the semantic space as a sphere around an arbitrary point, and
for n sufficiently large; most of the address space lies midway in the sphere
from the point at the center of the sphere (Kanerva, 1988a). In other words,
almost all the space is far away from any given point.

A Boolean space implementation is typically sparsely populated for
sufficiently large n; an important property for the construction of SDM, and
the source of part of its name. For n=1000, one cannot hope to actually
implement such a vast 2" memory in its entirety. On the other hand,
considering humans and feature vectors, a thousand features wouldn't deal
with just human visual input until a high level of abstraction has been
reached. A dimension of 1000 may not be all that much for real-life
cognition; it may, for some purposes, be unrealistically small. Kanerva
proposes to deal with this vast address space by choosing a uniform random

sample, of size 220 for n = 1000, of hard locations. An even better way to
distribute the set of hard locations over the vast semantic space using Genetic

Algorithms was suggested (Anwar, 1999). With 220 hard locations out of

21000 possible semantic locations, the ratio is 2-980, truly sparse.

SDM is distributed in that many hard locations participate in storing and
retrieving (write/read) each word, and one hard location can be involved in
the storage and retrieval of many words. This is very different from the one-
word-per-location type of memory to which we are accustomed. For n =
1000, each hard location, stores data in 1000 counters, each with range
from —K to K, where K is an implementation-dependent factor that
determines memory capacity. We now have about a million hard locations,
each with a thousand counters, totaling a billion counters in all. For K = 40,
numbers in the range -40 to 40 will take most of a byte to store. Thus we are
talking about a billion bytes, a gigabyte, of memory.

Counters are updated according to the words written. Writing 1 to one
counter increments it; writing 0 decrements it. To write a word at a given
hard location x, write each coordinate of the word into the corresponding
counter in X; either incrementing it or decrementing it.

At any arbitrary location, the sphere centered at that location, is called the
access sphere or access circle of that location. For n = 1000, and 2°° hard

High Performance Computational Science and Engineering 27

locations, an access sphere typically contains about a thousand hard locations,
with the closest usually some 424 bits away and the median distance from the
center point to hard locations in the access sphere about 448. Any hard
location in the access sphere is said to be accessible from the center point
address or word. With this machinery in hand, any location -hard or not- can
be written to in a distributive manner. To write a word to a location, simply
write the word to each of the roughly one thousand hard locations within the
location access sphere, i.e. accessible from the location as a center point.

We read from an arbitrary point or address in the semantic space. This
read includes reading from all hard locations within the access sphere from
that point. To read from a single hard location, x, we compute the bit vector
read at x, by assigning its i bit the value 1 or 0 according as the i* counter at
X is positive or negative. Thus, each bit results from a majority rule decision
of all the data that have been written at x. The read word is an archetype of
the words that have been written to x, but may not be any one of them. For
any location or address, the bit vector read is formed by pooling the data read
from each hard location accessible from that location or address. Each bit of
the read word results from a majority rule decision over the pooled data. The
voting is influenced by » stored copies of the word, and about (10 ») other
stored data items. Since the intersection of two access spheres is typically
quite small, the other data items influence a given coordinate only in small
groups of ones or zeros, which tend to compensate for each other, i.e. white
noise. The n copies of the original word drown out this slight noise.

The entire stored word is not needed to recover itself. Iterative reading
allows recovery when reading from a noisy version of what has been stored.
There are conditions, involving how much of the stored word is available for
the read operation; under which this is true, (Kanerva, 1988a). Reading with
a cue that has never been written to SDM before gives, if convergent, the
closest match stored in SDM to that input cue, with some sort of abstraction
if close items have been written to the memory. SDM works well for
reconstructing individual memories (Hely, 1994).

4. SDM FOR SMALL CUES (SDMSCue)

4.1 Approach

Using a variant of SDM capable of handling small cues, we are able to
overcome the main shortage in Kanerva's model (Kanerva, 1988a; 1992).
One of the main problems with Kanerva’s SDM is that the input cue has to
be of sufficient length to be able to retrieve a match. The reason is that the
entire input cue is considered and the hamming distance between its entire
binary string representation and various hard locations in the access sphere or

28 High Performance Computational Science and Engineering

access circle is considered when reading or writing. So if we have a small
cue, the missing large part is almost guaranteed to sink the known small cue
in terms of hamming distance, thus being indifferent to all words or hard
locations in the SDM memory.

In many cases, we are faced with a very distinguished and unique memory
cue that is considerably small in size than the typical 65-80% requirement in
Kanerva’s work. We -humans- are able to retrieve relevant information
associated with such a small cue efficiently. For SDM to be able to function
similarly, we need a variant of SDM that is capable of handling small cues.
When faced with retrieval based on a substantially smaller cue like part of a
name, part of an email address, or SSN, this calls for the use of SDMSCue.

The goal is to retrieve appropriate corresponding word matching such a
small cue. Using subspaces with increasing sizes in a progressive way, we
are able to read and retrieve the whole original corresponding memory item
using only a small portion of the cue with arbitrary small length. However,
the number of levels needed for read/write depends upon the original size of
the small cue. The smaller the original input cue is; the more levels of
read/write needed. Time complexity of the operation is linearly proportional
to the number of levels needed.

4.2 Design of SDMSCue

The idea is to project the original SDM semantic space onto a smaller
subspace corresponding to the small cue. In such a projection, only memory
locations with matching content to the small input cue contribute to
Read/Write operations.

By projecting the space onto a smaller subspace, we are able to use the
smaller subspace for much higher recall rate for a considerably small cue.
The gain occurs mainly because of constraining and limiting only hard
locations that match the small cue part and allowing only them to contribute
to the subspace for read/write operations.

The result obtained from a read/write operation at one stage; is used to
access a larger subspace including the input cue along with associations
retrieved that typically range from 25% to 35% of the former input cue
length. Such associations are retrieved from the contents of the hard locations
that were selected, and contributed to the former subspace read/write.

By repeating the above process for increasingly larger subspaces and
levels of projection, we eventually get to access the entire semantic space for
read/write.

To be noted is that during write operations, actual writing to hard
locations occurs only at the final level when writing to the entire space. All
preceding access takes place for association retrieval only. So both read and
write operations are the same (reading and retrieving associations) until the

High Performance Computational Science and Engineering 29

final level when we access the entire space. In both cases association buildup
takes place to enlarge the small input cue gradually until the length obtained
is large enough to read from the entire semantic space. In the last level or
phase, if it is a read operation, we simply retrieve associations and obtain the
matching entire word. If it is a write operation, the enlarged input cue is
written to all hard locations within the access circle of the last phase, which
is part of the entire semantic space.

4.3 How SDMSCue Works

Using SDMSCue, we can manage to access (read/write) with small cues.
The process goes in phases in reading or writing operations. When accessing,
in the first phase, we read from a small sub-space that corresponds to the
input small cue plus extra association information. This read —if convergent-
yields a longer word due to the association of information. This resulting
word is then used as the input to the second phase. In the second phase, a
similar process takes place reading from a larger subspace using the output
result from the first phase as input. This process continues until the subspace
being read from is the entire original semantic space.

For example, as shown in Table 1, we start by reading with a small cue of
length 17% of the whole memory word size, using a 0.35 ratio for
associations. Then the reading operation yields a larger word, due to adding
associations, of length 23% of the whole memory word.

Table 1: Multi-Level Reading operations from SDMSCue, and their corresponding Length
Percentage, m. In Level 1, with a small cue of length 17% of the whole memory word,
projection of the space and reading yields bigger subspace of 23%. In a similar way
successive projection increases the subspace till it reaches the whole space, i.e. 100% of the
memory word,

Level Input Output Output Word
Word Word
Length [Length
1 17 23 e — |
2 23 31 T ——
3 31 42 | |
4 42 57 — |
5 57 77 |
6 77 100 | |

Then using the 23% retrieved and formed word as input to the second
phase and adding 0.35 associations to it, a 31% word is obtained. This
process continues until in the final level (6™ level in the example), a 77%

30 High Performance Computational Science and Engineering

retrieved and formed word is used to access (read from or write to) the entire
original semantic space.

To be noted is that the time complexity of a Read/Write operation is
linearly proportional to the number of levels involved in a Read/Write.
However, the overall effect is quite minor compared to the gain of the
approach. Assume an original cue length of m% of the whole memory word
size; where m ranges from 0 to 100. When reading/writing from SDMSClue,
some associations are retrieved for the small cue at each level resulting in a
length gain. Let i be the percentage of the length gain at each level. Adding
the gain in length, i, to the next input cue in each successive read/write level,
the maximum number of read/write levels /V is given by:

100 <m * (1 + i)V, Last word length needs to be 100%, i.e. last read needs to
occur from the entire semantic space

= N =[log(100/m)/log(l +i) |
= N =[(2—logm)/log(1+1)]

For m =17 (17% original small cue length), i = 0.35 (35%), as in Table 1,
N=[(2-log17)/log1.35]=[5.9]=6 Levels.

For m = 10 (10% original small cue length), i = 03 (30%),
N=[(2-log10)/log1.3|=[8.78|=9 Levels.

For m =1 (1% original small cue length), i = 0.3 (30%),
N=[(2-log1)/log1.3]=[17.55]=18 Levels.

We define the term SDMSCue Latency Factor to be the average number
of levels needed for read/write for a certain word distribution to be written to
or read from SDMSCue. Such a factor is both semantic space dependent, and
distribution dependent.

SDMSCue makes use of GA for more efficient space initialization and
hard locations allocation (Anwar, 1999; Anwar, Dasgupta, & Franklin, 1999).
The uniformity of the semantic space is —in general- favorable to better recall
rates for SDMSCue as well as SDM.

4.4 SDMSCue Convergence and Divergence

High Performance Computational Science and Engineering 31

We need to develop a notion for overall convergence and divergence in
case of Read/Write from SDMSCue. For overall convergence to occur, all
phases or levels of Read/Write must converge. Overall divergence occurs if
at any phase or level, the Read/Write diverges. In other words, convergence
is the Boolean “AND” operation of the convergence in all levels.

Convergence [spmscue = AND gor a1 (CORVErgence ot tevel i)

Divergence |spmscue = NOT (Convergence |spyscue)

4.5 Implementation

The following is a short note about the current implementation of SDM
with small cues (SDMSCue). Java Visual Symantec Caf Professional
Edition was used for testing and implementation of the code for SDMSCue
in Windows XP environment. The hardware was a Pentium 2.4 GHz with
1GB RAM. The results obtained are based on recall performance and
memory trace used for comparison tests of SDMSCue vs. original SDM.
Runs were performed repetitively 100 times on average for each case.

S. RESULTS AND STATISTICS

The following comparison between SDMSCue and regular SDM was
done using the same memory parameters, and memory trace (Loftus &
Loftus, 1976). Memory performance in terms of various operational
parameters was considered for SDMSCue vs. original SDM. The various
memory parameters: Memory Volume, Cue Volume, Similarity, and Noise
were considered.

Memory Volume is the average number of features in the memory trace. In
other words, it is the average number of 1’s in a memory word. It measures
the richness of the memory trace. Memory volume is a vital parameter in the
distinction of the memory trace. It signifies the distribution of various
memory words over the semantic space.

Retrieval Volume is the same as Memory volume but for a single input
cue or input word to memory. It has almost the same effect on retrieval as
memory volume.

Similarity is a measure of how similar, in average, are the words written to
memory. The more similar the words written to memory are, the more
clustered contiguously they are, and the harder it is to retrieve them. The
hamming distance is the measure of similarity in SDM as well as SDMSCue.
The less the hamming distance between two memory words, the more similar

32 High Performance Computational Science and Engineering

the memory words are. However, there is a difference between the similarity
of hard locations and the similarity of written memory words. Using genetic
algorithms (Anwar, 1999) a uniform distribution of the hard locations in
SDM can be obtained.

Noise determines the number of noise bits, on average, in a memory word.
It reflects directly on the reliability of retrieval of stored memory words.

Table 2 shows the distribution of the percentage of input cues in memory
trace, used for the test, with respect to cue length, measured as percentage of
the whole length. For example, according to Table 2, 35% of the cues in
memory trace do not exceed 20% in length (small cues), while 25% of the
cues in memory trace have length greater than 20% but less than or equal to
40% (low medium cues). Also only 10% of the input cues have length
greater than 70% (longest cues). The second column gives the number of
levels needed for read/write operation using the formula devised in section
4.3. As shown in Table 2, for the chosen distribution, the overall average cue
length is 36%, and the average number of levels for read/write is 5. So, for
the distribution at hand, SDMSCue has a latency factor of 5.

Table 2: The distribution of input cues in memory trace with respect to cue length, and their
corresponding number of Read/Write levels.

Cue Minimum-Maximum Average Number of Percentage of Cues in
Length as percentage of the Read/Write Levels Needed Memory Trace
Whole Word

Less than 20% 8 35%
20%-40% 5 25%
40%-50% 3 10%
50%-60% 2 10%
60%-70% 2 10%
70%-100% 1 10%

Latency Factor
Average Length = Avergge Number of Levels
36% -5

To be noted is that this distribution was chosen to illustrate the advantage
of using SDMSCue when considerable percentage of the input cues is short
in length, i.e. missing too many parts. By no means is this the only
distribution that can illustrate the idea, but just the one we settled upon after
some trials to illustrate the benefit of using SDMSCue when considerable
number of the input cues is short in length. However, varying the distribution
will definitely change the gain achieved from using SDMSCue over SDM.

Table 3 shows a comparison between the recall in SDM vs. SDMSCue.
Various combinations of the memory trace parameters were considered. Each
was varied on a Low/High scale.

High Performance Computational Science and Engineering 33

Table 3: Comparison between GA initialized SDM, and GA initialized SDMSCue. This is a
comparison between the performance of SDM with and without small Cues Capability, and the
gain in memory recall resulting from the use of SDMSCue. Memory Volume and Retrieval
Volume (H=60%, L=10%). Similarity between Memory Items (H=70%, L=30%). Noise
(H=30%, L=10%).

SDM Decrease

. . SDMSCue in Miss

Memory | Retrieval | o0 ot | Noise | TR | Hitopin | Recall in
Volume Volume in R Gain %

Recall ecall Re_call

Gain %
1 L L L L 6 44 633 40
2 L L L H 5 40 700 37
3 L L H L 7 39 457 34
4 L L H H 5 34 580 31
5 L H L L 9 56 522 52
6 L H L H 8 50 525 46
7 L H H L 11 49 345 43
8 L H H H 5 42 740 39
9 H L L L 74 98 32 92
10 H L L H 66 93 41 79
11 H L H L 61 93 52 82
12 H L H H 54 89 65 76
13 H H L L 73 99 36 96
14 H H L H 56 95 70 89
15 H H H L 60 96 60 90
16 H H H H 50 92 84 84

The gain achieved from using SDMSCue is illustrated in the last two
columns. The first gain, Recall Gain, measures the improvement in
successful recall or Hit in SDMSCue over original SDM. The second gain,
Decrease in Miss in Recall, measures the decrease in Miss in SDMSCue over
the original SDM. This gain measures the improvement in SDMSCue over
SDM in terms of decrease in the percentage of unsuccessful recall or
memory Miss. To be noted is that a T-Test of statistical dependence (Kanji,
1999; Vogt, 1998) shows statistical significance between the recall of
SDMSCue and that of SDM.

In Table 3, Row 4, which represents poor recall conditions (Low Memory
Volume, Low Retrieval Volume, High Similarity, and High Noise), shows
large improvement in successful recall in SDMSCue over original SDM.
Row 13, on the other hand, represents near optimal recall conditions (High
Memory Volume, High Retrieval Volume, Low Similarity, and Low Noise).
Row 13 corresponds to 36% recall gain.

34 High Performance Computational Science and Engineering

For decrease in miss in recall gain, recall conditions play similar role.
Row 4, which represents poor recall conditions, shows 31% gain. Row 13,
which represents near optimal recall conditions, shows 96% gain.

In general, results in Table 3 show that the higher the volume of the
memory and/or the retrieval volume, the better the recall for both memories,
SDMSCue and SDM. However, when the memory volume is quite low, the
recall gets really affected. The degradation in performance is more graceful
in SDMSCue than it is in SDM. This has to do with the fact that SDMSCue
projects the space on the part of the cue that exists, thus greatly moderating
the typical negative effect of low memory volume.

With respect to similarity, the more distinct the memory words are, i.e.
the less similarity, the better the recall in general. This makes absolute sense
since SDM in general; and accordingly SDMSCue as well, uses hamming
distance as a measure of inclusion of memory words in access sphere or
access circle for read/write. The more similar memory words are, the closer
they become in terms of hamming distance. Hence, they tend to get
clustered together and cause crowding effect in the semantic space, where
they may sink each other in certain regions of the semantic space.

To be noted, though, is that such clustering effect in the semantic space
resulting from highly similar items being written to SDM or SDMSCue is
somewhat similar but not the same as clustering of hard locations when a
poor initialization technique is used for hard locations assignment. The later
is more crucial to the functioning of SDM or SDMSCue, and should be
application independent, whereas the former depends on the memory trace
fed to SDM or SDMSCue, and hence is application dependent by nature.
While there is a straightforward way to guarantee uniformity of hard
locations assignment in the semantic space of SDM or SDMSCue (Anwar,
Dasgupta, & Franklin, 1999), there is no immediate direct solution to
overcome clustering in SDM or SDMSCue due to similarity of words or
memory items written to it.

As expected, for the effect of noise on recall; the lower the noise, the
better the recall in general. Noise can however be sunk to a degree as a result
of the distributed nature of read/write, as well as the abstraction achieved
from using SDM and SDMSCue.

Figure 1 shown below contrasts the performance of SDMSCue vs. SDM
in terms of hit rate in recall. In this comparison, the 16 different memory
configurations in Table 3 were used, e.g. configuration 9 is HLLL which
stands for High Memory Volume, Low Retrieval Volume, Low Similarity,
and Low Noise. For each configuration, the same memory trace was applied
to both SDM and SDMSCue. Then recall was tested with the same set of
patterns with lengths distributed according to Table 2. Recall hit rate for
each memory parameters configuration (recall conditions combination) was
calculated and is shown as percentage over the vertical axis in Figure 1.

High Performance Computational Science and Engineering 35

SDMSCue vs. SDM Hit Rate % in

Recall
=2 —e—SDM Hit % in
- Recall
z —s— SDMSCue Hit
§ % in Recall
14

13 67 9111315

Memory Parameters
Configuration

Figure 1: SDMSCue vs. SDM Hit Rate % in Recall. The top line shows the recall hit rate in
SDMSCue. The bottom line shows the recall hit rate in SDM. The X-axis is for the 16

different memory parameters configurations from Table 3. The Y-axis is for the percentage of
Recall Hit Rate.

It is clear from Figure I that SDMSCue consistently outperforms SDM in
terms of recall under all conditions. This comes at no surprise since
SDMSCue uses SDM functionality in addition to the elegant space-
projection to filter out non-relevant memory locations. SDMSCue also uses
a far more superior GA approach for uniform space initialization and
allocation of hard locations (Anwar, 1999).

Figure 2 shows the gain of SDMSCue over original SDM using the
results and figures from Figure I. The bottom area is the recall gain in
SDMSCue over SDM. The gain percentage of SDMSCue over SDM is
defined by: 100*¥(SDMSCue Hit% — SDM Hit%) / (SDM Hit%). For
example, for memory parameter configuration 1, the gain is 100 * (44 - 6) /
6 =633%.

The upper area in Figure 2 is the improvement in recall measured as the
decrease in miss rate in recall. This is defined by: 100*(SDM Miss% —
SDMSCue Miss%) / (SDM Miss%). For example, for memory parameter
configuration 1, the improvement as decrease in miss rate is 100*(94 — 56) /
94 = 40%. For memory parameter configuration 13, the improvement as
decrease in miss rate is 100*(27 — 1) / 27 = 96%.

36 High Performance Computational Science and Engineering

SDMSCue Gain over SDM

m Decrease in Miss
in Recall Gain %

i Recall Gain %

Gain %

1 357 9111315

Memory Parameters
Configuration

Figure 2: SDMSCue Gain over SDM. The results were obtained using Figure 1. The bottom
area shows the gain in recall. The upper area shows the improvement in recall measured as
the decrease in miss rate in recall.

6. CONCLUSIONS

SDMSCue is superior to traditional SDM in its capability of handling
small cues that original SDM was not able to. One of the major difficulties
encountered in using original SDM as an associative memory, is its inability
to recover associations based upon relatively small cues; whereas we
humans do. For a typical SDM to converge, a sufficiently large portion of a
previously written word must be presented to the memory as an address.

The SDMSCue enhanced version of SDM, allows for handling small
input cues and overcoming these pitfalls. Such cues were beyond the scope
of original SDM work.

The ability of SDMSCue to overcome the input cue length constraint in
the original SDM model provides superior functionality for associative
memory. It allows for association and matching based on small hints or
input cues.

The recall results obtained for SDMSCue are —in general- superior to
those of original SDM. The gain achieved is quite significant statistically as
well as objectively.

7. FUTURE RESEARCH

More comparisons and tests of SDMSCue vs. original SDM in specific
Al and cognition domains may be done. Applying SDMSCue as an

High Performance Computational Science and Engineering 37

associative memory technique for some architectures as well as test beds; is
under consideration.

BIBLIOGRAPHY

Anwar, Ashraf (1997) TLCA: Traffic Light Control Agent. Master Thesis, University of
Memphis, TN, USA, Dec 1997.

Anwar, Ashraf (1999) Sparse Distributed Memory with Evolutionary Mechanisms.
Proceedings of Genetic and Evolutionary Computation Conference Workshop
(GECCO) 1999, p. 339-40.

Anwar, Ashraf, Dasgupta, Dipankar, and Franklin, Stan (1999) Using Genetic Algorithms for
Sparse Distributed Memory Initialization. Proceedings of Congress on
Evolutionary Computation (CEC99), Jul 1999.

Anwar, Ashraf, and Franklin, Stan (2003) Sparse Distributed Memory for %% onscious
Software Agents. Cognitive Systems Research Journal, Dec 2003, v 4 n 4, p 339-54,
UK: Elsevier.

Evans, Richard, and Surkan, Alvin. (1991) Relating Number of Processing Elements in a
Sparse Distributed Memory Model to Learning Rate and Generalization. APL
Quote Quad, Aug 1991 v21 n4, p 166.

Franklin, Stan. (1995) Artificial Minds. MIT Press.

Franklin, Stan. (1997) Autonomous Agents as Embodied Al Cybernetics and Systems, special
issue on Epistemological Issues in Embedded AL

Franklin, Stan. (2001). Automating Human Information Agents. Practical Applications of
Intelligent Agents, ed. Z. Chen, and L. C. Jain. Berlin: Springer-Verlag.

Franklin, Stan, and Graesser, Art. (1999). 4 Software Agent Model of Consciousness.
Consciousness and Cognition v 8, p 285-305.

Franklin, Stan, Kelemen, Arpad, and McCauley, Lee. (1998) IDA: A Cognitive Agent
Architecture. IEEE transactions on Systems, Man, and Cybernetics, 1998.

Glenberg, Arthur M. (1997) What Memory is for? Behavioral and Brain Sciences.

Hely, T. (1994) The Sparse Distributed Memory: A Neurobiologically Plausible Memory
Model? Master's Thesis, Dept. of Artificial Intelligence, Edinburgh University.

Kanerva, Pentti, and Raugh, Michael. (1987) Sparse Distributed Memory. RIACS, Annual
Report 1987, NASA Ames Research Center, Moffett Field, CA, USA.

Kanerva, Pentti. (1988a) Sparse Distributed Memory. MIT Press.

Kanerva, Pentti. (1988b) The Organization of an Autonomous Learning System. RIACS-TR-
88, NASA Ames Research Center, Moffett Field, CA, USA.

Kanji, Gopal K. (1999} 100 Statistical Tests. Sage Publications.

Karlsson, Roland. (1995) Evaluation of a Fast Activation Mechanism for the Kanerva SDM.
RWCP Neuro SICS Laboratory.

Kosslyn, Stephen M., and Koenig, Olivier. (1992) Wet Mind. Macmillan Inc.

Kristoferson, Jan. (1995a) Best Probability of Activation and Performance Comparisons for
Several Designs of SDM. RWCP Neuro SICS Laboratory.

Kristoferson, Jan. (1995b) Some Comments on the Information Stored in SDM. RWCP Neuro
SICS Laboratory.

Loftus, Geoffrey, and Loftus, Elizabeth (1976) Human Memory, The Processing of
Information. Lawrence Erlbaum Associates.

Rao, Rajesh P. N., and Fuentes, Olac. (1996) Learning Navigational Behaviors using a
Predictive Sparse Distributed Memory. Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior, p 382.

Rao, Rajesh P. N., and Fuentes, Olac. (1998) Hierarchical Learning of Navigation Behaviors

38 High Performance Computational Science and Engineering

in an Autonomous Robot using a Predictive Sparse Distributed Memory. Machine
Learning, Apr 1998 v31 n 1/3, p 87.

Rogers, D. (1988a) Karnerva's Sparse Distributed Memory: An Associative Memory
Algorithm Well-Suited to the Connection Machine. International Journal of High
Speed Computing, p 349.

Rogers, D. (1988b) Using data tagging to improve the performance of Kanerva's Sparse
Distributed Memory. RIACS-TR-88.1, NASA Ames Rescarch Center, Moffett
Field, CA, USA.

Ryan, S., and Andreae, J. (1995) Improving the Performance of Kanerva's Associative
Memory. IEEE Transactions on Neural Networks 6-1, p 125.

Scott, E., Fuller, C., and O'Brien, W. (1993) Sparse Distributed Associative Memory for the
Identification of Aerospace Acoustic Sources. AIAA Journal, Sep 1993 v31n9, p
1583.

Vogt, W. Paul (1998) Dictionary of Statistics & Methodology, 2™ edition. Sage Publications.

Willshaw, David. (1990) Coded Memories. A Commentary on 'Sparse Distributed Memory',
by Pentti Kanerva. Cognitive Neuropsychology v 7 n 3, p 245.

