
Chapter 2 

ENGINEERING AND CUSTOMIZING 
ONTOLOGIES 
The Human-Computer Challenge in Ontology Engineering 

Martin Dzbor and Enrico Motta 
Knowledge Media Institute, The Open University, UK, {M.Dzbor, E.Motta}@open.ac.uk,  
Tel. +44-1908-653-800; Fax +44-1908-653-169 

Abstract: In this chapter we introduce and then discuss the broad and rather complex 
area of human-ontology interaction. After reviewing generic tenets of HCI and 
their relevance to ontology management, we give an empirical evidence of 
some HCI challenges for ontology engineering tools and the shortcomings in 
some existing tools from this viewpoint. We highlight several functional 
opportunities that seem to be missing in the existing tools, and then look at 
three areas that may help rectifying the identified gaps. We relate methods 
from user profiling, large data set navigation and ontology customization into 
a “triple stack,” which may bring tools for engineering ontologies from the 
level of niche products targeting highly trained specialists to the ‘mainstream’ 
level suitable for practitioners and ordinary users. The work presented in this 
chapter is based on the authors’ research together with other colleagues in the 
context of the “NeOn: Lifecycle Support for Networked Ontologies” project. 

Keywords: HCI; human-ontology interaction; NeOn; networked ontologies; ontology 
customization; user study of ontology engineering tools 

1. INTRODUCTION 

Human-computer interaction (HCI) is a well-established and rich subject 
that has an impact not only on those who develop computational systems, 
but also on the users of such systems, the vendors, maintainers, and many 
more stakeholders who are normally involved in designing and delivering 
software and computer-based tools. At the centre of HCI as a science is the 
core of its investigation: interactions. Note that this emphasis on an abstract 
notion “interaction” does not reduce the importance of the users or push 
them into a background. 



26 Chapter 2 
 

On the contrary, the term “interaction” is broader, and in general, 
involves three constituting parts: the user, the technology, and the way they 
work together. One can then study such phenomena as how the users work 
with a particular technology, what the users prefer, how the technology 
addresses given issues, etc. The purpose of this chapter is not to delve into 
generic HCI issues applicable to any technology. We want to expand the 
views of HCI to cover what we label as human-ontology interaction.  

Human-ontology interaction can be seen as a subset of HCI issues that 
apply to specific tasks and specific technologies. Our aim is to investigate 
how users interact with the ontologies, in general, and with networked 
ontologies, in particular, and how they do it in a realistic ontology lifecycle 
scenario. While HCI is a subject almost as old as the computer science, the 
specifics of interacting with ontologies were not considered in much depth. 
Tools supporting ontological engineering are considered to be primarily 
software tools, and thus, it is presumed that general findings of the HCI 
practitioners also apply to ontologies. 

To some extent, this is true; however, design, engineering and 
subsequently maintenance of ontologies are indeed specific ways to interact 
with the technology. In other words, the change in the activity implies a 
change in the entire interaction. Thus, an action that may look similarly to 
other software systems (e.g. opening a file) may acquire semantically very 
specific meaning in the context of a particular activity (in our case, ontology 
engineering). 

In this chapter, we look at several different aspects of how a user may 
interact with ontologies in a varied sort of ways. The first part of the chapter 
is concerned with a user study that we carried out in order to improve our 
understanding of the level of user support provided by current ontology 
engineering tools in the context envisaged by the NeOn project1. That is, in a 
scenario when ontology engineers are developing complex ontologies by 
reuse, i.e., by integrating existing semantic resources.  

While the existing empirical work on exploring HCI aspects of the 
ontology engineering tools points to several problems and challenges, we 
decided to conduct a new study, because none of the studies reviewed in 
section 2.1 provided sufficient data to drive the development of the ontology 
engineering tools addressing the NeOn scenario. In particular, the use of 
tools by ordinary users, the emphasis on ontology reuse and the embedment 
of the study in a real-world engineering task. 

A complementary view to this empirical user study is presented in the 
latter part of the chapter: exploring the HCI challenge with more analytic 

                                                      
1 “NeOn: Lifecycle support for networked ontologies” is a large-scale integrated project co-

funded by the European Commission by grant no. IST-2005-027595; more information on 
its focus, outcomes and achievements so far can be found on http://NeOn-project.org. 



2. Engineering and Customizing Ontologies 27
 
lenses, and focusing on a variety of tools that were specifically designed to 
support ontological engineering, or could be reused with ontologies in a 
serendipitous manner. With this view in mind we consider several 
approaches, technologies, and tools to illustrate various aspects of where 
user interaction with ontologies becomes somewhat specific and different 
from using other software systems and tools. 

Before going more in depth, let us introduce the basic terminology first. 
In order to work in a structured manner, we separate the terms that 
traditionally come from the HCI domain from the terms that are typical for 
ontology engineering. 

1.1 Terms frequently used in HCI 

In this section we present common and established meanings of terms 
and issues that are usually mentioned in connection with user interaction in 
general. The purpose of this brief glossary is twofold: (i) to introduce terms 
that are used in the subsequent sections of this chapter to those practitioners 
with less background in traditional HCI, and (ii) to differentiate between 
terms that are often used interchangeably by lay persons. We are not 
defining here any terms related to ontology engineering in general, as these 
have a broader scope of validity than the chapter on HCI challenges, and are 
covered elsewhere in the book. 

• Accessibility: In general, this term reflects the degree to which a given 
system is usable by different users. It can be expressed in terms of ease 
with which to access certain features or functions of the system, together 
with the possible benefits such access may bring to the user. Often this 
term is interpreted in the sense of ‘enabling people who are physically 
disabled to interact with the system.’ This is a slightly unfortunate 
emphasis on one specific motivation for pursuing accessibility. In a non-
disabled sense, accessibility may include aspects like appropriate 
language, jargon, level of detail, choice of action, etc. 

• Customization: In the computer science this term refers to the capability 
of users to modify or otherwise alter the layout, appearance and/or 
content of information with which they want to interact. This term is 
often used together with personalization (see also explanation of term 
‘profile’ below). In this deliverable we shall see customization as an 
ability to adapt user interfaces and tools so that they fit a particular 
user’s needs and accessibility constraints (see also term ‘accessibility’ 
above for some objective, explicit criteria that may be customized). 

• End user: Popularly used to describe an abstract group of persons who 
ultimately operate or otherwise use a system — in computing, where this 



28 Chapter 2 
 

term is most popular, the system corresponds to a piece of software. The 
abstraction is expressed in terms of a relevant sub-set of a user’s 
characteristics (e.g. his/her technical expertise, prior knowledge, task, 
objective, skill, etc.) — leading to such user categories as knowledge 
engineers, developers, administrators, etc. 

• Graphical User Interface (GUI): GUI is a type of user interface that 
came to prominence in computer science in the 1980s. The hallmark of 
this type is the use of graphical images (so called widgets), texts and 
their managed appearance on the computer screen to represent the 
information and actions available to the user. Another hallmark is that 
the user’s actions are performed by directly manipulating the graphical 
elements (widgets) on the screen. GUI is often defined in contrast with 
command-based, text-only or terminal-based user interfaces. 

• Localization: In the context of computing and HCI, localization is seen 
as the adaptation of an object or a system to a particular locality. A 
typical example is where a locality is defined in terms of different 
languages (e.g. English, Spanish, etc.), and the system is expected to 
translate messages and other aspects of its UI into the language suitable 
for or selected by the user. Thus, localization may be seen as a 
customization of a tool for a specific country, region or language group. 
In some literature, this term is used jointly with term 
‘internationalization.’ However, language is only one (albeit most 
visible) aspect of the system UI that can be translated to the local 
customs. Other aspects that may need amendments include issues like 
time and date formatting, decimal number formatting, phone and 
postcode formatting, and locally used units of measure (e.g. feet, meters, 
etc.) Less common adaptations are in the use of colors, layouts and 
imaging appropriate to a particular locality. 

• Modality (of user interface): A path or communication channel 
employed by the user interface to accomplish required inputs, outputs 
and other activities. Common modalities include e.g. keyboard, mouse, 
monitor, etc. 

• (User) Preference: This term represents a real or imagined choice 
between alternatives and a capability to rank the alternatives according 
to some criterion. In computer science, this term is typically used in the 
sense that users choose among alternative user interactions, user 
interface components and/or paths. In computing, user preferences are 
often based on the utility (value) of the available alternatives to the 
particular user, in a particular situation or task. 

• (User) Profile: a term seen in the context of computing as a way to 
describe some user properties that are relevant for a particular task and 
can help in tailoring information delivery to the specific user. Note that 



2. Engineering and Customizing Ontologies 29
 

‘user’ may mean a concrete individual person as well as an abstract user 
(e.g. a group or type). 

• Usability: A degree to which the design of a particular user interface 
takes into account human needs defined in terms of psychology or 
physiology of the users. Usability looks at how effective, efficient and 
satisfying the user interface (and the underlying application) is. 

• User experience: Broadly, this term describes an overall experience, 
satisfaction and/or attitude a user has when using a particular system. In 
computing, this term is often used interchangeably with terms like 
usability and sometimes accessibility. 

1.2 About ontological engineering 

In the early 1990’s, a group of Artificial Intelligence (AI) and database 
(DB) researchers got together to define a standard architecture stack for 
allowing intelligent systems to interoperate over a knowledge channel and 
share data, models, and other knowledge without sharing data schema or 
formats. This group comprised Tom Gruber — the person who is widely 
credited with clarifying a definition of ontology for the AI community and 
for promoting the vision of ontologies as enabling technology:  

“In the context of knowledge sharing, I use the term ontology to mean a 
specification of a conceptualization. That is, an ontology is a description 
(like a formal specification of a program) of the concepts and 
relationships that can exist for an agent or a community of agents. This 
definition is consistent with the usage of ontology as set-of-concept-
definitions, but more general.” (Gruber 1993a; Gruber 1993b) 

Ontologies are designed artifacts, similar to cars, desks or computers. As 
such, they always have a purpose, they are engineered for something. In the 
original vision of Tom Gruber, ontologies were artifacts facilitating sharing 
and interchange of knowledge, or making commitments to particular 
meanings. While an ontology may be in principle an abstract conceptual 
structure, from the practical perspective, it makes sense to express it in some 
selected formal language to realize the intended shareable meaning. 

Such formal languages then enable the negotiation of formal 
vocabularies, which, in turn, may be shared among parties in the knowledge 
sharing interaction without being dependent on either the user/agent or its 
context. One example of such a vocabulary may be description logic that 
allows us to make statements holding for some or all entities in a given 
world satisfying a given condition.  

From the point of view of this book (and chapter), we often align the 
ontology management and engineering with the actual design, creation and 



30 Chapter 2 
 
overall interaction with such formal vocabularies. If we take the Web 
Ontology Language (OWL2) as the current preferred formal vocabulary, then 
ontology engineering is often seen as a synonym to designing and coding 
conceptual commitment about the world or a particular problem in this 
language. Thus, for the purpose of this chapter, user challenge in engineering 
OWL ontologies is broadly definable as a user interaction with a particular 
software product, code, OWL model, OWL-based tool, technique, etc. 

2. USERS IN ONTOLOGICAL ENGINEERING 

In order to illustrate and ground the issues users are facing during the 
process of ontology design, engineering and management, this section 
includes extracts from a larger user study that has been conducted in the 
context of gathering and analyzing requirements in the NeOn project. The 
following sub-sections are based on our earlier workshop publication 
(Dzbor, Motta et al. 2006). 

The existing empirical work on exploring HCI aspects of the ontology 
engineering tools highlights several problems with ontology engineering 
tools. However, at the beginning of the NeOn project we felt that there was a 
need to conduct a novel study, as none of the studies mentioned in section 
2.1 provided the kind of data that can be used as a baseline to inform the 
development of the next generation ontology engineering tools. 

2.1 Motivation and background 

Some work on evaluating tools for ontology engineering has been done 
in the past. For example, Duineveld, Stoter et al. (2000) observed that the 
tools available in the time of their study (around 1999) were little more than 
research prototypes with significant problems in their user interfaces. These 
included too many options for visualizing ontologies, which tended to 
confuse the user and hinder navigation. Moreover, the systems’ feedback 
was found to be poor, which meant a steep learning curve for non-expert 
users. Finally, most tools provided little support for raising the level of 
abstraction in the modelling process and expected the user to be proficient in 
low-level formalisms. 

Pinto, Peralta et al. (2002) evaluated Protégé, one of the leading ontology 
engineering tools currently in use (Noy, Sintek et al. 2001), in several tasks, 
from the perspective of a power user. The authors found the system intuitive 
for expert knowledge engineers, as long as the operations were triggered by 

                                                      
2 Specification of OWL as a W3C recommendation is on http://w3.org/TR/owl-ref 



2. Engineering and Customizing Ontologies 31
 
them (e.g. knowledge re-arrangement). However, difficulties arose when 
assistance from the tool was expected; e.g. in inference or consistency 
checks. Weak performance was also noted in language interoperability. In 
another survey, Fensel and Gómez-Pérez (2002) also noted issues with tool 
support for operations on ontologies beyond mere editing (e.g. integration or 
re-use). In particular, the authors emphasized the limited ‘intelligence’ of 
current tools — e.g. no possibility to re-use previously used processes in 
current design. Tools expected the user to drive the interaction, with the tool 
imposing constraints rather than adapting itself to users’ needs. 

Yet another study by Storey, Lintern et al. (2004) focused on a fairly 
narrow aspect of visualization support in Protégé and its customization 
models are too complex and do not reflect users’ models of what they would 
normally want to see. Similar observations were made of the users having 
difficulties with description logic based formalisms in general (Kalyanpur, 
Parsia et al. 2005). Again, tools expected detailed knowledge of intricate 
language and logic details, and this often led to modelling errors. 

As we mentioned earlier in the introduction, the existing empirical work 
on exploring HCI aspects of the ontology engineering tools highlighted 
several problems with ontology engineering tools. We conducted a new 
study, because none of the studies mentioned above provided the kind of 
data that can be used to inform the development of the ontology engineering 
tools envisaged by NeOn. Specifically, the studies did not satisfactorily 
address the following key concerns: 

• “Normal” users vs. “Power” users. As ontologies become an 
established technology, it makes less sense to focus only on highly 
skilled knowledge engineers. There are so many organizations 
developing ontologies that it seems safe to assert that indeed most 
ontologies are currently built by people with no formal training in 
knowledge representation and ontology engineering. Therefore, it is 
essential to conduct studies, which focus on “normal users,” i.e., people 
with some knowledge of ontologies, but who are not classified as 
“power users.” 

• Emphasis on ontology reuse. We adopt the view that ontologies will be 
networked, dynamically changing, shared by many applications and 
strongly dependent on the context in which they were developed or are 
used. In such scenario it would be prohibitively expensive to develop 
ontologies from scratch, and the re-use of existing, possibly imperfect, 
ontologies becomes the key engineering task. Thus, it makes sense to 
study the re-use task for OWL ontologies, rather than focusing only on a 
narrow activity (e.g. ontology visualization or consistency checking). 

• Evaluating formal ontology engineering tasks. Studies reported earlier 
focused on generic tool functionalities, rather than specifically assessing 



32 Chapter 2 
 

performance on concrete ontology engineering tasks. This creates two 
problems: (i) the results are tool-centric, i.e., it is difficult to go beyond a 
specific tool and draw generic lessons in terms of HCI on how people do 
ontology engineering tasks; (ii) by assessing the performance of our 
users on concrete tasks using OWL ontologies, we acquire robust, 
benchmark-like data, which (for example) can be used as a baseline to 
assess the support provided by other tools (including those planned in 
NeOn). 

2.2 Overview of the observational user study 

We conducted an observational study rather than an experiment to 
capture user needs and gaps in the tool support, rather than merely compare 
different tools. As mentioned earlier, NeOn is concerned with several facets 
of networked ontologies, and many of these facets are currently supported to 
a very limited extent. This lack of tools and techniques makes it difficult to 
assess the actual user performance in any of these tasks. However, it enables 
us to acquire generic requirements and insights on a broader ontology 
engineering task or process. 

Ontology is, by definition, a shared artefact integrating views of different 
parties (Gruber 1993a). One form of integration used in this study was 
temporal, where an agent re-used previously agreed ontologies, perhaps from 
different domains. All studied ontologies were public; all were results of 
principled engineering processes and knowledge acquisition, and they all 
modelled domains comprehensible to a ‘normal user.’ The table shows some 
statistical information on the OWL ontologies included in the study. 

Table 2-1. Descriptive features of the ontologies used in the evaluation study: numbers of 
primitives classified as Cl(asses), Pr(operties), and Re(strictions) 
Ontology Cl Pr Re Notes 
Copyright 85 49 128 Mostly cardinality & value type restrictions, some properties 

untyped  
[ http://rhizomik.net/2006/01/copyrightontology.owl ] 

AKT Support 14 15 n/a All properties fully typed, no axioms 
[ http://www.aktors.org/ontology/support ] 

AKT Portal 162 122 130 10 classes defined by equivalence/enumeration, most 
properties untyped 
[ http://www.aktors.org/ontology/portal ] 

 
Two environments were used — Protégé from Stanford University3 and 

TopBraid Composer from TopQuandrant4— these satisfied the initial 

                                                      
3 Extensive details on the Protégé project and tool are available to an interested reader on 

http://protege.stanford.edu 



2. Engineering and Customizing Ontologies 33
 
requirements from ontologies (e.g. on OWL fragment or visualization 
features). We worked with 28 participants from 4 institutions (both academic 
and industrial). Participants were mixed in terms of different experience 
levels with designing ontologies and with different tools. Each person 
worked individually, but was facilitated by a member of the study team. 
Participants were expected to have knowledge of basic OWL (e.g. sub-
classing or restrictions), while not necessarily being ‘power users.’ They 
were recorded with screen capture software Camtasia, and at the end they 
filled in a questionnaire about their experiences with ontology integration. 

2.2.1 Evaluation methodology 

In our investigation of the ontology engineering environments, we opted 
for a formative evaluation (Scriven 1991). This choice was made mainly to 
inform design of new OWL engineering tools in the context of NeOn. Two 
constraints were observed: (i) gathered data shall not be tool-specific (it was 
not our objective to prove which one tool was best); and (ii) while generic 
tool usability was considered important, measures were expected not to be 
solely usability-centric. In terms of what was analyzed, we selected the 
following levels of analysis (Kirkpatrick 1994): (i) user’s satisfaction with a 
tool, (ii) effectiveness of a tool in achieving goals, and (iii) behavioural 
efficiency. In our study, these categories took the form of questions 
exploring usability, effectiveness, and efficiency categories, to which we 
added a generic functional assessment category. 

Our questionnaire reflected situations that typically appear in the 
literature correlated with enhancing or reducing effectiveness, efficiency, 
usability or user satisfaction (Shneiderman and Plaisant 2004), and covered 
these situations by 36 questions. The remaining 17 questions inquired about 
various functional aspects considered relevant to the NeOn vision; including 
ontology re-use, visualization, contextualization, mapping, reasoning, etc. 

The questionnaire included both open and closed (evaluative) questions. 
The former asked for opinions; the latter used a Likert scale ranging from 
very useful (+1) to very poor (–1). Each question was then expressed 
frequencies and counts — largely in the context of open, qualitative items 
and observations. Positively and negatively stated questionnaire items were 
interspersed to avoid the tendency of people to agree with statements rather 
than disagree (Colman 2001). Nevertheless, this tendency towards agreeing 
appeared during analysis; as was discussed in our preliminary report (Dzbor, 
Motta et al. 2006). 

                                                                      
4 More about TopBraid Composer can be found on http://www.topbraidcomposer.com/ 



34 Chapter 2 
 
2.2.2 User tasks 

Participants were given three tasks considering different ways of 
integrating ontologies into a network. In Task 1, they were told that the 
Copyright ontology did not formalize temporal aspects, and had to be 
augmented with the relevant definitions from other ontologies (e.g. AKT 
Support). The objective was to review the three given ontologies, locate the 
relevant classes (i.e. CreationProcess and Temporal-Thing), import 
ontologies as needed, and assert that CreationProcess is a subclass of 
Temporal-Thing. 

Task 2 was motivated by pointing to a western-centric notion of any right 
being associated only with a person, which excluded collective rights. 
Participants were asked to review concept copyright:Person, and replace its 
use with deeper conceptualizations from the AKT Portal and AKT Support 
ontologies. In principle, the task asked people to express two types of 
restrictions on property ranges: 

• simple: e.g. for concept Economic-Rights introduce statement  
rangeOf ( agent , Legal-Agent ); 

• composite: e.g. state that  
rangeOf ( recipient , ( Generic-Agent AND (¬ Geo-Political ) ) ). 

 
Task 3 asked people to re-define concept copyright:Collective so that 

formal statements could match an informal description. Participants were 
told to make amendments in the base — Copyright ontology, rather than to 
the other two. We expected they would first create new local sub-classes for 
the concept copyright:Collective, and then make them equivalent to the 
actual AKT classes. Task 3 also comprised a definition of a new property 
(e.g. copyright:hasMember) with appropriate domain and range, together 
with its restriction for class copyright:Collective, so that a collective is 
defined as containing min. 2 persons. 

2.3 Findings from the user study 

This section summarizes some findings from our study. For selected 
categories of measures we give a general summary of observations across 
the whole population, followed by commenting on differences (if any) 
between two common denominators of user performance in knowledge-
intensive tasks — the choice of and the expertise with the tool. Particularly 
interesting is to look at how efficient people felt in different tasks, how they 
were assisted by the help system or tool tips, how the tools helped to 
navigate the ontologies or how easy it was to follow the formalisms used in 



2. Engineering and Customizing Ontologies 35
 
definitions. Table 2-2 shows general observations, and Table 2-3 compares 
features where differences between tools were observed. 

The efficiency of the two tools was approximately the same. When asked 
about efficient handling of ontology dependencies and navigating through 
them, Protégé users thought they were significantly less efficient. Many 
users were not happy with the abstract syntax of the axiom formulae, which 
was not helped by the inability to edit more complex restrictions in the same 
windows and wizards as the simple ones. 

Table 2-2. Selection of a few general observations across population 
Measure/question –1 0 +1 Total Mean 
providing sufficient information about ontologies 32% 55% 13% 29 –0.172 
support provided by documentation, help 60% 40% 0% 16 –0.500 
usefulness of the tool tips, hints, ... 50% 46% 4% 27 –0.423 
subjective time taken for task 2 25% 55% 20% 31 –0.065 
subjective time taken for task 3 6% 56% 38% 31 +0.300 

Table 2-3. Comparison of attitudes between tools and expertise groups (TB: TopBraid, Pr: 
Protégé, Be: less experienced, Ex: expert); significance threshold: χ2=5.99 at p=0.05 
Measure/question Type Outcome χ2 Sign 
help with handling ontology dependencies tools TB (0.0) vs. Pr (–0.37) 7.65 yes 
useful visualization & ontology navigation 
facilities 

tools TB (–0.33) vs. Pr (–0.63) 6.00 yes 

handling ontology syntax / abstract syntax tools TB (+0.40) vs. Pr (–0.07) 2.33 no 
ease/speed of carrying out integrations experience Le (–0.21) vs. Ex (+0.27) 9.75 yes 
level of visualization and navigation support experience Le (–0.69) vs. Ex (–0.40) 2.40 no 
ontology representation languages, abstract 
syntax, etc. 

experience Le (–0.22) vs. Ex (+0.23) 3.64 no 

 
One qualitative feature in both tools concerns the depth of an operation in 

the user interface. Subjectively, 32% participants felt they had an explicit 
problem with finding an operation in a menu or workspace. The main 
‘offenders’ were the import function (expected to be in File � Import... 
menu option) and the in-ontology search (which was different from the 
search dialog from Edit � Find... menu option). 

Expertise seemed to have minimal effect on the assessment of the 
efficiency dimension. Both groups concurred that while a lot of information 
was available about concepts, this was not very useful, and the GUI often 
seemed cluttered. They missed a clearer access to ‘hidden’ functions such as 
defining equivalence or importing ontology. Non-experts saw themselves 
inefficient due to lack of visualization and navigation support, and also due 
to the notation of abstract DL-like formalism. Experts were at ease with the 
formats; non-experts considered support for this aspect not very good. 

The overwhelming demand was for complying with common and 
established metaphors of user interaction. A quote from one participant sums 



36 Chapter 2 
 
this potential source contributing to inefficiency: “More standard 
compliance and consistency. The search works differently … usual keyboard 
commands ... don’t always work…” 

In addition to the efficiency of the existing ontology management tools, 
two aspects were evaluated with respect to user experiences: (i) usability of 
the tool (which included accessibility and usefulness), and (ii) overall user 
satisfaction with the tool. The latter included comments regarding user 
interface intuitiveness, acceptability, customization, and so on.  

As Table 2-4 shows, responses in this category are generally negative; 
participants considered the existing support as “very low” or “not very 
good.” Almost invariably, they were dissatisfied with the role of 
documentation, help system, tool tips, and various other tool-initiated hints. 
Support for tool customization — i.e. either its user interface or 
functionality — was also inadequate. A common justification of the low 
scores was (among others) the lack of opportunity to automate some actions, 
lack of support for keyboard-centric interaction, lack of support for more 
visual interactions. As can be seen from these examples, the reasons were 
quite diverse, and to some extent depended on the user’s preferred style. 

Table 2-4. Selection of a few general observations across population 
Measure/question –1 0 +1 Total Mean 
usability/helpfulness of the tooltips, hints, ... 50% 46% 4% 27 –0.423 
usability of tool’s help system 60% 40% 0% 16 –0.500 
support for customization of the tool, its GUI or functionality 48% 44% 8% 25 –0.400 
usability of handling ontology dependency support 31% 66% 3% 27 –0.259 
visualization of imports, constraints & dependencies 58% 39% 3% 28 –0.536 
support for [partial] ontology import 62% 14% 4% 29 –0.739 
useful tool interventions in establishing integrations 48% 52% 0% 26 –0.480 

 
One emerging trend on the tools’ usability was that too many actions and 

options were available at any given point during the integration tasks. On the 
one hand, this refers to the amount of information displayed and the number 
of window segments needed to accommodate it. An example of this type of 
usability shortcoming is the (permanent) presence of all properties on screen. 
On the other hand, while constant presence can be accepted, it was seen as 
too rigid — e.g. no filtering of only the properties related to a concept was 
possible. In fact 32% claimed that unclear indication of inheritance and 
selection was a major issue, and further 14% reported being unable to find 
all uses of a term (e.g., property or concept label) in a particular ontology. 
Other comments related to usability are summarized below:  

• unclear error messages and hints (e.g. red boundary around an incorrect 
axiom was mostly missed);  



2. Engineering and Customizing Ontologies 37
 
• proprietary user interface conventions (e.g. icons looked differently, 

search icon was not obvious, some menu labels were misleading);  
• lack of intuitiveness (e.g. finding an operation, flagging a concept in the 

ontology so that it does not disappear, full- vs. random-text search);  
• inconsistent editing & amending of terms (e.g. while “subClassOf” was 

visible at the top level of the editor, “equivalentTo” was hidden) 

Table 2-5. Comparison of attitudes between tools and expertise groups (TB: TopBraid, Pr: 
Protégé, Be: less experienced, Ex: expert); significance threshold: χ2=5.99 at p=0.05 
Measure/question Type Outcome χ2 Sign. 
level of overall satisfaction with the tools tools TB (+0.10) vs. Pr (–0.19) 2.67 no 
overall satisfaction with tool’s GUI environment tools TB (+0.10) vs. Pr (–0.24) 3.14 no 
satisfaction with handling dependencies in 
ontologies 

tools TB (0.0) vs. Pr (–0.37) 7.65 yes 

satisfaction with visualization and navigation 
support 

tools TB (–0.33) vs. Pr (–0.63) 6.00 yes 

ease/speed of carrying out integrations tools TB (+0.50) vs. Pr (+0.10) 5.85 no 
effort to get acquainted with the tool experience Be (–0.27) vs. Ex (+0.12) 3.02 no 
satisfaction with support for interpreting 
inferences 

experience Le (0.0) vs. Ex (+0.07) 2.40 no 

support for multiple ontology representation 
formats 

experience Le (–0.22) vs. Ex (+0.23) 3.64 no 

 
As shown in Table 2-5, a significant difference of opinion was in the 

overall satisfaction with the tools, their design and intuitiveness, where it 
was more likely that people complained about Protégé than TopBraid. In this 
context, people tended to be more positive in the abstract than in the specific. 
Responses to specific queries were negative (between –0.500 and –0.100), 
yet overall experiences oscillate between –0.111 and +0.100. As we 
mentioned, the overall satisfaction with the TopBraid environment was more 
positive (some possible reasons were discussed above). 

One case where experience weighed strongly on less experienced users is 
the tool intuitiveness. Probably the key contributing factors were the 
aforementioned non-standard icons, lack of standard keyboard shortcuts, 
ambiguous operation labels, and an overall depth of key operations in the 
tool. Less experienced users also had issues with basic features — e.g. 
namespaces and their acronyms, or ontology definition formalisms. The 
issue with formalisms is partly due to the inability of the tools to move from 
an OWL- and DL-based syntax to alternative views, which might be easier 
in specific circumstances (such as modification of ranges in Task 2). 
Experienced users missed functionalities such as version management —
here less experienced users were probably not clear in how versioning might 
actually work in this particular case. 



38 Chapter 2 
 
2.4 Lessons learned from the user study 

Technology (such as OWL), no matter how good it is, does not guarantee 
that the application for its development would support users in the right tasks 
or that the user needs in performing tasks are taken on board. At a certain 
stage, each successful tool must balance the technology with user experience 
and functional features (Norman 1998). This paper explored some 
persevering issues with OWL engineering tools that reduce the appeal and 
adoption of otherwise successful (OWL) technology by the practitioners.  

Although the tools made a great progress since the evaluations reported 
in section 2.1, issues with user interaction remain remarkably resilient. The 
effort was spent to make the formalisms more expressive and robust, yet 
they are not any easier to use, unless one is proficient in the low-level 
languages and frameworks (incl. DL in general and OWL’s DL syntax in 
particular). Existing tools provide little help with the user-centric tasks — a 
classic example is visualization: There are many visualization techniques; 
most of them are variations of the same, low-level metaphor of a graph. And 
they are often too generic to be useful in the users’ problems (e.g. seeing 
ontology dependencies or term occurrences in an ontology). 

Table 2-6 highlights a few gaps between what the current tools provide 
and what people see as useful for framing problems in a more user-centric 
way. Some ‘wishes’ (white rows) already exist; e.g. Prompt (Noy and Musen 
2003) for version comparison, but perhaps our findings may further improve 
design of the existing OWL engineering tools. 

For instance, identification of frequently used operations and their 
correlations with errors and mistakes may provide us with opportunities to 
target the support towards most visible sources of user dissatisfaction. The 
most frequent steps in OWL development are the actual coding of definitions 
and import of ontologies (unsurprisingly), but, surprisingly, also search 
(71% users), re-conceptualization of restrictions and editing of logical 
expressions (both 54%), and locating terms in ontologies (46%). Compare 
these operations with the situations requiring assistance from facilitators (in 
Table 2-7). 



2. Engineering and Customizing Ontologies 39
 
Table 2-6. User attitudes to some functional features missing in existing tools (grey rows) and 
to some proposed extensions (white rows) 

Current presence (grey) vs. wished-for feature User attitude 
Existing support for ontology re-use  –0.097 (not very good) 
Support for partial re-use of ontologies  –0.739 (very poor) 
� flag chunks of ontologies or concept worked with  +0.519 (would be very useful) 
� hide selected (irrelevant?) parts of ontologies  +0.357 (would be useful) 
Existing support for mappings, esp. with contextual boundaries  –0.065 (not very good) 
Management and assistance with any mappings –0.480  (not very good / poor) 
� query ontology for items (instead search/browse)  +0.433 (would be useful) 
� compose testing queries to try out consequences of mappings  +0.045 (would be possibly useful) 
Existing support for versioning, parallel versions/alternatives  –0.200 (not very good) 
Existing visualizing capabilities & their adaptation  –0.536 (very poor) 
� mechanism to propagate changes between alternative versions  +0.519 (would be very useful) 
� compare/visualize different interpretations/versions  +0.700 (would be very useful) 
� visualize also on the level of ontologies (not just concepts)  +0.357 (would be useful) 

Table 2-7. Observations of issues with OWL engineering and user interaction 
Observation Frequency % affected Examples 
Syntactic axiom check � user not alerted 
or not noticing 

21x 64.3% Buttons/icons after axioms misleading; 
Single/double clicks to select, edit, etc 

Testing & understanding (inference, 
meaning) 

26x 64.3% Which inference is the right one?;  
How to check the intended meaning(s)? 

Translate/compose logical operation (e.g. 
equivalence) 

37x 60.7% How to start complex axiom?;  
Stepwise definition? 

Dialogs, buttons,... (confusion, 
inconsistency,…) 

43x 89.1% Buttons/icons after axioms misleading; 
Single/double clicks to select, edit, etc. 

Searching for the class (partial text search 
on labels) 

25x 64.3% Label starts with X different from label 
contains X; namespaces in search?  

Functionality unclear (drag&drop, error 
indication, alphabetic view) 

26x 60.7% Am I in the edit mode?;  
Where is it alerting me about error? 

 
One example we identified is the correlation between an incorrect logical 

conceptualization and confusion caused by ambiguous labels or dialogs. 
Other correlations were between problems with importing an ontology and 
absence or semantic ambiguity of appropriate widgets in the workspace, and 
between difficulties with definitions and the failure of tools to alert users 
about automatic syntactic checks (e.g. on brackets). The translation of a 
conceptual model of a restriction into DL-style formalism was a separate 
issue: 70% were observed to stumble during such definitions. From our data, 
we suggest considering multiple ways for defining and editing axioms (to a 
limited extent this partly exists in Protégé). Any way, DL may be good for 
reasoning, but it is by no means the preferred “medium for thinking” (even 
among ontology designers). This is not a novel finding, similar observations 
were made for other formalisms and their relationship to informal thought 
generation (Goel 1995). 



40 Chapter 2 
 

Another issue is the gap between the language of users and language of 
tools; a high number of users was surprised by syntactically incorrect 
statements. In 64.3% sessions at least one issue due to syntax (e.g. of 
complex restrictions) was observed. Because of these minor issues they had 
to be alerted to by a facilitator, people tended to doubt results of other 
operations (e.g. search or classification) if these differed from what they 
expected. Lack of trust is problematic because it puts the tool solely in the 
role of a plain editor, which further reduces tool’s initiative. In an attempt to 
restore ‘user trust,’ some tools (e.g. SWOOP) move towards trying to justify 
their results (Kalyanpur, Parsia et al. 2005).  

The extensive use of features in the tools is also an issue increasing 
complexity of user interaction. Both tested tools showed most of possibly 
relevant information on screen at all times. There was little possibility to 
filter or customize this interaction. The granularity at which tools are 
customizable is set fairly high. For instance, one can add new visualization 
tabs into Protégé or use a different (DIG-compliant) reasoning tool, but one 
cannot modify or filter the components of user interaction. 

Clearly, there is some way to go to provide the level of support needed 
by ‘normal’ users engineering OWL ontologies. Our analysis highlighted 
some shortcomings, especially the flexibility and adaptability of user 
interfaces and lifting the formal abstractions. With this study, we obtained a 
benchmark, which we plan to use to assess the support provided by our own 
future tools in 18–24 months. Obviously, we intend to include other OWL 
engineering tools (e.g. SWOOP or OntoStudio) to make the study robust.  

3. USER INTERACTION WITH ONTOLOGIES 

In the previous section we mostly considered one particular category of 
the users with respect to ontologies; namely, those users who want to author, 
design and amend ontologies as a part of some integrative task. This is an 
important group of users; however, these are not necessarily the only users 
who may have a need to interact with networked ontologies. The issue of 
interacting with ontologies effectively and efficiently is much more pressing 
with less experienced users, who carry out an ad-hoc, occasional ontology-
related task — as shown, to some extent by our study reported in section 2. 

Therefore, in this section we explore the problem of user interaction with 
ontologies more in depth, from several angles.  



2. Engineering and Customizing Ontologies 41
 
3.1 Configurable user interfaces 

One of the findings in the user study we briefly described in section 2.3 
was pointing to the fact that the ontology engineering environments tend to 
be reasonably modular, but they are essentially built alongside “one size fits 
all” strategy. In reality, such a strategy is rare among the successful software 
products. As users within the corporate intranets or outside of companies 
take on different roles, they come across and emphasize different business 
needs from, in principle, the same information content. Subsequently, they 
typically expect the tools of their trade would somehow reflect those 
different business needs. 

One of the most often mentioned features of a new software product is an 
easy customization of its user-facing components. We explore this theme in 
the second half of the chapter on HCI challenges in ontology engineering. 
The quote from a software company’s catalogue (anonymized by the 
authors) below summarizes the point: 

[Our product] provides an easy to configure user interface enabling you 
to meet diverse business needs across your enterprise, as well as support 
localization. [Among other functionalities, the product supports] menu 
localization and support for international languages, enabling and 
disabling functions for users based on their permissions, […] 

Users involved in ontology-driven production of information and 
knowledge need to be equipped with a range of software configurations and 
diverse user interfaces to deliver the outcomes of their work as effectively 
and efficiently as possible. There are two broad strategies how one can 
match the tools to the needs: 

1. different tools for different users and different purposes; 
2. different configurations of one tool or toolkit for different users or 

purposes. 

The two strategies are not mutually exclusive; very often we find that 
users rely on a limited range of tools, and then may have different, 
specialized configurations for some of those tools. Let us briefly consider the 
key advantages and disadvantages of the above approaches: In the former 
situation, tools are well defined but apparently independent of each other. 
This may lead to a proliferation of a large number of highly specialized 
tools, something that is overwhelming and unlikely to alleviate the user’s 
confusion. Moreover, with specialized tools, there is an increasing risk of 
them being mutually less compatible or compatible on a rather cumbersome 
level (e.g. import/export mechanism of various graphical editors is a good 
example of this compatibility issue). The main advantage is that the user will 



42 Chapter 2 
 
only get to work with tools and interfaces s/he necessarily needs to carry out 
given tasks, and nothing more. 

In the latter situation, we tend to see more complex and multi-functional 
tools that can exhibit a variety of user interfaces and user interaction 
components in different situations. In many tools of this type, we see an 
aggregation of functionalities and a fairly seamless switching between many 
tasks the user may carry out at some point. This is essentially a “one-stop 
shop” approach where the user has (almost) everything they may ever need 
already inside the tool, and only needs to activate different configurations. A 
typical example of this would be editors like Microsoft Word, and its ‘rich 
document editor’ face, as opposed to (say) ‘content revision’ face or ‘mail 
merge and distribution’ face. 

Formally, these notions were explored by Shneiderman (2000) who 
introduced so-called universal usability. While this rather broad issue is 
clearly beyond the scope of this chapter, Shneiderman points to several 
factors that may affect the tool usability. These are factors that vary from 
one user to another, and hence trigger a degree of adaptation to the user 
interface. Importantly, Shneiderman highlights many common factors that 
are not always recognized as valid reasons for UI customization. For 
example, he talks about technological variety (i.e. the need to support a 
range of software and hardware platforms, networks, etc.), about gaps in user 
knowledge (what users know, what they should know, etc.), or about 
demographic differences (skills, literacy, income) or environmental effects 
(light, noise, etc.) 

One approach to achieving more universal usability of a tool is to 
introduce user interface adaptation into the loop. The rationale is that while a 
standard UI may not fit the user completely, it might be tweaked so that it 
gets as closely as possible to the user needs. There are two distinct strategies 
of how UI adaptation may be accomplished. Since this differentiation may 
have impact on what is actually modified in the tool, we decided to include 
this brief detour to generic issues of adaptation. The two strategies 
distinguish between the following types (Kules 2000): 

• adaptive UI: These are systems and user interfaces that are capable of 
monitoring its users, their activity patterns, and automatically adjust the 
user interface or content to accommodate these local differences in 
activity patterns (which may be due to user’s skill, preference, etc.). 

• adaptable UI: These are systems and user interfaces that allow the users 
to control and specify adjustments, and often come with the provision of 
some guidance or help. 

According to the informal definitions, the difference is in the actor; who 
performs the adaptation act. In adaptive UI-s it is the tool, applications or the 



2. Engineering and Customizing Ontologies 43
 
system that takes the active role; whereas in adaptable UI-s it is the 
human — typically the actual user of the system, but possibly another user 
(such as system administrator). 

Why do we mention user interface adaptation in this context? Ontologies 
are highly structured, formalized artefacts that have sufficient expressiveness 
to describe the structure of a system, tool, or its user interface. Considering 
that such common tools as Web browsers make use of ontological 
formalisms to support customization and thus make life easier for the user, it 
is rather surprising that very little of a similar approach is used to improve 
the tools for interacting with ontologies. 

4. USERS AND ONTOLOGY ENGINEERING  

In this section we briefly sketch some of the existing approaches that 
have been developed mostly in the context of personalization and scalability 
(i.e. the capability to work with large data sets). This overview is intended to 
be informative rather than exhaustive; it is intentionally compiled on a level 
that abstracts from individual tools and method to approaches and strategies. 

As ontologies become more and more complex and as they are integrated 
into networks of ontologies, it is reasonable to investigate the means, which 
would be capable of making a large network of complex ontologies more 
manageable. The customization and personalization of ontologies includes, 
in principle, two areas relevant to ontologies: 

• customization of the view on an ontology, e.g. during exploring a 
network of ontologies. This customization is more or less ad-hoc and the 
results of the customization may be discarded once the user proceeds 
with exploring the ontology. This customization during exploring an 
ontology tries to reduce the complexity of an ontology and only shows 
parts which are relevant for the current user. 

• customization for the purposes of reusing ontologies and integrating 
them into a network with other ontologies according to specific needs 
(e.g. during the ontology deployment, reasoning or design phases). Here 
the results of the customization will often be integrated into the edited 
ontology. 

As one basis for the customization, we analyze and briefly overview user 
profiles and profiling work, followed by techniques for exploring and 
navigating in large data sets (including ontologies), and finally we touch on 
the role of algebraic operators to manipulate the topology or content of 
ontologies. 



44 Chapter 2 
 
4.1 User profiling 

User profiles are seen here as a way to describe some user properties or 
characteristics and thus as a representation of the context of a user. Such a 
profile may for example provide information about the role of a user, the 
domain of interest or the current task. This information about the context 
helps in a user-tailored information delivery, e.g. by offering personalized 
ontology views. When talking about the user, it is important to mention that 
we can decide to have an abstract user — this would be, in principle, 
corresponding to any member of a group of users in a particular situation. 

A user profile can be constructed in different ways depending on the data 
it includes and the methods used for its construction, including manual, 
semi-automatic and automatic methods. Each of them has some advantages 
and disadvantages. For a review of specific user profile acquisition 
techniques, consider e.g. sources mentioned in (Dellschaft, Dzbor et al. 
2006). Let us focus in this chapter on how such profiles might be deployed 
and used in the context of ontology management. 

In principle we see the role of user profiles as twofold: (i) as a means 
allowing recommendations based on some typicality effects, and (ii) as a 
means having a predefined description on the actions to be applied by the 
system, depending on some predefined user profile characteristic.  

In the former case, it is interesting to acquire information, e.g. about 
which ontology views a given category of users prefers, what level of detail 
they use in annotating documents using that ontology, or which partition of a 
larger ontology they mostly interact with (and for what purpose). 

In the latter case, a user profile may act as a kind of task definition for the 
activity the user is expected to carry out — an example of such a situation 
might be provision of an ontology view that would be less suitable to editors 
but much more efficient to validators. 

There are many profiling systems in existence; most of them developed 
in the context of user interaction with Web documents and Web browsing. 
One example is Lifestyle finder (Krulwich 1997)—a collaborative 
recommendation system as it groups similar users based on the similarity of 
their manually constructed user profiles. It recommends potentially 
interesting Web documents to the user based on the ratings of the documents 
provided by similar users. A similar example is NewsWeeder (Lang 1995), a 
system for electronic Usenet news alerts. 

An example of the semi-automatic approach is OntoGen (Fortuna, 
Mladenic et al. 2006) that constructs a profile from a set of documents 
provided by the user, and then proposes a topic hierarchy (i.e. a simple 
ontological model of the user’s interests) that can then be used e.g. to 
recommend navigational steps to the user (Fortuna, Mladenic et al. 2006) or 



2. Engineering and Customizing Ontologies 45
 
to visualize a particular collection based on the hierarchy of user interests 
(Grcar, Mladenic et al. 2005). 

User profiling is one of the important aspects for customizing human-
ontology interaction. User profiles can be used to mesh different data 
sources, where the preferences for a data source are based on the user profile 
(initially manually, but possibly adjusted based on the user’s activity). User 
profiling can also be used for providing a personalized view on an ontology 
based on the ontologies previously constructed by the same or a similar user. 
Such a personalized view can be seen as putting ontologies in a particular 
context, which is familiar to the user (and hence, simplifies his or her 
interpretation of the ontology). 

4.2 Navigating in complex conceptual structures 

Since ontologies are often formal artefacts, the need some transformation 
to be comprehensible to the ordinary users. This is rarely straightforward. 
First, ontological datasets are relatively large; they contain thousands of 
statements the user may need to interact with. For example, a fairly simple 
geographic ontology of regions in New York state5 contains as many as 
59,000 unique statements just about congressional districts in a single US 
state. Second, ontologies could be complex structures representing different 
types of relationships. If each of such potential relations is treated as a 
dimension in which allowed values could be depicted, then even a 
moderately complex ontology leads to a multi-dimensional space, which 
poses challenges for navigation and interaction — in particular, when human 
cognition naturally prefers (and is able of coping with) two or three 
dimensions. 

Two strategies that may apply to ontologies are their reduction and 
projection. Where reduction is concerned with showing less at a given point 
in time (in our case, fewer concepts, entities or relationships), projection 
works by showing the same set of concepts, entities and relations differently. 
The two strategies are somewhat complementary. 

4.2.1 Reducing complexity of navigation 

One common reduction strategy has been implemented in a number of 
faceted browsers (but not in the context of ontologies). The key principle of 
this strategy is that large collections (e.g. libraries or galleries) have many 
dimensions according to which they can be viewed, browsed, searched or 
navigated. Thus, faceted navigation is an interaction style whereby users 
                                                      
5 A serialization and a downloadable version of this ontology is available from: 

http://www.daml.org/2003/02/fips55/NY.owl 



46 Chapter 2 
 
filter an appropriate set of items by progressively, step-by-step selecting 
from valid dimensions of a particular classification. That classification can 
be created according to many principles (including ontology-derived). 

Earlier representatives of this strategy include Flamenco — a portal for 
browsing fine arts collections (Hearst 2000; Yee, Swearingen et al. 2003) or 
mSpace — an access site to a repository about the computer science in the 
UK (Schraefel, Karam et al. 2003). More recent examples include e.g. 
Longwell and Fresnel (Pietriga, Bizer et al. 2006) from MIT’s Simile project 
as representatives of generic frameworks and vocabularies (respectively) for 
faceted navigation through RDF collections and for specifying facets. Other 
recent examples include BrowseRDF (Oren, Delbru et al. 2006), a generic 
RDF browser, or /facet (Hildebrand, van Ossenbruggen et al. 2006), an 
RDF browser used in a manner similar to Flamenco, but in the context of the 
Dutch cultural heritage project. Nonetheless, most of the above tools focus 
on data rather than triple-level graph structures typical for ontological 
concepts and relations. 

User interaction in faceted style usually starts with an overview of the 
browsed collection, which often yields a large number of possibly relevant 
matches. In the subsequent browsing steps, this ‘relevant’ set is structured 
according to selected categories (e.g. locations, styles, themes, etc.). 
Alternatively, the user may narrow the view down by referring to 
hierarchical classification (if available). The navigation may end with 
accessing a particular item from the collection. We use term ’may’ because 
alongside the item the user always sees all other categories and metadata that 
provide bridges to alternative collections. 

A slightly different view on the principle of faceted navigation is 
advocated by the authors of CS AKTive Space and the family of similar 
mSpace-based applications (Shadbolt, Gibbins et al. 2004). The faceted 
views for browsing the collections are fairly typical, but there is one pane 
that also uses a projection strategy — geographic data are shown naturally, 
i.e. on a map. A useful side effect of such projections is that they enable the 
user to express relations very succinctly (including fuzzy ones such as near 
or in the South). Unlike Flamenco, mSpace is more tightly linked to 
ontologies — they act as the primary classification of different facets that are 
available to the user. 

To explore the role of spatial metaphors in navigating complex structures 
we point e.g. to work by Mancini (2005), who experimented with ways how 
the same content may yield different interpretation if presented (and 
navigated) in a spatially different manner. Nevertheless, the use of such 
techniques for ontology management needs further research, before we are 
able to link them to particular use case scenarios and requirements. More 
details on how faceted browsers may assist ontology management has been 



2. Engineering and Customizing Ontologies 47
 
provided in (Dellschaft, Dzbor et al. 2006), which also formed the base for 
this section. 

In general, what faceted browsers like Flamenco support rather well is 
the iterative formulation of the search queries or navigational goals. Key 
advantage of this technology is the step away from forcing the user to go 
through deep, complex hierarchies in order to find items they are interested 
in. Users only navigate to the next slice by following some conceptual clues 
(e.g. sub-categories or orthogonal views). Arguably, faceted navigation 
seems to be a more natural way of coping with messy, conceptually complex 
space, than a rigid, hierarchical tree-like structure. 

Thus, the “divide and conquer” strategy also works in the context of 
complex conceptual spaces such as ontologies. What is hard to visualize at 
once because of variability and differences between different relationships, 
can be split into sequences of partial visualizations through which it is easier 
to move and which are also more comprehensible to the end user. On the 
other hand, faceted browsers suffer from the scaling issue; i.e. they work 
reasonably well with a few well-defined facets that can be arbitrarily 
combined by the end user. For instance, CS AKTive Space used only three 
key (i.e. navigable) dimensions (location, topic and institution). In Longwell, 
deployed for MIT OpenCourseWare, there are similarly three dimensions 
(level of study, teacher and keywords). An ongoing tension emerges between 
offering as many facets to the user as possible while simultaneously helping 
to reduce navigational complexity. 

4.2.2 Projections for large ontological data sets 

In addition to conceptual and relational complexity that has been tackled 
by the research into faceted navigation, another similarly hard task is to 
navigate through large datasets. A number of projections were proposed to 
tackle this. In particular, the fish-eye metaphor enables customizable 
navigation; it uses different properties of the objects in a knowledge base to 
create clusters of different granularity and of different semantics. For 
example, Komzak and Slavik (2003) illustrate this capability to handle large 
networks of diverse but conceptually related data in the context of 
visualizing the 200k strong student population of The Open University in the 
UK, which can be shown on a geographic, per-faculty, per-program or per-
course basis. 

The strategy relies on showing the contextual fringe of a part of the 
semantic network not corresponding to a particular user’s query or intention 
using more coarse-grained clusters than the part that actually corresponds to 
the query and is currently in focus. The authors also open up the context-
focus metaphor (Lamping, Rao et al. 1995), so that each particular focus 



48 Chapter 2 
 
(fine-grained view) can be embedded into an arbitrary context (coarse-
grained view). 

Another algorithm based on the focus-context metaphor is SpaceTree 
(Plaisant, Grosjean et al. 2002). SpaceTree is a tree browser to some extent 
similar to hyper trees (Lamping, Rao et al. 1995). It addresses one difficulty 
of the hyperbolic geometry; namely constant updating of the visual 
representation, which makes it hard for the user to create a mental map of the 
ontology, hierarchy or taxonomy. SpaceTree uses dynamic rescaling of tree 
branches to fit within a constrained space; miniature tree icons are used to 
indicate the depth, breadth and size of the sub-trees hidden behind a given 
node. 

A different example for projecting ontologies is provided by the “crop 
circles” metaphor (Parsia, Wang et al. 2005). As with the fish-eye, this 
metaphor also shows some implicit topography in an overview mode. In 
CropCircles classes and partitions are represented as circles. One can hover 
over a particular node in the visualization to see the class it actually 
represents. By clicking on a class one can quickly highlight its immediate 
neighborhood (children, parents). Also, zooming in and out is easily 
supported in this view, and as the recent study from Wang and Parsia (2006) 
showed, the metaphor in some cases could outperform other visual 
techniques (especially in the context of viewing richly interlinked and deep 
ontologies). 

On a more traditional level, ontologies are often perceived by many 
developers, researchers and users as predominantly hierarchies of subsumed 
concepts; i.e. structures where one concept is a kind of another concept (as in 
“Ford is a Car”). Hence a lot of effort was put into navigating these, so-
called isA structures. Techniques like IsaViz6 focus on the structurally 
dominant relationship in any ontology (subClassOf). Two key shortcomings 
of this approach are: (i) its usefulness rapidly falls with the depth of a 
hierarchy, and (ii) very few graphs actually have a neat hierarchical 
structure. The isA graphs make visually interesting demonstrations, but by 
definition, they do not contain various lateral or horizontal relations 
(Brusilovsky and Rizzo 2002). 

Some of the more recent developments in the field of ontology 
visualization took an approach more centered on the user needs. A good 
example of this is Jambalaya (Ernst, Storey et al. 2003), a project that started 
with the aim to visualize rich ontology graphs and was initially driven by the 
technological needs. However, at the application re-design stage, the needs 
of real users were considered for particular audiences comprising the 
biologists in a large national research center. These requirements came from 
observing the actual users — biologists, and conjecturing potentially useful 
                                                      
6 More information available from http://www.w3.org/2001/11/IsaViz 



2. Engineering and Customizing Ontologies 49
 
functional requirements from these observations. As a result, Jambalaya is 
more balanced in addressing a range of users needs on an ontology 
visualization package. 

One the level of underlying technology, Jambalaya’s visualization is still 
based on the metaphor of a graph, but allows more customization of what 
can be visually depicted. Particularly its FilmStrip metaphor (Ernst, Storey et 
al. 2003) suggests an interesting compromise between data overviews and its 
specific context. Yet, due to realizing this idea through showing the relevant 
information as nodes, the outcome is full of boxes and overlapping edges. 
These often achieve the opposite of a positive user experience, as the 
overlapping graph sub-structures may easily obscure much of the underlying 
semantic structure. 

Many practical ontologies use a range of relationship; e.g. UK Ordnance 
Survey reports on their use of a range of ontological relationships that may 
easily create issues if inappropriately visualized (Dolbear, Hart et al. 2006). 
In particular, they highlight issues with fairly common geo-spatial 
relationships like contained within, next to or surrounded by. In each of the 
cases illustrated, merely showing two nodes from the low-level data 
representation linked with a declared or inferred labeled arc is not of much 
use. For instance, in some cases objects such as fields may be both 
surrounded by and contained within and be inside of a wall. However, if 
field F is contained within something else (e.g. wall), by definition it cannot 
be next to another field F,’ since they would need to share the ‘container.’ 
However, to anybody visualizing a dataset containing fields F and F’ it 
makes perfect sense to ‘ignore’ the dividing walls and talk just about the 
fields.  

4.2.3 Benefits of navigational and visualization techniques 

Cognitive studies, one of the recent examples is a study by Demian and 
Fruchter (2004), show that there are several mutually not fully compatible 
requirements on interacting through visual user interfaces:  

• a need to find a particular item (e.g. knowing some of its properties),  
• a need to explore the context in which an item is defined (e.g. what does 

it mean if we say that “Ford is a Car”), and  
• a need to establish the difference between two or more items, which may 

include temporal differences due to evolution or various conceptual 
differences (e.g. “Ford Transit is a Ford, but not a Car, and this is 
because…”)  

The simple IsaViz and related techniques basically address only the 
second need identified above, and even that to a very small extent. The 



50 Chapter 2 
 
implications of the discussion in the above paragraphs are that there is 
unlikely to be one perfect method or technique for scaling up the navigation 
through structured datasets. What is more likely to work is reusing familiar 
metaphors, such as the FishEye projections or CropCircles. However, it 
seems equally important to use these metaphors at the right point during the 
process of navigating ontologies. Crop Circles, for instance, seem to fit best 
if one is interested in seeing broad relationships among several ontologies. 
Map-like FishEye projections, on the other hand, seem to show a finer level 
of granularity — e.g. when one wants to explore the relationship of 
networked ontologies to a particular concept in one ontology. 

One approach that has not been mentioned so far, but which actually 
could combine the need of dealing with large-scale datasets with the need to 
simplify the ontological definitions, is inspired by maps and mapping 
metaphor. By definition, any map is essentially a projection of a particular 
world (most often a landscape) onto a paper (or screen). One can imagine 
creating such domain landscapes from several different perspectives. For 
instance, a landscape of research topics in Europe is likely to look somewhat 
differently from the landscape of UK’s football or the landscape of great 
maritime voyages. 

Assume we have several pre-computed landscapes available that show 
the key terms of a particular domain (an example is shown in Figure 2-1), 
their links, relationships, closeness, etc. When we take one or several 
ontologies, we can cover these domains with the given ontologies. In some 
cases, the coverage would be better and more precise than in others. 
Different ontologies would be positioned into different regions of the 
landscape — dependent on which landscape the user takes as a foundation 
for his or her navigation. Although we have given this example with 
ontologies in general, most of the current tools deal only with data (possibly 
annotated using ontologies). Hence, adaptations of the familiar techniques 
are needed to apply to ontologies as topological structures, not only as data 
sets. 

Another interesting strategy is motivated by work done by Collins, 
Mulholland et al. (2005) on spotlight browsing. The principle of this 
navigation strategy is again based on a metaphor — a torch throwing a beam 
of light. The user selects a resource or a concept from a particular collection; 
then the collection is dynamically restructured so that it conveys interesting 
properties, clusters, etc. that may be relevant to the initial ‘spot.’ These 
additional items and concepts are then structured around the original spot by 
calculating their semantic closeness. The navigation is then equivalent to 
shedding a light beam (as shown in the mockup in Figure 2-1), which puts 
certain concepts into light (i.e. into navigable focus) and certain other items 
into shadow (i.e. into non-navigable periphery). 



2. Engineering and Customizing Ontologies 51
 

 

Figure 2-1. Mock-up of a 2D rendered landscape with two ontologies broadly covering and 
mapping different sections of it. Green areas roughly correspond to different ontologies and 
red crosses to selected terms whose distance/mutual positions depend on a particular corpus. 

4.3 Customizing ontologies 

One of the early works toward ontology customization came from Mitra 
and Wiederhold (2004), who proposed a modularized approach to creating 
ontologies as this would ease ontology reuse and would help breakdown the 
required effort into smaller, manageable pieces. To that goal, they describe a 
general idea of ontology customization operators that would support such a 
modularized approach and help combine the modules to larger ontologies. 
Examples of their operations include, e.g.: 

• selection from an ontology (there are different criteria for this); 
• intersection of several ontologies (i.e. a common denominator); 
• union or extension of several ontologies; 
• differentiation or discrimination between ontologies, etc. 

In addition to the binary or n-ary operations, there is an important set of 
unary operations, those working on a single ontology. It is this particular set 
that is of interest in the context of our objective discussed in this chapter. For 



52 Chapter 2 
 
example, work by Jannink, Mitra et al. (1999) describes four binary and four 
unary operators. Among them are some interesting unary operators: 

• summarize — centralizes the ontology into groups of similar concepts; 
• glossarize — lists terms subordinate to a given concept without any of 

the recognition of the sub-structure; 
• filter — extracts instances from ontology according to a given predicate; 
• extract — reduces concepts and the possibly corresponding instances 

from the ontology according to a given predicate/condition. 

Particularly useful operations, from the perspective of reducing ontology 
complexity, are the first two operations: summarization and glossarization. 
Both essentially drawing on the latter two operations, but providing useful 
interpretative viewpoints on a complex conceptual structure. In this chapter 
we are not going into more depth with regard to customization operations 
and how they may be realized, a brief overview of some tools and their 
support for this task is discussed, for instance, by Dellschaft, Dzbor et al. 
(2006). 

Nonetheless, let us at least mention how the operators mentioned above 
might be related to section 4.1 (user profiles) and section 4.2 (ontology 
navigation). In both previous sections we relied on the fact that a part of the 
ontology is known, but we haven’t really said how such parts might be 
obtained. For example, for the spotlight or fish-eye facility, we may need a 
central, in-focus portion of an ontology together with several summaries of 
the surrounding contextual fringes. 

These requirements may be directly linked to the aforementioned 
operations for ontology customization — extraction (to get a focus area) and 
summarization (to obtain meaningful but brief summaries of what lies 
around the focal point). Hence, in general, the techniques described in this 
section may be seen as data feeds for the purpose of visualization and 
navigation methods, which in turn may act as points where the user may 
make choices, which could be captured in a specific profile. 

Next we shall present how the three apparently independent areas may 
relate together in a kind of user support “stack.” 

4.4 Illustrative scenario — putting it all together 

Imagine we work with several ontologies, which we want to navigate. 
Among others we have FishBase, AgroVoc, FIGIS, and other ontologies 
typically used by agricultural experts7. Let us assume our expert wants to 
edit parts of the ontology related to Albacore tuna. These need to be located, 
                                                      
7 To learn more about these ontologies visit http://www.fao.org/fi 



2. Engineering and Customizing Ontologies 53
 
extracted, and presented appropriately, because the number of related terms 
is potentially exponentially large. 

First, large ontologies may be reduced so that they contain the minimal 
number of concepts surrounding the albacore tuna, which are still 
ontologically complete and sound. This may be achieved by applying one of 
the ontology reduction/extraction operators mentioned in section 4.3. The 
extraction may find overlaps and possibly generalizations of term subsets, so 
that the diversity could be expressed using a smaller number of concepts. 

Different alternative navigational paths can then be visually summarized 
in a manner following Figure 2-1. The initial position of the yellow “light 
beam” would reflect that exploratory path through the concept cloud that 
seems to be best covered by the existing fishery ontologies. The numbers in 
superscript in the figure may e.g. refer directly to the internal formal 
resources referring to a particular theme (e.g. FIGIS, AgroVoc, etc.). In 
addition, the weight of the terms is given by their ontological reliability and 
provenance — where our expert may quickly see that the fish species are 
particularly well conceptualized. 

 

Figure 2-1. Mock-up of an ontology summary view showing concepts related to the focal 
term (Albacore) and ontologies covering these terms. Typefaces may reflect e.g. 
trustworthiness of terms against ontologies with same italic/bold typeface on the right. 

In the shape as shown in Figure 2-1, an expert may easily see different 
dimensions corresponding to diverse ontological relationships around the 
concept of albacore tuna. Such a conceptual summary space may be easily 
reorganized without too much cognitive overhead on the part of our expert. 
For instance, re-pointing the beam towards the red section (which may 
denote some ontological inconsistency), it is possible to rapidly refine a 
particular type of ontological relationship. In our case, assume we target the 
locality and fish habitat relations. An outcome of such an action is sketched 
in Figure 2-2, where one sees more relevant ontologies, different concepts 
emerging in focus, and others fading into the fringe. 



54 Chapter 2 
 

Thus, a typical use case applying the three layers of user-centred 
ontology management we discussed in this section, presents a mesh of 
several familiar techniques. The three areas we mentioned — user profiling, 
navigation and visualization techniques, and customization operators — can 
be seen as three layers of a stack, which influence each other in a variety of 
ways. For example, based on a user profile, one may prefer a particular 
navigational technique; such a technique may need to draw upon a specific 
customization operation. That, in turn, may help keep the profile up to date, 
etc. Hence, the three layers addressing complex user issues in our illustrative 
scenario are manifested in the following ways:  

 

Figure 2-2. Mock-up of the repositioned focus of related terms and ontologies covering these 
terms 

• User profiling techniques: 
o acquiring user and group profiles; 
o using machine learning to manage user profiles; 

• Customized, abstract-level interaction with ontologies: 
o hiding the low-level aspects of several ontology engineering tasks; 
o making sense of links and relations within/between ontologies; 
o ontology visualization on the level of domain coverage; 
o spotlight browsing and other less common browsing extensions;  

• Ontology customization operations: 
o reducing ontology complexity;  
o modularization and view customization based on user-selected 

criteria;  
o customization operations such as module reduction, compounding, 

differencing, etc. 



2. Engineering and Customizing Ontologies 55
 
5. CONCLUSIONS 

In this chapter we briefly covered the broad and rather complex area of 
human-ontology interaction. We started with reviewing generic tenets of 
HCI and their relevance to ontology management. We then presented some 
empirical evidence highlighting the fact that the existing ontology 
engineering tools are still at a very early developmental stage (from the 
software lifecycle point of view). We concluded this part with highlighting 
several functional opportunities that seem to be missing in the existing tools 
for ontology management, in particular for ontology engineering. 

Then we offered an exploratory survey of some areas that are not 
commonly associated with ontological engineering, and considered what 
roles these techniques may play in making the human-ontology interaction 
more mainstream and more acceptable for so-called ordinary users. In 
particular, we started with user profiling, elaborated on the use of data 
visualization, navigation and exploration techniques, and briefly touched on 
the need to investigate ontology customization operations and methods, as 
the foundation of our triple stack of technologies that may make life of the 
user easier.  

ADDITIONAL READING 

Collins, T., Mulholland, P., et al. (2005). Semantic Browsing of Digital Collections. Proc. of 
the 4th Intl. Semantic Web Conf., Ireland, pp.127–141. 

Dellschaft, K., Dzbor, M., et al. (2006). Review of methods and models for 
customizing/personalizing ontologies, NeOn project: From http://neon-project.org/web-
content/index.php?option=com_weblinks&catid=17 &Itemid=35 (April 2007). 

Duineveld, A. J., Stoter, R., et al. (2000). “WonderTools? A comparative study of ontological 
engineering tools.” Intl. Journal of Human-Computer Studies 52(6): pp.1111–1133. 

Dzbor, M., Motta, E., et al. (2006). Developing ontologies in OWL: An observational study. 
OWL:Experiences & Directions wksp., Georgia, US. 

Ernst, N. A., Storey, M. A., et al. (2003). Addressing cognitive issues in knowledge 
engineering with Jambalaya. Knowledge Capture Conference (K-Cap), Florida, US. 

Norman, D. (1998). The Invisible Computer. Cambridge, MA, MIT Press. 
Shneiderman, B. (2000). “Universal Usability: pushing human-computer interaction research 

to empower ever y citizen.” Communications of the ACM 43(5): pp.84–91. 
Shneiderman, B. and Plaisant, C. (2004). Designing the User Interface: Strategies for 

effective human-computer interaction, Addison-Wesley, 672 pages. 
Storey, M. A., Lintern, R., et al. (2004). Visualization and Protégé. 7th International Protégé 

Conference, Maryland, US. 



56 Chapter 2 
 
REFERENCES 

Brusilovsky, P. and Rizzo, R. (2002). “Map-Based Horizontal Navigation in Educational 
Hypertext.” Journal of Digital Information 3(1): pp.156. 

Collins, T., Mulholland, P., et al. (2005). Semantic Browsing of Digital Collections. Proc. of 
the 4th Intl. Semantic Web Conf., Ireland, pp.127–141. 

Colman, A. M. (2001). A Dictionary of Psychology. Oxford, Oxford University press, 864 
pages. 

Dellschaft, K., Dzbor, M., et al. (2006). Review of methods and models for 
customizing/personalizing ontologies, NeOn project: From http://www.neon-
project.org/web-content/index.php?option=com_weblinks&catid=17&Itemid=35 
(April 2007). 

Demian, P. and Fruchter, R. (2004). CoMem: Evaluating Interaction Metaphors for 
Knowledge Reuse from a Corporate Memory. Stanford, Center for Integrated Facility 
Engineering, Stanford University: 47 pages. 

Dolbear, C., Hart, G., et al. (2006). What OWL has done for Geography and why we Don't 
Need it for Map Reading. OWL:Experiences & Directions workshop, Georgia, US. 

Duineveld, A. J., Stoter, R., et al. (2000). “WonderTools? A comparative study of ontological 
engineering tools.” Intl. Journal of Human-Computer Studies 52(6): pp.1111–1133. 

Dzbor, M., Motta, E., et al. (2006). Developing ontologies in OWL: An observational study. 
OWL:Experiences & Directions wksp., Georgia, US. 

Ernst, N. A., Storey, M. A., et al. (2003). Addressing cognitive issues in knowledge 
engineering with Jambalaya. Knowledge Capture Conference (K-Cap), Florida, US. 

Fensel, D. and Gómez-Pérez, A. (2002). A survey on ontology tools, OntoWeb Project: 
http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/OntoWeb_Del_1-3.pdf 
(April 2007). 

Fortuna, B., Mladenic, D., et al. (2006). Semi-automatic data-driven ontology construction 
system. Proc. of the 9th Multiconference on Information Society, pp.223–226. 

Goel, V. (1995). The Sketches of Thought. Massachussets, US, MIT Press, 274 pages. 
Grcar, M., Mladenic, D., et al. (2005). User profiling for interest-focused browsing history. 

Proc. of the 8th Multiconference on Information Society, pp.223–226. 
Gruber, T. R. (1993a). “A Translation approach to Portable Ontology Specifications.” 

Knowledge Acquisition 5(2): pp.199–221. 
Gruber, T. R. (1993b). “Towards principles for the design of ontologies used for knowledge 

sharing.” Intl. Journal of Human-Computer Studies 43(5/6): pp.907–928. 
Hearst, M. (2000). “Next Generation Web Search: Setting Our Sites.” IEEE Data Engineering 

Bulletin (Special issue on Next Generation Web Search, Luis Gravano (Ed.)). 
Hildebrand, M., van Ossenbruggen, J., et al. (2006). /facet: A browser for heterogeneous 

semantic web repositories. Proc. of the 5th Intl. Semantic Web Conf., Georgia, US, 
pp.272–285. 

Jannink, J., Mitra, P., et al. (1999). An algebra for semantic interoperation of semistructured 
data. IEEE Knowledge and Data Engineering Exchange Workshop, Illinois, US. 

Kalyanpur, A., Parsia, B., et al. (2005). “Debugging Unsatisfiable Classes in OWL 
Ontologies.” Journal of Web Semantics 3(4). 

Kirkpatrick, D. L. (1994). Evaluating Training Programs: the Four Levels. San Francisco, 
Berrett-Koehler Publishers, 289 pages. 

Komzak, J. and Slavik, P. (2003). Scaleable GIS Data Transmission and Visualisation. Intl. 
Conf. on Information Visualization (IV), UK. 

Krulwich, B. (1997). “Lifestyle finder.” AI magazine 18(2): pp.37–46. 



2. Engineering and Customizing Ontologies 57
 
Kules, B. (2000). “User modeling for adaptive and adaptable software systems.” UUGuide: 

Practical design guidelines for Universal Usability, From 
http://www.otal.umd.edu/UUGuide (April 2007). 

Lamping, J., Rao, R., et al. (1995). A focus-context technique based on hyperbolic geometry 
for visualizing large hierarchies. Proc. of the Conf. on Human Factors in Computing 
Systems. 

Lang, K. (1995). News weeder : Learning to filter netnews. Proc. of the 12th Intl. Conf. on 
Machine Learning. 

Mancini, C. (2005). Cinematic Hypertext: Investigating a New Paradigm. Amsterdam, The 
Netherlands, IOS Press, 192 pages. 

Mitra, P. and Wiederhold, G. (2004). An ontology composition algebra. Handbook on 
Ontologies. S. Staab and R. Studer. Heidelberg, Germany, Springer Verlag: pp.93–113. 

Norman, D. (1998). The Invisible Computer. Cambridge, MA, MIT Press. 
Noy, N. F. and Musen, M. A. (2003). “The PROMPT Suite: Interactive Tools For Ontology 

Merging And Mapping.” International Journal of Human-Computer Studies 59(6): 
pp.983–1024. 

Noy, N. F., Sintek, M., et al. (2001). “Creating Semantic Web Contents with Protege 2000.” 
IEEE Intelligent Systems 16(2): pp. 60–71. 

Oren, E., Delbru, R., et al. (2006). Extending faceted navigation for RDF data. Proc. of the 
5th Intl. Semantic Web Conf., Georgia, US, pp.559–572. 

Parsia, B., Wang, T., et al. (2005). Visualizing Web Ontologies with CropCircles. Proceedings 
of the ISWC 2005 Workshop on End User Semantic Web Interaction, Ireland. 

Pietriga, E., Bizer, C., et al. (2006). Fresnel: A browser-independent presentation vocabulary 
for RDF. Proc. of the 5th Intl. Semantic Web Conf., Georgia, US, pp.158–171. 

Pinto, S., Peralta, N., et al. (2002). Using Protégé-2000 in Reuse Processes. Evaluation of 
ontology-based tools (EON), pp.15–25. 

Plaisant, C., Grosjean, J., et al. (2002). Spacetree: Suppor ting exploration in large node link 
tree, design evolution and empirical evaluation. Proc. of the Intl. Symposium on 
Information Visualization. 

Shraefel, M C, Karam, M., et al. (2003). mSpace: interaction design for user-determined, 
adaptable domain exploration in hypermedia. Workshop on Adaptive Hypermedia and 
Adaptive Web Based Systems, UK, pp.217–235. 

Scriven, M. (1991). Beyond Formative and Summative Evaluation. Evaluation and 
Education: A Quarter Century. M. W. McLaughlin and D. C. Phillips. Chicago, University 
of Chicago Press: pp.19–64. 

Shadbolt, N. R., Gibbins, N., et al. (2004). “CS AKTive Space: or how we learned to stop 
worrying and love the Semantic Web.” IEEE Intelligent Systems 19(3): pp.41–47. 

Shneiderman, B. (2000). “Universal Usability: pushing human-computer interaction research 
to empower ever y citizen.” Communications of the ACM 43(5): pp.84–91. 

Shneiderman, B. and Plaisant, C. (2004). Designing the User Interface: Strategies for 
effective human-computer interaction, Addison-Wesley, 672 pages. 

Storey, M. A., Lintern, R., et al. (2004). Visualization and Protégé. 7th International Protégé 
Conference, Maryland, US. 

Wang, T. D. and Parsia, B. (2006). CropCircles: Topology sensitive visualization of OWL 
class hierarchies. Proc. of the 5th Intl. Semantic Web Conf., Georgia, US, pp.695–708. 

Yee, P., Swearingen, K., et al. (2003). Faceted Metadata for Image Search and Browsing. 
Proc. of the ACM Conf. on Computer-Human Interaction (CHI). 

 


